JP5598851B2 - Silver-coated composite material for movable contact part, method for producing the same, and movable contact part - Google Patents

Silver-coated composite material for movable contact part, method for producing the same, and movable contact part Download PDF

Info

Publication number
JP5598851B2
JP5598851B2 JP2010191580A JP2010191580A JP5598851B2 JP 5598851 B2 JP5598851 B2 JP 5598851B2 JP 2010191580 A JP2010191580 A JP 2010191580A JP 2010191580 A JP2010191580 A JP 2010191580A JP 5598851 B2 JP5598851 B2 JP 5598851B2
Authority
JP
Japan
Prior art keywords
silver
alloy
movable contact
plating
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010191580A
Other languages
Japanese (ja)
Other versions
JP2012049042A (en
Inventor
良聡 小林
悟 座間
智 鈴木
雅人 大野
圭介 池貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2010191580A priority Critical patent/JP5598851B2/en
Publication of JP2012049042A publication Critical patent/JP2012049042A/en
Application granted granted Critical
Publication of JP5598851B2 publication Critical patent/JP5598851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic

Description

本発明は、電気接点部品およびその材料に関し、更に詳しくは、電気・電子機器等に用いられる小型スイッチ内の可動接点に使用される可動接点部品用銀被覆複合材料および可動接点部品に関する。   The present invention relates to an electrical contact part and a material thereof, and more particularly to a silver-coated composite material for a movable contact part and a movable contact part used for a movable contact in a small switch used in an electric / electronic device or the like.

コネクター、スイッチ、端子などの電気接点部には主に皿バネ接点、ブラシ接点およびクリップ接点が用いられている。これら接点部品には、銅合金やステンレス鋼などの耐食性や機械的性質などに優れる基材に、電気特性と半田付け性に優れる銀を被覆した複合接点材料が多用されている。   A disc spring contact, a brush contact, and a clip contact are mainly used for electrical contact portions such as connectors, switches, and terminals. For these contact parts, a composite contact material in which a base material excellent in corrosion resistance and mechanical properties such as copper alloy and stainless steel is coated with silver excellent in electrical characteristics and solderability is frequently used.

この複合接点材料のうち、基材にステンレス鋼を用いたものは、基材に銅合金を用いたものと比較して、機械的特性や疲労寿命などに優れるため、接点の小型化が可能であり、長寿命のタクティルプッシュスイッチや検出スイッチなどの可動接点に使用されている。近年では、携帯電話のプッシュボタンに多用されており、メール機能やインターネット機能の充実によって、スイッチの動作回数が激増しており、長寿命の可動接点部品が求められている。   Of these composite contact materials, those using stainless steel as the base material are superior in mechanical properties and fatigue life to those using a copper alloy as the base material. It is used for movable contacts such as long-acting tactile push switches and detection switches. In recent years, it has been frequently used for push buttons of mobile phones. Due to the enhancement of mail functions and Internet functions, the number of switch operations has increased dramatically, and long-life movable contact parts are required.

ところで、基材にステンレス鋼を用いた複合接点材料は、基材に銅合金を用いた複合接点材料に比べて、可動接点部品の小型化が可能なためスイッチの小型化ができ、更に動作回数を増加させることが可能であるが、スイッチの接点圧力が大きくなり、可動接点部品に被覆された銀の摩耗による接点寿命の低下が問題になっている。   By the way, the composite contact material using stainless steel as the base material can reduce the size of the movable contact parts compared to the composite contact material using a copper alloy as the base material, so the switch can be downsized and the number of operations can be increased. However, the contact pressure of the switch is increased, and the contact life is reduced due to the wear of silver coated on the movable contact parts.

例えば、ステンレス条に銀または銀合金を被覆した複合接点材料として、下地にニッケルめっきを施したものが多用されている(例えば、特許文献1参照)。だが、これをスイッチに利用する場合、スイッチの動作回数が増加するにつれて、接点部の銀が摩耗によって削れ、下地のニッケルめっき層が露出して接触抵抗が上昇し、導通が取れなくなる不具合が顕在化している。特に、小径のドーム型可動接点部品では、この現象が起こり易く、益々小型化するスイッチには大きな技術課題になっている。   For example, as a composite contact material in which a silver strip or a silver alloy is coated on a stainless steel strip, a material obtained by applying nickel plating to a base is frequently used (for example, see Patent Document 1). However, when this is used for a switch, as the number of operation of the switch increases, the silver of the contact part is scraped due to wear, the underlying nickel plating layer is exposed, the contact resistance increases, and there is a problem that conduction cannot be achieved. It has become. In particular, this phenomenon is likely to occur in small-diameter dome-shaped movable contact parts, which is a major technical problem for switches that are becoming increasingly smaller.

この問題を解決するために、基材の上にニッケルめっき層、パラジウムめっきを順に施し、その上に金めっきを施した複合接点材料がある(例えば、特許文献2参照)。しかし、パラジウムめっき皮膜は硬いために、スイッチの動作回数が増加するとクラックを生じやすい問題点がある。   In order to solve this problem, there is a composite contact material in which a nickel plating layer and a palladium plating are sequentially applied on a base material, and then gold plating is applied thereon (see, for example, Patent Document 2). However, since the palladium plating film is hard, there is a problem that cracks are likely to occur when the number of switch operations increases.

また、導電性を向上させる目的で、ステンレス基材にニッケルめっき、銅めっき、ニッケルめっき、金めっきを順に施したものがある(特許文献3参照)。しかし、ニッケルめっき自体は耐食性に優れるが硬いため、曲げ加工時に銅めっき層と金めっき層との間のニッケルめっき層にクラックが発生することがあり、その結果、銅めっき層が露出して耐食性が劣化するという問題点がある。   In addition, there is one in which nickel plating, copper plating, nickel plating, and gold plating are sequentially applied to a stainless steel base for the purpose of improving conductivity (see Patent Document 3). However, nickel plating itself has excellent corrosion resistance but is hard, so cracks may occur in the nickel plating layer between the copper plating layer and the gold plating layer during bending, and as a result, the copper plating layer is exposed and corrosion resistance There is a problem of deterioration.

また、接点寿命を向上させる技術として、ステンレス基材にニッケルめっき、銅めっき、銀めっきを順次施すものがある(特許文献4〜6参照)。これらの技術において、接点寿命の向上について試験した。その結果、接点モジュール形成時の半田付けを模擬した熱処理(例えば温度260℃で5分間)後の初期接触抵抗値や、打鍵試験を模擬した熱処理(例えば温度200℃で1時間)後の接触抵抗値を測定したところ、熱処理後の接触抵抗値が高いために製品として使用できない水準のものが数多く出現した。このことは、製品に組み込んだ際の不良率が多くなることを示して従って、単にステンレス基材の上に下地ニッケル層、中間銅層、銀最表層の順に所定の厚さで形成するだけでは、熱履歴後の接点特性や接点寿命が不十分であることが推定される。   In addition, as a technology for improving the contact life, there is a technique in which nickel plating, copper plating, and silver plating are sequentially applied to a stainless steel substrate (see Patent Documents 4 to 6). These techniques were tested for improved contact life. As a result, the initial contact resistance value after heat treatment simulating soldering at the time of contact module formation (for example, at a temperature of 260 ° C. for 5 minutes) and the contact resistance after heat treatment simulating a keying test (for example, at a temperature of 200 ° C. for 1 hour) When the values were measured, many products that could not be used as products due to high contact resistance after heat treatment appeared. This indicates that the defect rate when incorporated in a product is increased, so simply forming a base nickel layer, an intermediate copper layer, and a silver outermost layer in a predetermined thickness on a stainless steel base material in that order. It is estimated that the contact characteristics and contact life after the heat history are insufficient.

また、接点寿命を向上させる技術として、銅または銅合金から成る条材の表面が銀または銀合金から成る層で被覆されている電気接点材料において、前記銀または銀合金の結晶粒径が、平均値で5μm以上であることを特徴とする電気接点材料が提供され、また、銅または銅合金から成る条材の表面に銀または銀合金のめっき層を形成し、ついで、非酸化性ガス雰囲気において、400℃以上の温度で熱処理を行うことを特徴とする電気接点材料の製造方法が提案されている(特許文献7)。しかしながら、ステンレス条に銀または銀合金を被覆した複合接点材料に対して、銀または銀合金の結晶粒径を5μm以上に制御するために400℃以上の熱処理を行うと、ステンレス条のばね特性が劣化して可動接点用材料としては適用できないことが分かった。さらに中間層にはニッケルまたはニッケル合金が使用されており、下地層の上層として中間層に銅成分が存在する構成は示されていない。
さらに特許文献7記載の方法では、結晶粒径を調整するために熱処理を行っているが、非活性雰囲気中の残留酸素の影響により、最表面がわずかに酸化してしまい接触抵抗値を増大させてしまう可能性がある。また、熱処理工程が必要となるため、工程の増加となりコスト増大の一因となるという難点も生じる。
Further, as a technique for improving the contact life, in an electrical contact material in which the surface of a strip made of copper or a copper alloy is coated with a layer made of silver or a silver alloy, the crystal grain size of the silver or the silver alloy has an average An electrical contact material characterized by having a value of 5 μm or more is provided, and a silver or silver alloy plating layer is formed on the surface of the strip made of copper or copper alloy, and then in a non-oxidizing gas atmosphere A method for producing an electrical contact material characterized by performing heat treatment at a temperature of 400 ° C. or higher has been proposed (Patent Document 7). However, if a composite contact material in which silver or a silver alloy is coated on a stainless steel strip is subjected to heat treatment at 400 ° C. or higher in order to control the crystal grain size of the silver or silver alloy to 5 μm or more, the spring characteristics of the stainless steel strip are It was found that the material was deteriorated and could not be applied as a movable contact material. Furthermore, nickel or a nickel alloy is used for the intermediate layer, and a configuration in which a copper component is present in the intermediate layer as an upper layer of the underlayer is not shown.
Furthermore, in the method described in Patent Document 7, heat treatment is performed to adjust the crystal grain size, but the outermost surface is slightly oxidized due to the influence of residual oxygen in the inert atmosphere, increasing the contact resistance value. There is a possibility that. In addition, since a heat treatment step is required, there is a problem that the number of steps increases and the cost increases.

特開昭59−219945号公報JP 59-219945 A 特開平11−232950号公報Japanese Patent Laid-Open No. 11-232950 特開昭63−137193号公報JP-A-63-137193 特開2004−263274号公報JP 2004-263274 A 特開2005−002400号公報JP 2005-002400 A 特開2005−133169号公報JP 2005-133169 A 特開平5−002940号公報JP-A-5-002940

そこで、本発明は可動接点部品用の複合材料として、繰り返すせん断応力に対してもめっきの密着性に優れ、接触抵抗値が長期に渡って低く安定しており、熱処理工程を経ないで、スイッチの寿命を改善し得る、可動接点部品用銀被覆複合材料および可動接点部品の提供を目的とする。   Therefore, the present invention is a composite material for movable contact parts, which has excellent plating adhesion even against repeated shear stress, has a low and stable contact resistance value over a long period of time, and does not undergo a heat treatment process. An object of the present invention is to provide a silver-coated composite material for a movable contact part and a movable contact part that can improve the service life of the contact point.

本発明者らは上記課題に鑑み鋭意研究した結果、ステンレス鋼基材の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、コバルト合金のいずれかからなる下地層が形成され、その上層に銅または銅合金からなる中間層が形成され、さらにその上層に銀または銀合金層が最表層として形成されている可動接点部品用銀被覆複合材料であって、最表層に形成された銀または銀合金の内部応力を、特定の範囲に制御することによって、加熱工程を経なくても内部応力の開放により再結晶化が促進されること、それにより結晶粒径が大きくなり、その結果接触抵抗値が低く、かつ長期にわたって接触抵抗が低く安定に保つことができることを見出した。さらに、中間層に形成されている銅または銅合金の厚さを0.05〜0.3μmの範囲で制御することにより、上記の効果がより一層高まることを見出した。本発明はこれらの知見に基づきなされるに至った。   As a result of intensive studies in view of the above problems, the present inventors have formed a base layer made of nickel, cobalt, nickel alloy, or cobalt alloy on at least a part of the surface of the stainless steel substrate, and copper or copper on the upper layer. A silver-coated composite material for a movable contact part, in which an intermediate layer made of a copper alloy is formed, and a silver or silver alloy layer is formed as an outermost layer on the intermediate layer, the silver or silver alloy formed on the outermost layer By controlling the internal stress within a specific range, the recrystallization is promoted by releasing the internal stress without passing through the heating step, thereby increasing the crystal grain size, resulting in a low contact resistance value. In addition, it has been found that the contact resistance can be kept low and stable over a long period of time. Furthermore, it has been found that the above effect is further enhanced by controlling the thickness of the copper or copper alloy formed in the intermediate layer in the range of 0.05 to 0.3 μm. The present invention has been made based on these findings.

すなわち本発明の課題は、以下の手段により解決される。
(1)ステンレス鋼基材の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、コバルト合金のいずれかからなる下地層が形成され、その上層に銅または銅合金からなる中間層が形成され、さらにその上層に銀または銀合金層が最表層として形成されている可動接点部品用銀被覆複合材料であって、前記中間層の厚さが0.05〜0.3μmであり、かつ前記最表層に形成された銀または銀合金の内部応力が、2.45〜49.0N/mmであることを特徴とする、可動接点部品用銀被覆複合材料。
(2)前記最表層の厚さが、0.3〜2.0μmであることを特徴とする、(1)記載の可動接点部品用銀被覆複合材料。
(3)前記(1)または(2)に記載の可動接点部品用銀被覆複合材料が加工されて形成された可動接点部品であって、接点部分がドーム状または凸形状に形成されたことを特徴とする、可動接点部品。
That is, the problem of the present invention is solved by the following means.
(1) A base layer made of nickel, cobalt, a nickel alloy, or a cobalt alloy is formed on at least a part of the surface of the stainless steel substrate, and an intermediate layer made of copper or a copper alloy is formed thereon, and A silver-coated composite material for a movable contact component in which a silver or silver alloy layer is formed as an outermost layer on the upper layer, wherein the intermediate layer has a thickness of 0.05 to 0.3 μm, and the outermost layer A silver-coated composite material for movable contact parts, wherein the internal stress of the formed silver or silver alloy is 2.45 to 49.0 N / mm 2 .
(2) The silver-coated composite material for movable contact parts according to (1), wherein the thickness of the outermost layer is 0.3 to 2.0 μm.
(3) A movable contact part formed by processing the silver-coated composite material for a movable contact part according to (1) or (2), wherein the contact part is formed in a dome shape or a convex shape. A feature of movable contact parts.

本発明の可動接点部品用銀被覆複合材料は、繰り返しせん断応力に対して銀被覆層の密着力の低下防止の点で優れる。そして、スイッチ形成時の熱履歴や、スイッチの開閉動作においても接触抵抗値が長期にわたって低く安定に保たれることによって、スイッチの寿命がより一層改善された可動接点部品用銀被覆複合材料が提供できる。
また、本発明の可動接点部品は、前記可動接点部品用銀被覆複合材料を用いて加工したものであり、ドーム状や凸形状に加工した後の各層の割れの発生が抑制される。よって、接触抵抗値が長期にわたって低く安定に保たれ、接点寿命の長い可動接点部品を作製できる。
The silver-coated composite material for movable contact parts of the present invention is excellent in terms of preventing a decrease in adhesion of the silver coating layer against repeated shear stress. Also, a silver-coated composite material for movable contact parts is provided that further improves the life of the switch by maintaining a low and stable contact resistance value over a long period of time, even during switch formation and when opening and closing the switch. it can.
Moreover, the movable contact part of this invention is processed using the said silver covering composite material for movable contact parts, and generation | occurrence | production of the crack of each layer after processing into a dome shape or convex shape is suppressed. Therefore, it is possible to produce a movable contact part that has a low contact resistance value and is stable over a long period of time and has a long contact life.

打鍵試験に用いたスイッチの平面図である。It is a top view of the switch used for the keystroke test. 打鍵試験に用いたスイッチの平面図におけるA−A線断面図と押圧方向を示すもので、(a)はスイッチ動作前、(b)はスイッチ動作時である。The AA sectional view and pressing direction in the top view of the switch used for the keystroke test are shown, (a) before the switch operation, (b) at the time of the switch operation. 本発明の可動接点部品用銀被覆複合材料における断面写真であり、平均結晶粒径が約0.75μmである例を示す。It is a cross-sectional photograph in the silver covering composite material for movable contact parts of this invention, and shows the example whose average crystal grain diameter is about 0.75 micrometer. 従来の可動接点部品用銀被覆複合材料における断面写真であり、平均結晶粒径が約0.2μmである例を示す。It is a cross-sectional photograph in the conventional silver coating composite material for movable contact parts, and shows an example in which the average crystal grain size is about 0.2 μm.

本発明の可動接点部品用銀被覆複合材料および可動接点部品について、好ましい実施の態様を詳細に説明する。   A preferred embodiment of the silver-coated composite material for a movable contact part and the movable contact part of the present invention will be described in detail.

本発明の好ましい実施態様は、ステンレス鋼基材の表面の少なくとも一部に、ニッケル、コバルト、ニッケル合金またはコバルト合金の下地層、銅または銅合金の中間層、結晶粒径が特定の範囲に制御された銀または銀合金の最表層がこの順に形成されていることを特徴とする可動接点部品用銀被覆複合材料である。この材料から形成される可動接点部品は、スイッチの動作回数が増加しても接触抵抗の上昇が起き難いものである。   In a preferred embodiment of the present invention, nickel, cobalt, a nickel alloy or a cobalt alloy underlayer, a copper or copper alloy intermediate layer, and a crystal grain size are controlled within a specific range on at least a part of the surface of the stainless steel substrate. A silver-coated composite material for movable contact parts, wherein the outermost layer of silver or silver alloy is formed in this order. The movable contact part formed of this material is unlikely to increase in contact resistance even when the number of switch operations increases.

本発明の実施態様において、ステンレス鋼基材は可動接点部品に用いたとき、その機械的強度を担うものである。このため、ステンレス鋼基材としては応力緩和特性に優れ、疲労破壊し難い材料である、SUS301、SUS304、SUS316などの圧延調質材またはテンションアニール材などが好ましく用いられる。   In an embodiment of the present invention, the stainless steel substrate bears its mechanical strength when used in a movable contact part. For this reason, a rolled tempered material such as SUS301, SUS304, or SUS316, or a tension annealed material, which is excellent in stress relaxation properties and is not easily damaged by fatigue, is preferably used as the stainless steel substrate.

前記ステンレス鋼基材上に形成される下地層は、ステンレス鋼と銅または銅合金層との密着性を高める作用がある。銅または銅合金の中間層は、下地層と最表層の密着性を高めることができ、かつ最表層中を拡散してきた酸素を捕捉し、下地層の成分の酸化を防止して密着性を向上ないしは維持させる機能を持っている。   The underlayer formed on the stainless steel substrate has the effect of increasing the adhesion between the stainless steel and the copper or copper alloy layer. The intermediate layer of copper or copper alloy can improve the adhesion between the underlayer and the outermost layer, capture oxygen diffused in the outermost layer, prevent the oxidation of the components of the underlayer and improve the adhesion Has a function to maintain or maintain.

下地層を形成する金属は、ニッケル、コバルト、ニッケル合金、コバルト合金のいずれかが選ばれ、特にニッケルまたはコバルトが好ましい。この下地層は、ステンレス基材を陰極にして、例えば塩化ニッケルおよび遊離塩酸を含む電解液を用いて電解することにより、厚さを0.005〜2.0μmとするのが、プレス加工時に下地層に割れが入りにくくするために好ましく、0.01〜0.2μmであるのがより好ましい。   The metal forming the underlayer is selected from nickel, cobalt, nickel alloy, and cobalt alloy, and nickel or cobalt is particularly preferable. The thickness of the underlayer is 0.005 to 2.0 μm by electrolysis using, for example, an electrolytic solution containing nickel chloride and free hydrochloric acid using a stainless steel base as a cathode. It is preferable for preventing cracks from forming in the formation, and is more preferably 0.01 to 0.2 μm.

従来の最表層の密着力低下の原因は、下地層の酸化と、大きな操り返しせん断応力によるものであり、その対策として、下地層を酸化させないこと、せん断応力が加わっても密着性が劣化しないことの2点を満足する材料の開発が必要であった。   The cause of the decrease in the adhesion strength of the conventional outermost layer is due to the oxidation of the underlayer and a large amount of repeated shear stress. As countermeasures, the underlayer is not oxidized, and the adhesion does not deteriorate even if shear stress is applied. It was necessary to develop a material that satisfies these two points.

そこで、本発明では、下地層を酸化させない手段として、銅または銅合金からなる中間層を配置した構成を基本としている。下地層の酸化は、最表層中の酸素の透過によるものであり、銅または銅合金の層の配置によって、下層から銀の粒界に拡散した銅成分が最表層内で酸素を捕捉し下地層の酸化を抑制することで、密着性の低下を防止する役割を果たす。
しかしながら、本構成品を可動接点用銀被覆ステンレス部品として使用したとき、接触抵抗値が上昇してしまう問題が発生していた。本発明者らは、この問題に対して調査検討を行ったところ、中間層の銅成分が、最表層を形成する銀中に容易に拡散し、その拡散した銅成分が最表層の表面に到達したときに酸化されて酸化銅を形成し、逆効果として接触抵抗を増大させてしまうという現象が生じていることを明らかにした。
Therefore, in the present invention, a configuration in which an intermediate layer made of copper or a copper alloy is arranged as a means for preventing the base layer from being oxidized. The oxidation of the underlayer is due to the permeation of oxygen in the outermost layer. Depending on the arrangement of the copper or copper alloy layer, the copper component diffused from the lower layer to the silver grain boundary captures oxygen in the outermost layer and the underlayer By suppressing the oxidation of the resin, it plays a role of preventing a decrease in adhesion.
However, when this component is used as a silver-coated stainless steel part for movable contacts, there has been a problem that the contact resistance value increases. As a result of investigations on this problem, the inventors of the present invention easily diffused the copper component of the intermediate layer into the silver forming the outermost layer, and the diffused copper component reached the surface of the outermost layer. It has been clarified that a phenomenon occurs that copper oxide is oxidized to increase contact resistance as an adverse effect.

この現象を解決すべくさらに鋭意研究を重ねた結果、中間層成分である銅の最表層への拡散は、中間層の厚さと最表層を形成する銀の結晶粒径に密接な関係があることを見出した。すなわち、中間層が薄い場合には、最表層を形成する銀の結晶粒径が多少小さくても銅の拡散量が少なく、中間層が厚い場合には、最表層を形成する銀の結晶粒径を大きくすることで銅の拡散量を少なくすることができることを見出した。   As a result of further earnest research to solve this phenomenon, the diffusion of copper, the intermediate layer component, to the outermost layer is closely related to the thickness of the intermediate layer and the crystal grain size of silver forming the outermost layer. I found. That is, when the intermediate layer is thin, the amount of copper diffusion is small even if the crystal grain size of silver forming the outermost layer is somewhat small, and when the intermediate layer is thick, the crystal grain size of silver forming the outermost layer is small. It has been found that the amount of copper diffusion can be reduced by increasing.

ところが従来、結晶粒径を粗大化させる手法として熱履歴を加えることで粒径を粗大化させる手法が多く開示されている。しかしながら、その熱履歴で中間層の銅成分が表層に拡散する可能性が高く、結晶粒径を粗大化させる前に表面へ銅成分が拡散し、それが酸化して接触抵抗を増大させてしまう結果になっていることが原因と推定された。そこで本発明者は、鋭意研究の結果、最表層に形成される銀または銀合金を電気めっき法で形成する際、そのときに導入される内部応力が2.45〜49.0N/mmであるように調整することで、加熱工程を経ずに銀または銀合金が内部応力を駆動力として再結晶化が促進され、結晶粒径を大きく出来ることを見出し、本発明に至った。 However, conventionally, many techniques for increasing the grain size by adding a thermal history have been disclosed as techniques for increasing the crystal grain size. However, the copper component of the intermediate layer is highly likely to diffuse into the surface layer due to its thermal history, and the copper component diffuses to the surface before the crystal grain size is coarsened, which oxidizes and increases the contact resistance. The cause was presumed to be the result. Therefore, as a result of earnest research, the present inventor, when forming silver or a silver alloy formed on the outermost layer by an electroplating method, the internal stress introduced at that time is 2.45 to 49.0 N / mm 2 . As a result of the adjustment, the present inventors found that silver or a silver alloy can promote recrystallization using an internal stress as a driving force without going through a heating step, and can increase the crystal grain size.

本発明における銀または銀合金からなる最表層の内部応力が2.45〜49.0N/mmであるように調整することで、銀または銀合金の結晶粒径が平均粒径で凡そ0.5〜5.0μmの範囲で制御され、中間層で形成された銅成分の拡散量を抑制することができ、優れた接点特性、特に熱履歴がかかっても接触抵抗を増大させず、可動接点部品として長期間使用されても接触抵抗値が上昇しないことで、接点特性の良好な可動接点部品用銀被覆複合材料が提供できる。とりわけ、銀または銀合金の結晶粒径を調整する際に熱処理工程が不要であるので、最表面における酸化が促進せずに接触抵抗を低く安定化した可動接点部品用銀被覆複合材料が提供できる。
なお本発明で結晶粒径を示すときは、特に断らない限り、平均結晶粒径を意味し、例えばJIS H0501に準じた切断法を用いて測定される。
By adjusting the internal stress of the outermost layer made of silver or silver alloy in the present invention to be 2.45 to 49.0 N / mm 2 , the crystal grain size of silver or silver alloy is about 0. It is controlled in the range of 5 to 5.0 μm, can suppress the diffusion amount of the copper component formed in the intermediate layer, has excellent contact characteristics, especially does not increase the contact resistance even when a thermal history is applied, movable contact Since the contact resistance value does not increase even when used as a part for a long period of time, a silver-coated composite material for a movable contact part having good contact characteristics can be provided. In particular, since a heat treatment step is not required when adjusting the crystal grain size of silver or silver alloy, it is possible to provide a silver-coated composite material for movable contact parts that has a low and low contact resistance without promoting oxidation on the outermost surface. .
In the present invention, when the crystal grain size is shown, it means the average crystal grain size unless otherwise specified, and is measured using a cutting method according to JIS H0501, for example.

上記最表層の内部応力が2.45N/mm未満であると、内部応力による再結晶化がほとんど促進せずに結晶粒径が0.5μm未満となる。その結果、結晶粒界が多くなるために中間層の銅成分の拡散経路が多く、耐熱信頼性が不十分となって接触抵抗が上昇する可能性が高くなる。逆に内部応力が49.0N/mmを超えると、めっき皮膜自身の高い内部応力により、最表面に亀裂が進展する可能性が高くなる。亀裂が発生してしまうと、中間層の銅露出を促進してしまうのみならず、銀または銀合金と銅成分との電位差によって腐食が発生しやすくなり、その結果、耐食性が急激に低下するので好ましくない。上記内部応力の範囲であれば好適に用いられるが、4.9〜29.4N/mmであると、長期信頼性および生産性に優れ、かつプレス時の割れ発生が抑えられるので、さらに好ましい。 When the internal stress of the outermost layer is less than 2.45 N / mm 2 , recrystallization due to the internal stress is hardly promoted and the crystal grain size becomes less than 0.5 μm. As a result, the number of crystal grain boundaries increases, so that there are many diffusion paths for the copper component in the intermediate layer, and the heat resistance becomes insufficient and the possibility that the contact resistance increases is increased. On the other hand, when the internal stress exceeds 49.0 N / mm 2 , there is a high possibility that cracks develop on the outermost surface due to the high internal stress of the plating film itself. If cracks occur, not only will copper be promoted in the intermediate layer, but corrosion will likely occur due to the potential difference between the silver or silver alloy and the copper component, resulting in a sharp decrease in corrosion resistance. It is not preferable. If it is in the range of the above internal stress, it is preferably used, but if it is 4.9 to 29.4 N / mm 2, it is excellent in long-term reliability and productivity, and cracking at the time of pressing is suppressed, so that it is more preferable. .

なお、従来の複合接点材料における銀および銀合金からなる最表層の結晶粒径は、平均結晶粒径が0.2μm程度であり、内部応力をほとんど持っていない条件でめっきされているものと考えられる。その結果として中間層の銅成分や酸素が拡散する経路である最表層の結晶粒界が数多く存在して、各層間の密着性低下や接触抵抗の劣化の大きな原因になっていたと考えられる。   The crystal grain size of the outermost layer made of silver and silver alloy in the conventional composite contact material is considered to be plated under the condition that the average crystal grain size is about 0.2 μm and there is almost no internal stress. It is done. As a result, there are many crystal grain boundaries in the outermost layer, which is a route through which the copper component and oxygen in the intermediate layer are diffused, and this is considered to be a major cause of a decrease in adhesion between layers and a deterioration in contact resistance.

なお、最表層を形成する銀または銀合金の内部応力を調整する方法としては、電気めっき法により形成することが好ましい。その手法としては、めっき液中に含有される添加剤や界面活性剤、各種薬品濃度、電流密度、めっき浴温、攪拌条件等を調整することで可能となるが、特に電気めっき時の電流密度を3〜20A/dmであるとよい。さらに、この電流密度範囲で内部応力を好適に導入するには、めっき液組成としてAg濃度で50〜100g/リットルを含み、かつ遊離シアン濃度が25〜50g/リットルであることで、容易に達成される。
例えば、内部応力を大きくするには、電気めっきの電流密度を高く、銀濃度を薄くすることにより達成できる。
内部応力の測定方法としては、めっき条件における内部応力を検証するときは、例えばガラスバルブ法、コントラクトメーター法、ひずみゲージ法などが知られており、容易に測定できる手段として例えばスパイラルコントラクトメータ((株)山本鍍金試験器製、JIS H8626準拠)を用いて測定することが可能である。また、形成されためっき品の内部応力測定法としては、X線測定法によって回折ピークの移動や半値幅測定によって得られることが知られている。
本発明においてはスパイラルコントラクトメータ((株)山本鍍金試験器製、JIS H8626準拠)を用いて、JISの測定方法により、所定のめっき液および電流密度およびめっき厚になった時のスパイラルコントラクトメータの角度を読み取り、計算式を用いて算出することで内部応力を測定した。
In addition, it is preferable to form by the electroplating method as a method of adjusting the internal stress of the silver or silver alloy which forms the outermost layer. This method can be achieved by adjusting the additives and surfactants contained in the plating solution, various chemical concentrations, current density, plating bath temperature, stirring conditions, etc. 3 to 20 A / dm 2 . Furthermore, in order to suitably introduce internal stress within this current density range, it is easily achieved by including 50 to 100 g / liter of Ag concentration as the plating solution composition and 25 to 50 g / liter of free cyanide concentration. Is done.
For example, increasing the internal stress can be achieved by increasing the electroplating current density and decreasing the silver concentration.
As a method for measuring internal stress, when verifying internal stress under plating conditions, for example, a glass bulb method, a contract meter method, a strain gauge method, and the like are known. For example, a spiral contract meter (( It can be measured by using Yamamoto Tekin Tester Co., Ltd., JIS H8626 compliant). In addition, as a method for measuring the internal stress of the formed plated product, it is known that it can be obtained by moving a diffraction peak or measuring a half value width by an X-ray measurement method.
In the present invention, using a spiral contractometer (manufactured by Yamamoto Sekin Tester Co., Ltd., JIS H8626 compliant), the spiral contractometer when a predetermined plating solution, current density and plating thickness are obtained by a JIS measurement method. The internal stress was measured by reading the angle and calculating it using a calculation formula.

本発明の実施態様において最適な条件で形成される中間層の厚さは、0.05〜0.3μmの範囲である。中間層の厚さが0.05μm未満であると、最表層中を透過してきた酸素成分を捕捉するには不十分であり、逆に0.3μmを超えて形成されると銅成分の絶対量が多くなるため、最表層を形成する銀または銀合金の結晶粒径を大きくしても、銅成分の最表層の透過を十分に抑制できないため、中間層の厚さは0.3μm以下である必要がある。上記範囲であれば特性は十分満足されるが、より効果的な範囲は0.1〜0.15μmである。
なお、中間層が銅合金により形成される場合、スズ、亜鉛、ニッケルから選ばれる1種または2種以上の元素を合計で1〜10質量%含む銅合金が好ましい。銅と合金化する成分は必ずしも限定するものではないが、銀層中を透過した酸素の捕捉と下地層および最表面を形成する銀または銀合金との密着性を向上させる主成分が銅であり、他の合金元素が含まれた場合、中間層の硬さが大きくなって耐摩耗性が向上する。これらの元素の合計は、1質量%未満であれば、中間層が純銅である場合とほぼ同等の効果となり、10質量%を超えると、中間層の硬さが大きくなりすぎて、プレス性が悪くなったり、接点として使用中に割れが発生したりして、耐食性が低下するために好ましくない。
In the embodiment of the present invention, the thickness of the intermediate layer formed under optimum conditions is in the range of 0.05 to 0.3 μm. If the thickness of the intermediate layer is less than 0.05 μm, it is insufficient to capture the oxygen component that has permeated through the outermost layer, and conversely if formed to exceed 0.3 μm, the absolute amount of the copper component Therefore, even if the crystal grain size of the silver or silver alloy forming the outermost layer is increased, the permeation of the outermost layer of the copper component cannot be sufficiently suppressed, so the thickness of the intermediate layer is 0.3 μm or less. There is a need. If it is the said range, a characteristic is fully satisfied, but a more effective range is 0.1-0.15 micrometer.
In addition, when an intermediate | middle layer is formed with a copper alloy, the copper alloy which contains 1-10 mass% in total of 1 type, or 2 or more types of elements chosen from tin, zinc, and nickel is preferable. Although the component to be alloyed with copper is not necessarily limited, copper is the main component that improves the trapping of oxygen permeated through the silver layer and the adhesion with the silver or silver alloy that forms the underlayer and the outermost surface. When other alloy elements are contained, the hardness of the intermediate layer is increased and the wear resistance is improved. If the total of these elements is less than 1% by mass, the effect is almost the same as when the intermediate layer is pure copper, and if it exceeds 10% by mass, the hardness of the intermediate layer becomes too large, and the pressability is increased. It is not preferable because it deteriorates or cracks occur during use as a contact point and the corrosion resistance decreases.

また、銀または銀合金からなる最表層の厚さは、0.3〜2.0μm、より好ましくは0.5〜2.0μm、さらに好ましくは0.8〜1.5μmとすることで、可動接点部品に加工された後でも最表層に銅成分が拡散することがほとんどなく、接触安定性に優れる。最表層の厚さが0.3μm未満であると、最表層を形成する銀または銀合金の内部応力を制御しても、中間層から拡散してきた銅成分が表層に到達しやすいために接触抵抗を上昇させやすく、逆に2.0μmを超えると効果が飽和するのと同時に銀の使用量が増加するため経済的にも環境負荷が増大する意味でも好ましくない。   The thickness of the outermost layer made of silver or a silver alloy is 0.3 to 2.0 μm, more preferably 0.5 to 2.0 μm, and still more preferably 0.8 to 1.5 μm. Even after being processed into contact parts, the copper component hardly diffuses into the outermost layer, and the contact stability is excellent. When the thickness of the outermost layer is less than 0.3 μm, even if the internal stress of silver or a silver alloy forming the outermost layer is controlled, the copper component diffused from the intermediate layer easily reaches the surface layer, so that the contact resistance On the other hand, if it exceeds 2.0 μm, the effect is saturated, and at the same time the amount of silver used is increased, which is not preferable in terms of economic and environmental load.

最表層として好適に用いられる銀または銀合金としては、例えば、銀、銀−錫合金、銀−インジウム合金、銀−ロジウム合金、銀−ルテニウム合金、銀−金合金、銀−パラジウム合金、銀−ニッケル合金、銀−セレン合金、銀−アンチモン合金、銀−銅合金、銀−亜鉛合金、銀−ビスマス合金などがあげられ、特に、銀、銀−錫合金、銀−インジウム合金、銀−ロジウム合金、銀−ルテニウム合金、銀−金合金、銀−パラジウム合金、銀−ニッケル合金、銀−セレン合金、銀−アンチモン合金および銀−銅合金からなる群から選ばれることが好ましい。   Examples of silver or silver alloy suitably used as the outermost layer include silver, silver-tin alloy, silver-indium alloy, silver-rhodium alloy, silver-ruthenium alloy, silver-gold alloy, silver-palladium alloy, silver- Nickel alloy, silver-selenium alloy, silver-antimony alloy, silver-copper alloy, silver-zinc alloy, silver-bismuth alloy, etc. are mentioned, especially silver, silver-tin alloy, silver-indium alloy, silver-rhodium alloy It is preferably selected from the group consisting of silver-ruthenium alloy, silver-gold alloy, silver-palladium alloy, silver-nickel alloy, silver-selenium alloy, silver-antimony alloy and silver-copper alloy.

本発明において、下地層、中間層、最表層の各層は、電気めっき法、無電解めっき法、物理・化学的蒸着法など任意の方法により形成できるが、電気めっき法が生産性とコストの面から最も有利である。殊に銀または銀合金からなる最表層に関しては、電気めっき法において前記電流密度や液組成によって処理することが好ましい。なお、前記各層は、ステンレス鋼基材の全面に形成してもよいが、接点部のみに形成するのが経済的であり、環境負荷を軽減した製品が提供できるため好ましい。   In the present invention, the underlayer, intermediate layer, and outermost layer can be formed by any method such as electroplating, electroless plating, physical / chemical vapor deposition, etc. From the most advantageous. In particular, the outermost layer made of silver or a silver alloy is preferably treated by the current density or the liquid composition in the electroplating method. The respective layers may be formed on the entire surface of the stainless steel substrate, but it is preferable to form the layers only on the contact portions because it is economical and a product with reduced environmental load can be provided.

なお、本発明によって内部応力を導入した銀または銀合金においては、特に熱処理等を実施する必要はなく結晶粒径が時間経過とともに粗大化するものであるが、必要に応じて熱処理を実施することで急速に結晶粒径を粗大化させることも可能である。その場合、内部応力により再結晶の駆動力は十分に内在しているため、熱処理温度は例えば40〜100℃という低温で処理すればよく、表層の酸化物形成をほとんど促進せずに結晶粒径だけを粗大化することが可能となる。   In addition, in the silver or silver alloy into which internal stress is introduced according to the present invention, it is not necessary to perform heat treatment or the like, and the crystal grain size becomes coarse with time, but heat treatment is performed as necessary. It is also possible to rapidly increase the crystal grain size. In this case, since the driving force for recrystallization is sufficiently inherent due to internal stress, the heat treatment temperature may be processed at a low temperature of, for example, 40 to 100 ° C. It becomes possible to coarsen only.

以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

SUS基材を連続的に通板して巻き取るめっきラインにおいて、厚さ0.06mm、条幅100mmの基材(SUS301の条)を電解脱脂、水洗、活性化、水洗、下地層めっき、水洗、中間層めっき、水洗、銀ストライクめっき、最表層めっき、水洗、乾燥の各工程を経て、表1に示す構成からなる発明例1〜30および比較例1〜3の銀被覆ステンレス条を得た。   In a plating line in which a SUS base material is continuously passed and wound up, a 0.06 mm thick and 100 mm wide base material (SUS301 strip) is electrolytically degreased, washed with water, activated, washed with water, underlayer plating, washed with water, Silver-coated stainless steel strips of Invention Examples 1 to 30 and Comparative Examples 1 to 3 having the configurations shown in Table 1 were obtained through the steps of intermediate layer plating, water washing, silver strike plating, outermost layer plating, water washing and drying.

各処理条件は次の通りである。   Each processing condition is as follows.

1.(電解脱脂、活性化)
(電解脱脂)
処理液:オルソケイ酸ソーダ100g/リットル
処理温度:60℃
陰極電流密度:2.5A/dm
処理時間時間10秒
(活性化)
処理液:10%塩酸
処理温度:30℃
浸漬処理時間:10秒
1. (Electrolytic degreasing, activation)
(Electrolytic degreasing)
Treatment liquid: sodium orthosilicate 100 g / liter Treatment temperature: 60 ° C
Cathode current density: 2.5 A / dm 2
Processing time 10 seconds (activation)
Treatment liquid: 10% hydrochloric acid Treatment temperature: 30 ° C
Immersion treatment time: 10 seconds

2.(下地層めっき)
(ニッケルめっき)
処理液:塩化ニッケル250g/リットル、遊離塩酸50g/リットル
処理温度:40℃
電流密度:5A/dm
めっき厚:0.01〜0.2μm
処理時間:めっき厚毎に時間を調整
(コバルトめっき)
処理液:塩化コバルト250g/リットル、遊離塩酸50g/リットル
処理温度:40℃
電流密度:2A/dm
めっき厚:0.01μm
処理時間:2秒
2. (Underlayer plating)
(Nickel plating)
Treatment liquid: Nickel chloride 250 g / liter, Free hydrochloric acid 50 g / liter Treatment temperature: 40 ° C.
Current density: 5 A / dm 2
Plating thickness: 0.01 to 0.2 μm
Processing time: Adjust the time for each plating thickness (cobalt plating)
Treatment liquid: Cobalt chloride 250g / liter, Free hydrochloric acid 50g / liter Treatment temperature: 40 ° C
Current density: 2 A / dm 2
Plating thickness: 0.01 μm
Processing time: 2 seconds

3.(中間層めっき)
(銅めっき1:表においてCu−1と表記)
処理液:硫酸銅150g/リットル、遊離硫酸100g/リットル、遊離塩酸50g/リットル
処理温度:30℃
電流密度:5A/dm
めっき厚:0.05〜0.3μm
処理時間:めっき厚毎に時間を調整
(銅めっき2:表においてCu−2と表記)
処理液:シアン化第一銅30g/リットル、遊離シアン10g/リットル
処理温度:40℃
電流密度:5A/dm
めっき厚:0.045〜0.32μm
処理時間:めっき厚毎に時間を調整
3. (Interlayer plating)
(Copper plating 1: Indicated in the table as Cu-1)
Treatment liquid: copper sulfate 150 g / liter, free sulfuric acid 100 g / liter, free hydrochloric acid 50 g / liter Treatment temperature: 30 ° C.
Current density: 5 A / dm 2
Plating thickness: 0.05 to 0.3 μm
Processing time: Adjust the time for each plating thickness (Copper plating 2: Cu-2 in the table)
Treatment liquid: cuprous cyanide 30 g / liter, free cyanide 10 g / liter Treatment temperature: 40 ° C.
Current density: 5 A / dm 2
Plating thickness: 0.045 to 0.32 μm
Processing time: Adjust time for each plating thickness

4.(銀ストライクめっき)
処理液:シアン化銀5g/リットル、シアン化カリウム50g/リットル
処理温度:30℃
電流密度:2A/dm
処理時間:10秒
4). (Silver strike plating)
Treatment liquid: silver cyanide 5 g / liter, potassium cyanide 50 g / liter Treatment temperature: 30 ° C.
Current density: 2 A / dm 2
Processing time: 10 seconds

5.(最表層めっき)
(銀めっき)
処理液:シアン化銀93g/リットル、シアン化カリウム130g/リットル、炭酸カリウム30g/リットル
この組成は、銀含有量で75g/リットル、遊離シアン濃度34g/リットルに相当する。
処理温度:40℃
電流密度:1.0〜18A/dmの範囲で変化させて内部応力を調整(表1に記載)
めっき厚:0.5〜2.0μm
処理時間:めっき厚毎に時間を調整
(銀−錫合金めっき)Ag−10%Sn
処理液:シアン化カリウム100g/リットル、水酸化ナトリウム50g/リットル、シアン化銀10g/リットル、スズ酸カリウム80g/リットル、添加剤(ここではチオ硫酸ナトリウム 0.5g/リットル)
処理温度:40℃
電流密度:6A/dm
めっき厚:2.0μm
処理時間:32秒
(銀−インジウム合金めっき)Ag−10%In
処理液:シアン化カリウムKCN100g/リットル、水酸化ナトリウム50g/リットル、シアン化銀10g/リットル、塩化インジウム20g/リットル、添加剤(ここではチオ硫酸ナトリウム 0.5g/リットル)
処理温度:30℃
電流密度:6A/dm
めっき厚:2.0μm
処理時間:32秒
5. (Outermost layer plating)
(Silver plating)
Treatment liquid: 93 g / liter of silver cyanide, 130 g / liter of potassium cyanide, 30 g / liter of potassium carbonate This composition corresponds to a silver content of 75 g / liter and a free cyanide concentration of 34 g / liter.
Processing temperature: 40 ° C
Current density: Adjusting internal stress by changing in the range of 1.0-18 A / dm 2 (described in Table 1)
Plating thickness: 0.5 to 2.0 μm
Processing time: Adjust time for every plating thickness (silver-tin alloy plating) Ag-10% Sn
Treatment liquid: potassium cyanide 100 g / liter, sodium hydroxide 50 g / liter, silver cyanide 10 g / liter, potassium stannate 80 g / liter, additive (here, sodium thiosulfate 0.5 g / liter)
Processing temperature: 40 ° C
Current density: 6 A / dm 2
Plating thickness: 2.0 μm
Processing time: 32 seconds (silver-indium alloy plating) Ag-10% In
Treatment liquid: potassium cyanide KCN 100 g / liter, sodium hydroxide 50 g / liter, silver cyanide 10 g / liter, indium chloride 20 g / liter, additive (here, sodium thiosulfate 0.5 g / liter)
Processing temperature: 30 ° C
Current density: 6 A / dm 2
Plating thickness: 2.0 μm
Processing time: 32 seconds

内部応力に関しては、スパイラル応力測定法において予め各電流密度における内部応力を測定し、その数値を表1に記載した。また、いずれの試料も初期の結晶粒径はおよそ0.2μmであった。   Regarding the internal stress, the internal stress at each current density was measured in advance in the spiral stress measurement method, and the numerical values are shown in Table 1. In addition, the initial crystal grain size of each sample was approximately 0.2 μm.

得られたこれらの可動接点部品用銀被覆複合材料(銀被覆ステンレス条)を直径4mmφのドーム型可動接点部品に加工し、固定接点には銀を1μm厚さにめっきした黄銅条を用いて、図1、2に示す構造のスイッチで打鍵試験をおこなった。図1は、打鍵試験に用いたスイッチの平面図である。また、図2は、打鍵試験に用いたスイッチの図1A−A線断面図と押圧を示すもので、(a)はスイッチ動作前、(b)はスイッチ動作時である。図中、1は銀めっきステンレスのドーム型可動接点、2は銀めっき黄銅の固定接点であり、これらが樹脂ケース4中に樹脂の充填材3で組み込まれている。   The obtained silver-coated composite material (silver-coated stainless steel strip) for movable contact parts was processed into a dome-shaped movable contact part having a diameter of 4 mmφ, and a brass strip plated with silver to a thickness of 1 μm was used for the fixed contact. A keystroke test was conducted with the switch having the structure shown in FIGS. FIG. 1 is a plan view of a switch used in the key-pressing test. 2A and 2B are cross-sectional views of the switch used in the keystroke test and FIG. 1A-A, and FIG. 2A shows a state before the switch operation, and FIG. In the figure, 1 is a silver-plated stainless steel dome-shaped movable contact, 2 is a silver-plated brass fixed contact, and these are incorporated in a resin case 4 with a resin filler 3.

打鍵試験は、接点圧力:9.8N/mm、打鍵速度:5Hzで最大100万回の打鍵を行って接触抵抗の経時変化を測定し、その結果を表1に示した。なお、接触抵抗は電流10mA通電で測定を行い、ばらつきを含めた接触抵抗値を4段階で評価し、表2に示した。具体的には、接触抵抗値15mΩ未満を「優」と評価して表に「◎」印を付し、15mΩ以上30mΩ未満を「良」と評価して表に「○」印を付し、30mΩ以上50mΩ未満を「可」と評価して表に「△」印を付し、50mΩ以上のものを「不可」と評価して表に「×」印を付した。なお、可動接点として接触抵抗値が50mΩ未満である「可」以上の評価(◎〜△)であることが接点として実用性があると判断した。 In the keying test, contact resistance: 9.8 N / mm 2 , keying speed: 5 Hz, a maximum of 1,000,000 times of keying was performed, and the change in contact resistance with time was measured. The results are shown in Table 1. The contact resistance was measured with a current of 10 mA, and the contact resistance value including variations was evaluated in four stages. Specifically, a contact resistance value of less than 15 mΩ is evaluated as “excellent” and the table is marked with “◎”, 15 mΩ or more and less than 30 mΩ is evaluated as “good”, and the table is marked with “O”. A value of 30 mΩ or more and less than 50 mΩ was evaluated as “possible”, and a “Δ” mark was attached to the table, and a value of 50 mΩ or more was evaluated as “impossible”, and an “x” mark was attached to the table. In addition, it was judged that a contact point has practicality as a contact point when the contact resistance value is less than 50 mΩ and the evaluation is “good” or better (◎ to Δ).

さらに、最表面に銅成分が検出されるかどうかについてオージェ電子分光分析装置で最表面の定性分析を行って、銅成分の検出量を調査した。検出されなかったものを「なし」、検出量が5%未満を「微量」、検出量が5%以上のものを「多量」とし、表2に示した。
また、打鍵試験後の可動接点側について目視観察を行い、めっきの剥離有無について観察を行って、剥離有無を調査した。
Furthermore, whether the copper component was detected on the outermost surface was subjected to a qualitative analysis of the outermost surface with an Auger electron spectroscopy analyzer, and the detected amount of the copper component was investigated. Those that were not detected were shown as “None”, the detection amount of less than 5% as “trace amount”, and the detection amount as 5% or more as “large amount”.
Further, the movable contact side after the keystroke test was visually observed, and the presence or absence of peeling of the plating was observed to investigate the presence or absence of peeling.

Figure 0005598851
Figure 0005598851

Figure 0005598851
Figure 0005598851

発明例1〜30の可動接点部品用銀被覆複合材料は、可動接点部品として加工後に100万回の打鍵試験を行っても接触抵抗の増加はすべて50mΩ未満である一方、比較例1〜3では、100万回打鍵後に接触抵抗が50mΩ以上となり、接点寿命が短いことがわかる。また、比較例1に関しては、従来の下地層としてニッケルめっき、中間層として銅めっき、最表層として銀めっきを施した例で、最表層の銀には内部応力を有していない。この比較例においては、1万回の打鍵で接触抵抗が上昇し始め10万回では50mΩ以上となり、実用上の問題が発生することがわかる。図3に打鍵試験後の発明例4の非接触部をEBSDで観察した写真、図4に打鍵試験後の比較例1の非接触部をEBSDで観察した写真をそれぞれ示す。
図3の最下層の黒色部分がステンレス部分、その上のグレーの縞状層が銀めっき層である。ニッケルめっきの下地層と銅めっき中間層は、ステンレス部分と銀めっき層との間に存在するが、写真ではステンレス部分と同様に黒色部分として観察される。図4の最下層の黒色部分がステンレス部分、その上の雲状白色層が銀めっき層である。ニッケルめっきの下地層と銅めっき中間層は、ステンレス部分と銀めっき層との間に存在するが、写真ではステンレス部分と同様に黒色部分として観察される。
図から明らかなように、図3の内部応力を有している最表層の銀の結晶粒径(図3の交互のグレー部分)は約0.75μmであり、可動接点部品として使用している際には結晶粒が粗大化している一方、図4の比較例1では結晶粒径(図4の散在する白色部分)は約0.2μmと小さい状態のままである。このように、比較例1と比較して本発明例では接触抵抗が良好な値を示していることがわかり、めっき時に内部応力を2.45〜49.0N/mm有していることが、結晶粒径を粗大化させるのに効果的であることが分かる。
In the silver-coated composite materials for movable contact parts of Invention Examples 1 to 30, the increase in contact resistance is less than 50 mΩ even when a keystroke test is performed 1 million times after processing as a movable contact part. It can be seen that the contact resistance becomes 50 mΩ or more after 1 million times key pressing, and the contact life is short. Further, Comparative Example 1 is an example in which nickel plating is applied as the conventional underlayer, copper plating is applied as the intermediate layer, and silver plating is applied as the outermost layer, and the outermost layer silver has no internal stress. In this comparative example, it can be seen that the contact resistance starts to increase after 10,000 keystrokes and is 50 mΩ or more at 100,000 times, which causes a practical problem. FIG. 3 shows a photograph of the non-contact part of Invention Example 4 after the keystroke test observed with EBSD, and FIG. 4 shows a photograph of the non-contact part of Comparative Example 1 after the keystroke test observed with EBSD.
In FIG. 3, the lowermost black portion is a stainless steel portion, and the gray striped layer thereon is a silver plating layer. The nickel plating base layer and the copper plating intermediate layer are present between the stainless steel portion and the silver plating layer, but in the photograph, they are observed as black portions as with the stainless steel portion. The black part of the lowermost layer in FIG. 4 is a stainless steel part, and the cloud-like white layer thereon is a silver plating layer. The nickel plating base layer and the copper plating intermediate layer are present between the stainless steel portion and the silver plating layer, but in the photograph, they are observed as black portions as with the stainless steel portion.
As is apparent from the figure, the crystal grain size of the outermost silver having the internal stress in FIG. 3 (alternate gray portions in FIG. 3) is about 0.75 μm and is used as a movable contact part. In contrast, while the crystal grains are coarsened, in Comparative Example 1 in FIG. 4, the crystal grain size (the scattered white portion in FIG. 4) remains as small as about 0.2 μm. Thus, it can be seen that the contact resistance of the example of the present invention shows a good value as compared with Comparative Example 1, and has an internal stress of 2.45 to 49.0 N / mm 2 during plating. It can be seen that this is effective in increasing the crystal grain size.

比較例2に関しては、銅からなる中間層が薄い状態であると、100万回打鍵後には最表層・中間層の剥離が生じており、透過した酸素の捕捉が不十分であって密着性に劣る様子が伺える。
比較例3のように、銅からなる中間層が厚いときは、内部応力を調整しても最表面における銅成分の拡散が多く見られ、その結果接触抵抗値が増大していることがわかる。
Regarding Comparative Example 2, if the intermediate layer made of copper is in a thin state, peeling of the outermost layer / intermediate layer has occurred after 1 million keystrokes, and permeation of permeated oxygen is insufficient, resulting in adhesion. I can hear that it is inferior.
When the intermediate layer made of copper is thick as in Comparative Example 3, it can be seen that even if the internal stress is adjusted, a large amount of copper component is diffused on the outermost surface, and as a result, the contact resistance value is increased.

これらの結果より、発明例のごとく中間層の厚さを0.05〜0.3μmで制御しつつ、銀または銀合金からなる最表層の内部応力を2.45〜49.0N/mmの範囲内に制御することにより、可動接点部品の接点特性としての長期信頼性が向上できることは明白である。 From these results, the internal stress of the outermost layer made of silver or a silver alloy was 2.45 to 49.0 N / mm 2 while controlling the thickness of the intermediate layer at 0.05 to 0.3 μm as in the inventive examples. It is obvious that the long-term reliability as the contact characteristic of the movable contact part can be improved by controlling within the range.

1 ドーム型可動接点
2 固定接点
3 充填材
4 樹脂ケース
1 Dome-shaped movable contact 2 Fixed contact 3 Filler 4 Resin case

Claims (3)

ステンレス鋼基材の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、コバルト合金のいずれかからなる下地層が形成され、その上層に銅または銅合金からなる中間層が形成され、さらにその上層に銀または銀合金層が最表層として形成されている可動接点部品用銀被覆複合材料であって、
前記中間層の厚さが0.05〜0.3μmであり、かつ前記最表層に形成された銀または銀合金の内部応力が、2.45〜49.0N/mmである
ことを特徴とする、可動接点部品用銀被覆複合材料。
An underlayer made of nickel, cobalt, nickel alloy or cobalt alloy is formed on at least a part of the surface of the stainless steel substrate, and an intermediate layer made of copper or copper alloy is formed on the upper layer, and further on the upper layer. A silver-coated composite material for a movable contact part in which a silver or silver alloy layer is formed as an outermost layer,
The thickness of the intermediate layer is 0.05 to 0.3 μm, and the internal stress of silver or the silver alloy formed on the outermost layer is 2.45 to 49.0 N / mm 2. A silver-coated composite material for movable contact parts.
前記最表層の厚さが、0.3〜2.0μmであることを特徴とする、請求項1記載の可
動接点部品用銀被覆複合材料。
The silver-coated composite material for movable contact parts according to claim 1, wherein the outermost layer has a thickness of 0.3 to 2.0 μm.
請求項1または2に記載の可動接点部品用銀被覆複合材料が加工されて形成された可動接点部品であって、接点部分がドーム状または凸形状に形成されたことを特徴とする、可動接点部品。   A movable contact part formed by processing the silver-coated composite material for a movable contact part according to claim 1 or 2, wherein the contact part is formed in a dome shape or a convex shape. parts.
JP2010191580A 2010-08-27 2010-08-27 Silver-coated composite material for movable contact part, method for producing the same, and movable contact part Active JP5598851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010191580A JP5598851B2 (en) 2010-08-27 2010-08-27 Silver-coated composite material for movable contact part, method for producing the same, and movable contact part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010191580A JP5598851B2 (en) 2010-08-27 2010-08-27 Silver-coated composite material for movable contact part, method for producing the same, and movable contact part

Publications (2)

Publication Number Publication Date
JP2012049042A JP2012049042A (en) 2012-03-08
JP5598851B2 true JP5598851B2 (en) 2014-10-01

Family

ID=45903667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010191580A Active JP5598851B2 (en) 2010-08-27 2010-08-27 Silver-coated composite material for movable contact part, method for producing the same, and movable contact part

Country Status (1)

Country Link
JP (1) JP5598851B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012213505A1 (en) * 2012-07-31 2014-02-06 Tyco Electronics Amp Gmbh Layer for an electrical contact element, layer system and method for producing a layer
JP6172811B2 (en) * 2014-03-24 2017-08-02 Jx金属株式会社 Ag-Sn alloy plating solution and method for manufacturing electronic component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174788A (en) * 2003-12-12 2005-06-30 Matsushita Electric Ind Co Ltd Push-on switch
JP4904810B2 (en) * 2005-12-28 2012-03-28 富士通株式会社 Plating film, method for forming the same, and electronic component
JP2008169408A (en) * 2007-01-09 2008-07-24 Auto Network Gijutsu Kenkyusho:Kk Silver-plated terminal for connector
JP5175156B2 (en) * 2008-09-30 2013-04-03 松田産業株式会社 Palladium alloy plating solution and plating method

Also Published As

Publication number Publication date
JP2012049042A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5705738B2 (en) Silver-coated composite material for movable contact parts, manufacturing method thereof, and movable contact parts
JP4834022B2 (en) Silver coating material for movable contact parts and manufacturing method thereof
JP4834023B2 (en) Silver coating material for movable contact parts and manufacturing method thereof
JP4728571B2 (en) Manufacturing method of silver-coated stainless steel strip for movable contacts
JP4279285B2 (en) Silver-coated stainless steel strip for movable contact and method for producing the same
JP5184328B2 (en) Silver coating material for movable contact parts and manufacturing method thereof
JP2010146925A (en) Contactor material for electric motor and method of manufacturing the same
JP2007291510A (en) Silver coated composite material for movable contact and method for producing the same
JP5749113B2 (en) Covering composite material for movable contact part, movable contact part, switch, and manufacturing method thereof
JP2012049041A (en) Silver coating material for movable contact component and method for manufacturing the same
JP2009099548A (en) Silver-clad composite material for movable contact and its manufacturing method
JP5598851B2 (en) Silver-coated composite material for movable contact part, method for producing the same, and movable contact part
WO2021166581A1 (en) Terminal material for connector
JP2007291509A (en) Silver coated composite material for movable contact and method for producing the same
JP2009099550A (en) Silver-clad composite material for movable contact and its manufacturing method
KR20210116422A (en) Terminal materials for connectors and terminals for connectors
JP5391214B2 (en) Silver coated stainless steel strip for movable contacts and switch using the same
JP2009099550A5 (en)
JP4558823B2 (en) Silver-coated composite material for movable contact and method for producing the same
WO2007116717A1 (en) Silver coated composite material for movable contact and method for producing same
JP2020128575A (en) Terminal material for connector, terminal for connector, and method of producing terminal material for connector
JP2008231540A (en) Metastable austenitic stainless steel strip superior in sulfidization resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140805

R151 Written notification of patent or utility model registration

Ref document number: 5598851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350