JP2007109640A - Planar heating element and manufacturing method of the same - Google Patents

Planar heating element and manufacturing method of the same Download PDF

Info

Publication number
JP2007109640A
JP2007109640A JP2006246813A JP2006246813A JP2007109640A JP 2007109640 A JP2007109640 A JP 2007109640A JP 2006246813 A JP2006246813 A JP 2006246813A JP 2006246813 A JP2006246813 A JP 2006246813A JP 2007109640 A JP2007109640 A JP 2007109640A
Authority
JP
Japan
Prior art keywords
heating element
layer
planar heating
heat generating
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006246813A
Other languages
Japanese (ja)
Other versions
JP5017522B2 (en
Inventor
Nobuyuki Hama
信幸 濱
Yasuaki Takeda
泰昭 武田
Koji Moriuchi
幸司 森内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IST Corp Japan
Original Assignee
IST Corp Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IST Corp Japan filed Critical IST Corp Japan
Priority to JP2006246813A priority Critical patent/JP5017522B2/en
Publication of JP2007109640A publication Critical patent/JP2007109640A/en
Application granted granted Critical
Publication of JP5017522B2 publication Critical patent/JP5017522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planar heating element having very uniform heating area, which can be continuously used at high temperature, having a heating layer and an insulation layer tightly integrated, and a manufacturing method of the same. <P>SOLUTION: The planar heating element is formed by laminating a heating layer, electrodes, and an insulation layer. In the heating layer, conductive material composed of carbon nano-material and filament-shaped metal fine particle is uniformly dispersed in matrix resin made of polyimide. The electrodes supplies power to the heating layer, and the insulation layer covers the heating layer and the electrodes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、均一な温度分布を有し、発熱層と絶縁層が強固に一体化され、耐熱性、耐薬品性に優れ、高温で連続使用が可能な面状発熱体に関する。詳しくはパイプラインの加熱や保温に用いられる加熱ヒータおよび電子写真画像形成装置におけるトナー定着ヒータなどの用途に好適なフィルム状、テープ状等のフレキシブルな面状発熱体及びその製造方法に関する。   The present invention relates to a planar heating element having a uniform temperature distribution, in which a heat generating layer and an insulating layer are firmly integrated, excellent in heat resistance and chemical resistance, and can be used continuously at a high temperature. More specifically, the present invention relates to a flexible sheet heating element such as a film or a tape suitable for uses such as a heater used for heating and heat retention of a pipeline and a toner fixing heater in an electrophotographic image forming apparatus, and a method for manufacturing the same.

ポリイミドは、耐熱性、機械的特性、化学的特性、寸法安定性など多くの優れた特性を有し、フィルム状、チューブ状、成形物、塗料などの形態で市販されている。このポリイミドは一般的に、テトラカルボン酸二無水物とジアミンとを極性溶媒中で重合して得られるポリイミド前駆体溶液を出発物として得られる。具体的には、ポリイミドは、例えば、前駆体溶液をキャスティング、浸漬、含浸、流延などの方法で成形した後、その前駆体溶液を加熱あるいは化学的にイミド化することによって得られる。このポリイミドは、高い絶縁耐力と共に耐熱性や自己消火性など優れた特性を持ち、高温度領域で使用する発熱体の絶縁材料としても信頼性が高く、その用途が拡大している。   Polyimide has many excellent properties such as heat resistance, mechanical properties, chemical properties, and dimensional stability, and is commercially available in the form of films, tubes, molded products, paints, and the like. This polyimide is generally obtained by starting with a polyimide precursor solution obtained by polymerizing tetracarboxylic dianhydride and diamine in a polar solvent. Specifically, the polyimide is obtained, for example, by forming a precursor solution by a method such as casting, dipping, impregnation, or casting, and then heating or chemically imidizing the precursor solution. This polyimide has excellent properties such as heat resistance and self-extinguishing properties as well as high dielectric strength, and is highly reliable as an insulating material for a heating element used in a high temperature region, and its application is expanding.

フレキシブルな面状発熱体は、フィルム状あるいはテープ状の薄層構造と柔軟性を活かし、水道管などに巻きつけて凍結を防止するためのあるいは薬液等の搬送パイプラインを加熱、保温するための加熱ヒータとして、また、床暖房やカーペットとして、また、電子写真画像形成装置の定着ヒータなどとして、低温から高温領域まで多くの用途に使用されている。これらのフレキシブルな面状発熱体は、大別して2つの構造のものが知られている。その1つは、ポリイミドなど耐熱性の高い絶縁フィルムでステンレスやニクロムなどの金属箔の抵抗発熱体をサンドイッチ状に被覆した構造の発熱体である(例えば、特許文献1および特許文献2参照)。もう1つは、発熱体材料としての導電性粉末をバインダー樹脂(マトリックス樹脂)に混合して導電性ペーストあるいは導電性組成物を作製し、この導電性ペースト等を絶縁フィルムや基板上にコーティングあるいはスクリーン印刷した後バインダー樹脂を硬化させた面状あるいは薄膜抵抗発熱体である(例えば、特許文献3および特許文献4参照)。   The flexible sheet heating element utilizes the film- or tape-like thin layer structure and flexibility to wrap it around a water pipe or the like to prevent freezing or to heat and keep the transport pipeline for chemicals, etc. It is used in many applications from low temperatures to high temperatures as heaters, floor heating and carpets, and as fixing heaters for electrophotographic image forming apparatuses. These flexible planar heating elements are roughly divided into two structures. One of them is a heating element having a structure in which a resistance heating element of a metal foil such as stainless steel or nichrome is covered in a sandwich shape with an insulating film having high heat resistance such as polyimide (see, for example, Patent Document 1 and Patent Document 2). The other is that conductive powder as a heating element material is mixed with a binder resin (matrix resin) to produce a conductive paste or conductive composition, and this conductive paste or the like is coated or coated on an insulating film or substrate. It is a planar or thin film resistance heating element in which a binder resin is cured after screen printing (see, for example, Patent Document 3 and Patent Document 4).

前述した一連の面状発熱体に関する従来技術において、特許文献1及び2に開示されている金属箔を抵抗発熱材料として用いた面状発熱体では、金属箔と絶縁フィルム層間の十分な接着力が得られにくく、金属箔の温度上昇および下降に伴う熱膨張や収縮により、面状発熱体の反りや、金属箔と絶縁フィルムの層間で絶縁フィルムのウキや剥離が発生しやすく、この部分の局部発熱による絶縁破壊が発生しやすい問題がある。   In the prior art related to the series of planar heating elements described above, the planar heating element using the metal foil disclosed in Patent Documents 1 and 2 as a resistance heating material has sufficient adhesion between the metal foil and the insulating film layer. It is difficult to obtain, and due to thermal expansion and contraction accompanying the rise and fall of the temperature of the metal foil, warping of the sheet heating element and the insulting film peeling and peeling between the metal foil and the insulating film are likely to occur. There is a problem that dielectric breakdown due to heat generation is likely to occur.

また、その一方、特許文献3には、導電性粉末とバインダー樹脂とからなる導電性組成物を抵抗発熱材料として用いた面状発熱体に使用される導電性粉末として、金属粉、金属ファイバー、黒鉛、カーボンブラック、カーボンファイバー、金属酸化物などが開示されている。また、特許文献4には、カーボンナノチューブやカーボンマイクロコイルが開示されている。また、さらに、特許文献5には、フィラメント状ニッケル粉末を導電性フィラーとして用いることが開示されている。   On the other hand, in Patent Document 3, as a conductive powder used in a planar heating element using a conductive composition comprising a conductive powder and a binder resin as a resistance heating material, metal powder, metal fiber, Graphite, carbon black, carbon fiber, metal oxide and the like are disclosed. Patent Document 4 discloses carbon nanotubes and carbon microcoils. Furthermore, Patent Document 5 discloses using filamentary nickel powder as a conductive filler.

しかし、特許文献3では発熱層の成分として数種類の導電性粉末が記載されているものの、溶剤可溶性のブロックポリイミド樹脂にカーボンブラックとグラファイとを混合した導電性ペーストが分散されているに過ぎない。このような材料選定では、体積抵抗率の低い領域の発熱体の設計に限界があり、発熱量の高い面状発熱体を得ることは難しい。   However, although Patent Document 3 describes several types of conductive powder as a component of the heat generating layer, only a conductive paste in which carbon black and graphite are mixed in a solvent-soluble block polyimide resin is dispersed. In such a material selection, there is a limit to the design of a heating element in a region with a low volume resistivity, and it is difficult to obtain a planar heating element with a high calorific value.

また、特許文献4には、発熱体材料としてカーボンナノチューブやカーボンマイクコイルを用いた薄膜抵抗発熱体が開示されている。しかしながら、発熱体材料がカーボンナノチューブやカーボンマイクロコイルのみでは、本発明の比較例に記載したように、低い体積抵抗率を有する発熱抵抗体を作製することが難しく、また、体積抵抗率を低くするためにカーボンナノチューブ等の混合量を増加すると発熱体の機械的特性が急激に低下する問題がある。   Patent Document 4 discloses a thin film resistance heating element using a carbon nanotube or a carbon microphone coil as a heating element material. However, if the heating element material is only carbon nanotubes or carbon microcoils, as described in the comparative example of the present invention, it is difficult to produce a heating resistor having a low volume resistivity, and the volume resistivity is lowered. For this reason, when the mixing amount of carbon nanotubes or the like is increased, there is a problem that the mechanical properties of the heating element are rapidly deteriorated.

また、特許文献5には、電子機器などのプラスチック性筐体に用いられる導電性塗料として、フィラメント状ニッケル粉を用いた導電性コーティング用組成物が開示されている。しかしながら、これらの組成物は、積極的に電気を流す通電媒体、いわゆる電気回路として使用する場合には適しているものの、発熱体の抵抗発熱材料として用いるには体積抵抗率が低い。しかし、必要な発熱量を得るためにフィラメント状ニッケル粉の混合量を減量すると、分散不良になりやすく、またフィラメント状ニッケルは良導体であるため、局部的な通電による発熱ムラが発生しやすい問題点がある。   Patent Document 5 discloses a conductive coating composition using filamentary nickel powder as a conductive paint used in a plastic casing such as an electronic device. However, these compositions are suitable for use as a current-carrying medium that actively conducts electricity, a so-called electric circuit, but have a low volume resistivity when used as a resistance heating material for a heating element. However, if the amount of filamentary nickel powder mixed is reduced to obtain the required amount of heat generation, it tends to cause poor dispersion, and since filamentous nickel is a good conductor, uneven heat generation due to local energization tends to occur. There is.

さらに、上記一連の公知文献には面状発熱体の抵抗発熱材料のみならずバインダー樹脂や電気絶縁材料についても多く材料が開示されており、また、これらの公知文献では面状発熱体の構造や用途によって耐熱性の低い材料から高温で使用できる材料まで使い分けられている。特許文献5には、低温領域で使用される絶縁材料としてアクリル樹脂、ポリウレタン樹脂、ポリ酢酸ビニル、ポリエステル、ポリプロピレンなどが開示されている。   Furthermore, the above series of known documents discloses many materials not only for the resistance heating material of the sheet heating element but also for the binder resin and the electrical insulating material. Depending on the application, materials ranging from materials with low heat resistance to materials that can be used at high temperatures are used. Patent Document 5 discloses acrylic resin, polyurethane resin, polyvinyl acetate, polyester, polypropylene, and the like as insulating materials used in a low temperature region.

また、特許文献3には、比較的高温領域で使用できる絶縁材料やバインダー樹脂としてガラス転移点を有する溶剤可溶性のブロックポリイミド樹脂を用いる方法が開示されている。しかしながら、このようなバインダー樹脂はガラス転移点を有するため温度の上昇に伴い軟化しやすく、バインダー樹脂の軟化とともに、バインダー樹脂中の導電性粉末に極微細なズレや動きが伴い、使用中に電気抵抗値が変動してくる問題を有している。また、導電性粉末の微細なズレや動きは通電中に微小のスパークが発生する原因となり、このような状態で面状発熱体を長期間使用していると、スパーク部分の炭化が進むと共に絶縁耐力が低下し引いては絶縁破壊が起こる問題がある。
特開2005−261851号公報 特開2004−014178号公報 特開平10−310698号公報 特開2000−058228号公報 特開2003−336011号公報
Patent Document 3 discloses a method of using a solvent-soluble block polyimide resin having a glass transition point as an insulating material or a binder resin that can be used in a relatively high temperature region. However, since such a binder resin has a glass transition point, it easily softens as the temperature rises, and along with the softening of the binder resin, the conductive powder in the binder resin is accompanied by extremely small deviations and movements. There is a problem that the resistance value fluctuates. In addition, minute displacement and movement of the conductive powder may cause minute sparks during energization. If a planar heating element is used for a long period of time in such a state, carbonization of the sparks will progress and insulation will occur. There is a problem that dielectric breakdown occurs when the yield strength is lowered.
JP 2005-261851 A JP 2004-014178 A JP-A-10-310698 JP 2000-058228 A JP 2003-336011 A

本発明は、上記した従来の問題を解決し、高温で連続使用が可能で、極めて均一な発熱領域を有し発熱層、および絶縁層が強固に一体化されたフレキシブルな面状発熱体及びその製造方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, can be continuously used at high temperatures, has a very uniform heat generating region, and a flexible sheet heating element in which a heat generating layer and an insulating layer are firmly integrated, and its An object is to provide a manufacturing method.

請求項1に記載の面状発熱体は、発熱層、電極、および絶縁層が積層されてなる。
発熱層では、ポリイミドからなるマトリックス樹脂中にカーボンナノ材料及びフィラメント状金属微粒子からなる導電性物質が実質的に均一に分散されて存在している。電極は、発熱層に電力を供給するためのものである。絶縁層は、発熱層および前記電極を被覆する。
The planar heating element according to claim 1 is formed by laminating a heating layer, an electrode, and an insulating layer.
In the heat generating layer, a conductive material made of carbon nanomaterials and filamentary metal fine particles is substantially uniformly dispersed in a matrix resin made of polyimide. The electrode is for supplying power to the heat generating layer. The insulating layer covers the heat generating layer and the electrode.

請求項2に記載の面状発熱体は、請求項1に記載の面状発熱体であって、カーボンナノ材料は、カーボンナノファイバー、カーボンナノチューブ、及びカーボンマイクロコイルの少なくとも1つである。   The planar heating element according to claim 2 is the planar heating element according to claim 1, wherein the carbon nanomaterial is at least one of carbon nanofibers, carbon nanotubes, and carbon microcoils.

請求項3に記載の面状発熱体は、請求項1に記載の面状発熱体であって、フィラメント状金属微粒子は、ストランドが三次元的に連なった形状を有するニッケル微粒子である。なお、フィラメント状ニッケル微粒子は、図3に示す形状を有するニッケル微粒子であることが好ましい。   A planar heating element according to a third aspect is the planar heating element according to the first aspect, wherein the filamentary metal fine particles are nickel fine particles having a shape in which strands are three-dimensionally connected. The filamentary nickel fine particles are preferably nickel fine particles having the shape shown in FIG.

請求項4に記載の面状発熱体は、請求項1から3のいずれかに記載の面状発熱体であって、発熱層中の導電性物質が、一定方向に配向して存在している。   The planar heating element according to claim 4 is the planar heating element according to any one of claims 1 to 3, wherein the conductive substance in the heating layer is oriented in a certain direction. .

請求項5に記載の面状発熱体は、請求項4に記載の面状発熱体であって、導電性物質は、電極を結ぶ方向に配向して存在する。また、発熱層の導電性物質配向方向の体積抵抗率は、導電性物質配向方向と直交する方向の体積抵抗率よりも小さい。   The planar heating element according to claim 5 is the planar heating element according to claim 4, wherein the conductive substance is oriented in a direction in which the electrodes are connected. Further, the volume resistivity of the heat generating layer in the direction of orientation of the conductive material is smaller than the volume resistivity in the direction orthogonal to the direction of orientation of the conductive material.

請求項6に記載の面状発熱体は、請求項1から5のいずれかに記載の面状発熱体であって、発熱層中のマトリックス樹脂及び絶縁層は、少なくとも1種の芳香族ジアミンと少なくとも1種の芳香族テトラカルボン酸二無水物とを有機極性溶媒中で重合してなるポリイミド前駆体をイミド転化したポリイミドである。   The planar heating element according to claim 6 is the planar heating element according to any one of claims 1 to 5, wherein the matrix resin and the insulating layer in the heating layer include at least one aromatic diamine and It is a polyimide obtained by imide conversion of a polyimide precursor obtained by polymerizing at least one kind of aromatic tetracarboxylic dianhydride in an organic polar solvent.

請求項7に記載の面状発熱体は、請求項6に記載の面状発熱体であって、芳香族ジアミンは、下記の化学式(A)のパラフェニレンジアミンである。また、芳香族テトラカルボン酸二無水物は、下記の化学式(B)の3,3’,4,4’−ビフェニルテトラカルボン酸二無水物である。   The planar heating element according to claim 7 is the planar heating element according to claim 6, wherein the aromatic diamine is paraphenylenediamine of the following chemical formula (A). The aromatic tetracarboxylic dianhydride is 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride represented by the following chemical formula (B).

Figure 2007109640
Figure 2007109640

Figure 2007109640
Figure 2007109640

請求項8に記載の面状発熱体は、請求項1から7のいずれかに記載の面状発熱体であって、絶縁層の少なくとも片側層には、熱伝導性物質が含まれる。   The planar heating element according to claim 8 is the planar heating element according to any one of claims 1 to 7, wherein at least one side layer of the insulating layer contains a heat conductive material.

請求項9に記載の面状発熱体は、請求項1から8のいずれかに記載の面状発熱体であって、絶縁層の少なくとも片側層の外面には、フッ素樹脂層が成形されている。   The planar heating element according to claim 9 is the planar heating element according to any one of claims 1 to 8, wherein a fluororesin layer is formed on an outer surface of at least one side layer of the insulating layer. .

請求項10に記載の面状発熱体は、請求項9に記載の面状発熱体であって、フッ素樹脂は、熱伝導性物質を含む。   A planar heating element according to a tenth aspect is the planar heating element according to the ninth aspect, wherein the fluororesin includes a heat conductive material.

請求項11に記載の面状発熱体の製造方法は、塗布工程、発熱層成形工程、電極成形工程、および絶縁層成形工程を備える。塗布工程では、ポリイミド前駆体溶液中にカーボンナノ材料及びフィラメント状金属微粉子が混合された導電性組成物が絶縁性基層の表面に塗布される。発熱層成形工程では、絶縁性基層上に塗布された導電性組成物が加熱されてイミド転化され発熱層が成形される。電極成形工程では、発熱層に電極が成形される。絶縁層成形工程では、発熱層及び電極を被覆する絶縁層が成形される。   A method for manufacturing a planar heating element according to an eleventh aspect includes a coating process, a heating layer molding process, an electrode molding process, and an insulating layer molding process. In the coating step, a conductive composition in which the carbon nanomaterial and the filamentous metal fine powder are mixed in the polyimide precursor solution is applied to the surface of the insulating base layer. In the heat generating layer forming step, the conductive composition applied on the insulating base layer is heated to convert it to imide, thereby forming a heat generating layer. In the electrode forming step, an electrode is formed on the heat generating layer. In the insulating layer forming step, an insulating layer covering the heat generating layer and the electrode is formed.

請求項12に記載の面状発熱体の製造方法は、請求項11に記載の面状発熱体の製造方法であって、塗布工程では、カーボンナノ材料及びフィラメント状金属微粉子が一定方向に配向するように導電性組成物が絶縁層の表面に塗布される。   The manufacturing method of the planar heating element according to claim 12 is the manufacturing method of the planar heating element according to claim 11, wherein the carbon nanomaterial and the filamentous metal fine powder are oriented in a certain direction in the coating step. Thus, the conductive composition is applied to the surface of the insulating layer.

本発明の面状発熱体は、発熱層のマトリックス樹脂および絶縁層が熱硬化性ポリイミドあるいは非熱可塑性ポリイミドであるため、240℃を超える高温領域でも連続して使用が可能である。また、発熱層中に混合している導電性物質が、一定の方向に配向して存在しているため、体積抵抗率のばらつきが小さく、且つ、少ない導電性物質の混合量で所定の体積抵抗率を得ることができる。また、発熱層中の導電性物質が、カーボンナノ材料とフィラメント状ニッケル微粒子との混合物であるため、これらの混合比を変えることによって幅広い領域で、精度の高い体積抵抗率を有する発熱体を設計することができる。   The planar heating element of the present invention can be used continuously even in a high temperature region exceeding 240 ° C. because the matrix resin and insulating layer of the heating layer are thermosetting polyimide or non-thermoplastic polyimide. In addition, since the conductive material mixed in the heat generation layer is oriented in a certain direction, variation in volume resistivity is small, and a predetermined volume resistance is obtained with a small amount of mixed conductive material. Rate can be obtained. In addition, since the conductive material in the heat generation layer is a mixture of carbon nanomaterials and filamentary nickel fine particles, changing the mixing ratio of these elements allows designing a heat generating element with high volume resistivity in a wide range. can do.

また、本発明の面状発熱層は、絶縁層の片側層あるいは両側層に熱伝導性粒子を含むため、発熱体で発生した熱量を効率よく被加熱物に供給することができる。また、絶縁層の片側層あるいは両側層外面にフッ素樹脂層を成形しているため面状発熱体の最外層の摩擦抵抗が低く、回転中の被加熱物等に直接面状発熱体を接触させ、回転させながら効率よく加熱することができる。   In addition, since the planar heat generating layer of the present invention includes thermally conductive particles in one or both layers of the insulating layer, the amount of heat generated by the heat generator can be efficiently supplied to the object to be heated. In addition, since the fluororesin layer is formed on the outer surface of one or both sides of the insulating layer, the frictional resistance of the outermost layer of the planar heating element is low, and the planar heating element is brought into direct contact with the heated object to be rotated. It can be heated efficiently while rotating.

また、本発明の面状発熱体は、すべての層がポリイミド前駆体をイミド転化することにより成形することができるため各層がイミド化によって強固に一体化され、またポリイミド前駆体溶液中において導電性物質あるいは熱伝導性粒子を直接混合できるため、均一な分散が得られ、均一な発熱特性と優れた耐久性を有することができる。   In addition, since all the layers of the planar heating element of the present invention can be molded by converting the polyimide precursor to imide, each layer is firmly integrated by imidization, and is conductive in the polyimide precursor solution. Since substances or heat conductive particles can be directly mixed, uniform dispersion can be obtained, and uniform heat generation characteristics and excellent durability can be obtained.

次に、本発明の実施の形態について詳細に説明する。図1及び図2は本発明のテープ状のフレキシブルな面状発熱体の平面及び側面の概略図である。本発明の面状発熱体は、薄膜状の発熱層2と、この発熱層2に電力を供給するための電極3と、発熱層2及び電極3を被覆する絶縁性基層1及び絶縁層4とからなる面状発熱体である。なお、絶縁性基層1はあらかじめフィルムやシート状に成形されたものであり、絶縁層4は絶縁性基層1上に成形された発熱層2や電極3の上にポリイミド前駆体溶液を塗布した後に加熱してイミド転化させられるものである。   Next, embodiments of the present invention will be described in detail. 1 and 2 are schematic views of a plane and a side of a tape-like flexible sheet heating element according to the present invention. The planar heating element of the present invention includes a thin-film heating layer 2, an electrode 3 for supplying power to the heating layer 2, an insulating base layer 1 and an insulating layer 4 covering the heating layer 2 and the electrode 3, It is a planar heating element consisting of. The insulating base layer 1 is formed in advance in the form of a film or a sheet, and the insulating layer 4 is formed after the polyimide precursor solution is applied on the heat generating layer 2 or the electrode 3 formed on the insulating base layer 1. It is heated and converted to imide.

発熱層2にはポリイミドからなるマトリックス樹脂中にカーボンナノ材料とフィラメント状金属微粒子とからなる導電性物質が実質的に均一に分散して存在しているため、発熱層2は導電性物質の最小の混合量で均一な温度分布を得ることができる。また、発熱層2のマトリックス樹脂、絶縁性基層1、および絶縁層4がすべて熱硬化性ポリイミドあるいは非熱可塑性ポリイミドであるため、発熱層2はフレキシブル性が高く、且つプラスチック材料からなる発熱体の中では最高の使用温度と耐熱性を有する。   In the heat generating layer 2, the conductive material composed of the carbon nanomaterial and the filamentous metal fine particles is substantially uniformly dispersed in the matrix resin composed of polyimide, so that the heat generating layer 2 is the minimum of the conductive material. A uniform temperature distribution can be obtained with a mixing amount of. In addition, since the matrix resin, the insulating base layer 1 and the insulating layer 4 of the heat generating layer 2 are all thermosetting polyimide or non-thermoplastic polyimide, the heat generating layer 2 is highly flexible and is a heat generating element made of a plastic material. It has the highest operating temperature and heat resistance.

カーボンナノ材料は、カーボンナノファイバー、カーボンナノチューブ、及びカーボンマイクロコイルの少なくとも1つであることが好ましい。これらのカーボンナノ材料は、その繊維径が数nm〜数百nmで、繊維長さは数μm〜数十μmであり、嵩密度0.01〜0.3g/cm3、比表面積10〜30m2/gの特性を持ち、燃料電池材料など様々分野に使用されている。本発明に用いるカーボンナノ材料は特に限定されるものではなく上記材料を単独でまたは混合して用いることができる。 The carbon nanomaterial is preferably at least one of carbon nanofibers, carbon nanotubes, and carbon microcoils. These carbon nanomaterials have a fiber diameter of several nm to several hundred nm, a fiber length of several μm to several tens of μm, a bulk density of 0.01 to 0.3 g / cm 3 , and a specific surface area of 10 to 30 m. It has a characteristic of 2 / g and is used in various fields such as fuel cell materials. The carbon nanomaterial used in the present invention is not particularly limited, and the above materials can be used alone or in combination.

本発明の面状発熱体の発熱層2にはカーボンナノ材料と共にフィラメント状金属微粒子が含まれることが必須条件である。すなわち、本発明において、面状発熱体の所望の発熱量(例えば、本発明の面状発熱体の1つの用途である電子写真画像形成装置の定着部材では、面状発熱体は、発熱層2の厚みが30μm、幅15mm、長さ210mmのテープ状発熱体であって、その発熱量は100V、又は200Vの商用電圧の課電により500〜1000Wの範囲である)を得るためには、発熱層2の体積抵抗率を2x10-3〜20x10-3Ωcmの範囲で精密にコントロールする必要がある。 It is an essential condition that the heating layer 2 of the planar heating element of the present invention contains filamentous metal fine particles together with the carbon nanomaterial. That is, in the present invention, a desired heating value of the sheet heating element (for example, in a fixing member of an electrophotographic image forming apparatus that is one application of the sheet heating element of the present invention, the sheet heating element is the heating layer 2. Is a tape-like heating element having a thickness of 30 μm, a width of 15 mm, and a length of 210 mm, and the heating value is in the range of 500 to 1000 W by applying a commercial voltage of 100 V or 200 V). It is necessary to precisely control the volume resistivity of the layer 2 in the range of 2 × 10 −3 to 20 × 10 −3 Ωcm.

しかし、上記範囲の体積抵抗率をカーボンナノ材料のみで精密にコントロールすることは難しく、また、カーボンナノ材料のみで低い領域の体積抵抗率を得るためにはポリイミド前駆体の固形分に対して50体積%の以上のカーボンナノ材料を混合する必要があり、これらの混合量ではイミド転化後の発熱層2の機械的特性が著しく低下することになる。したがって、発熱層2として所望の体積抵抗率を確保し、且つ、十分な機械的特性を両立させるためには、発熱層2はカーボンナノ材料とともにカーボンナノ材料よりも導電性の高いフィラメント状金属微粒子を含むことが必須条件である。   However, it is difficult to precisely control the volume resistivity in the above range only with the carbon nanomaterial, and in order to obtain a low volume resistivity with only the carbon nanomaterial, the solid content of the polyimide precursor is 50%. It is necessary to mix more than volume% of carbon nanomaterials, and with these mixing amounts, the mechanical properties of the heat generating layer 2 after imide conversion are significantly reduced. Therefore, in order to ensure a desired volume resistivity as the heat generating layer 2 and to achieve sufficient mechanical properties, the heat generating layer 2 has filament-like fine metal particles having higher conductivity than the carbon nanomaterial together with the carbon nanomaterial. It is a necessary condition to include.

フィラメント状金属微粒子としては、針状結晶状の銀、アルミニウム、ニッケルなどを用いることができる。より好ましくはストランドが三次元的に連なった形状を有するニッケル微粒子である。このニッケル微粒子は平均粒子径が0.5〜1.0μm、比表面積が1.5〜2.5m2/gであり、図3に示す写真のようにストランドが三次元的に連なった形状を有し、カーボンナノ材料と線状で絡み合うことによって、均一な体積抵抗率を有する発熱層2を形成できる。カーボンナノ材料と混合して用いる金属微粒子が粒状や粉末あるいは塊状の場合は、カーボンナノ材料と絡み合いがなく、点接触になり、均一な発熱層2を作製することができない。また、点接触の場合、通電中に極微細なスパークが発生しやすく、発熱体の寿命を著しく低下させることになる。 As the filamentous fine metal particles, acicular crystalline silver, aluminum, nickel, or the like can be used. More preferably, it is nickel fine particles having a shape in which strands are three-dimensionally connected. The nickel fine particles have an average particle diameter of 0.5 to 1.0 μm, a specific surface area of 1.5 to 2.5 m 2 / g, and have a shape in which strands are three-dimensionally connected as shown in the photograph in FIG. Thus, the heat generating layer 2 having a uniform volume resistivity can be formed by being intertwined with the carbon nanomaterial in a linear form. When the metal fine particles used in a mixture with the carbon nanomaterial are in the form of particles, powders or lumps, they are not entangled with the carbon nanomaterial and are in point contact, making it impossible to produce a uniform heating layer 2. Further, in the case of point contact, extremely fine sparks are easily generated during energization, and the life of the heating element is significantly reduced.

次に、本発明において、発熱層2中の導電性物質が一定方向に配向して存在していることが好ましい。一般的なカーボンナノ材料は、繊維径が20〜200nm、繊維長さは5〜30μm、アスペクト比(繊維長さ/繊維径)5〜500の形状を有している。これらのカーボンナノ材料をポリイミド前駆体溶液に混合し、ガラス板上に流延するとカーボンナノ材料は縦横の方向がまちまちで存在し、この状態でイミド転化し発熱層2を作製すると抵抗値のばらつきも大きく、また、カーボンナノ材料を配向させて用いた場合と比較すると、より多くの混合量が必要であり、必然的に発熱層2の機械的特性の低下を招くことになる。   Next, in the present invention, it is preferable that the conductive substance in the heat generating layer 2 is present in a certain direction. A general carbon nanomaterial has a fiber diameter of 20 to 200 nm, a fiber length of 5 to 30 μm, and an aspect ratio (fiber length / fiber diameter) of 5 to 500. When these carbon nanomaterials are mixed with a polyimide precursor solution and cast on a glass plate, the carbon nanomaterials exist in various directions, and in this state, when the imide is converted to produce the heat generation layer 2, the resistance value varies. Moreover, compared with the case where the carbon nanomaterial is oriented and used, a larger amount of mixing is necessary, and the mechanical properties of the heat generating layer 2 are inevitably lowered.

したがって、これらのカーボンナノ材料を一定方向、すなわちカーボンナノ材料の個々の繊維がその長さ方向に束ねられたような状態に配向していることが最も好ましい。少ないカーボンナノ材料の混合量で電気抵抗値をコントロールでき、且つ、均一な発熱特性が得られるからである。   Therefore, it is most preferable that these carbon nanomaterials are oriented in a certain direction, that is, individual fibers of the carbon nanomaterial are bundled in the length direction. This is because the electrical resistance value can be controlled with a small amount of carbon nanomaterial mixed, and uniform heat generation characteristics can be obtained.

本発明の好ましい実施形態において、導電性組成物をポリイミドフィルムなどの平面状の基材に塗布した後あるいは塗布しながらガラス棒などで一定方向に液状成形させると、組成物中のカーボンナノ材料は、ガラス棒を進行させた方向に向かって繊維が略一定方向に並び、一方向に配向した状態となる。その後、導電性組成物を乾燥し、イミド化を完結することによって、図4の写真のように、カーボンナノ材料が配向したままの状態で固形化し、最も好ましい発熱層2が成形できる。なお、写真のカーボンナノ材料は、カーボンナノファイバーを用いたものである。また、図4の写真からも判るように、カーボンナノ材料とともに混合しているフィラメント状金属微粒子も、カーボンナノ材料に絡み合い、カーボンナノ材料の配向方向に配列した状態で存在し、発熱層2として最も好ましい状態であることが確認できた。フィラメント状金属微粒子としては、ストランドが三次元的に連なった形状を有するニッケル微粒子を用いた。   In a preferred embodiment of the present invention, after the conductive composition is applied to a flat substrate such as a polyimide film or liquid-formed with a glass rod or the like while being applied, the carbon nanomaterial in the composition is Then, the fibers are aligned in a substantially constant direction toward the direction in which the glass rod is advanced, and are aligned in one direction. Thereafter, the conductive composition is dried and imidization is completed, so that the carbon nanomaterial is solidified while being oriented as shown in the photograph of FIG. 4, and the most preferable heat generation layer 2 can be formed. The carbon nanomaterial in the photograph uses carbon nanofibers. In addition, as can be seen from the photograph in FIG. 4, filamentous metal fine particles mixed together with the carbon nanomaterial are also entangled with the carbon nanomaterial and arranged in the orientation direction of the carbon nanomaterial. It was confirmed that this was the most preferable state. As the filamentous metal fine particles, nickel fine particles having a shape in which strands are three-dimensionally connected were used.

本発明において発熱層2中の導電性物質は一対の電極3を結ぶ方向に配向して存在し、この配向方向の体積抵抗率がこの配向方向と直交する方向の体積抵抗率よりも小さいことが好ましい。本発明者らは、導電性物質の配向方向と体積抵抗率の関係について多くの実験を重ねた結果、導電性物質の配向方向の体積抵抗率とこの方向と交差する方向の体積抵抗率とが異なることを見出た。すなわち、導電性物質の配向方向の体積抵抗率をMD、及び配向方向と直交する方向の体積抵抗率をTDとした場合、その比(Ra=TD/MD)が1.2〜2倍以上にもなることがわかった。また、本発明者らは、Ra値の大きい面状発熱体を作製し、この発熱層2の配向方向の両端および配向と直行する方向の両端にそれぞれ一対ずつ二対の電極3を設置し、各電極3に同一の電圧を片方ずつ課電した場合、1つの面状発熱体で異なる発熱量を得ることが可能であることも見出した。   In the present invention, the conductive material in the heat generating layer 2 is present in an orientation in the direction connecting the pair of electrodes 3, and the volume resistivity in the orientation direction is smaller than the volume resistivity in the direction orthogonal to the orientation direction. preferable. As a result of many experiments on the relationship between the orientation direction of the conductive material and the volume resistivity, the present inventors have found that the volume resistivity in the orientation direction of the conductive material and the volume resistivity in the direction crossing this direction are I found something different. That is, when the volume resistivity in the orientation direction of the conductive material is MD and the volume resistivity in the direction orthogonal to the orientation direction is TD, the ratio (Ra = TD / MD) is 1.2 to 2 times or more. I found out that In addition, the inventors produced a planar heating element having a large Ra value, and installed two pairs of electrodes 3 on each of both ends of the heat generating layer 2 in the alignment direction and both ends in the direction orthogonal to the alignment, It has also been found that when the same voltage is applied to each electrode 3 one by one, it is possible to obtain different calorific values with one planar heating element.

上記のように導電性物質は、Raの値が大きいほど一定の方向に、且つ、均一に配向していることになる。したがって、所望の発熱層2の作製において、配向をより均一にさせるほど、導電性物質の混合量は少ない量でよいことになる。   As described above, the conductive material is oriented in a certain direction and uniformly as the value of Ra increases. Therefore, in the production of the desired heat generating layer 2, the amount of the conductive material mixed may be smaller as the orientation becomes more uniform.

このように、カーボンナノ材料を均一に配向させ、且つ、カーボンナノ材料とフィラメント状金属微粒子とを混在させることによって発熱層2の体積抵抗率の微調整が可能になり、発熱層2の機械的特性を低下させることなく、均一な体積抵抗率と優れた耐久性とを有する面状発熱体を得ることができる。   In this way, the volume resistivity of the heat generating layer 2 can be finely adjusted by uniformly orienting the carbon nanomaterial and mixing the carbon nanomaterial and the filamentous metal fine particles. A planar heating element having a uniform volume resistivity and excellent durability can be obtained without degrading the characteristics.

本発明において、発熱層2中のカーボンナノ材料とフィラメント状金属微粒子との存在量はポリイミド固形分に対して5〜50体積%であることが好ましい。より好ましくは10〜40体積%の範囲である。存在量が5体積%以下であると体積抵抗率のバラつきが大きく、均一な発熱領域を得ることが難しい。50体積%以上になると、発熱層2の機械的特性、及び耐久性が低下し好ましくない。また、カーボンナノ材料とフィラメント状金属微粒子との混合比率は、発熱層2の体積抵抗率、及び面状発熱体として所望する発熱量等によって任意に選定できる。また、本発明において導電物質の存在量から規制される体積抵抗率は、一対の電極3を結ぶ方向に導電性物質を配向させた面状発熱体において、MD値が1×10-4〜1Ωcmの範囲であることが好ましい。より好ましくは1×10-3〜1×10-1のΩcmの範囲である。 In the present invention, the abundance of the carbon nanomaterial and the filamentous metal fine particles in the heating layer 2 is preferably 5 to 50% by volume with respect to the polyimide solid content. More preferably, it is the range of 10-40 volume%. If the abundance is 5% by volume or less, the volume resistivity varies greatly and it is difficult to obtain a uniform heat generation region. If it is 50% by volume or more, the mechanical properties and durability of the heat generating layer 2 are lowered, which is not preferable. Further, the mixing ratio of the carbon nanomaterial and the filament-shaped metal fine particles can be arbitrarily selected depending on the volume resistivity of the heat generating layer 2 and the amount of heat generated as a planar heat generating element. Further, in the present invention, the volume resistivity regulated by the abundance of the conductive material is such that the MD value is 1 × 10 −4 to 1 Ωcm in the planar heating element in which the conductive material is oriented in the direction connecting the pair of electrodes 3. It is preferable to be in the range. More preferably, it is in the range of 1 × 10 −3 to 1 × 10 −1 Ωcm.

本発明において発熱層2のマトリックス樹脂および絶縁層4が少なくとも一種の芳香族ジアミンと少なくとも一種の芳香族テトラカルボン酸二無水物とを有機極性溶媒中で重合させて得られるポリイミド前駆体をイミド転化してなるポリイミドであることが好ましい。ポリイミドは一般的に明確なガラス転移点を持たず、発熱体の温度上昇によって軟化、あるいは溶融することがなく、優れた耐熱性を有するからである。   In the present invention, the polyimide resin obtained by polymerizing at least one aromatic diamine and at least one aromatic tetracarboxylic dianhydride in the matrix resin of the heat generating layer 2 and the insulating layer 4 in an organic polar solvent is converted into an imide. It is preferable that it is the polyimide formed. This is because polyimide generally does not have a clear glass transition point, and does not soften or melt as the temperature of the heating element rises, and has excellent heat resistance.

芳香族ジアミンの代表例としては、4,4′−ジアミノジフェニルエーテル、p−フェニレンジアミン、m−フェニレンジアミン、1,5−ジアミノナフタレン、3,3′−ジクロロベンジジン、3,3′−ジアミノジフェニルメタン、4,4′−ジアミノジフェニルメタン、3,3′−ジメチル−4,4′−ビフェニルジアミン、4,4′−ジアミノジフェニルスルフィド、3,3′−ジアミノジフェニルスルホン、ベンジジン、3,3′−ジメチルベンジジン、4,4′−ジアミノジフェニルスルホン、4,4′−ジアミノジフェニルプロパン、m−キシリレンジアミン、ヘキサメチレンジアミン、4,4−ジアミノジフェニルメタン、ジアミノプロピルテトラメチレン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、3−メチルヘプタメチレンジアミン等を挙げることができる。   Representative examples of aromatic diamines include 4,4'-diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, 1,5-diaminonaphthalene, 3,3'-dichlorobenzidine, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-biphenyldiamine, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, benzidine, 3,3'-dimethylbenzidine 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylpropane, m-xylylenediamine, hexamethylenediamine, 4,4-diaminodiphenylmethane, diaminopropyltetramethylene, 2,2-bis [4- ( 4-Aminophenoxy) phenyl] propane 3-methyl heptamethylene diamine and the like.

また、芳香族テトラカルボン酸二無水物の代表例としては、3,3′,4,4′−ベンゾフェノンテトラカルボン酸二無水物、ピロメリット酸二無水物、2,3,3′,4−ビフェニルテトラカルボン酸二無水物、3,3′,4,4′−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、2,2′−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、ペリレン−3,4,9,10−テトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物等を挙げることができる。   Representative examples of the aromatic tetracarboxylic dianhydride include 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, pyromellitic dianhydride, 2,3,3 ′, 4- Biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8- Naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,2'-bis (3,4-dicarboxyphenyl) propane dianhydride, perylene-3,4, Examples include 9,10-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, and the like.

これらの芳香族ジアミン及び芳香族テトラカルボン酸二無水物は単独であるいは混合して用いることができる。また、ポリイミド前駆体溶液として完成させ、それらの前駆体を混合して用いることもできる。   These aromatic diamines and aromatic tetracarboxylic dianhydrides can be used alone or in combination. Moreover, it can also complete as a polyimide precursor solution and can also mix and use those precursors.

芳香族テトラカルボン酸二無水物と芳香族ジアミンとを反応させる有機極性溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルホルムアミド、N,N−ジエチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミド、ピリジン、ジメチルテトラメチレンスルホン、テトラメチレンスルホン、γ−ブチロラクトン、炭酸エチレン、炭酸プロピレン等が挙げられる。これらの有機極性溶媒にはフェノール、キシレン、ヘキサン、トルエン等を混合することもできる。   Organic polar solvents for reacting aromatic tetracarboxylic dianhydrides with aromatic diamines include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide N, N-diethylacetamide, dimethyl sulfoxide, hexamethyl phosphortriamide, pyridine, dimethyltetramethylene sulfone, tetramethylene sulfone, γ-butyrolactone, ethylene carbonate, propylene carbonate and the like. These organic polar solvents can be mixed with phenol, xylene, hexane, toluene and the like.

また、本発明によれば芳香族ジアミンが下記の化学式(A)のパラフェニレンジアミンであり、芳香族テトラカルボン酸二無水物が下記の化学式(B)の3,3’,4,4’−ビフェニルテトラカルボン酸二無水物であることが好ましい。これらのモノマーから得られるポリイミドは機械的特性に優れ、高い耐熱性と共に、明確なガラス転位点を持たなく、温度が上昇しても熱可塑性樹脂のように軟化することがないからである。   Further, according to the present invention, the aromatic diamine is paraphenylenediamine of the following chemical formula (A), and the aromatic tetracarboxylic dianhydride is 3,3 ′, 4,4′- of the following chemical formula (B). Biphenyltetracarboxylic dianhydride is preferred. This is because polyimides obtained from these monomers are excellent in mechanical properties, have high heat resistance, do not have a clear glass transition point, and do not soften like a thermoplastic resin even when the temperature rises.

Figure 2007109640
Figure 2007109640

Figure 2007109640
Figure 2007109640

また、これらのポリイミド前駆体溶液は、芳香族テトラカルボン酸二無水物と芳香族ジアミンとを有機極性溶媒中で、通常は90℃以下で反応させることによって得られる。溶液中の固形分濃度は、導電性物質の混合割合や、あるいは塗布の条件によって調節することができる。その好ましい範囲は10〜30質量%である。   Moreover, these polyimide precursor solutions are obtained by making aromatic tetracarboxylic dianhydride and aromatic diamine react with an organic polar solvent normally at 90 degrees C or less. The solid content concentration in the solution can be adjusted by the mixing ratio of the conductive substance or the coating conditions. The preferable range is 10-30 mass%.

また、有機極性溶媒中で芳香族テトラカルボン酸二無水物と芳香族ジアミンとを反応させると、その重合状況によって溶液の粘度が上昇するが、使用に際しては所望の粘度に希釈して使用することができる。製造条件や作業条件によって通常1〜5000ポイズの粘度で使用される。   In addition, when aromatic tetracarboxylic dianhydride and aromatic diamine are reacted in an organic polar solvent, the viscosity of the solution increases depending on the polymerization state, but it should be diluted to the desired viscosity before use. Can do. It is usually used at a viscosity of 1 to 5000 poise depending on manufacturing conditions and working conditions.

本発明において、導電性組成物を一定方向に配向させて塗布するためには、上記組成物の粘度を10〜1500ポイズの範囲にすることが好ましい。より好ましくは50〜1000ポイズの範囲である。   In the present invention, in order to apply the conductive composition so as to be oriented in a certain direction, the viscosity of the composition is preferably in the range of 10 to 1500 poise. More preferably, it is the range of 50-1000 poise.

次に、本発明において絶縁性基層1および絶縁層4の少なくとも一方の少なくとも片側層が熱伝導性物質を含むことが好ましい。発熱層2で発生した熱量を被加熱物に効率よく伝達できるからである。熱伝導性物質は面状発熱体の絶縁性基層1および絶縁層4の両面に混合してもよく、また、いずれかの層のみに混合してもよい。面状発熱体の使用状況や使用方法によって、絶縁性基層1および絶縁層4の所望の面に導電性物質を混合することができる。   Next, in the present invention, it is preferable that at least one side layer of at least one of the insulating base layer 1 and the insulating layer 4 contains a heat conductive substance. This is because the amount of heat generated in the heat generating layer 2 can be efficiently transmitted to the object to be heated. The heat conductive material may be mixed on both surfaces of the insulating base layer 1 and the insulating layer 4 of the planar heating element, or may be mixed only in one of the layers. A conductive substance can be mixed with the desired surfaces of the insulating base layer 1 and the insulating layer 4 depending on the usage status and usage method of the planar heating element.

導電性物質は電気絶縁性のものであれば特に限定するものではなく、窒化アルミニウム、窒化ホウ素、窒化ケイ素、酸化ジルコニウム、酸化アルミニウムなどの微粒子や粉末を用いることができる。導電性物質を含む絶縁層4は、ポリイミド前駆体溶液中に導電性物質を混合し、溶液状で塗布し、加熱によりイミド化を完結させることによって得ることができる。   The conductive material is not particularly limited as long as it is electrically insulating, and fine particles and powders such as aluminum nitride, boron nitride, silicon nitride, zirconium oxide, and aluminum oxide can be used. The insulating layer 4 containing a conductive substance can be obtained by mixing a conductive substance in a polyimide precursor solution, applying it in the form of a solution, and completing imidization by heating.

次に、面状発熱体の絶縁性基層1および絶縁層4の少なくとも一方の少なくとも片側面の外面にフッ素樹脂層が成形されていることが好ましい。例えば、図5に示す複写機やレーザービームプリンターなどの定着装置において、トナー画像を熱定着する定着ロール11の表面に直接面状発熱体13を接触させ、定着ロール11の表面のみを加熱する場合、定着ロール11に接触させる面状発熱体の最外面にフッ素樹脂が形成されていると定着ロール11との摩擦抵抗が小さく、効率よく加熱することができるからである。   Next, it is preferable that a fluororesin layer is formed on at least one outer surface of at least one of the insulating base layer 1 and the insulating layer 4 of the planar heating element. For example, in a fixing device such as a copying machine or a laser beam printer shown in FIG. 5, the surface heating element 13 is brought into direct contact with the surface of the fixing roll 11 for thermally fixing the toner image, and only the surface of the fixing roll 11 is heated. This is because if the fluororesin is formed on the outermost surface of the sheet heating element that is brought into contact with the fixing roll 11, the frictional resistance with the fixing roll 11 is small and heating can be performed efficiently.

面状発熱体の絶縁性基層1および絶縁層4の少なくとも一方の少なくとも片側層の外面にフッ素樹脂を成形する一つの方法としては、絶縁性基層1および絶縁層4の少なくとも一方の片側層、または両側に、フッ素樹脂ディスパージョンをコーティングし、融点以上の温度で焼成する方法が好ましい。なお、このとき、絶縁性基層1および絶縁層4の少なくとも一方との接着力を高めるためにプライマーを用いることが好ましい。   One method of molding the fluororesin on the outer surface of at least one side layer of at least one of the insulating base layer 1 and the insulating layer 4 of the planar heating element includes at least one side layer of the insulating base layer 1 and the insulating layer 4, or A method of coating a fluororesin dispersion on both sides and baking at a temperature equal to or higher than the melting point is preferable. At this time, it is preferable to use a primer in order to increase the adhesive strength with at least one of the insulating base layer 1 and the insulating layer 4.

また、絶縁性基層1および絶縁層4、特に絶縁層4の面にフッ素樹脂層を成形する他の方法としては、前述したフッ素樹脂ディスパージョンをコーティングする方法以外に、ポリイミド前駆体溶液中にフッ素樹脂粉末を直接混合して絶縁層用のフッ素混合ポリイミド前駆体溶液を作製し、電力供給のための電極3を除いて発熱層2の表面に前述のフッ素樹脂混合ポリイミド前駆体溶液を塗布し、フッ素樹脂の融点以上の温度でフッ素樹脂の焼成とポリイミド前駆体のイミド転化とを同時に行うことにより、絶縁層4の外側表面に、フッ素樹脂を溶融析出させる方法がある。絶縁層4の外側表面にフッ素樹脂が成形された面状発熱体は摩擦抵抗が低いため、上述した定着装置の定着ロールなどの回転体に直接接触させて加熱する用途に使用できる。   Further, as other methods for forming the fluororesin layer on the surfaces of the insulating base layer 1 and the insulating layer 4, particularly the insulating layer 4, in addition to the above-described method of coating the fluororesin dispersion, fluorine in the polyimide precursor solution is used. The resin powder is directly mixed to prepare a fluorine mixed polyimide precursor solution for the insulating layer, and the above fluorine resin mixed polyimide precursor solution is applied to the surface of the heat generating layer 2 except for the electrode 3 for power supply, There is a method in which the fluororesin is melt-deposited on the outer surface of the insulating layer 4 by simultaneously performing the firing of the fluororesin and the imide conversion of the polyimide precursor at a temperature equal to or higher than the melting point of the fluororesin. Since the sheet heating element in which the fluororesin is molded on the outer surface of the insulating layer 4 has low frictional resistance, it can be used for heating by directly contacting a rotating body such as the fixing roll of the fixing device described above.

さらに、絶縁層4としてフッ素樹脂を使用することもできる。すなわち、絶縁性基層1の表面に発熱層2と電極3を成形した後、この表面に直接フッ素樹脂プライマー液を塗布し、乾燥してプライマー層を成形した後、プライマー層表面にフッ素樹脂ディスパージョンを塗布し、フッ素樹脂の融点以上の温度で焼成することによって面状発熱体の片側面(絶縁層4の面)がフッ素樹脂単体の絶縁層4で被覆された面状発熱体を作製することができる。この面状発熱体は、絶縁層4の片側(絶縁層4の面)がフッ素樹脂単体で被覆されているため、柔軟性と耐薬品性に優れ、また、フッ素樹脂層が成形されている面を回転体の表面に直接接触させ加熱することによって、回転している被加熱物を効率よく加熱することができる。   Further, a fluororesin can be used as the insulating layer 4. That is, after the heat generating layer 2 and the electrode 3 are formed on the surface of the insulating base layer 1, the fluororesin primer solution is directly applied to the surface and dried to form the primer layer, and then the fluororesin dispersion is applied to the primer layer surface. The sheet heating element is coated with the insulating layer 4 made of a single fluororesin to produce a sheet heating element by baking at a temperature equal to or higher than the melting point of the fluorine resin. Can do. This planar heating element is excellent in flexibility and chemical resistance because one side of the insulating layer 4 (the surface of the insulating layer 4) is covered with a fluororesin alone, and the surface on which the fluororesin layer is molded. By directly contacting the surface of the rotating body and heating, the rotating object to be heated can be efficiently heated.

上述した面状発熱体の絶縁層4の少なくとも片側層に成形するフッ素樹脂は、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(PETFE)を単体で、又はこれらを混合して用いることができる。PTFE,PFA、FEPは高い耐熱性と共に低い摩擦係数を有し、最も好ましい材料である。   The fluororesin to be molded on at least one side layer of the insulating layer 4 of the planar heating element described above is polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polychlorotrifluoroethylene ( PCTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene copolymer (PETFE) can be used alone or as a mixture thereof. PTFE, PFA, and FEP are the most preferred materials because of their high heat resistance and low coefficient of friction.

また、フッ素樹脂は熱伝導性物質を含むことが好ましい。発熱層2で発生した熱量を効率よく被加熱物に伝達できるからである。フッ素樹脂に混合する熱伝導性物質も前述した絶縁層4に混合する熱伝導性物質を用いることが好ましい。   Moreover, it is preferable that a fluororesin contains a heat conductive substance. This is because the amount of heat generated in the heat generating layer 2 can be efficiently transmitted to the object to be heated. It is preferable to use the heat conductive material mixed with the above-mentioned insulating layer 4 as the heat conductive material mixed with the fluororesin.

そして、本発明の面状発熱体は塗布工程、発熱層成形工程、電極成形工程、および絶縁層成形工程を経て製造されるのが好ましい。塗布工程では、ポリイミド前駆体溶液中にカーボンナノ材料とフィラメント状金属微粉子とが混合された導電性組成物が絶縁性基層1の表面に塗布される。発熱層成形工程では、絶縁性基層上に塗布された導電性組成物が加熱されてイミド転化され発熱層2が成形される。電極成形工程では、発熱層2に電極3が成形される。絶縁層成形工程では、発熱層2及び電極3を被覆する絶縁層4が成形される。   And it is preferable that the planar heating element of this invention is manufactured through an application | coating process, a heat generating layer shaping | molding process, an electrode shaping | molding process, and an insulating layer shaping | molding process. In the coating step, a conductive composition in which a carbon nanomaterial and a filamentous metal fine powder are mixed in a polyimide precursor solution is applied to the surface of the insulating base layer 1. In the heat generating layer forming step, the conductive composition applied on the insulating base layer is heated to convert it to imide, and the heat generating layer 2 is formed. In the electrode forming step, the electrode 3 is formed on the heat generating layer 2. In the insulating layer forming step, the insulating layer 4 covering the heat generating layer 2 and the electrode 3 is formed.

なお、本発明の製造方法では、塗布工程において導電性組成物を絶縁性基層(例えばフィルム、シートなど)の表面に塗布する際に、導電性組成物に混合されている導電性物質を一定方向に配向させながら塗布することが必須条件である。導電性組成物を配向させながら塗布する方法としてはバーコート法、外周にワイヤーを隙間なく巻き付けて固定した細い丸棒によって一定の厚みに導電性組成物をコートするワイヤーコーティング法、ロールコート法、ディッピング法、あるいは、スクリーン印刷法などの方法を挙げることができる。また、導電性組成物を配向させながら塗布するための粘度は10〜1500ポイズの範囲であることが好ましく、より好ましい粘度は50〜1000ポイズの範囲である。   In addition, in the manufacturing method of this invention, when apply | coating a conductive composition to the surface of an insulating base layer (for example, a film, a sheet | seat etc.) in an application | coating process, the electroconductive substance mixed with the conductive composition is fixed direction. It is an indispensable condition to apply while being oriented. As a method of applying while orienting the conductive composition, a bar coating method, a wire coating method in which the conductive composition is coated to a certain thickness by a thin round bar fixed by winding a wire around the outer periphery without gaps, a roll coating method, Examples thereof include a dipping method and a screen printing method. Moreover, it is preferable that the viscosity for apply | coating while orientating an electroconductive composition is the range of 10-1500 poise, and a more preferable viscosity is the range of 50-1000 poise.

本発明の製造方法では、まず、カーボンナノ材料及びフィラメント状金属微粒子をポリイミド前駆体溶液中に混合して導電性組成物を作製し、次いで絶縁性基層1の表面に導電性物質が配向するように導電性組成物を塗布し、イミド転化させて発熱層2を成形する。その後、発熱層2中の導電性物質が配向している方向の両端部に銀ペースト材料などによる電極3を取り付ける。そして、さらにその発熱層2および電極3の表面にポリイミド前駆体溶液を塗布し、イミド転化させて絶縁層4を積層して発熱層2を被覆することによって面状発熱体を完成することができる。絶縁性基層1としてはポリイミドのシートやフィルムとして市販されているものを用いることができる。   In the production method of the present invention, first, a carbon nanomaterial and filamentary metal fine particles are mixed in a polyimide precursor solution to prepare a conductive composition, and then the conductive material is oriented on the surface of the insulating base layer 1. A conductive composition is applied to the resin, and imide conversion is performed to form the heat generating layer 2. Thereafter, electrodes 3 made of a silver paste material or the like are attached to both ends in the direction in which the conductive substance in the heat generating layer 2 is oriented. Further, a sheet heating element can be completed by applying a polyimide precursor solution to the surfaces of the heating layer 2 and the electrode 3, converting it to imide, laminating the insulating layer 4, and covering the heating layer 2. . As the insulating base layer 1, a commercially available polyimide sheet or film can be used.

本発明の好ましい実施形態において、導電性組成物は、絶縁性基層1の表面に導電性物質を配向させながら液状成形される。そして、この導電性組成物は、80〜120℃の温度で10〜120分間乾燥された後に温度が200℃に上げられ、この温度で10〜180分間維持される。その後、この導電性組成物は温度が250〜400℃まで段階的に上げられ、この温度で30〜60分間維持されてイミド化が完結させられて、絶縁性基層1上に発熱層2が成形される。そして、発熱層2には銀ペースト等の導電性塗料あるいは金属箔や金属網などによって電力供給用電極3を設け、さらにこれらの表面にポリイミド前駆体溶液を塗布し、イミド化を完結させて絶縁層4を成形し、本発明の面状発熱体を完成できる。なお、絶縁層4のイミド転化においても発熱層2のイミド転化と同じ条件で処理することが好ましい。   In a preferred embodiment of the present invention, the conductive composition is liquid-molded while orienting a conductive substance on the surface of the insulating base layer 1. And after drying this electrically conductive composition at the temperature of 80-120 degreeC for 10 to 120 minutes, temperature is raised to 200 degreeC and it maintains at this temperature for 10 to 180 minutes. Thereafter, the temperature of the conductive composition is raised stepwise from 250 to 400 ° C., and the temperature is maintained at this temperature for 30 to 60 minutes to complete imidization, whereby the heat generating layer 2 is formed on the insulating base layer 1. Is done. The heat generating layer 2 is provided with a power supply electrode 3 by a conductive paint such as silver paste or a metal foil or a metal net. Further, a polyimide precursor solution is applied to these surfaces to complete imidization and insulate. By forming the layer 4, the planar heating element of the present invention can be completed. In addition, it is preferable that the imide conversion of the insulating layer 4 is performed under the same conditions as the imide conversion of the heat generating layer 2.

また、絶縁性基層1、発熱層2、及び絶縁層4全ての層をポリイミド前駆体から作製することが好ましい。具体的には、まず、絶縁性基層1の素となるポリイミド前駆体溶液を金属ベルトなどの表面に流延した後に加熱して、イミド化を中間段階で止めた絶縁性基層1を作製する。次に、この絶縁性基層1の表面に、カーボンナノ材料とフィラメント状金属微粒子とを混合した導電性組成物を、導電性物質が一定の方向に配向するように所定の寸法に溶液状で成形した後に乾燥し、イミド化を中間段階で止める。その後、さらに絶縁性基層1と発熱層2とが積層されている表面に絶縁層4となるポリイミド前駆体溶液を塗布した後に乾燥し、次に前記3つの層を一度にイミド転化処理し、面状発熱体を作製する。この方法で面状発熱体を作製すると、各層間の接着力を向上させることができると共に一工程で一括処理ができ製造コストを抑えることができる。前述したイミド化を中間段階で止めるためのイミド化の方法としては、80〜120℃の温度で10〜120分間加熱した後に200℃に上げこの温度で10〜180分間維持する方法が好ましい。   Moreover, it is preferable that all of the insulating base layer 1, the heat generating layer 2, and the insulating layer 4 are made of a polyimide precursor. Specifically, first, an insulating base layer 1 in which imidization is stopped at an intermediate stage is produced by casting a polyimide precursor solution which is a base of the insulating base layer 1 on the surface of a metal belt or the like and then heating it. Next, a conductive composition in which carbon nanomaterials and filamentary metal fine particles are mixed is formed on the surface of the insulating base layer 1 in a solution form in a predetermined size so that the conductive substance is oriented in a certain direction. And dried to stop imidization at an intermediate stage. Thereafter, a polyimide precursor solution to be an insulating layer 4 is applied to the surface on which the insulating base layer 1 and the heat generating layer 2 are further laminated and then dried, and then the three layers are subjected to an imide conversion treatment at a time. A heating element is produced. When a planar heating element is produced by this method, the adhesive force between the layers can be improved, and at the same time, batch processing can be performed in one process, and the manufacturing cost can be reduced. As the imidization method for stopping the above-described imidization at an intermediate stage, a method of heating at 80 to 120 ° C. for 10 to 120 minutes and then increasing to 200 ° C. and maintaining at this temperature for 10 to 180 minutes is preferable.

本発明において、面状発熱体の総厚みが50〜3000μmの範囲であると面状発熱体が柔軟性に富み、面状発熱体を円筒状あるいは複雑な曲面を有する形状の被加熱物に面接触させることができるので好ましい。また、絶縁性基層1および絶縁層4の厚みは10〜500μmの範囲が好ましく、発熱層2の厚みは5〜60μmの範囲であることが好ましい。但し、発熱層2の寸法は電気抵抗値に直接影響するため、所望の発熱量から設計する必要がある。また、面状発熱体は長尺のテープ状、フィルム状、あるいはシート状など所望の形状にすることができ、発熱層2も長方形、円形、あるいは必要とする発熱パターンにあわせて、所望の形状にすることができる。   In the present invention, if the total thickness of the planar heating element is in the range of 50 to 3000 μm, the planar heating element is rich in flexibility, and the planar heating element faces the object to be heated having a cylindrical shape or a complicated curved surface. Since it can be made to contact, it is preferable. Moreover, the thickness of the insulating base layer 1 and the insulating layer 4 is preferably in the range of 10 to 500 μm, and the thickness of the heat generating layer 2 is preferably in the range of 5 to 60 μm. However, since the dimension of the heat generating layer 2 directly affects the electric resistance value, it is necessary to design from a desired heat generation amount. In addition, the planar heating element can be formed into a desired shape such as a long tape, film, or sheet, and the heating layer 2 is also rectangular, circular, or a desired shape according to the required heating pattern. Can be.

図5において、複写紙17上に形成されたトナー像18は、ポリイミド製加圧ベルト12と定着ロール11とのニップ部分Nに送り込まれ、加熱された定着ロール表面により熱定着される。この場合、定着ロールはその表面のみが加熱されていることが熱効率の面から最も好ましい。このようにすれば、本発明の面状発熱体のフレキシブル性および低摩擦性を生かすことができ、定着ロール表面に面状発熱体13を密着させた状態で定着ロールを回転させながら効率よく定着ロール表面のみを加熱することができる。定着ロール11はロール芯金部16により回転させられ、加圧定着ベルト12には、定着ロール11の加圧支持体15により押圧されることによって回転力が伝達される。符号14は加圧支持体15による押圧力と加圧ベルト内面の摩擦抵抗を軽減するための押圧パッドであり、押圧パッド14にはシリコンオイルなどの潤滑剤が塗布されている。また、定着ロールの内側は耐熱ゴムの発泡体の断熱層20からなり、ロール表面層は厚み30μmのシームレスのステンレス管状物19でカバーされている。また、ステンレス管状物の外面はフッ素樹脂がコーティングされた構造になっている。   In FIG. 5, the toner image 18 formed on the copy paper 17 is sent to the nip portion N between the polyimide pressure belt 12 and the fixing roll 11 and is thermally fixed by the heated fixing roll surface. In this case, it is most preferable from the viewpoint of thermal efficiency that only the surface of the fixing roll is heated. In this way, the flexibility and low friction property of the sheet heating element of the present invention can be utilized, and the fixing roll is rotated efficiently while the sheet heating element 13 is in close contact with the surface of the fixing roll. Only the roll surface can be heated. The fixing roll 11 is rotated by a roll mandrel 16, and a rotational force is transmitted to the pressure fixing belt 12 by being pressed by a pressure support 15 of the fixing roll 11. Reference numeral 14 denotes a pressing pad for reducing the pressing force by the pressing support 15 and the frictional resistance of the inner surface of the pressing belt. The pressing pad 14 is coated with a lubricant such as silicon oil. The inner side of the fixing roll is formed of a heat-resistant rubber foam heat insulating layer 20, and the roll surface layer is covered with a seamless stainless tubular material 19 having a thickness of 30 μm. Further, the outer surface of the stainless tubular material has a structure in which a fluororesin is coated.

(実施例)
以下に実施例を用いて本発明に係る面状発熱体をさらに具体的に説明する。本発明に係る面状発熱体の評価方法は下記の条件および測定器で評価した。
(1)体積抵抗率の測定
デジタルマルチメーターModel7562(横河電気(株)製)において4線式プローブを用い発熱体の体積抵抗率を測定した。
(2)温度分布の測定
サーモトレーサTH1101(日本電気三栄(株)製)を用いて測定した。
(Example)
The planar heating element according to the present invention will be described more specifically with reference to the following examples. The evaluation method of the planar heating element according to the present invention was evaluated under the following conditions and measuring instrument.
(1) Measurement of volume resistivity The volume resistivity of the heating element was measured using a 4-wire probe in a digital multimeter Model 7562 (manufactured by Yokogawa Electric Corporation).
(2) Measurement of temperature distribution It measured using thermotracer TH1101 (NEC Sanei Co., Ltd. product).

(1)ポリイミド絶縁性基層の作製
ポリイミド絶縁性基層として、厚み50μmのポリイミドフィルム(ユーピレックスSフィルム:宇部興産(株)製)を幅50mm、長さ350mmに切断したものを使用した。
(2)絶縁層用ポリイミド前駆体溶液の作製
絶縁層を形成するためのポリイミド前駆体として(ポリイミドワニス:RC5063、固形分17.5%、(株)I.S.T社製)を用意した。このポリイミド前駆体溶液はN−メチル−2−ピロリドン(NMP)中でビフェニルテトラカルボン酸二無水物「BPDA」と、パラフェニレンジアミン「PPD」とを重合したものである。使用に当たっては、B型粘度計による23℃の粘度が200ポイズとなるように粘度を調整した。
(3)発熱層用導電性組成物の作製
ポリイミド前駆体溶液(ポリイミドワニス:RC5063(株)I.S.T社製)100g、カーボンナノファイバー(VGCF−H、昭和電工(株)製)12.5g、フィラメント状ニッケル微粒子(TYPE210、インコ社製)18.54g、及びN−メチル−2−ピロリドン(NMP)50gを容器に投入し1時間攪拌した後、150番のSUSメッシュでろ過し、全固形分に対してカーボンナノファイバーが30体積%、フィラメント状ニッケル微粒子が10体積%含まれる導電性組成物を作製した。23℃における回転粘度(B型粘度計による)は300ポイズであった。なお、ポリイミドワニス(RC5063)の固形分は17.5重量%であり、ポリイミドワニスのイミド転化後の比重は1.4g/cm3である。また、カーボンナノファイバー(VGCF−H)の真密度は2.0g/cm3であり、フィラメント状ニッケル微粒子(TYPE210)の真密度は8.9g/cm3である。
(4)導電性組成物の塗布及びイミド転化
前記(3)項で作製した発熱層用導電性組成物を、前記(1)項に記載のポリイミドフィルム(絶縁性基層)上にバーコート法で厚み200μm、幅15mm、長さ270mmの形状となるように、長さ方向に配向させながら塗布した。その後、その塗布フィルムを乾燥炉で120℃15分、200℃15分、250℃15分、300℃1時間、350℃15分、400℃15分間の条件下で加熱し、イミド化を完結させ、ポリイミドフィルム表面に発熱層が成形された面状発熱体の中間製品を作製した。発熱層のみの厚みは30μmであった。
(5)絶縁層の塗布及びイミド転化
前記(4)項で作製した面状発熱体中間品の発熱層表面に、前記(2)項で作製したポリイミド前駆体溶液を、発熱層の長さ方向の両端部各30mm部分を除いて厚みが120μmとなるように塗布し、120℃で5分乾燥した後、ピンホールや異物混入による絶縁不良などの問題をなくするために、その上にもう一度、先のポリイミド前駆体溶液を厚み120μmとなるようにコートした。その後、その面状発熱体中間品を120℃で再度5分乾燥し、さらに、200℃15分、250℃15分、300℃1時間、350℃15分、400℃15分間の条件下で加熱し、イミド化を完結させ、発熱層を絶縁層で被覆した。
(6)電極の作製
前記(5)項の工程で、絶縁層で被覆されていない発熱層部分に銀ペースト(DWP−025、東洋紡績(株)製)を塗布した後、150℃10分、230℃10分、300℃30分の条件下で銀ペーストの焼き付けを行い、発熱層に一対の電極を取り付けた。完成した面状発熱体の電極間の発熱層の寸法は、幅15mm、長さ210mm、厚み30μmであった。
(7)面状発熱体の評価
a.体積抵抗率及び電極間抵抗値の測定
デジタルマルチメーターModel7562を用いて電極間の体積抵抗率および電気抵抗を4線式で測定した。体積抵抗率(MD)は84×10-4Ωcmであり、電極間の電気抵抗値は38Ωであった。また、電極間と直交する方向の体積抵抗率(TD)の測定値は152×10-4Ωcmであり、Ra値は1.81であった。この面状発熱体においてカーボンナノファイバーの配向方向は、両電極間を結ぶ方向と同一方向に配向されていた。この面状発熱体に200Vの電圧を課電した時の電力は1000Wであった。
(1) Production of polyimide insulating base layer As a polyimide insulating base layer, a polyimide film having a thickness of 50 μm (Upilex S film: Ube Industries, Ltd.) cut into a width of 50 mm and a length of 350 mm was used.
(2) Preparation of polyimide precursor solution for insulating layer (Polyimide varnish: RC5063, solid content 17.5%, manufactured by IST Co., Ltd.) was prepared as a polyimide precursor for forming an insulating layer. . This polyimide precursor solution is obtained by polymerizing biphenyltetracarboxylic dianhydride “BPDA” and paraphenylenediamine “PPD” in N-methyl-2-pyrrolidone (NMP). In use, the viscosity was adjusted so that the viscosity at 23 ° C. by a B-type viscometer was 200 poise.
(3) Preparation of conductive composition for heat generation layer Polyimide precursor solution (polyimide varnish: RC5063, manufactured by I.S. T.) 100 g, carbon nanofiber (VGCF-H, manufactured by Showa Denko KK) 12 .5 g, filamentary nickel fine particles (TYPE210, manufactured by Inco) 18.54 g, and N-methyl-2-pyrrolidone (NMP) 50 g were added to the container and stirred for 1 hour, and then filtered through No. 150 SUS mesh. A conductive composition containing 30% by volume of carbon nanofibers and 10% by volume of filamentous nickel fine particles with respect to the total solid content was prepared. The rotational viscosity at 23 ° C. (by B-type viscometer) was 300 poise. In addition, solid content of a polyimide varnish (RC5063) is 17.5 weight%, and the specific gravity after imide conversion of a polyimide varnish is 1.4 g / cm < 3 >. The true density of the carbon nanofiber (VGCF-H) is 2.0 g / cm 3 , and the true density of the filamentary nickel fine particles (TYPE 210) is 8.9 g / cm 3 .
(4) Application of conductive composition and imide conversion The conductive composition for a heat generation layer prepared in the above section (3) is bar coated on the polyimide film (insulating base layer) described in the above section (1). It was applied while being oriented in the length direction so as to have a thickness of 200 μm, a width of 15 mm, and a length of 270 mm. Thereafter, the coated film is heated in a drying oven at 120 ° C. for 15 minutes, 200 ° C. for 15 minutes, 250 ° C. for 15 minutes, 300 ° C. for 1 hour, 350 ° C. for 15 minutes, and 400 ° C. for 15 minutes to complete imidization. An intermediate product of a planar heating element having a heating layer formed on the polyimide film surface was produced. The thickness of only the heat generating layer was 30 μm.
(5) Insulating layer application and imide conversion The polyimide precursor solution prepared in (2) above is applied to the surface of the exothermic layer of the planar heating element intermediate product prepared in (4) above. After applying at a thickness of 120 μm, excluding 30 mm each at both ends, and drying at 120 ° C. for 5 minutes, in order to eliminate problems such as pinholes and foreign matter contamination, The previous polyimide precursor solution was coated to a thickness of 120 μm. Thereafter, the sheet heating element intermediate product is dried again at 120 ° C. for 5 minutes, and further heated under the conditions of 200 ° C. for 15 minutes, 250 ° C. for 15 minutes, 300 ° C. for 1 hour, 350 ° C. for 15 minutes, and 400 ° C. for 15 minutes. Then, imidization was completed, and the heat generating layer was covered with an insulating layer.
(6) Preparation of electrode After applying silver paste (DWP-025, manufactured by Toyobo Co., Ltd.) to the heat generating layer portion not covered with the insulating layer in the step of (5) above, 150 ° C. for 10 minutes, The silver paste was baked under conditions of 230 ° C. for 10 minutes and 300 ° C. for 30 minutes, and a pair of electrodes was attached to the heat generating layer. The dimensions of the heating layer between the electrodes of the completed planar heating element were 15 mm wide, 210 mm long, and 30 μm thick.
(7) Evaluation of planar heating element a. Measurement of Volume Resistivity and Interelectrode Resistance The volume resistivity and electrical resistance between electrodes were measured with a 4-wire system using a digital multimeter Model 7562. The volume resistivity (MD) was 84 × 10 −4 Ωcm, and the electrical resistance value between the electrodes was 38Ω. Moreover, the measured value of volume resistivity (TD) in the direction orthogonal to the interval between the electrodes was 152 × 10 −4 Ωcm, and the Ra value was 1.81. In this planar heating element, the orientation direction of the carbon nanofibers was oriented in the same direction as the direction connecting the two electrodes. The electric power when a voltage of 200 V was applied to this planar heating element was 1000 W.

b.発熱温度分布の測定
面状発熱体が水平となり且つ発熱部分が空間に配置されるように、面状発熱体の両端電極部を給電支持体に固定した。面状発熱体に供給する電源には可変電圧調整器を通じて電圧を設定しながら給電した。まず始めにサーモトレーサを標準モードにして、発熱体の表面温度を観測しながら発熱体の表面が300℃となる様に可変電圧調整器の出力電圧を調整した。これ以降はこの設定状態で給電し、温度分布を測定した。この時の出力電圧は45Vであった。出力電圧の設定を終了した後、面状発熱体への給電を停止し、面状発熱体が室温になるまで自然冷却した。次にサーモトレーサをタイムトレースモードに切り替えて通電開始から10秒間の発熱体表面の温度上昇変化を観測し記録した。記録データから通電開始10秒後の長さ方向の発熱体表面温度を読み取ると最大温度287.5℃、最小温度280.0℃であった。また、温度分布は10℃以内であり、非常に均一な発熱上昇特性が得られた。
b. Measurement of heat generation temperature distribution The both end electrodes of the sheet heating element were fixed to the power supply support so that the sheet heating element was horizontal and the heating part was disposed in the space. The power supplied to the sheet heating element was fed while setting the voltage through a variable voltage regulator. First, the thermotracer was set to the standard mode, and the output voltage of the variable voltage regulator was adjusted so that the surface of the heating element became 300 ° C. while observing the surface temperature of the heating element. Thereafter, power was supplied in this setting state, and the temperature distribution was measured. The output voltage at this time was 45V. After completing the setting of the output voltage, power supply to the sheet heating element was stopped, and the sheet heating element was naturally cooled until it reached room temperature. Next, the thermotracer was switched to the time trace mode, and the temperature rise change of the heating element surface for 10 seconds from the start of energization was observed and recorded. When the surface temperature of the heating element in the length direction 10 seconds after the start of energization was read from the recorded data, the maximum temperature was 287.5 ° C and the minimum temperature was 280.0 ° C. Moreover, the temperature distribution was within 10 ° C., and a very uniform exothermic increase characteristic was obtained.

c.カーボンナノファイバーの配向状態の確認
発熱層のカーボンナノファイバー及びフィラメント状ニッケル微粒子の配向状態を電子顕微鏡で撮影した結果を図4に示す。カーボンナノファイバーは写真の左右方向に配向した状態で存在しており、フィラメント状ニッケル微粒子も、一定方向に配向しているカーボンナノファイバーに絡み合ったような状態で存在していることが確認できた。
c. Confirmation of orientation state of carbon nanofibers The results of photographing the orientation state of carbon nanofibers and filamentary nickel fine particles in the heat generation layer with an electron microscope are shown in FIG. It was confirmed that the carbon nanofibers exist in a state of being oriented in the left-right direction of the photograph, and the filamentary nickel fine particles are also present in a state of being entangled with the carbon nanofibers oriented in a certain direction. .

d.通電耐久評価
面状発熱体の発熱部表面の裏面にアルミニウム製放熱板を密着させて設置し、発熱体の長さ方向の中心部に相当する位置のアルミニウム製放熱板の部分に貫通穴を設けて、表面温度測定用熱電対を挿入し、発熱体表面に密着させて設置し、温度制御用検出器とした。面状発熱体の電極間に温度制御出力リレーの接点を介して200Vの電圧を課電し、オンオフ方式で面状発熱体表面温度が240℃になるように温度を制御しながら240時間通電した結果、絶縁特性等の熱劣化は全く認められなかった。
d. Conductive durability evaluation An aluminum heat sink is installed in close contact with the back of the surface of the heat generating part of the sheet heating element, and a through hole is provided in the aluminum heat sink at a position corresponding to the center of the heat generating element in the length direction. Then, a thermocouple for measuring the surface temperature was inserted and installed in close contact with the surface of the heating element to obtain a temperature control detector. A voltage of 200 V was applied between the electrodes of the planar heating element via a contact point of the temperature control output relay, and energized for 240 hours while controlling the temperature so that the surface heating element surface temperature was 240 ° C. by an on / off method. As a result, no thermal deterioration such as insulation characteristics was observed.

実施例1においてカーボンナノファイバーとフィラメント状ニッケル微粒子との混合比を表1の比率に変更した以外は実施例1と同様の条件で面状発熱体を作製し、その体積抵抗率、温度分布の測定値、及びRa値を測定した。結果を表1に示す。   A planar heating element was produced under the same conditions as in Example 1 except that the mixing ratio of carbon nanofibers and filamentary nickel fine particles in Example 1 was changed to the ratio shown in Table 1, and the volume resistivity and temperature distribution were Measurement values and Ra values were measured. The results are shown in Table 1.

Figure 2007109640
Figure 2007109640

実験例1〜3の面状発熱体に100Vの電圧を課電することによって実験例1では330W、実験例2では1100W、実験例3では520Wの発熱量が得られいずれも均一な温度分布と共に十分な耐久性が得られた。   By applying a voltage of 100 V to the planar heating elements of Experimental Examples 1 to 3, a heating value of 330 W was obtained in Experimental Example 1, 1100 W in Experimental Example 2, and 520 W in Experimental Example 3, all with uniform temperature distribution. Sufficient durability was obtained.

実施例1において絶縁層を下記に記載の方法で作製した以外は実施例1と同様の条件で面状発熱体を作製した。
(1)絶縁層用ポリイミド前駆体溶液の作製
ビーカーにNMP100gと窒化ホウ素粉末(MBN-010T:平均粒子径:1.0μm、三井化学(株)製)36.38gとを、超音波を当てながらミキサーで15分間攪拌して分散液を作製した。この分散液109.1gとポリイミド前駆体溶液(ポリイミドワニス:RC5063(株)I.S.T社製)400gとを混合し、1時間攪拌し、全固形分に対して窒化ホウ素が30重量%含まれる絶縁層用ポリイミド前駆体溶液を作製した。B型粘度計による23℃の回転粘度は320ポイズであった。このポリイミド前駆体溶液を実施例1と同様に塗布、及びイミド転化させ、面状発熱体を完成させた。この面状発熱体の絶縁層は、熱伝導性に優れ、被加熱物に接触させて加熱した結果、一定温度までに達する加熱時間を大幅に短縮することができた。
A planar heating element was produced under the same conditions as in Example 1 except that the insulating layer was produced by the method described below in Example 1.
(1) Production of polyimide precursor solution for insulating layer While applying ultrasonic waves to 36.38 g of NMP 100 g and boron nitride powder (MBN-010T: average particle size: 1.0 μm, manufactured by Mitsui Chemicals, Inc.) in a beaker. A dispersion was prepared by stirring for 15 minutes with a mixer. 109.1 g of this dispersion and 400 g of polyimide precursor solution (polyimide varnish: RC5063, manufactured by I.S.T.) were mixed and stirred for 1 hour. Boron nitride was 30% by weight based on the total solid content. A polyimide precursor solution for an insulating layer was prepared. The rotational viscosity at 23 ° C. by a B-type viscometer was 320 poise. This polyimide precursor solution was applied and imide converted in the same manner as in Example 1 to complete a planar heating element. The insulating layer of this planar heating element was excellent in thermal conductivity, and as a result of heating by contacting with the object to be heated, the heating time to reach a certain temperature could be greatly shortened.

ステンレス板に幅50mm長さ400mmでイミド転化後の厚みが50μmになるようにポリイミド前駆体溶液(ポリイミドワニス:RC5063(株)I.S.T社製)を流延し、120℃15分間、200℃15分間の条件下で加熱し、イミド化が中間段階のポリイミド絶縁性基層を作製した。その後、実施例1で使用したカーボンナノファイバーとフィラメント状ニッケル微粒子とを混合した導電性組成物を、ポリイミド絶縁性基層上に幅15mm、長さ270mm、溶液状の厚み約200μmとなるように長さ方向にバーコーターで導電性物質を配向させながら塗布した。   A polyimide precursor solution (Polyimide varnish: RC5063, manufactured by I.S. T. Co.) was cast on a stainless steel plate so that the thickness after conversion to imide was 50 μm with a width of 50 mm and a length of 400 mm, and 120 ° C. for 15 minutes. Heating was performed at 200 ° C. for 15 minutes to produce a polyimide insulating base layer in which imidation was in an intermediate stage. Thereafter, the conductive composition obtained by mixing the carbon nanofibers and filamentary nickel fine particles used in Example 1 was long so that the width of the polyimide insulating base layer was 15 mm, the length was 270 mm, and the solution thickness was about 200 μm. The conductive material was applied while being oriented in the vertical direction with a bar coater.

その後、その塗布物を120℃の温度で15分間、200℃の温度で20分間加熱した後、乾燥炉から取出し冷却した。次に、ポリイミド絶縁性基層上に積層した発熱層の長さ方向の両端部各30mm部分を除いて再びポリイミド前駆体溶液(ポリイミドワニス:RC5063(株)I.S.T社製)をイミド転化後の厚みが50μmになるよう塗布し、絶縁層を液状形成した後、乾燥炉で120℃15分、200℃15分、250℃15分、300℃1時間、350℃15分、400℃15分の条件下で加熱し、イミド化を完結させ発熱体を作製した。発熱層のみの厚みは31μmであった。この発熱体は、全ての層がイミド転化によって完全に一体化していた。その後、実施例1と同様に発熱層両端部に銀ペーストによる電極を焼き付け、通電による耐久試験を行った結果、各層間の浮きや剥離などの発生は皆無であり、耐久性の高い面状発熱体を得ることができた。   Thereafter, the coated material was heated at a temperature of 120 ° C. for 15 minutes and at a temperature of 200 ° C. for 20 minutes, and then taken out from the drying furnace and cooled. Next, the polyimide precursor solution (polyimide varnish: manufactured by I.S.T. Co., Ltd.) is again converted into an imide, except for each 30 mm portion at both ends in the length direction of the heat generating layer laminated on the polyimide insulating base layer. After coating to a thickness of 50 μm and forming an insulating layer in a liquid state, the temperature was 120 ° C. for 15 minutes, 200 ° C. for 15 minutes, 250 ° C. for 15 minutes, 300 ° C. for 1 hour, 350 ° C. for 15 minutes, 400 ° C. for 15 ° C. For 1 minute to complete imidization to produce a heating element. The thickness of only the heat generating layer was 31 μm. In this heating element, all layers were completely integrated by imide conversion. After that, as a result of baking an electrode made of silver paste on both ends of the heat generating layer in the same manner as in Example 1 and conducting a durability test by energization, there was no occurrence of floating or peeling between the layers, and a highly durable surface heat generation. I was able to get a body.

実施例4においてポリイミド前駆体溶液としてポリイミドワニス:RC5063(株)I.S.T社製に代えて(ポリイミドワニス:RC5019(株)I.S.T社製)を用いたい以外は実施例4と同様の条件で面状発熱体を作製した。ポリイミドワニスRC5019は、芳香属ジアミン成分の4,4'−ジアミノジフェニルエーテル(ODA)と芳香属テトラカルボン酸二無水物成分のピロメリット酸二無水物(PMDA)をNMP中で反応させたポリイミド前駆体溶液である。この面状発熱体は実施例1に記載の240℃のオンオフ制御による240時間の耐久試験で十分な耐久性を示した。   Example 4 except that instead of polyimide varnish: RC5063 manufactured by I.S. T. Co. (polyimide varnish: RC5019 manufactured by I.S. T.) was used as the polyimide precursor solution in Example 4. A planar heating element was produced under the same conditions as those described above. Polyimide varnish RC5019 is a polyimide precursor obtained by reacting 4,4'-diaminodiphenyl ether (ODA) as an aromatic diamine component and pyromellitic dianhydride (PMDA) as an aromatic tetracarboxylic dianhydride component in NMP. It is a solution. This planar heating element showed sufficient durability in the durability test for 240 hours by the on / off control at 240 ° C. described in Example 1.

実施例4で作製した面状発熱体の絶縁層の外側表面に、粘度110cp(23℃)に調整したフッ素樹脂プライマー液(固形分濃度35%の855−300(デュポン(株)製)を乾燥後の厚さが約3μmになるようにコーティングし、常温で10分間自然乾燥した。その後、150℃で30分間加熱した後に冷却した。次に、プライマー層の表面にフッ素樹脂ディスパージョン855−510(デュポン社製商品名)を20μmの厚みでコーティングし、150℃で10分間乾燥させた後、380℃まで15間で昇温し、同温度で10分間保持し、ポリイミド絶縁層の外側表面にフッ素樹脂を積層した面状発熱体を作製した。その後、電極を取り付け完成した面状発熱体を、所定のサイズに切断して、ヒータホルダーに固定した後、図5に示す定着装置の定着ロール表面に面状発熱体のフッ素樹脂層面が接触するような状態で装着した。次に、定着ロールを回転させながら、面状発熱体に200Vの電圧を課電し、ロール表面が200℃になるようサーミスターで温度制御してロール表面のみを加熱し、定着ロール11と加圧ベルト12とのニップ(N)面に複写紙を、順次送り込んだ。その結果、複写紙上に形成されたトナー画像を定着することができた。また、定着ロールと面状発熱体の接触面との摩擦抵抗も小さく十分な耐久性が得られた。   On the outer surface of the insulating layer of the planar heating element produced in Example 4, a fluororesin primer solution adjusted to a viscosity of 110 cp (23 ° C.) (855-300 having a solid content concentration of 35% (manufactured by DuPont) was dried. The film was coated to a thickness of about 3 μm and dried naturally at room temperature for 10 minutes, then heated at 150 ° C. for 30 minutes and then cooled, and then a fluororesin dispersion 855-510 on the surface of the primer layer. (Product name made by DuPont) is coated to a thickness of 20 μm, dried at 150 ° C. for 10 minutes, heated to 380 ° C. for 15 minutes, held at the same temperature for 10 minutes, on the outer surface of the polyimide insulating layer A sheet heating element laminated with a fluororesin was prepared, and then the sheet heating element with the electrodes attached thereto was cut into a predetermined size and fixed to the heater holder, and then shown in FIG. The fixing device is mounted so that the surface of the fluororesin layer of the sheet heating element is in contact with the surface of the fixing roll.Next, while rotating the fixing roll, a voltage of 200 V is applied to the sheet heating element. Only the roll surface was heated by controlling the temperature with a thermistor so that the surface reached 200 ° C., and the copy paper was sequentially fed to the nip (N) surface between the fixing roll 11 and the pressure belt 12. As a result, In addition, the toner image formed on the surface of the sheet was fixed, and the frictional resistance between the fixing roll and the contact surface of the sheet heating element was small and sufficient durability was obtained.

実施例4においてポリイミド絶縁層に用いたポリイミド前駆体溶液(ポリイミドワニス:RC5063(株)I.S.T社製)中に平均粒子径3.0μmのPTFE樹脂粉末(融点327℃:デュポン社製商品名"Zonyl MP1100")をポリイミドワニスの固形分100重量部に対して30重量部の割合になるように添加して攪拌し均一に分散させた。このフッ素混合ポリイミド前駆体溶液を絶縁層として用いた以外は実施例4と同様の条件で面状発熱体を作製した。この面状発熱体は、フッ素混合ポリイミド前駆体溶液を塗布後、フッ素樹脂の融点以上の温度で焼成およびイミド転化することにより絶縁層の最外表面にフッ素樹脂を溶融させて析出させ、面状発熱体の絶縁層をフッ素樹脂で覆ったものである。この面状発熱体を実施例6に記載した定着装置の加熱ヒータとして使用した結果、ロールとの接触抵抗も低くトナー画像を定着することができた。   PTFE resin powder having an average particle size of 3.0 μm (melting point: 327 ° C .: manufactured by DuPont) in the polyimide precursor solution (polyimide varnish: RC5063, manufactured by IST Corporation) used for the polyimide insulating layer in Example 4. The product name “Zonyl MP1100”) was added in a proportion of 30 parts by weight with respect to 100 parts by weight of the solid content of the polyimide varnish, and stirred and dispersed uniformly. A planar heating element was produced under the same conditions as in Example 4 except that this fluorine-mixed polyimide precursor solution was used as an insulating layer. This sheet heating element is coated with a fluorine mixed polyimide precursor solution, and then baked at a temperature equal to or higher than the melting point of the fluorine resin and imide conversion to melt and deposit the fluorine resin on the outermost surface of the insulating layer. The insulating layer of the heating element is covered with a fluororesin. As a result of using this planar heating element as a heater of the fixing device described in Example 6, the toner image could be fixed with low contact resistance with the roll.

ポリイミド絶縁性基層として幅250mm、長さ400mmに切断したユーピレックスSフィルムを用い、カーボンナノファイバーとフィラメント状ニッケル微粒子との混合比を表2に記載のように変更し、発熱体塗布面積を幅210mmとし、長さ357mmとし、電極間を297mmとした以外は実施例1の条件と同一の条件で面状発熱体を作製した。その体積抵抗率、温度分布の測定値、及びRa値を表2に示す。この面状発熱体に100Vの電圧を課電することによって510Wの発熱量が得られ、幅210mm、長さ297mmの面積(A4の大きさ)が均一に発熱し、またに十分な耐久性が得られた。   Using Upilex S film cut to a width of 250 mm and a length of 400 mm as the polyimide insulating base layer, the mixing ratio of carbon nanofibers and filamentary nickel fine particles was changed as shown in Table 2, and the heating element coating area was 210 mm wide. A sheet heating element was produced under the same conditions as in Example 1 except that the length was 357 mm and the distance between the electrodes was 297 mm. Table 2 shows the volume resistivity, measured value of temperature distribution, and Ra value. By applying a voltage of 100 V to this planar heating element, a heating value of 510 W is obtained, an area of 210 mm width and 297 mm length (A4 size) is uniformly heated, and sufficient durability is obtained. Obtained.

Figure 2007109640
Figure 2007109640

(比較例1)
実施例1においてカーボンナノファイバーとフィラメント状ニッケル微粒子との混合量を表3の混合率に変更した以外は実施例1と同様の条件で面状発熱体を作製した。その体積抵抗率とRa値および電極間抵抗値を表3に示す。
(Comparative Example 1)
A planar heating element was produced under the same conditions as in Example 1 except that the mixing amount of carbon nanofibers and filamentary nickel fine particles was changed to the mixing ratio shown in Table 3 in Example 1. Table 3 shows the volume resistivity, Ra value, and interelectrode resistance.

Figure 2007109640
Figure 2007109640

表3に記載のように、カーボンナノファイバーのみを、ポリイミド前駆体溶液に混合し、配向させて塗布した発熱体では、Ra値は高くできるものの、配向方向の体積低効率MDをあまり下げることができず、100Vや200Vの商用電圧の課電では十分な発熱量を得ることができなかった。また、実験例7のようにカーボンナノファイバーの混合割合を多くすることによって、体積抵抗率を下げることは可能であったが、発熱層の機械的特性が低下し、十分な耐久性が得られなかった。さらに、発熱層の厚みを厚くして電極間抵抗を下げる試みを行ったが、面状発熱体のフレキシブル性がなくなり、円筒状物体や曲面を有する被加熱物に装着した場合、被加熱物表面との密着が悪くなり、熱効率が低下する問題が発生した。   As shown in Table 3, with a heating element in which only carbon nanofibers are mixed in a polyimide precursor solution and oriented and applied, the Ra value can be increased, but the volumetric low-efficiency MD in the orientation direction can be lowered too much. It was not possible to obtain a sufficient calorific value by applying a commercial voltage of 100V or 200V. In addition, it was possible to reduce the volume resistivity by increasing the mixing ratio of the carbon nanofibers as in Experimental Example 7, but the mechanical properties of the heat generation layer were lowered and sufficient durability was obtained. There wasn't. Furthermore, an attempt was made to increase the thickness of the heat generation layer to lower the inter-electrode resistance. However, the flexibility of the planar heating element is lost, and the surface of the object to be heated is attached to a heated object having a cylindrical object or curved surface. There was a problem that the thermal efficiency was lowered.

また、表3の実験例9のようにフィラメント状ニッケル微粒子のみをポリイミド前駆体溶液に30体積%混合させた場合、フィラメント状ニッケル微粒子はストランドが三次元的に連なった形状を有するため配向した状態のRa値が得られることがわかったが、体積抵抗率が低く発熱体として使用することができなかった。次に実験例8のようにフィラメント状ニッケル微粒子のみをポリイミド前駆体溶液に10体積%混合した場合には、電極間抵抗値は14Ωであり100Vの課電により700Wの発熱体が得られたが、カーボンナノファイバーよりも微細な微粒子であるため分散むらが発生しやすく、また、フィラメント状ニッケルは良導体であるため、局部的な通電による発熱ムラや、微細なスパークによる絶縁不良が発生し、十分な耐久性が得られなかった。
(比較例2)
厚み50μm、幅50mm、長さ350mmのポリイミドフィルム(ユーピレックス−Sフィルム:宇部興産(株)製)を、中央部に幅15mm、長さ270mmの開口部を残してステンレス箔でマスキングし、実施例1の(3)項で作製した導電性組成物を開口部分中央から流し込み、約200μmの厚みで塗布し、そのままの状態で乾燥炉に入れ120℃で15分間乾燥した。その後マスキングを外し、再び200℃15分、250℃15分、300℃1時間、350℃15分、400℃15分の条件下で加熱しイミド化を完結させ面状発熱体の中間製品を作製した。発熱層のみの厚みは約28μmであった。
In addition, when only 30% by volume of filamentary nickel fine particles were mixed in the polyimide precursor solution as in Experimental Example 9 of Table 3, the filamentous nickel fine particles had a shape in which the strands were three-dimensionally connected, so that they were oriented. The Ra value was found to be obtained, but the volume resistivity was low and could not be used as a heating element. Next, when only 10% by volume of filamentary nickel fine particles were mixed with the polyimide precursor solution as in Experimental Example 8, the resistance value between the electrodes was 14Ω, and a heating element of 700 W was obtained by applying 100V. Because the fine particles are finer than carbon nanofibers, dispersion unevenness is likely to occur.Further, since the filamentary nickel is a good conductor, uneven heat generation due to local energization and insulation failure due to fine sparks occur. Durability was not obtained.
(Comparative Example 2)
A polyimide film having a thickness of 50 μm, a width of 50 mm, and a length of 350 mm (Upilex-S film: manufactured by Ube Industries Co., Ltd.) was masked with a stainless steel foil leaving an opening with a width of 15 mm and a length of 270 mm at the center. The conductive composition produced in the item (3) of 1 was poured from the center of the opening, applied to a thickness of about 200 μm, put in a drying oven as it was, and dried at 120 ° C. for 15 minutes. After that, the masking is removed, and heating is again performed at 200 ° C for 15 minutes, 250 ° C for 15 minutes, 300 ° C for 1 hour, 350 ° C for 15 minutes, and 400 ° C for 15 minutes to complete imidization, thereby producing an intermediate product of a planar heating element did. The thickness of only the heat generating layer was about 28 μm.

この発熱層中のカーボンナノファイバーの状態を電子顕微鏡で撮影した結果を図6に示す。発熱層中のカーボンナノファイバーは一定の方向へ配向しておらず、発熱層のMD方向およびTD方向それぞれの体積抵抗率は110×10-4Ωcm、150×10-4Ωcmであり、また、Ra値は1.36であった。さらに、この面状発熱体の中間製品の表面に絶縁層を成形し、この面状発熱体の長さ方向の両端に電極を取り付け、実施例1と同様に通電テストを行った結果、温度分布のばらつきが大きく、また、実施例1と同一の導電性組成物を用いたにもかかわらず、電極間(MD方向)の抵抗値が大きく、設計通りの発熱量が得られなかった。 The result of photographing the state of the carbon nanofibers in the heat generation layer with an electron microscope is shown in FIG. The carbon nanofibers in the heat generating layer are not oriented in a certain direction, and the volume resistivity in each of the MD direction and the TD direction of the heat generating layer is 110 × 10 −4 Ωcm, 150 × 10 −4 Ωcm, The Ra value was 1.36. Furthermore, an insulating layer was formed on the surface of the intermediate product of the sheet heating element, electrodes were attached to both ends of the sheet heating element in the length direction, and an energization test was performed in the same manner as in Example 1. In addition, although the same conductive composition as in Example 1 was used, the resistance value between the electrodes (MD direction) was large, and the heat generation amount as designed could not be obtained.

面状発熱体の平面概略図である。It is a plane schematic diagram of a planar heating element. 図1に示す面状発熱体の側面断面の概略図である。It is the schematic of the side surface cross section of the planar heating element shown in FIG. フィラメント状ニッケル微粒子の電子顕微鏡写真である。It is an electron micrograph of filamentous nickel fine particles. 実施例1に基づき作製した発熱層中のカーボンナノファイバーの配向状態を示す電子顕微鏡写真である。2 is an electron micrograph showing an orientation state of carbon nanofibers in a heat generating layer produced based on Example 1. FIG. 定着装置における定着ロールの加熱状態を表す概略図であるFIG. 3 is a schematic diagram illustrating a heating state of a fixing roll in a fixing device. 比較例2に基づき作製した面状発熱体の発熱層中のカーボンナノファイバーの無配向状態を示す電子顕微鏡写真である。6 is an electron micrograph showing a non-oriented state of carbon nanofibers in a heat generating layer of a planar heating element produced based on Comparative Example 2. FIG.

符号の説明Explanation of symbols

1 絶縁性基層
2 発熱層
3 電極
4 絶縁層
11 定着ロール
12 加圧ベルト
13 面状発熱体
14 押圧パッド
15 加圧支持体
16 定着ロール芯金
17 複写紙
18 トナー像
19 ステンレス管状物
20 断熱層
21 カーボンナノファイバー
22 フィラメント状ニッケル微粒子
N ニップ部
DESCRIPTION OF SYMBOLS 1 Insulating base layer 2 Heat generating layer 3 Electrode 4 Insulating layer 11 Fixing roll 12 Pressure belt 13 Planar heating element 14 Pressing pad 15 Pressure support 16 Fixing roll core metal 17 Copy paper 18 Toner image 19 Stainless steel tube 20 Heat insulating layer 21 Carbon nanofiber 22 Filamentary nickel fine particle N Nip part

Claims (12)

ポリイミドからなるマトリックス樹脂中にカーボンナノ材料及びフィラメント状金属微粒子からなる導電性物質が実質的に均一に分散されて存在している発熱層と、
前記発熱層に電力を供給するための電極と、
前記発熱層および前記電極を被覆する絶縁層と、
を積層してなる、面状発熱体。
A heat generating layer in which a conductive material composed of carbon nanomaterials and filamentary metal fine particles is substantially uniformly dispersed in a matrix resin composed of polyimide; and
An electrode for supplying power to the heating layer;
An insulating layer covering the heating layer and the electrode;
A planar heating element formed by laminating layers.
前記カーボンナノ材料は、カーボンナノファイバー、カーボンナノチューブ、及びカーボンマイクロコイルの少なくとも1つである、
請求項1に記載の面状発熱体。
The carbon nanomaterial is at least one of a carbon nanofiber, a carbon nanotube, and a carbon microcoil.
The planar heating element according to claim 1.
前記フィラメント状金属微粒子は、ストランドが三次元的に連なった形状を有するニッケル微粒子である、
請求項1に記載の面状発熱体。
The filamentary metal fine particles are nickel fine particles having a shape in which strands are three-dimensionally connected.
The planar heating element according to claim 1.
前記導電性物質は、一定方向に配向して存在している、
請求項1から3のいずれかに記載の面状発熱体。
The conductive material is oriented in a certain direction,
The planar heating element according to any one of claims 1 to 3.
前記導電性物質は、前記電極を結ぶ方向に配向して存在し、
発熱層の導電性物質配向方向の体積抵抗率は、導電性物質配向方向と直交する方向の体積抵抗率よりも小さい、
請求項4に記載の面状発熱体。
The conductive substance exists in an orientation in a direction connecting the electrodes,
The volume resistivity in the direction of orientation of the conductive material of the heat generation layer is smaller than the volume resistivity in the direction orthogonal to the direction of orientation of the conductive material.
The planar heating element according to claim 4.
前記発熱層中のマトリックス樹脂及び前記絶縁層は、少なくとも1種の芳香族ジアミンと少なくとも1種の芳香族テトラカルボン酸二無水物とを有機極性溶媒中で重合してなるポリイミド前駆体をイミド転化したポリイミドである、
請求項1から5のいずれかに記載の面状発熱体。
The matrix resin in the heat generating layer and the insulating layer are imide conversion of a polyimide precursor obtained by polymerizing at least one aromatic diamine and at least one aromatic tetracarboxylic dianhydride in an organic polar solvent. A polyimide,
The planar heating element according to any one of claims 1 to 5.
前記芳香族ジアミンは、下記の化学式(A)のパラフェニレンジアミンであり、
前記芳香族テトラカルボン酸二無水物は、下記の化学式(B)の3,3’,4,4’−ビフェニルテトラカルボン酸二無水物である、
請求項6に記載の面状発熱体。
Figure 2007109640
Figure 2007109640
The aromatic diamine is paraphenylenediamine of the following chemical formula (A):
The aromatic tetracarboxylic dianhydride is 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride of the following chemical formula (B),
The planar heating element according to claim 6.
Figure 2007109640
Figure 2007109640
前記絶縁層の少なくとも片側層には、熱伝導性物質が含まれる、
請求項1から7のいずれかに記載の面状発熱体。
At least one side layer of the insulating layer includes a heat conductive material.
The planar heating element according to any one of claims 1 to 7.
前記絶縁層の少なくとも片側層の外面には、フッ素樹脂層が成形されている、
請求項1から8のいずれかに記載の面状発熱体。
A fluororesin layer is formed on the outer surface of at least one side layer of the insulating layer,
The planar heating element according to any one of claims 1 to 8.
前記フッ素樹脂は、熱伝導性物質を含む、
請求項9に記載の面状発熱体。
The fluororesin includes a heat conductive material,
The planar heating element according to claim 9.
ポリイミド前駆体溶液中にカーボンナノ材料及びフィラメント状金属微粉子を混合した導電性組成物を絶縁性基層の表面に塗布する塗布工程と、
前記絶縁性基層上に塗布した導電性組成物を加熱してイミド転化し発熱層を成形する発熱層成形工程と、
前記発熱層に電極を成形する電極成形工程と、
前記発熱層及び電極を被覆する絶縁層を成形する絶縁層成形工程と、
を備える、面状発熱体の製造方法。
An application step of applying a conductive composition in which a carbon nanomaterial and a filamentous metal fine powder are mixed in a polyimide precursor solution to the surface of the insulating base layer;
A heating layer forming step of heating the conductive composition applied on the insulating base layer to form an exothermic layer by imide conversion;
An electrode forming step of forming an electrode on the heat generating layer;
An insulating layer forming step of forming an insulating layer covering the heat generating layer and the electrode;
A method for manufacturing a planar heating element.
前記塗布工程では、前記カーボンナノ材料及びフィラメント状金属微粉子が一定方向に配向するように導電性組成物が絶縁性基層の表面に塗布される、
請求項11に記載の面状発熱体の製造方法。
In the application step, the conductive composition is applied to the surface of the insulating base layer so that the carbon nanomaterial and the filamentous metal fine particles are oriented in a certain direction.
The manufacturing method of the planar heating element of Claim 11.
JP2006246813A 2005-09-13 2006-09-12 Planar heating element and manufacturing method thereof Active JP5017522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246813A JP5017522B2 (en) 2005-09-13 2006-09-12 Planar heating element and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005265084 2005-09-13
JP2005265084 2005-09-13
JP2006246813A JP5017522B2 (en) 2005-09-13 2006-09-12 Planar heating element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007109640A true JP2007109640A (en) 2007-04-26
JP5017522B2 JP5017522B2 (en) 2012-09-05

Family

ID=38035327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246813A Active JP5017522B2 (en) 2005-09-13 2006-09-12 Planar heating element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5017522B2 (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136467A1 (en) * 2007-04-27 2008-11-13 I.S.T. Corporation Coating material, layered product, and process for producing cylindrical layered product
KR100889332B1 (en) 2007-07-06 2009-03-26 전자부품연구원 Micro Heater Having Carbon Nano Tubes
JP2009092785A (en) * 2007-10-05 2009-04-30 Ist Corp Heat generating fixing belt and image fixing device
JP2009109997A (en) * 2007-10-12 2009-05-21 Ist Corp Image fixing device
JP2009109998A (en) * 2007-10-12 2009-05-21 Ist Corp Heat generation fixing roll and image fixing device
WO2009081986A1 (en) 2007-12-26 2009-07-02 Nano Carbon Technologies Co., Ltd. Planar heating element obtained using dispersion of fine carbon fibers in water and process for producing the planar heating element
WO2009081630A1 (en) * 2007-12-25 2009-07-02 Sumitomo Electric Industries, Ltd. Polyimide tube, process for producing the same and fixing belt
JP2009259714A (en) * 2008-04-18 2009-11-05 Sharp Corp Surface heat generating element, fixing device equipped with it, and image forming device
JP2010003693A (en) * 2008-06-18 2010-01-07 Qinghua Univ Line heat source
JP2010010136A (en) * 2008-06-27 2010-01-14 Qinghua Univ Linear heat source
JP2010010133A (en) * 2008-06-27 2010-01-14 Qinghua Univ Linear heater
JP2010010137A (en) * 2008-06-27 2010-01-14 Qinghua Univ Line heat source
JP2010021148A (en) * 2008-07-11 2010-01-28 Qinghua Univ Hollow heat source
JP2010021146A (en) * 2008-07-11 2010-01-28 Qinghua Univ Manufacturing method for linear heat source
JP2010021147A (en) * 2008-07-11 2010-01-28 Qinghua Univ Hollow heat source
JP2010034055A (en) * 2008-07-25 2010-02-12 Qinghua Univ Planar heat source
JP2010034063A (en) * 2008-07-25 2010-02-12 Qinghua Univ Hollow heat source
JP2010034054A (en) * 2008-07-25 2010-02-12 Qinghua Univ Planar heat source
JP2010034061A (en) * 2008-07-25 2010-02-12 Qinghua Univ Hollow heat source
JP2010034062A (en) * 2008-07-25 2010-02-12 Qinghua Univ Hollow heater
JP2010034058A (en) * 2008-07-25 2010-02-12 Qinghua Univ Planar heat source
JP2010034056A (en) * 2008-07-25 2010-02-12 Qinghua Univ Planar heat source
JP2010034064A (en) * 2008-07-25 2010-02-12 Qinghua Univ Method of manufacturing hollow heater
JP2010045025A (en) * 2008-07-18 2010-02-25 Hodogaya Chem Co Ltd Exothermic body using fine carbon fiber, and manufacturing method thereof
KR100955540B1 (en) 2008-04-16 2010-04-30 임기주 heat generation sheet and fabrication method thereof
JP2010113165A (en) * 2008-11-06 2010-05-20 Mitsubishi Cable Ind Ltd Heating roller
JP2010136369A (en) * 2008-12-05 2010-06-17 Qinghua Univ Thermoacoustic device
JP2010257972A (en) * 2009-04-20 2010-11-11 Qinghua Univ Surface heat source
JP2010257971A (en) * 2009-04-20 2010-11-11 Qinghua Univ Surface heat source
JP2010257973A (en) * 2009-04-20 2010-11-11 Qinghua Univ Surface heat source
JP2012516536A (en) * 2009-02-17 2012-07-19 エルジー・ハウシス・リミテッド Carbon nanotube heating sheet
JP2013025120A (en) * 2011-07-22 2013-02-04 Konica Minolta Business Technologies Inc Heat-generating fixing belt
US8410676B2 (en) 2007-09-28 2013-04-02 Beijing Funate Innovation Technology Co., Ltd. Sheet-shaped heat and light source, method for making the same and method for heating object adopting the same
JP2013077587A (en) * 2009-04-20 2013-04-25 Qinghua Univ Linear heat source
US8450930B2 (en) 2007-10-10 2013-05-28 Tsinghua University Sheet-shaped heat and light source
JP2013525943A (en) * 2010-03-19 2013-06-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Film-based heating apparatus and related methods
CN103731941A (en) * 2012-10-12 2014-04-16 清华大学 Manufacturing method of heating element
WO2014073402A1 (en) * 2012-11-08 2014-05-15 保土谷化学工業株式会社 Planar heater
JP2014123036A (en) * 2012-12-21 2014-07-03 Fuji Xerox Co Ltd Planar heating element, fixing device, and image forming apparatus
JP2015011809A (en) * 2013-06-27 2015-01-19 コニカミノルタ株式会社 Planar heating element, and method for manufacturing the same
KR101518735B1 (en) * 2009-02-19 2015-05-18 삼성전자주식회사 Heating adopting carbon nanotube and fusing device using the same
WO2015159665A1 (en) * 2014-04-16 2015-10-22 新田栄一 Carbon-covered flat heater and production method therefor
KR101613503B1 (en) 2012-03-15 2016-04-19 (주)바이오니아 Composition of Heating Paste and Preparation Method of the Same
WO2017003269A1 (en) * 2015-07-02 2017-01-05 구각회 Sheet heating element and electrically conductive thin film
JP2017195182A (en) * 2016-04-15 2017-10-26 三菱製紙株式会社 Heating sheet and heat-peelable adhesive sheet
JP2018002843A (en) * 2016-06-30 2018-01-11 三菱マテリアル株式会社 Resin film and heat radiation sheet
JP2018152192A (en) * 2017-03-10 2018-09-27 富士ゼロックス株式会社 Exothermic member, heater, fixation apparatus and imaging apparatus
JP2019046632A (en) * 2017-08-31 2019-03-22 坂口電熱株式会社 Film-like heater
CN109587841A (en) * 2018-12-27 2019-04-05 桂林清扬科技有限公司 A kind of electric heating film and preparation method thereof that heating efficiency is high
CN112566288A (en) * 2020-11-11 2021-03-26 刘丽荣 Far infrared heating body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101276726B1 (en) 2013-01-07 2013-06-19 김윤정 Preparation of flexible carbon fiber

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248352B2 (en) * 1981-05-15 1987-10-13 Kogyo Gijutsuin
JPH02308291A (en) * 1989-05-24 1990-12-21 Onoda Cement Co Ltd Heat fixing roll for copying machine and its manufacture
JPH0729670A (en) * 1993-07-12 1995-01-31 Mitsui Toatsu Chem Inc Sheet heating element and its manufacture
JPH10310698A (en) * 1997-05-12 1998-11-24 P I Gijutsu Kenkyusho:Kk Conductive surface heated composition
JPH1116667A (en) * 1997-06-19 1999-01-22 Canon Inc Heater, heating device and image forming device
WO1999044391A1 (en) * 1998-02-27 1999-09-02 Idemitsu Kosan Co., Ltd. Heating unit
JP2000058228A (en) * 1998-08-12 2000-02-25 Suzuki Sogyo Co Ltd Thin film resistance heating element and toner heating/ fixing member using it
JP2000223303A (en) * 1999-01-28 2000-08-11 Tdk Corp Organic positive temperature coefficient thermistor
JP2001051544A (en) * 1999-08-05 2001-02-23 Arai Pump Mfg Co Ltd Fixing device, temperature control method and temperature controller for fixing device
JP2002075603A (en) * 2000-08-31 2002-03-15 Takao Kawamura Quick heat plate of heat-transmission intensified type and fixing device using the same
JP2002214951A (en) * 2001-01-19 2002-07-31 Takao Kawamura Heat generating resistor sheet for fixing and fixing device
JP2002280150A (en) * 2001-03-19 2002-09-27 Toto Ltd Planar heater
JP2002338929A (en) * 2001-05-22 2002-11-27 Toray Ind Inc Adhesive material for semiconductor device, resin-lined metal foil, and wiring board
JP2003163104A (en) * 2001-11-28 2003-06-06 Mitsubishi Electric Corp Organic ptc composition
JP2003336011A (en) * 2002-05-16 2003-11-28 Kyocera Chemical Corp Electrically conductive coating composition
JP2005026185A (en) * 2003-07-02 2005-01-27 Ist:Kk Planar heater, its manufacturing method, and image fixing device using it

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248352B2 (en) * 1981-05-15 1987-10-13 Kogyo Gijutsuin
JPH02308291A (en) * 1989-05-24 1990-12-21 Onoda Cement Co Ltd Heat fixing roll for copying machine and its manufacture
JPH0729670A (en) * 1993-07-12 1995-01-31 Mitsui Toatsu Chem Inc Sheet heating element and its manufacture
JPH10310698A (en) * 1997-05-12 1998-11-24 P I Gijutsu Kenkyusho:Kk Conductive surface heated composition
JPH1116667A (en) * 1997-06-19 1999-01-22 Canon Inc Heater, heating device and image forming device
WO1999044391A1 (en) * 1998-02-27 1999-09-02 Idemitsu Kosan Co., Ltd. Heating unit
JP2000058228A (en) * 1998-08-12 2000-02-25 Suzuki Sogyo Co Ltd Thin film resistance heating element and toner heating/ fixing member using it
JP2000223303A (en) * 1999-01-28 2000-08-11 Tdk Corp Organic positive temperature coefficient thermistor
JP2001051544A (en) * 1999-08-05 2001-02-23 Arai Pump Mfg Co Ltd Fixing device, temperature control method and temperature controller for fixing device
JP2002075603A (en) * 2000-08-31 2002-03-15 Takao Kawamura Quick heat plate of heat-transmission intensified type and fixing device using the same
JP2002214951A (en) * 2001-01-19 2002-07-31 Takao Kawamura Heat generating resistor sheet for fixing and fixing device
JP2002280150A (en) * 2001-03-19 2002-09-27 Toto Ltd Planar heater
JP2002338929A (en) * 2001-05-22 2002-11-27 Toray Ind Inc Adhesive material for semiconductor device, resin-lined metal foil, and wiring board
JP2003163104A (en) * 2001-11-28 2003-06-06 Mitsubishi Electric Corp Organic ptc composition
JP2003336011A (en) * 2002-05-16 2003-11-28 Kyocera Chemical Corp Electrically conductive coating composition
JP2005026185A (en) * 2003-07-02 2005-01-27 Ist:Kk Planar heater, its manufacturing method, and image fixing device using it

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136467A1 (en) * 2007-04-27 2008-11-13 I.S.T. Corporation Coating material, layered product, and process for producing cylindrical layered product
KR100889332B1 (en) 2007-07-06 2009-03-26 전자부품연구원 Micro Heater Having Carbon Nano Tubes
US8410676B2 (en) 2007-09-28 2013-04-02 Beijing Funate Innovation Technology Co., Ltd. Sheet-shaped heat and light source, method for making the same and method for heating object adopting the same
JP2009092785A (en) * 2007-10-05 2009-04-30 Ist Corp Heat generating fixing belt and image fixing device
US8450930B2 (en) 2007-10-10 2013-05-28 Tsinghua University Sheet-shaped heat and light source
JP2009109997A (en) * 2007-10-12 2009-05-21 Ist Corp Image fixing device
JP2009109998A (en) * 2007-10-12 2009-05-21 Ist Corp Heat generation fixing roll and image fixing device
JP2009156965A (en) * 2007-12-25 2009-07-16 Sumitomo Electric Ind Ltd Polyimide tube, process for producing the same and fixing belt
JP4680979B2 (en) * 2007-12-25 2011-05-11 住友電気工業株式会社 Polyimide tube, manufacturing method thereof, and fixing belt
US9250585B2 (en) 2007-12-25 2016-02-02 Sumitomo Electric Industries, Ltd. Polyimide tube, process for producing the same and fixing belt
WO2009081630A1 (en) * 2007-12-25 2009-07-02 Sumitomo Electric Industries, Ltd. Polyimide tube, process for producing the same and fixing belt
WO2009081986A1 (en) 2007-12-26 2009-07-02 Nano Carbon Technologies Co., Ltd. Planar heating element obtained using dispersion of fine carbon fibers in water and process for producing the planar heating element
JPWO2009081986A1 (en) * 2007-12-26 2011-05-06 保土谷化学工業株式会社 Planar heating element obtained by using fine carbon fiber aqueous dispersion and method for producing the same
JP5487502B2 (en) * 2007-12-26 2014-05-07 保土谷化学工業株式会社 Planar heating element obtained by using fine carbon fiber aqueous dispersion and method for producing the same
KR100955540B1 (en) 2008-04-16 2010-04-30 임기주 heat generation sheet and fabrication method thereof
US8175508B2 (en) 2008-04-18 2012-05-08 Sharp Kabushiki Kaisha Planar heat generating element, fixing device including the same, and image forming apparatus including the same
JP2009259714A (en) * 2008-04-18 2009-11-05 Sharp Corp Surface heat generating element, fixing device equipped with it, and image forming device
JP2010003693A (en) * 2008-06-18 2010-01-07 Qinghua Univ Line heat source
JP2010010137A (en) * 2008-06-27 2010-01-14 Qinghua Univ Line heat source
JP2010010133A (en) * 2008-06-27 2010-01-14 Qinghua Univ Linear heater
JP2010010136A (en) * 2008-06-27 2010-01-14 Qinghua Univ Linear heat source
JP2010021148A (en) * 2008-07-11 2010-01-28 Qinghua Univ Hollow heat source
JP2010021147A (en) * 2008-07-11 2010-01-28 Qinghua Univ Hollow heat source
JP2010021146A (en) * 2008-07-11 2010-01-28 Qinghua Univ Manufacturing method for linear heat source
JP2010045025A (en) * 2008-07-18 2010-02-25 Hodogaya Chem Co Ltd Exothermic body using fine carbon fiber, and manufacturing method thereof
JP2010034054A (en) * 2008-07-25 2010-02-12 Qinghua Univ Planar heat source
JP2010034061A (en) * 2008-07-25 2010-02-12 Qinghua Univ Hollow heat source
JP2010034062A (en) * 2008-07-25 2010-02-12 Qinghua Univ Hollow heater
JP2010034058A (en) * 2008-07-25 2010-02-12 Qinghua Univ Planar heat source
JP2010034056A (en) * 2008-07-25 2010-02-12 Qinghua Univ Planar heat source
JP2010034064A (en) * 2008-07-25 2010-02-12 Qinghua Univ Method of manufacturing hollow heater
JP2010034063A (en) * 2008-07-25 2010-02-12 Qinghua Univ Hollow heat source
JP2010034055A (en) * 2008-07-25 2010-02-12 Qinghua Univ Planar heat source
JP2010113165A (en) * 2008-11-06 2010-05-20 Mitsubishi Cable Ind Ltd Heating roller
JP2010136369A (en) * 2008-12-05 2010-06-17 Qinghua Univ Thermoacoustic device
JP2012516536A (en) * 2009-02-17 2012-07-19 エルジー・ハウシス・リミテッド Carbon nanotube heating sheet
US9237606B2 (en) 2009-02-17 2016-01-12 Lg Hausys, Ltd. Carbon nanotube sheet heater
KR101518735B1 (en) * 2009-02-19 2015-05-18 삼성전자주식회사 Heating adopting carbon nanotube and fusing device using the same
JP2010257971A (en) * 2009-04-20 2010-11-11 Qinghua Univ Surface heat source
JP2013077587A (en) * 2009-04-20 2013-04-25 Qinghua Univ Linear heat source
JP2010257972A (en) * 2009-04-20 2010-11-11 Qinghua Univ Surface heat source
JP2010257973A (en) * 2009-04-20 2010-11-11 Qinghua Univ Surface heat source
JP2013525943A (en) * 2010-03-19 2013-06-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Film-based heating apparatus and related methods
JP2013025120A (en) * 2011-07-22 2013-02-04 Konica Minolta Business Technologies Inc Heat-generating fixing belt
KR101613503B1 (en) 2012-03-15 2016-04-19 (주)바이오니아 Composition of Heating Paste and Preparation Method of the Same
CN103731941A (en) * 2012-10-12 2014-04-16 清华大学 Manufacturing method of heating element
WO2014073402A1 (en) * 2012-11-08 2014-05-15 保土谷化学工業株式会社 Planar heater
JP2014123036A (en) * 2012-12-21 2014-07-03 Fuji Xerox Co Ltd Planar heating element, fixing device, and image forming apparatus
JP2015011809A (en) * 2013-06-27 2015-01-19 コニカミノルタ株式会社 Planar heating element, and method for manufacturing the same
WO2015159665A1 (en) * 2014-04-16 2015-10-22 新田栄一 Carbon-covered flat heater and production method therefor
WO2017003269A1 (en) * 2015-07-02 2017-01-05 구각회 Sheet heating element and electrically conductive thin film
US11064571B2 (en) 2015-07-02 2021-07-13 Gak Hoi Goo Sheet heating element and electrically conductive thin film
JP2017195182A (en) * 2016-04-15 2017-10-26 三菱製紙株式会社 Heating sheet and heat-peelable adhesive sheet
JP2018002843A (en) * 2016-06-30 2018-01-11 三菱マテリアル株式会社 Resin film and heat radiation sheet
JP2018152192A (en) * 2017-03-10 2018-09-27 富士ゼロックス株式会社 Exothermic member, heater, fixation apparatus and imaging apparatus
JP2019046632A (en) * 2017-08-31 2019-03-22 坂口電熱株式会社 Film-like heater
JP7020665B2 (en) 2017-08-31 2022-02-16 坂口電熱株式会社 Film heater
CN109587841A (en) * 2018-12-27 2019-04-05 桂林清扬科技有限公司 A kind of electric heating film and preparation method thereof that heating efficiency is high
CN112566288A (en) * 2020-11-11 2021-03-26 刘丽荣 Far infrared heating body

Also Published As

Publication number Publication date
JP5017522B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5017522B2 (en) Planar heating element and manufacturing method thereof
JP5109168B2 (en) Heat-generating fixing belt, manufacturing method thereof, and image fixing apparatus
JP5200278B2 (en) Heat fixing belt and image fixing device
JP2009109997A (en) Image fixing device
JP2009092785A5 (en)
JP4680979B2 (en) Polyimide tube, manufacturing method thereof, and fixing belt
JP2009109998A (en) Heat generation fixing roll and image fixing device
WO2015064519A1 (en) Graphite laminate
JP2007030501A (en) Polyimide composite film and its manufacturing process
KR101437179B1 (en) Seamless Belt
JP2003246927A (en) Polyimide resin composition, polyimide film, polyimide tubular article and electrophotographic tubular article
JP2013189568A (en) Highly thermally conductive polyimide film containing graphite powder
JP5533818B2 (en) Heat generating belt for fixing device and image forming apparatus
WO2014073402A1 (en) Planar heater
JP5768725B2 (en) Endless heating element, heating belt and fixing device
KR20030026352A (en) Polyimide resin composition and polyimide product formed into film and intermediate transfer belt comprising the same
JP6045925B2 (en) Exothermic rotating body
JP6670490B2 (en) Planar resistance heating element, resistance heating seamless tubular article, and resin solution containing conductive particles
JPH09328610A (en) Tubular material made of heat-resistant resin
JP2006301196A (en) Seamless belt
US8688022B2 (en) Heat fixing belt with metal mesh electrodes, a fixing device using the belt and a method for making the belt
JP5910419B2 (en) Flexible heating element
JPWO2009150877A1 (en) Heat fixing roller and manufacturing method thereof
JP2020004659A (en) Heating element
JP6106305B1 (en) Heat fixing belt and image fixing apparatus including the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090413

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

R150 Certificate of patent or registration of utility model

Ref document number: 5017522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120702

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250