JP2007030501A - Polyimide composite film and its manufacturing process - Google Patents

Polyimide composite film and its manufacturing process Download PDF

Info

Publication number
JP2007030501A
JP2007030501A JP2006165098A JP2006165098A JP2007030501A JP 2007030501 A JP2007030501 A JP 2007030501A JP 2006165098 A JP2006165098 A JP 2006165098A JP 2006165098 A JP2006165098 A JP 2006165098A JP 2007030501 A JP2007030501 A JP 2007030501A
Authority
JP
Japan
Prior art keywords
polyimide
film
fluororesin
composite film
polyimide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006165098A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamada
弘志 山田
Tomoe Aoyama
智栄 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IST Corp Japan
Original Assignee
IST Corp Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IST Corp Japan filed Critical IST Corp Japan
Priority to JP2006165098A priority Critical patent/JP2007030501A/en
Publication of JP2007030501A publication Critical patent/JP2007030501A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly durable, low manufacturing cost polyimide composite film and its manufacturing process, by lowering the dynamic friction coefficient of at least one side of the polyimide film. <P>SOLUTION: A polyimide composite film (21) obtained by molding and heat curing a mixture containing polyimide and fluororesin particles, in which at least part of fluororesin particles (25) near the surface of the composite film (21) are precipitated on one side or both sides of the composite film (21) by melt flow thereby partially or thoroughly forming a fluororesin coating (23). The composite film (21) can be manufactured by cast molding a mixed liquid of a polyimide precursor solution and additional fluororesin particles (22) in a predetermined thickness on a metal sheet (28) or the like, and imidizing by heat; wherein the maximum temperature of imidization is set to a temperature above fusing point of the fluororesin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ポリイミド樹脂とフッ素樹脂粒子とを含む単体層のポリイミド複合フィルムに関するものである。詳しくは高い耐熱性と寸法安定性を有し、かつ、低い摩擦係数及び離型性を兼ね備えたポリイミド樹脂とフッ素樹脂を主成分とするポリイミド複合フィルム及びその製造方法に関するものである。   The present invention relates to a single layer polyimide composite film containing polyimide resin and fluororesin particles. More specifically, the present invention relates to a polyimide composite film mainly composed of a polyimide resin and a fluororesin having high heat resistance and dimensional stability and having a low friction coefficient and releasability, and a method for producing the same.

ポリイミド樹脂は耐熱性、寸法安定性、機械的特性、電気的特性など優れた特性を有し、電子・電気機器あるいは航空・宇宙産業などの幅広い分野で使用されている。特にプラスチックの中でも最高の耐熱性を有する強靭なポリイミド樹脂と、同じく耐熱性が高く化学的、電気的に優れている上に離型性を併せ持つフッ素樹脂は、さまざまな組み合せや構成で複合化され、OA機器や医療機器あるいは絶縁材料などの用途で市場が拡大している。   Polyimide resins have excellent properties such as heat resistance, dimensional stability, mechanical properties, and electrical properties, and are used in a wide range of fields such as electronic / electric equipment and aerospace / space industries. In particular, tough polyimide resins with the highest heat resistance among plastics and fluororesins that have high heat resistance, chemical and electrical properties, and release properties are combined in various combinations and configurations. The market is expanding for applications such as office automation equipment, medical equipment and insulating materials.

このようにそれぞれ優れた特性を有するポリイミド樹脂とフッ素樹脂との複合化は、ポリイミドフィルムの表面にプライマーを塗布し、プライマー層を介してフッ素樹脂ディスパージョンをコーティングし焼成して積層化する方法(特許文献1、特許文献2)、あるいはポリイミドフィルムとフッ素樹脂フィルム表面をコロナ放電処理後、両フィルムを熱的にラミネートする方法が一般的である。しかし、これら従来の製造方法は、ポリイミド前駆体の作製から完成品の積層フィルムを得るまでの製造工程が長くて煩雑であり、しかもこれらの製法で得られた積層フィルムはいずれもフィルムが丸まってカールしたり、湾曲や反りが発生したりして、取り扱いが難しいという問題が指摘されている。また、いず
れも積層体であるため、ポリイミドフィルム層とフッ素樹脂層の剥離強度が小さく、十分な耐久性が得られないという問題もある。
特開平10−138264号公報 特開2000−211081号公報
Thus, the compounding of the polyimide resin and the fluororesin each having excellent characteristics is a method in which a primer is applied to the surface of the polyimide film, the fluororesin dispersion is coated through the primer layer, and baked to be laminated ( Patent Document 1, Patent Document 2) or a method of thermally laminating both surfaces of a polyimide film and a fluororesin film after corona discharge treatment is common. However, these conventional manufacturing methods require a long and complicated manufacturing process from the production of the polyimide precursor to the production of the finished laminated film, and the laminated films obtained by these production methods all have rounded films. It has been pointed out that it is difficult to handle due to curling, bending and warping. Moreover, since both are laminated bodies, there is also a problem that the peel strength between the polyimide film layer and the fluororesin layer is small and sufficient durability cannot be obtained.
Japanese Patent Laid-Open No. 10-138264 JP 2000-211081 A

本発明は、このような事情に鑑みてなされたものであり、ポリイミドとフッ素樹脂両材料の優れた特性を併せ持ち、かつ、カールや湾曲や反りの発生がなく、さらにポリイミド層とフッ素樹脂層間で剥離しないポリイミド複合フィルムとその製造方法を提供するThe present invention has been made in view of such circumstances, has both the excellent characteristics of both polyimide and fluororesin materials, and does not cause curling, bending or warping, and further between the polyimide layer and the fluororesin layer. providing detached without polyimide composite film and its manufacturing method.

本発明のポリイミド複合フィルムは、ポリイミドとフッ素樹脂粒子とを含む混合物が成形され加熱硬化されたフィルムであって、前記フィルムの表層近傍に存在する少なくとも一部のフッ素樹脂粒子が、前記フィルムの片面または両面に溶融流動して析出し、部分的又は全面にフッ素樹脂被膜を形成していることを特徴とする。   The polyimide composite film of the present invention is a film obtained by molding and heat-curing a mixture containing polyimide and fluororesin particles, and at least some of the fluororesin particles present in the vicinity of the surface layer of the film are on one side of the film Alternatively, it is melted and flown on both surfaces and deposited, and a fluororesin film is formed partially or entirely.

本発明のポリイミド複合フィルムの製造方法は、ポリイミド前駆体溶液とフッ素樹脂粒子との混合溶液を所定の厚みにキャスティング成形し、加熱してイミド化し、フィルム成形したポリイミド複合フィルムの製造方法であって、前記イミド化の最高温度をフッ素樹脂の融点を越える温度とし、前記フィルムの表層近傍に存在する少なくとも一部のフッ素樹脂粒子を、前記フィルムの片面又は両面に溶融流動して析出させ、部分的又は全面にフッ素樹脂被膜を形成させることを特徴とする。   The method for producing a polyimide composite film of the present invention is a method for producing a polyimide composite film obtained by casting a mixed solution of a polyimide precursor solution and fluororesin particles to a predetermined thickness, heating to imidize, and forming a film. The maximum temperature of imidization is set to a temperature exceeding the melting point of the fluororesin, and at least a part of the fluororesin particles existing in the vicinity of the surface layer of the film is melt-flowed and deposited on one or both sides of the film, and partially Alternatively, a fluororesin film is formed on the entire surface.

本発明は、ポリイミド複合フィルムの表層近傍に存在する少なくとも一部のフッ素樹脂粒子が、フィルムの片面又は両面に溶融して析出し、この溶融析出したフッ素樹脂はポリイミドと一体化し、かつ、前記フィルム表面で流動した被膜を形成しているのでフィルム表面の動摩擦係数が低く、水に対する接触角が大きく、優れた離型性を有し、ポリイミドとフッ素樹脂が持つ特性を兼ね備えた複合フィルムを提供できる。   In the present invention, at least some of the fluororesin particles present in the vicinity of the surface layer of the polyimide composite film are melted and deposited on one or both surfaces of the film, and the melted and deposited fluororesin is integrated with the polyimide, and the film Since a film that flows on the surface is formed, a composite film having a low dynamic friction coefficient on the film surface, a large contact angle with water, excellent releasability, and the characteristics of polyimide and fluororesin can be provided. .

さらに、本発明の製造方法はポリイミド前駆体溶液にフッ素樹脂粒子を混合し分散した溶液を、金属ベルト表面に流延し所定の厚みにキャスティング成形し、加熱してイミド化し、前記イミド化の最高温度をフッ素樹脂の融点を越える温度とすることにより、ポリイミドフィルムの表層近傍に存在するフッ素樹脂粒子を、ポリイミドフィルムの少なくとも片面に溶融して析出させることができる。   Further, in the production method of the present invention, a solution in which fluororesin particles are mixed and dispersed in a polyimide precursor solution is cast on a metal belt surface, cast to a predetermined thickness, imidized by heating, By setting the temperature to a temperature exceeding the melting point of the fluororesin, the fluororesin particles present in the vicinity of the surface layer of the polyimide film can be melted and deposited on at least one surface of the polyimide film.

本発明のポリイミド複合フィルムは単体層であるため、ポリイミドとフッ素樹脂が剥離することがなく、またフィルムのカールや湾曲や反りが発生し難く、取扱いや加工性を著しく向上させることができる。またポリイミド前駆体溶液に混合するフッ素樹脂粉末の添加量を調整することによって、ポリイミド複合フィルムの低誘電率化を図ることができる。本発明のポリイミド複合フィルムは、耐熱性摺動材料や離型性フィルム、あるいは積層してプリント基板材料や、さらにテープ状にスリットして銅線の回りにラッピングすることにより電線の被覆材料として用いることができる。   Since the polyimide composite film of the present invention is a single layer, the polyimide and the fluororesin are not peeled off, the film is not easily curled, bent or warped, and the handling and workability can be remarkably improved. Further, the dielectric constant of the polyimide composite film can be reduced by adjusting the amount of the fluororesin powder to be mixed with the polyimide precursor solution. The polyimide composite film of the present invention is used as a heat-resistant sliding material, a release film, or a laminated printed circuit board material, and further as a coating material for electric wires by slitting into a tape shape and wrapping around a copper wire. be able to.

本発明のポリイミド複合フィルムの基本的成分は、ポリイミドとフッ素樹脂粒子である。ポリイミドとフッ素樹脂粒子との相溶性はなく、ポリイミドフィルムの片面または両面にフッ素樹脂が溶融析出し、かつ前記溶融析出面はその表面で流動した被膜を形成している。   The basic components of the polyimide composite film of the present invention are polyimide and fluororesin particles. There is no compatibility between the polyimide and the fluororesin particles, and the fluororesin is melt-deposited on one or both sides of the polyimide film, and the melt-deposited surface forms a film that flows on the surface.

そして、金属ベルトなどの表面にキャスティング成形されたフッ素樹脂粒子を含むポリイミド前駆体溶液を加熱してイミド化させる際に、イミド化の最高温度をフッ素樹脂の融点を越える温度とする。これにより、フッ素樹脂粒子がポリイミドの少なくとも片面に溶融析出し、これにより低い動摩擦係数と、高い離型性を有するポリイミド複合フィルムを得ることができる。   Then, when the polyimide precursor solution containing fluororesin particles cast on the surface of a metal belt or the like is heated to imidize, the maximum temperature of imidization is set to a temperature exceeding the melting point of the fluororesin. Thereby, the fluororesin particles melt and precipitate on at least one surface of the polyimide, whereby a polyimide composite film having a low dynamic friction coefficient and a high releasability can be obtained.

前記フッ素樹脂被膜面は、フッ素樹脂粒子に起因する粒状模様を有していることが好ましい。これはフッ素樹脂粒子がポリイミドフィルムの表面に析出し、その形状は表面が細かな泡の状態として観察される。   The fluororesin coating surface preferably has a granular pattern resulting from the fluororesin particles. This is because the fluororesin particles are deposited on the surface of the polyimide film, and the shape is observed as a state of fine bubbles on the surface.

前記フッ素樹脂粒子は、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(PETFE)から選ばれる少なくとも一つのフッ素樹脂であることが好ましい。   The fluororesin particles include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP). ) Or at least one fluororesin selected from tetrafluoroethylene-ethylene copolymer (PETFE).

ポリイミド複合フィルムの表面に析出したフッ素樹脂を熱的に流動させ、フッ素樹脂被膜を形成させるためにはPFAやFEPのような熱可塑性フッ素樹脂が好ましい。これらのフッ素樹脂は融点以上の温度で流動し、ポリイミドフィルム両面に被膜状のフッ素樹脂として形成することができる。   In order to thermally flow the fluororesin deposited on the surface of the polyimide composite film and form a fluororesin coating, a thermoplastic fluororesin such as PFA or FEP is preferable. These fluororesins flow at a temperature equal to or higher than the melting point, and can be formed as film-form fluororesins on both sides of the polyimide film.

またPTFE樹脂のように融点以上の温度に加熱しても溶融粘度が高く流動し難いフッ素樹脂を混合した場合、フィルム表面の構造はポリイミドが海状、フッ素樹脂粒子が島状で存在するいわゆる海島構造である。このような海島構造は、フッ素樹脂材料の持つ低い摩擦特性と微細な凹凸形状を有するため、摺動抵抗が低く、好ましい構造である。   In addition, when a fluororesin that has a high melt viscosity and is difficult to flow even when heated to a temperature higher than the melting point, such as PTFE resin, is mixed, the film surface structure is a so-called sea island in which polyimide is present in a sea state and fluororesin particles are present in an island shape. It is a structure. Such a sea-island structure is a preferable structure because it has low frictional characteristics and fine irregularities of a fluororesin material, and thus has low sliding resistance.

本発明で使用するポリイミドは熱硬化性樹脂であり、ポリイミド前駆体溶液とフッ素樹脂の混合溶液を所定の厚みにキャスティング成形し、乾燥及び加熱してイミド化を完結させ、ポリイミド複合フィルムの少なくとも片面にフッ素樹脂が析出したポリイミド複合フィルムを作製することができる。前記において「所定の厚み」とは、最終的に得られるポリイミドフィルムの厚さによって定まるが、前記キャスティングフィルムを乾燥及び加熱してイミド化を完結させるまでの間に収縮する分を加味して決めることができる。   The polyimide used in the present invention is a thermosetting resin, a mixed solution of a polyimide precursor solution and a fluororesin is cast to a predetermined thickness, dried and heated to complete imidization, and at least one side of the polyimide composite film A polyimide composite film having a fluororesin deposited thereon can be produced. In the above, the “predetermined thickness” is determined by the thickness of the finally obtained polyimide film, but is determined by taking into account the amount of contraction until the casting film is dried and heated to complete imidization. be able to.

本発明のポリイミド複合フィルムは、平板シート状フィルム若しくはテープ又はこれらの巻き取り体であることが好ましい。また、本発明のポリイミド複合フィルムの好ましい厚みは、10μm以上1mm以下の範囲である。   The polyimide composite film of the present invention is preferably a flat sheet film or tape or a wound body thereof. Moreover, the preferable thickness of the polyimide composite film of this invention is the range of 10 micrometers or more and 1 mm or less.

前記方法で作製したポリイミドフィルムは、加熱イミド化工程でその被膜が空気に接している面にフッ素樹脂が溶融析出し易い。すなわち、フッ素樹脂粉末はポリイミド前駆体溶液中では混合され分散した状態で存在する。しかし加熱しイミド化を進行させる過程でフッ素樹脂の融点を超える温度まで加熱処理することにより、溶融したフッ素樹脂がポリイミドフィルムの厚み方向で、空気に接している最外層に向かって移動していくことが考えられる。   In the polyimide film produced by the above method, the fluororesin is likely to melt and precipitate on the surface where the coating is in contact with air in the heating imidization step. That is, the fluororesin powder exists in a mixed and dispersed state in the polyimide precursor solution. However, by heating to a temperature exceeding the melting point of the fluororesin during the process of imidization, the molten fluororesin moves toward the outermost layer in contact with air in the thickness direction of the polyimide film. It is possible.

フッ素樹脂粒子がポリイミド複合フィルムの中で移動していく現象の詳細なメカニズムは不明であるが、本発明者らは数多くの実験と研究を継続した結果、前記のポリイミド前駆体溶液とフッ素樹脂の混合溶液をガラス板上に流延し、キャスティング成形し、乾燥及び加熱してイミド化を完結させポリイミド複合フィルムを作製する過程において、前記フィルムがガラスに密着している面にもフッ素樹脂が溶融析出することを見出し、確認実験を行った。   Although the detailed mechanism of the phenomenon in which the fluororesin particles move in the polyimide composite film is unclear, the present inventors have continued numerous experiments and studies, and as a result, the polyimide precursor solution and the fluororesin In the process of casting a mixed solution on a glass plate, casting molding, drying and heating to complete imidization and producing a polyimide composite film, the fluororesin melts on the surface where the film is in close contact with the glass. It was found that it precipitated, and a confirmation experiment was conducted.

その結果、空気層に全く接していなく、ガラスに密着しているフィルム表面にもフッ素樹脂を析出させることができることを見出した。またフィルムの両面にフッ素樹脂が析出する現象は、フッ素樹脂の種類やイミド化工程の温度の違いによって異なることを見出した。   As a result, it was found that the fluororesin can be deposited on the film surface that is not in contact with the air layer and is in close contact with the glass. Further, it has been found that the phenomenon that the fluororesin precipitates on both sides of the film varies depending on the type of fluororesin and the temperature difference in the imidization process.

すなわち、フッ素樹脂が析出する現象は、フッ素樹脂の融点とポリイミド前駆体のイミド化温度の影響を受ける。詳細な実験結果では、芳香族テトラカルボン酸二無水物としてビフェニルテトラカルボン酸二無水物(BPDA)と、芳香族ジアミンとしてパラフェニレンジアミン(PPD)を用いた剛直なポリイミドにフッ素樹脂を混合した場合、イミド化の最高温度がフッ素樹脂の融点未満では、フッ素樹脂はポリイミド複合フィルムのいずれの面にも顕著に現れないが、フッ素樹脂の融点以上まで温度を上げるとフィルムの両面にフッ素樹脂が溶融して析出し、低い摩擦抵抗を有する複合フィルムを得ることができた。   That is, the phenomenon in which the fluororesin precipitates is affected by the melting point of the fluororesin and the imidization temperature of the polyimide precursor. Detailed experimental results show that when fluoropolymer is mixed with rigid polyimide using biphenyltetracarboxylic dianhydride (BPDA) as aromatic tetracarboxylic dianhydride and paraphenylenediamine (PPD) as aromatic diamine. When the maximum temperature of imidization is below the melting point of the fluororesin, the fluororesin does not appear remarkably on either side of the polyimide composite film, but when the temperature is raised above the melting point of the fluororesin, the fluororesin melts on both sides of the film Thus, a composite film having a low frictional resistance was obtained.

また、芳香族テトラカルボン酸二無水物と芳香族ジアミンからなるポリイミド前駆体溶液をイミド化して得られるポリイミド樹脂において、フッ素樹脂を溶融析出させるための要素として熱収縮率の大きいポリイミド樹脂が適していることを見出した。すなわち、ポリイミド前駆体溶液をガラス板上にキャスティング成形し乾燥後、300℃まで加熱しイミド化を進行させその後、冷却しポリイミドフィルムをガラス板より剥がし、再び常温からフッ素樹脂の融点以上の温度、例えば400℃まで加熱した時、300℃〜400℃の温度範囲での熱収縮率が大きいポリイミドがフッ素樹脂を溶融析出させやすいことを見出した。   In addition, in a polyimide resin obtained by imidizing a polyimide precursor solution composed of an aromatic tetracarboxylic dianhydride and an aromatic diamine, a polyimide resin having a high thermal shrinkage rate is suitable as an element for melting and depositing a fluororesin. I found out. That is, the polyimide precursor solution was cast on a glass plate, dried, heated to 300 ° C. to advance imidization, then cooled, and the polyimide film was peeled off from the glass plate, again from room temperature to a temperature higher than the melting point of the fluororesin, For example, it has been found that when heated to 400 ° C., a polyimide having a high thermal shrinkage in the temperature range of 300 ° C. to 400 ° C. tends to melt and precipitate the fluororesin.

詳細なテストの結果では、芳香族テトラカルボン酸二無水物成分としてBPDAと、芳香族ジアミン成分としてPPDを用い作製したポリイミドフィルムの熱収縮率は0.9%であり、またピロメリット酸二無水物(PMDA)と4,4'−ジアミノジフェニルエーテル(ODA)から作製したポリイミドフィルムの熱収縮率は0.09%であった。両材料を比較するとBPDAとPPDから得られたポリイミド樹脂がフッ素樹脂を溶融析出させるためには適した材料である結果が得られた。すなわち本発明においてポリイミド樹脂からフッ素樹脂を溶融析出させるためには、300℃〜400℃における熱収縮率が大きいポリイミド樹脂を選定することが好ましい。   As a result of the detailed test, the thermal shrinkage of the polyimide film prepared using BPDA as the aromatic tetracarboxylic dianhydride component and PPD as the aromatic diamine component is 0.9%, and pyromellitic dianhydride The thermal contraction rate of the polyimide film prepared from the product (PMDA) and 4,4′-diaminodiphenyl ether (ODA) was 0.09%. When both materials were compared, it was found that the polyimide resin obtained from BPDA and PPD was a suitable material for melting and precipitating the fluororesin. That is, in the present invention, in order to melt and precipitate the fluororesin from the polyimide resin, it is preferable to select a polyimide resin having a large thermal shrinkage at 300 ° C. to 400 ° C.

前記熱収縮率の詳細なテスト方法を以下に説明する。熱収縮率の測定は島津製作所社製"TMA−50"を用いた。ポリイミドフィルムはポリイミド前駆体溶液をガラス板上にイミド化完結時の厚みが50μmになるよう流延し150℃の温度で40分乾燥後、200℃で40分、さらに250℃で20分、300℃で20分加熱しポリイミドフィルムを作製した。   A detailed test method for the heat shrinkage will be described below. For the measurement of the heat shrinkage rate, “TMA-50” manufactured by Shimadzu Corporation was used. The polyimide film was cast on a glass plate so that the thickness upon imidization was 50 μm, dried at 150 ° C. for 40 minutes, then at 200 ° C. for 40 minutes, further at 250 ° C. for 20 minutes, 300 A polyimide film was prepared by heating at a temperature of 20 minutes.

このフィルムを長さ10mm、幅3.5mmの短冊状に切断しその片方に2.0gの荷重をかけ"TMA−50"に装着した。熱収縮の状態は室温から400℃まで10℃/分の昇温速度で加熱し300℃から400℃における熱収縮率を算出した。   This film was cut into a strip shape having a length of 10 mm and a width of 3.5 mm, and a load of 2.0 g was applied to one of the films and the film was mounted on “TMA-50”. The state of heat shrinkage was heated from room temperature to 400 ° C. at a heating rate of 10 ° C./min, and the heat shrinkage rate from 300 ° C. to 400 ° C. was calculated.

次にPTFE(融点:327℃)よりも融点の低いFEP(融点:260℃)をポリイミド前駆体溶液に混合し実験した結果では、イミド化の最高温度が300℃でフィルム両面にフッ素樹脂(FEP)が析出し、且つ、その表面は熱流動した被膜を形成し低い摩擦抵抗を有するポリイミド複合フィルムを得ることができた。   Next, FEP (melting point: 260 ° C.) having a melting point lower than that of PTFE (melting point: 327 ° C.) was mixed with the polyimide precursor solution. As a result, the maximum temperature of imidization was 300 ° C. and fluororesin (FEP) on both sides of the film. And a polyimide composite film having a low frictional resistance by forming a thermally fluidized film on the surface.

このように本発明においてポリイミド複合フィルムの両面にフッ素樹脂を析出させるにはフッ素樹脂やポリイミド樹脂の種類、およびイミド化温度などを所定の条件に設定することによりポリイミド複合フィルムの両面にフッ素樹脂を析出させることが可能になった。   Thus, in order to deposit the fluororesin on both sides of the polyimide composite film in the present invention, the fluororesin is applied to both sides of the polyimide composite film by setting the types of the fluororesin and polyimide resin, the imidization temperature, etc. to predetermined conditions. It became possible to deposit.

本発明のポリイミド複合フィルムは単体層でもよいし、必要に応じて、多層に成形してもよい。またポリイミドやフッ素樹脂の種類、あるいはフッ素樹脂の混合量を変え、特性の異なる構成のフィルムを多層にすることもできる。   The polyimide composite film of the present invention may be a single layer or may be formed into multiple layers as necessary. Moreover, the film of the structure from which a characteristic differs can also be made into a multilayer by changing the kind of polyimide or a fluororesin, or the mixing amount of a fluororesin.

さらにフッ素樹脂を混合したポリイミド前駆体を用いキャスティング成形した後、イミド反応時の温度を制御し、ポリイミド複合フィルムの片面のみにフッ素樹脂を溶融析出させることもできる。片面にフッ素樹脂を析出させた複合フィルムは、その裏面に粘着剤を塗布したり、あるいはポリイミド複合フィルムを他の物体と接着したりする場合に、フッ素樹脂が析出していない面を有するため、粘着力や接着力を向上できるので、好ましい。   Furthermore, after casting molding using a polyimide precursor mixed with a fluororesin, the temperature during the imide reaction can be controlled to melt and deposit the fluororesin only on one side of the polyimide composite film. Because the composite film with the fluororesin deposited on one side has a surface on which the fluororesin is not deposited when the adhesive is applied to the back surface or when the polyimide composite film is adhered to another object, Since adhesive force and adhesive force can be improved, it is preferable.

また、フッ素樹脂粒子を混合したポリイミド前駆体溶液には窒化ホウ素、チタン酸カリウム、マイカ、酸化チタン、タルク、炭酸カルシウム、窒化アルミニウム、アルミナ、炭化珪素、珪素、窒化珪素、シリカ、グラファイト、カーボンファイバー、金属粉末、酸化ベリリウム、マグネシウム、炭化タングステン、酸化マグネシウム等の熱伝導性あるいは導電性フィラー等を添加できる。   In addition, polyimide precursor solution mixed with fluororesin particles includes boron nitride, potassium titanate, mica, titanium oxide, talc, calcium carbonate, aluminum nitride, alumina, silicon carbide, silicon, silicon nitride, silica, graphite, carbon fiber Thermally conductive or conductive fillers such as metal powder, beryllium oxide, magnesium, tungsten carbide, and magnesium oxide can be added.

あらかじめ導電性材料や、帯電防止剤を混合分散することによって静電気の発生を抑制できポリイミド複合フィルムに塵埃の付着や、静電気によるスパークなどの現象を抑えることができ、またフィルムやテープ状での取扱い、梱包作業などが容易にできるので、好ましい。   By mixing and dispersing conductive materials and antistatic agents in advance, the generation of static electricity can be suppressed, and the phenomenon of dust adhesion and sparking due to static electricity can be suppressed on the polyimide composite film. It is preferable because packing work can be easily performed.

また、窒化ホウ素、金属粉末、窒化アルミニウム、アルミナ、グラファイト等のフィラーを添加することによって複合フィルムの熱伝導性が改善でき離型性、摺動性、及び熱伝導性を兼ね備えるポリイミド複合フィルムとして電子写真装置の部材などに好適に用いることができる。   In addition, by adding fillers such as boron nitride, metal powder, aluminum nitride, alumina, graphite, etc., the thermal conductivity of the composite film can be improved, and as a polyimide composite film that combines mold release, slidability, and thermal conductivity, It can be suitably used for a member of a photographic apparatus.

次に本発明の実施の形態について説明する。本発明において前記フッ素樹脂はPTFE,PFA,FEP,CPTFE等のフッ素樹脂を単体で、あるいは混合して使用することができる。PTFE、PFA、FEPは耐熱性、離型性に優れ本発明で使用できる好ましい材料である。   Next, an embodiment of the present invention will be described. In the present invention, as the fluororesin, fluororesins such as PTFE, PFA, FEP, and CPTFE can be used alone or as a mixture. PTFE, PFA, and FEP are preferable materials that have excellent heat resistance and releasability and can be used in the present invention.

また前記フッ素樹脂の混合率(添加率)は、ポリイミド前駆体溶液の固形分に対して5〜50重量%に設定することが好ましい。より好ましくは10〜40重量%であり、特に好ましくは20重量%以上、40重量%以下である。最終的に得られるポリイミドフィルムを基準にしてもこの比率は変わらない。   Moreover, it is preferable to set the mixing rate (addition rate) of the said fluororesin to 5 to 50 weight% with respect to solid content of a polyimide precursor solution. More preferably, it is 10 to 40% by weight, and particularly preferably 20% by weight or more and 40% by weight or less. Even if the polyimide film finally obtained is used as a reference, this ratio does not change.

フッ素樹脂の含有量が5重量%未満であると、溶融析出するフッ素樹脂が少なく、ポリイミドフィルム表面の離型性の向上や低摩擦抵抗化の効果が少なくなる。また50重量%を超えると機械強度が低くなり、フィルム表面の平滑性も損なわれ割れが生じやすくなる。   When the content of the fluororesin is less than 5% by weight, the fluororesin that melts and deposits is small, and the effect of improving the releasability on the polyimide film surface and reducing the frictional resistance is reduced. On the other hand, if it exceeds 50% by weight, the mechanical strength is lowered, the smoothness of the film surface is impaired, and cracking is likely to occur.

また、前記フッ素樹脂は、粉末状のものがポリイミド前駆体溶液に混合しやすく好ましい形態であり、平均粒径は0.1〜100μmの範囲が好ましい。より好ましい平均粒子径は、1.0〜50μmの範囲である。このような範囲内であると粒子の凝集が少なく、均一に分散できるからである。   Moreover, the said fluororesin is a preferable form with a powdery thing being easy to mix with a polyimide precursor solution, and the average particle diameter has the preferable range of 0.1-100 micrometers. A more preferable average particle diameter is in the range of 1.0 to 50 μm. This is because within such a range, the particles are less aggregated and can be uniformly dispersed.

なお、前記平均粒径が0.1μm未満であると粒子が二次凝集しやすく、100μmを超えるとポリイミド複合フィルムにフッ素樹脂粒子に起因する凹凸が生じやすいため、好ましくない。なお、上記フッ素樹脂粉末の平均粒径の測定はレーザ回析式粒度測定装置(ASLD−2100:島津製作所社製)やレーザ回析/散乱式粒度分布測定装置(LA−920:堀場製作所社製)で測定することが出来る。   If the average particle size is less than 0.1 μm, the particles are likely to agglomerate, and if it exceeds 100 μm, unevenness due to the fluororesin particles tends to occur in the polyimide composite film. The average particle size of the fluororesin powder is measured by a laser diffraction particle size measuring device (ASLD-2100: manufactured by Shimadzu Corporation) or a laser diffraction / scattering particle size distribution measuring device (LA-920: manufactured by Horiba, Ltd.). ) Can be measured.

前記のフッ素樹脂粒子の大きさを整えるため、ポリイミド前駆体溶液とフッ素樹脂粒子との混合溶液をキャスティング成形する前に、フィルターで濾過し、フッ素樹脂粒子の粗大粒子を除去することが好ましい。   In order to adjust the size of the fluororesin particles, it is preferable to remove coarse particles of the fluororesin particles by filtering with a filter before casting the mixed solution of the polyimide precursor solution and the fluororesin particles.

また、本発明のポリイミド複合フィルムは、ポリイミドを主成分とするフィルムであり、フッ素樹脂とポリイミド前駆体溶液を混合し、金属ベルト上にキャスティング成形後、加熱イミド化したものである。前記ポリイミド前駆体溶液は、芳香族テトラカルボン酸二無水物と芳香族ジアミンとの略等モルを有機極性溶媒中で反応させて得ることができる。   Moreover, the polyimide composite film of this invention is a film which has a polyimide as a main component, mixes a fluororesin and a polyimide precursor solution, casts on a metal belt, and is heat-imidized. The polyimide precursor solution can be obtained by reacting approximately equimolar amounts of an aromatic tetracarboxylic dianhydride and an aromatic diamine in an organic polar solvent.

前記、芳香族テトラカルボン酸二無水物の代表例としては、3,3',4,4'−ベンゾフェノンテトラカルボン酸二無水物、ピロメリット酸二無水物、2,3,3',4−ビフェニルテトラカルボン酸二無水物、3,3',4,4'−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、2,2'−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、ペリレン−3,4,9,10−テトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物等があげられる。   Representative examples of the aromatic tetracarboxylic dianhydride include 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, pyromellitic dianhydride, 2,3,3 ′, 4- Biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8- Naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) propane dianhydride, perylene-3,4, Examples include 9,10-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, and the like.

また、前記芳香族ジアミンの代表例としては、4,4'−ジアミノジフェニルエーテル、p−フェニレンジアミン、m−フェニレンジアミン、1,5−ジアミノナフタレン、3,3'−ジクロロベンジジン、3,3'−ジアミノジフェニルメタン、4,4'−ジアミノジフェニルメタン、3,3'−ジメチル−4,4'−ビフェニルジアミン、4,4'−ジアミノジフェニルスルフィド−3,3'−ジアミノジフェニルスルホン、ベンジジン、3,3'−ジメチルベンジジン、4,4'−ジアミノフェニルスルホン、4,4'−ジアミノジフェニルプロパン、m−キシリレンジアミン、ヘキサメチレンジアミン、ジアミノプロピルテトラメチレン、3−メチルヘプタメチレンジアミン、等があげられる。   Representative examples of the aromatic diamine include 4,4'-diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, 1,5-diaminonaphthalene, 3,3'-dichlorobenzidine, 3,3'- Diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-biphenyldiamine, 4,4′-diaminodiphenyl sulfide-3,3′-diaminodiphenylsulfone, benzidine, 3,3 ′ -Dimethylbenzidine, 4,4'-diaminophenylsulfone, 4,4'-diaminodiphenylpropane, m-xylylenediamine, hexamethylenediamine, diaminopropyltetramethylene, 3-methylheptamethylenediamine and the like.

これら芳香族テトラカルボン酸二無水物及び芳香族ジアミンは、単独であるいは混合して使用することができる。またポリイミド前駆体溶液として完成させた後、それらの前駆体溶液を混合して使用することもできる。   These aromatic tetracarboxylic dianhydrides and aromatic diamines can be used alone or in combination. Moreover, after completing as a polyimide precursor solution, those precursor solutions can also be mixed and used.

前記芳香族テトラカルボン酸二無水物と芳香族ジアミンの組み合わせの中では、ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンの組み合わせが好ましい。この前駆体から得られたポリイミドはポリマーの構造がリジッドであり、フッ素樹脂の溶融温度領域でポリイミドフィルム表面にフッ素樹脂を析出させやすく最も好ましい材料である。   Among the combinations of the aromatic tetracarboxylic dianhydride and the aromatic diamine, a combination of biphenyltetracarboxylic dianhydride and paraphenylenediamine is preferable. The polyimide obtained from this precursor has a rigid polymer structure and is the most preferable material because it easily deposits the fluororesin on the surface of the polyimide film in the melting temperature region of the fluororesin.

前記芳香族テトラカルボン酸二無水物と芳香族ジアミンを反応させる有機極性溶媒としてはN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルホルムアミド、N,N−ジエチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミド、ピリジン、ジメチルテトラメチレンスルホン、テトラメチレンスルホン、炭酸エチレン、炭酸ピロピレン等があげられる。これらの有機極性溶媒はフェノール、キシレン、ヘキサン、トルエン等を混合することもできる。   Examples of the organic polar solvent for reacting the aromatic tetracarboxylic dianhydride and the aromatic diamine include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, Examples thereof include N, N-diethylacetamide, dimethyl sulfoxide, hexamethyl phosphortriamide, pyridine, dimethyltetramethylene sulfone, tetramethylene sulfone, ethylene carbonate, and pyropyrene carbonate. These organic polar solvents can also be mixed with phenol, xylene, hexane, toluene and the like.

ポリイミド前駆体溶液は芳香族テトラカルボン酸二無水物と、芳香族ジアミンとを有機極性溶媒中で通常は90℃以下で反応させることによって得られ、溶媒中の固形分濃度は最終のポリイミド複合フィルムの仕様や加工条件によって設定することができるが10〜30質量%である。   The polyimide precursor solution is obtained by reacting an aromatic tetracarboxylic dianhydride and an aromatic diamine in an organic polar solvent, usually at 90 ° C. or lower, and the solid content concentration in the solvent is the final polyimide composite film. Although it can be set according to the specifications and processing conditions, it is 10 to 30% by mass.

また、有機極性溶媒中で芳香族テトラカルボン酸二無水物と芳香族ジアミンとを反応させるとその重合状況によって溶液の粘度が上昇するが、使用に際しては所定の粘度に希釈して使用することができる。製造条件や作業条件によって通常1〜5000ポイズの粘度で使用される。   In addition, when an aromatic tetracarboxylic dianhydride and an aromatic diamine are reacted in an organic polar solvent, the viscosity of the solution increases depending on the polymerization state. However, when used, it may be diluted to a predetermined viscosity. it can. It is usually used at a viscosity of 1 to 5000 poise depending on manufacturing conditions and working conditions.

本発明の製造方法において、ポリイミド複合フィルムの少なくとも片面にフッ素樹脂層を析出させるためには、フッ素樹脂の融点を越える温度に加熱する必要がある。従って、イミド化の最高温度を、混合したフッ素樹脂の融点よりも10℃以上高い温度にして、イミド化を完成させることが好ましい。   In the production method of the present invention, in order to deposit the fluororesin layer on at least one surface of the polyimide composite film, it is necessary to heat to a temperature exceeding the melting point of the fluororesin. Therefore, it is preferable to complete imidization by setting the maximum temperature of imidization to a temperature that is 10 ° C. or more higher than the melting point of the mixed fluororesin.

また、前記ポリイミド複合フィルムの両面にフッ素樹脂を析出させるために必要な加熱時間は、イミド化の最高温度がフッ素樹脂の融点を越える温度に到達してから30分以内の時間であることが好ましい。30分以上の加熱時間になるとフッ素樹脂の熱分解や、ポリイミドの機械的特性が低下するおそれがあるからである。   In addition, the heating time required for precipitating the fluororesin on both surfaces of the polyimide composite film is preferably within 30 minutes after the maximum temperature of imidization reaches a temperature exceeding the melting point of the fluororesin. . This is because when the heating time is 30 minutes or longer, the thermal decomposition of the fluororesin or the mechanical properties of the polyimide may be deteriorated.

本発明のポリイミド複合フィルムは、例えば、のような方法で作製することができる。ステンレスなどの金属ベルトの表面に所定の厚みでフッ素樹脂混合ポリイミド前駆体溶液を流延し、キャスティング成形し、加熱装置に導き100〜150℃の比較的低い温度で重合溶媒を乾燥させ、その後さらに段階的に加熱してイミド化反応を進め、最終的にはフッ素樹脂の融点を越える温度で所定時間加熱してイミド化を完成させ、ポリイミド複合フィルムを得ることができる。また150〜200℃の温度で加熱処理した後、金属ベルト表面からポリイミドフィルムを分離し、フィルムの幅方向両端部をテンターなどで固定し最終のイミド化処理を行うこともできる。この製法ではイミド化加工中のポリイミドフィルムは、フッ素樹脂を析出させるための温度(フッ素樹脂の融点以上の温度)雰囲気では、フィルムが金属ベルトと接していなく加熱装置内の空気に接しているためフィルムの両面にフッ素樹脂が析出しやすく好ましい製法である。   The polyimide composite film of the present invention can be produced by, for example, the following method. A fluororesin mixed polyimide precursor solution is cast on a surface of a metal belt such as stainless steel with a predetermined thickness, cast-molded, guided to a heating device and dried at a relatively low temperature of 100 to 150 ° C., and then further The imidization reaction is advanced by heating stepwise, and finally, the imidization is completed by heating for a predetermined time at a temperature exceeding the melting point of the fluororesin, whereby a polyimide composite film can be obtained. Moreover, after heat-processing at the temperature of 150-200 degreeC, a polyimide film can be isolate | separated from the metal belt surface, the width direction both ends of a film can be fixed with a tenter etc., and a final imidation process can also be performed. In this manufacturing method, the polyimide film being imidized is not in contact with the metal belt but in contact with the air in the heating device in the atmosphere for precipitating the fluororesin (temperature above the melting point of the fluororesin). This is a preferable production method in which the fluororesin is easily deposited on both surfaces of the film.

本発明の一実施例においてポリイミド前駆体溶液にフッ素樹脂粉末を混合し、キャスト成形し、ポリイミドのイミド化温度が300℃のときのポリイミド複合フィルム10の概略拡大断面図を図1に示す。この段階まではポリイミドフィルム層11の内部のフッ素樹脂粉末12はフィルム中に分散された状態であり、表層面はほとんどポリイミド層で覆われている。この段階では水の接触角も低い。図中15は金属ベルトである。   In one embodiment of the present invention, a fluorine resin powder is mixed with a polyimide precursor solution, cast molded, and a schematic enlarged cross-sectional view of the polyimide composite film 10 when the polyimide imidization temperature is 300 ° C. is shown in FIG. Up to this stage, the fluororesin powder 12 inside the polyimide film layer 11 is dispersed in the film, and the surface layer is almost covered with the polyimide layer. At this stage, the water contact angle is also low. In the figure, reference numeral 15 denotes a metal belt.

次に、イミド化温度を400℃にすると図2に示すようにフッ素樹脂粉末は溶融し、ポリイミド表面から染み出すようにポリイミド表面層に析出する。13は空気と接している面に溶融して染み出したフッ素樹脂である。14は金属ベルトに接している面に溶融して析出したフッ素樹脂である。この状態になると水との接触角は高くなる。フッ素樹脂はポリイミドとの関係においては、非相溶で海島構造(海がポリイミド、島がフッ素樹脂)であり、かつ溶融したフッ素樹脂はポリイミド表面から部分的に析出している。   Next, when the imidization temperature is set to 400 ° C., as shown in FIG. 2, the fluororesin powder is melted and deposited on the polyimide surface layer so as to exude from the polyimide surface. Reference numeral 13 denotes a fluororesin that melts and exudes to the surface in contact with air. 14 is a fluororesin that is melted and deposited on the surface in contact with the metal belt. In this state, the contact angle with water increases. In the relationship with the polyimide, the fluororesin is incompatible and has a sea-island structure (the sea is polyimide and the island is fluororesin), and the molten fluororesin is partially deposited from the polyimide surface.

図3はポリイミド前駆体溶液に熱可塑性フッ素樹脂のFEP(融点260℃)粒子のみを単独で混合し、キャスティング成形しイミド化温度を350℃にしたときのポリイミド複合フィルムの概略拡大断面図である。ポリイミドフィルム層21の内部にFEP粉末22が分散されており、外表層面にFEPが溶融流動して析出し、部分的又は全面にフッ素樹脂被膜23を形成している。30は金属ベルト面に溶融析出したFEP粒子である。28は金属ベルトである。   FIG. 3 is a schematic enlarged cross-sectional view of a polyimide composite film when only FEP (melting point 260 ° C.) particles of a thermoplastic fluororesin are mixed alone with the polyimide precursor solution, cast molding, and the imidization temperature is set to 350 ° C. . The FEP powder 22 is dispersed inside the polyimide film layer 21, and FEP melts and flows on the outer surface layer surface to form a fluororesin coating 23 partially or entirely. Reference numeral 30 denotes FEP particles melt-deposited on the metal belt surface. 28 is a metal belt.

図4はポリイミド前駆体溶液にPTFE(融点327℃)粒子とFEP(融点260℃)粒子を50:50の割合で混合し、キャスティング成形しイミド化温度を400℃にしたときのポリイミド複合フィルムの概略拡大断面図である。ポリイミドフィルム層21の内部にFEP粉末22とPTFE粉末24が分散されており、表層面にFEPとPTFEが溶融流動して析出し、部分的又は全面にフッ素樹脂被膜(23,25、29,30)を形成している。28は金属ベルトである。   FIG. 4 shows a polyimide composite film obtained by mixing PTFE (melting point: 327 ° C.) particles and FEP (melting point: 260 ° C.) particles in a ratio of 50:50 to the polyimide precursor solution, casting, and setting the imidization temperature to 400 ° C. It is a general | schematic expanded sectional view. The FEP powder 22 and the PTFE powder 24 are dispersed inside the polyimide film layer 21, and FEP and PTFE are melt-flowed and deposited on the surface of the surface, and the fluororesin coating (23, 25, 29, 30 is partially or entirely deposited). ) Is formed. 28 is a metal belt.

本発明のポリイミド複合フィルムはカールしたり湾曲や反りの発生がほとんどなく複合フィルムの製造時、あるいは完成品をテープ状にスリットしたり、フィルムの梱包作業などにおいても取扱いや作業性の向上がはかれる。カールや湾曲の状態は完成品フィルムを200mm×300mmに切断したシートを平面状に静置した場合、切断した端部がカールして重なり合わない状態であればフィルムの取扱上支障をきたすことがなく好ましい。   The polyimide composite film of the present invention is hardly curled, bent or warped, and can be improved in handling and workability in the production of a composite film, or in slitting a finished product into a tape shape, or in film packing work. . The curled or curved state may cause trouble in handling the film if the cut end part is curled and does not overlap when the sheet obtained by cutting the finished film into 200 mm x 300 mm is left flat. Less preferred.

以下、実施例に基づき本発明を更に詳細に説明する。なお、実施例及び比較例において、ビフェニルテトラカルボン酸二無水物は「BPDA」と略記し、パラフェニレンジアミンは「PPD」と略記し、ピロメリット酸二無水物は「PMDA」と略記し、4,4'−ジアミノジフェニルエーテルは「ODA」とN−メチル−2−ピロリドンは「NMP」と略記する。   Hereinafter, the present invention will be described in more detail based on examples. In Examples and Comparative Examples, biphenyltetracarboxylic dianhydride is abbreviated as “BPDA”, paraphenylenediamine is abbreviated as “PPD”, and pyromellitic dianhydride is abbreviated as “PMDA”. , 4′-diaminodiphenyl ether is abbreviated as “ODA” and N-methyl-2-pyrrolidone is abbreviated as “NMP”.

また、本発明で得られたポリイミド複合フィルムの動摩擦係数、及び純水に対する接触角は下記の方法で測定した。   Moreover, the dynamic friction coefficient of the polyimide composite film obtained by this invention and the contact angle with respect to a pure water were measured with the following method.

(1)動摩擦係数の測定方法(図7に示す)
動摩擦係数の測定はJISK7125に準じて行った。水平なテーブル64の上に幅80mm長さ200mmの試験フィルム62を固定した。その上に前記試験フィルム62と同材質の試験フィルム61(幅63mm、長さ63mm、面積40cm2)を重ね、荷重200g(63mm×63mm、面積40cm2)の重り63を静置し重ね合わせた試験フィルム61を100mm/分の速度で水平に滑らせ、その荷重(動摩擦力)を測定し下記の式により動摩擦係数を計算した。65はワイヤ、66は滑車、67は引張試験機のロードセルでZの方向に巻き上げる。
動摩擦係数μD=FD/FP
D:動摩擦力(N)
P:すべり片の質量によって生じる方線力(=1.96N)
(2)接触角の測定
協和界面化学社製商品名"FACE CA−Z"測定器を用いて、23℃の純水に対する接触角を測定した。
(1) Measurement method of dynamic friction coefficient (shown in FIG. 7)
The dynamic friction coefficient was measured according to JISK7125. A test film 62 having a width of 80 mm and a length of 200 mm was fixed on a horizontal table 64. A test film 61 (width 63 mm, length 63 mm, area 40 cm 2 ) made of the same material as the test film 62 is stacked thereon, and a weight 63 with a load of 200 g (63 mm × 63 mm, area 40 cm 2 ) is left standing and overlapped. The test film 61 was slid horizontally at a speed of 100 mm / min, the load (dynamic friction force) was measured, and the dynamic friction coefficient was calculated by the following formula. 65 is a wire, 66 is a pulley, 67 is a load cell of a tensile tester, and is wound in the Z direction.
Coefficient of dynamic friction μ D = F D / F P
F D : Dynamic friction force (N)
F P : A linear force generated by the mass of the sliding piece (= 1.96 N)
(2) Measurement of contact angle The contact angle with respect to 23 degreeC pure water was measured using the Kyowa Interface Chemical Co., Ltd. brand name "FACE CA-Z" measuring device.

(実施例1)
(1)フッ素樹脂混合ポリイミド前駆体溶液の製造
BPDA100重量部に対してPPD39重量部をフラスコ中でNMPに溶解(モノマー濃度18.2重量%)し、23℃の温度で6時間攪拌しながら反応させてポリイミド前駆体溶液を得た。このポリイミド前駆体溶液の回転粘度は1000ポイズであった。なお、回転粘度は温度23℃においてB型粘度計で測定した値である。次に、前記ポリイミド前駆体溶液に平均粒子径3.0μmのPTFE粉末(融点327℃:デュポン社製商品名“Zonyl MP1100”をポリイミド前駆体溶液中の固形分100重量部に対して26重量部の割合になるように添加して攪拌し、さらに平均粒子径35μmのFEP粉末(融点260℃:デュポン社製商品名“532−8110”をポリイミド前駆体溶液中の固形分100重量部に対して4重量部の割合になるように添加して攪拌し、均一に分散させた。その後250メッシュのステンレス金網を用いて粗い異物を濾過し、フッ素樹脂混合ポリイミド前駆体溶液を得た。
Example 1
(1) Production of fluororesin mixed polyimide precursor solution 39 parts by weight of PPD was dissolved in NMP (monomer concentration: 18.2% by weight) in a flask with respect to 100 parts by weight of BPDA, and the reaction was conducted while stirring at a temperature of 23 ° C. for 6 hours. To obtain a polyimide precursor solution. The rotational viscosity of this polyimide precursor solution was 1000 poise. The rotational viscosity is a value measured with a B-type viscometer at a temperature of 23 ° C. Next, PTFE powder having an average particle size of 3.0 μm (melting point: 327 ° C .: trade name “Zonyl MP1100” manufactured by DuPont) is added to the polyimide precursor solution in an amount of 26 parts by weight based on 100 parts by weight of the solid content in the polyimide precursor solution. The FEP powder having an average particle size of 35 μm (melting point: 260 ° C., trade name “532-8110” manufactured by DuPont) is added to 100 parts by weight of the solid content in the polyimide precursor solution. The mixture was added to 4 parts by weight, stirred and uniformly dispersed, and then coarse foreign matter was filtered using a 250 mesh stainless steel wire mesh to obtain a fluororesin mixed polyimide precursor solution.

(2)ポリイミド複合フィルムの成形
前記フッ素樹脂混合ポリイミド前駆体溶液を(縦:500mm、横:300mm、厚み3mm)の鏡面のステンレス板上に500μmの厚みになるようキャスティング成形した。その後、120℃のオーブンに入れ60分間乾燥後、200℃の温度まで40分間で昇温させ、同温度で20分間保持し、最終イミド化処理として250℃の温度で10分間加熱した後、400℃の温度まで15分で昇温し、同温度で10分間加熱してイミド化を完了させ、室温(25℃)に冷却後、ステンレス板からポリイミド複合フィルムを取り外した。
(2) Molding of polyimide composite film The fluororesin mixed polyimide precursor solution was cast on a mirror-like stainless steel plate (length: 500 mm, width: 300 mm, thickness 3 mm) to a thickness of 500 μm. Then, after placing in an oven at 120 ° C. for 60 minutes and drying for 40 minutes to a temperature of 200 ° C., holding at that temperature for 20 minutes, and heating at 250 ° C. for 10 minutes as the final imidization treatment, 400 The temperature was raised to 15 [deg.] C. in 15 minutes, heated at the same temperature for 10 minutes to complete imidization, cooled to room temperature (25 [deg.] C.), and then the polyimide composite film was removed from the stainless steel plate.

得られた複合フィルムの厚みは55μmであり、このフィルムの両面の動摩擦係数の測定結果を表1に示す。またデジタルマイクロスコープ(キーエンス社製商品名“VHX−100”)でフィルム表面(空気に接している面)を撮影した拡大写真(1000倍)を図5に示す。外面の白く斑点状に見える部分がPTFE樹脂粒子であり、そのまわりに流動したような状態で析出している部分がFEP樹脂である。全体としてフッ素樹脂被膜面は、フッ素樹脂粒子に起因する粒状模様を有していることが確認できる。また、この複合フィルムの裏面(ステンレス板に接している面)の写真を図6に示す。黒く斑点状に見える部分はPTFE樹脂が析出ものであり、まわりの白く見える部分はFEP樹脂が溶融して流動している部分である。   The thickness of the obtained composite film was 55 μm, and Table 1 shows the measurement results of the dynamic friction coefficients on both sides of this film. FIG. 5 shows an enlarged photograph (1000 ×) of the film surface (the surface in contact with air) taken with a digital microscope (trade name “VHX-100” manufactured by Keyence Corporation). The portion of the outer surface that appears white and spotted is PTFE resin particles, and the portion that is precipitated in a state of flowing around it is FEP resin. It can be confirmed that the fluororesin coating surface as a whole has a granular pattern due to the fluororesin particles. Moreover, the photograph of the back surface (surface in contact with the stainless steel plate) of this composite film is shown in FIG. A black spot-like portion is a precipitate of PTFE resin, and a surrounding white portion is a portion where the FEP resin melts and flows.

(比較例1)
実施例1の条件でポリイミド前駆体溶液にフッ素樹脂粉末を混合しない以外は実施例1と同様の条件でポリイミド複合フィルムを作製した。この複合フィルムの両面の動摩擦係数、及び接触角の測定結果を表1に示す。
(Comparative Example 1)
A polyimide composite film was produced under the same conditions as in Example 1 except that the fluororesin powder was not mixed with the polyimide precursor solution under the conditions of Example 1. Table 1 shows the measurement results of the dynamic friction coefficient and the contact angle on both sides of this composite film.

(実施例2)
実施例1で調合したBPDA/PPDからなるポリイミド前駆体溶液にフッ素樹脂粉末として平均粒子径35μmのFEP粉末(デュポン社製商品名“532−8110”のみをポリイミド前駆体溶液中の固形分100重量部に対して30重量部の割合になるように添加し混合しフッ素樹脂混合ポリイミド前駆体溶液を用意した。
(Example 2)
FEP powder having an average particle diameter of 35 μm as a fluororesin powder (trade name “532-8110” manufactured by DuPont) was added to the polyimide precursor solution composed of BPDA / PPD prepared in Example 1 as a solid content in the polyimide precursor solution. It added and mixed so that it might become a ratio of 30 weight part with respect to a part, and prepared the fluororesin mixed polyimide precursor solution.

その後実施例1と同様にステンレス板上にポリイミド前駆体溶液をキャスト成形し、乾燥および中間処理を実施し、最終イミド化処理として250℃の温度で10分加熱した後、300℃の温度まで5分で昇温させ350℃の温度で15分間加熱し、ポリイミド複合フィルムを得た。このポリイミド複合フィルムの動摩擦係数、及び接触角の測定結果を表1に示す。   Thereafter, the polyimide precursor solution was cast on a stainless steel plate in the same manner as in Example 1, dried and subjected to intermediate treatment, heated as a final imidization treatment at a temperature of 250 ° C. for 10 minutes, and then heated to a temperature of 300 ° C. for 5 minutes. The temperature was raised in minutes and heated at a temperature of 350 ° C. for 15 minutes to obtain a polyimide composite film. Table 1 shows the measurement results of the dynamic friction coefficient and the contact angle of this polyimide composite film.

(実施例3)
実施例1で調合したBPDA/PPDからなるポリイミド前駆体溶液にフッ素樹脂粉末として平均粒子径28μmのPFA樹脂粉末(三井デュポンフロロケミカル社製商品名“PFA MP102”)のみをポリイミド前駆体溶液中の固形分100重量部に対して32重量部の割合になるように添加し混合しフッ素樹脂混合ポリイミド前駆体溶液を用意した。
(Example 3)
In the polyimide precursor solution, only the PFA resin powder (trade name “PFA MP102” manufactured by Mitsui Dupont Fluoro Chemical Co., Ltd.) having an average particle size of 28 μm as the fluororesin powder was added to the polyimide precursor solution composed of BPDA / PPD prepared in Example 1. It added and mixed so that it might become a ratio of 32 weight part with respect to 100 weight part of solid content, and prepared the fluororesin mixed polyimide precursor solution.

その後実施例1と同様にステンレス板上に前記弗素樹脂混合ポリイミド前駆体溶液をキャスティング成形し、実施例1と同様の条件でイミド化の最高温度を400℃で処理してポリイミド複合フィルムを得た。このフィルムの動摩擦係数、および接触角の測定結果を表1に示す。   Thereafter, the fluororesin mixed polyimide precursor solution was cast on a stainless steel plate in the same manner as in Example 1 and treated at 400 ° C. under the same conditions as in Example 1 to obtain a polyimide composite film. . Table 1 shows the measurement results of the dynamic friction coefficient and the contact angle of this film.

(実施例4)
PMDA100重量部に対してODA75重量部をフラスコ中でNMPに溶解(モノマー濃度18.0重量%)し、23℃の温度で6時間攪拌しながら反応させてポリイミド前駆体溶液を得た。このポリイミド前駆体溶液の回転粘度は800ポイズであった。回転粘度は温度23℃においてB型粘度計で測定した値である。次に平均粒子径35μmのFEP粉末(融点260℃、デュポン社製商品名“532−8110”のみをポリイミド前駆体溶液中の固形分100重量部に対して35重量部の割合になるように添加し混合しフッ素樹脂混合ポリイミド前駆体溶液を用意した。
Example 4
75 parts by weight of ODA was dissolved in NMP in a flask (monomer concentration: 18.0% by weight) with respect to 100 parts by weight of PMDA, and reacted with stirring at a temperature of 23 ° C. for 6 hours to obtain a polyimide precursor solution. The rotational viscosity of this polyimide precursor solution was 800 poise. The rotational viscosity is a value measured with a B-type viscometer at a temperature of 23 ° C. Next, FEP powder having an average particle diameter of 35 μm (melting point: 260 ° C., only DuPont product name “532-8110” was added to a ratio of 35 parts by weight with respect to 100 parts by weight of the solid content in the polyimide precursor solution. Then, a fluororesin mixed polyimide precursor solution was prepared.

その後、実施例1と同様にステンレス板上にポリイミド前駆体溶液をキャスティング成形した。その後120℃のオーブンで60分間乾燥し、200℃まで15分間で昇温し、同温度で20分間加熱し、最終イミド化処理として250℃の温度で10分加熱した後、380℃の温度まで10分で昇温させ380℃の温度で15分間加熱し、ポリイミド複合フィルムを得た。このフィルムの動摩擦係数、および接触角の測定結果を表1に示す。   Thereafter, a polyimide precursor solution was cast on a stainless steel plate in the same manner as in Example 1. Then, it is dried in an oven at 120 ° C. for 60 minutes, heated to 200 ° C. over 15 minutes, heated at the same temperature for 20 minutes, and heated as a final imidization treatment at a temperature of 250 ° C. for 10 minutes, and then to a temperature of 380 ° C. The temperature was raised in 10 minutes and heated at a temperature of 380 ° C. for 15 minutes to obtain a polyimide composite film. Table 1 shows the measurement results of the dynamic friction coefficient and the contact angle of this film.

(比較例2)
実施例1の条件で最終のイミド化温度を250℃に変更した以外は実施例1と同様の条件でポリイミド複合フィルムを得た。このフィルムの動摩擦係数、および接触角の測定結果を表1に示す。
(Comparative Example 2)
A polyimide composite film was obtained under the same conditions as in Example 1 except that the final imidization temperature was changed to 250 ° C. under the conditions of Example 1. Table 1 shows the measurement results of the dynamic friction coefficient and the contact angle of this film.

(実施例5)
実施例1で重合したBPDA/PPDよりなるポリイミド前駆体溶液に平均粒子径3.0μmのPTFE粉末(融点327℃:デュポン社製商品名“Zonyl MP1100”をポリイミド前駆体溶液中の固形分100重量部に対して30重量部の割合になるように添加して攪拌し均一に分散させた。その後250メッシュのステンレス金網を用いて粗い異物を濾過し、PTFE粉末混合ポリイミド前駆体溶液を用意した。
(Example 5)
PTFE powder having an average particle size of 3.0 μm (melting point: 327 ° C., trade name “Zonyl MP1100” manufactured by DuPont) with a solid content in the polyimide precursor solution of 100 wt.% Was added to the polyimide precursor solution composed of BPDA / PPD polymerized in Example 1. The mixture was added to a part of 30 parts by weight and stirred to disperse uniformly, after which coarse foreign matters were filtered using a 250 mesh stainless steel wire mesh to prepare a PTFE powder mixed polyimide precursor solution.

その後前記PTFE粉末混合ポリイミド前駆体溶液にさらに、酸性カーボンブラック(三菱化学(株)製、商品名「MA78」、DBP吸収量:70cm3、比表面積100m2/g当りの揮発分:2.6重量%)をポリイミド樹脂100重量部に対して17重量部、添加しポリイミド前駆体溶液中に、PTFE粉末,及びカーボンブラックの3成分を混合分散させたポリイミド前駆体溶液を作製した。 Thereafter, acidic carbon black (trade name “MA78”, manufactured by Mitsubishi Chemical Corporation), DBP absorption: 70 cm 3 , volatile content per specific surface area of 100 m 2 / g: 2.6 was added to the PTFE powder mixed polyimide precursor solution. % By weight) was added in an amount of 17 parts by weight with respect to 100 parts by weight of the polyimide resin, and a polyimide precursor solution was prepared by mixing and dispersing three components of PTFE powder and carbon black in the polyimide precursor solution.

その後、前記PTFE粉末、カーボンブラック混合ポリイミド前駆体溶液をステンレス板上に400μmの厚みでキャスティング成形した。その後オーブンに入れ120℃で60分間乾燥後、200℃の温度まで40分間で昇温させ同温度で20分間保持した。次いで300℃まで20分間で昇温させ30分間保持し、さらに350℃まで15分間で昇温し、同温度で20分間加熱しイミド化を完了させた後、オーブンから取出し冷却してPTFE粉末、カーボンブラックが混合されたポリイミド複合フィルムを得た。   Thereafter, the PTFE powder and the carbon black mixed polyimide precursor solution were cast on a stainless steel plate to a thickness of 400 μm. Thereafter, it was put in an oven, dried at 120 ° C. for 60 minutes, heated to 200 ° C. over 40 minutes, and held at that temperature for 20 minutes. Next, the temperature was raised to 300 ° C. for 20 minutes and held for 30 minutes, further raised to 350 ° C. for 15 minutes, heated at the same temperature for 20 minutes to complete imidization, then taken out of the oven and cooled to cool PTFE powder, A polyimide composite film mixed with carbon black was obtained.

このポリイミド複合フィルムの厚みは39μmであり、印加電圧500vにおける体積抵抗率は1.1×108Ωcmであった。また前駆体溶液に混合した前記PTFE樹脂は複合フィルムの両面に溶融析出していたが、動摩擦係数のデータではステンレス板面に接触している面よりも外面(空気に接している面)に多く析出している結果が得られた。このポリイミド複合フィルムの動摩擦係数、及び接触角の測定結果を表1に示す。このポリイミド複合フィルムは静電気の発生が少なくフィルムの取扱いが容易であった。なお体積抵抗率は、JIS C2151の方法に従って、アドバンテスト社製のデジタル超高抵抗/微少電流計R8340/R8340Aを使用し、印加時間30秒で測定した。 The thickness of this polyimide composite film was 39 μm, and the volume resistivity at an applied voltage of 500 v was 1.1 × 10 8 Ωcm. The PTFE resin mixed with the precursor solution was melted and precipitated on both sides of the composite film, but the dynamic friction coefficient data showed more on the outer surface (surface in contact with air) than on the surface in contact with the stainless steel plate surface. Precipitation results were obtained. Table 1 shows the measurement results of the dynamic friction coefficient and the contact angle of this polyimide composite film. This polyimide composite film generated less static electricity and was easy to handle. The volume resistivity was measured in accordance with the method of JIS C2151, using a digital ultrahigh resistance / microammeter R8340 / R8340A manufactured by Advantest Co., with an application time of 30 seconds.

(比較例3)
厚み20μmで幅200mmのポリイミドフィルム(ユーピレックス宇部興産(株)製)を用意し、プライマー(デュポン社製商品名“855−300”)を厚み6μmにコーティングし150℃の温度で約10分間乾燥した後、プライマー層の表面にフッ素樹脂ディスパージョン(デュポン社製商品名“855−510”)を焼成後の厚みが10μmになるようにロールコーターでコーティングし、370℃で焼成しポリイミドフィルムの片面にフッ素樹脂をコーティングした積層フィルムを20mの長さで作製した。このフィルムの動摩擦係数、及び接触角の測定結果を表1に示す。この積層フィルムを200mm×300mm切断したところ前記フィルムはフッ素樹脂コーティング面を内側にして直径10mmくらいの円筒状に丸まり、取扱いが難しく該積層フィルムの二次加工に支障をきたした。
(Comparative Example 3)
A polyimide film having a thickness of 20 μm and a width of 200 mm (manufactured by Upilex Ube Industries, Ltd.) was prepared, a primer (trade name “855-300” manufactured by DuPont) was coated to a thickness of 6 μm, and dried at a temperature of 150 ° C. for about 10 minutes. Then, a fluororesin dispersion (DuPont product name “855-510”) is coated on the surface of the primer layer with a roll coater so that the thickness after firing becomes 10 μm, and fired at 370 ° C. on one side of the polyimide film. A laminated film coated with a fluororesin was produced with a length of 20 m. Table 1 shows the measurement results of the dynamic friction coefficient and the contact angle of this film. When this laminated film was cut to 200 mm × 300 mm, the film was rounded into a cylindrical shape having a diameter of about 10 mm with the fluororesin coating surface inside, and it was difficult to handle and hindered the secondary processing of the laminated film.

Figure 2007030501
Figure 2007030501

表1から明らかなとおり、本発明のポリイミド複合フィルムは動摩擦係数が低く、接触角の高い複合フィルムが得られた。また、電子顕微鏡写真による観察結果からポリイミド複合フィルムの表面にフッ素樹脂が析出していることが確認できた。これらのポリイミド複合フィルムはカールや湾曲や反りがほとんど無く、取り扱いも容易でありポリイミド樹脂の耐熱性とフッ素樹脂の離型性を兼ね備えたポリイミド複合フィルムを得ることができた。   As is apparent from Table 1, the polyimide composite film of the present invention had a low coefficient of dynamic friction and a composite film with a high contact angle. Moreover, it has confirmed that the fluororesin had precipitated on the surface of the polyimide composite film from the observation result by an electron micrograph. These polyimide composite films had almost no curling, bending or warping, were easy to handle, and were able to obtain a polyimide composite film having both the heat resistance of the polyimide resin and the release property of the fluororesin.

[産業上の利用分野]
本発明のポリイミド複合フィルムは、テープ状やシート状でOA機器定着装置の耐熱性と離型性、低摺動性を必要とする部材、あるいはフッ素樹脂が溶融析出していない面に粘着剤処理した粘着性テープ、剥離フィルム、保護フィルム、電線被覆テープ、本発明のポリイミド複合フィルムを多層に積層しプリント基板材料などに適用できる。
[Industrial application fields]
The polyimide composite film of the present invention is a tape-like or sheet-like member that requires heat resistance, releasability, and low slidability of the OA apparatus fixing device, or a surface on which the fluororesin is not melted and deposited. The adhesive tape, release film, protective film, electric wire coating tape, and polyimide composite film of the present invention can be laminated in multiple layers and applied to printed circuit board materials.

本発明の一実施例におけるイミド化完結前の複合フィルムの概略断面図。The schematic sectional drawing of the composite film before the imidation completion in one Example of this invention. 本発明の一実施例におけるイミド化完結後の複合フィルムの概略断面図。The schematic sectional drawing of the composite film after the imidation completion in one Example of this invention. 本発明の一実施例におけるFEP添加の場合の被膜形成を示す概略断面図。The schematic sectional drawing which shows film formation in the case of FEP addition in one Example of this invention. 本発明の一実施例におけるFEPとPTFE混合添加の場合の被膜形成を示す概略断面図。The schematic sectional drawing which shows the film formation in the case of FEP and PTFE mixing addition in one Example of this invention. 本発明の実施例1における複合フィルムの外表面(空気に接している面)の顕微鏡写真。The microscope picture of the outer surface (surface which is in contact with air) of the composite film in Example 1 of this invention. 本発明の実施例1における複合フィルムの内表面(金属ベルトに接している面)の顕微鏡写真。The microscope picture of the inner surface (surface which is in contact with the metal belt) of the composite film in Example 1 of this invention. 本発明の一実施例で用いた動摩擦係数の測定装置を示す概略断面図。The schematic sectional drawing which shows the measuring apparatus of the dynamic friction coefficient used in one Example of this invention.

符号の説明Explanation of symbols

10 ポリイミド複合フィルム
11,21 ポリイミドフィルム層
12,24 PTFE樹脂粒子
13,25 空気層表面側に溶融析出したPTFE樹脂
14,29 金属ベルト接触面側に溶融析出したPTFE樹脂
22 FEP樹脂粒子
23 空気層表面に溶融析出したFEP樹脂
28 金属ベルト
30 金属ベルト面接触面側に溶融析出したFEP樹脂
10 Polyimide composite films 11, 21 Polyimide film layers 12, 24 PTFE resin particles 13, 25 PTFE resin 14, 29 melt-deposited on the air layer surface side PTFE resin 22 FEP resin particles 23, melt-deposited on the metal belt contact surface side Air layer FEP resin melt-deposited on the surface 28 Metal belt 30 FEP resin melt-deposited on the metal belt surface contact surface side

Claims (9)

ポリイミドとフッ素樹脂粒子とを含む混合物が成形され加熱硬化されたフィルムであって、前記フィルムの表層近傍に存在する少なくとも一部のフッ素樹脂粒子が、前記フィルムの片面又は両面に溶融流動して析出し、部分的に又は全面にフッ素樹脂被膜を形成していることを特徴とするポリイミド複合フィルム。   A film in which a mixture containing polyimide and fluororesin particles is molded and heat-cured, and at least some of the fluororesin particles present in the vicinity of the surface layer of the film melt and flow on one or both surfaces of the film and precipitate And a polyimide composite film in which a fluororesin film is formed partially or entirely. 前記フィルムの少なくとも片面における純水に対する接触角が90°以上である請求項1に記載のポリイミド複合フィルム。 Polyimide composite film according to Motomeko 1 contact angle Ru der least 90 ° with respect to pure water in at least one surface of the film. 前記フィルムにおけるフッ素樹脂粒子の含有率が、5〜50重量%である請求項1又は2に記載のポリイミド複合フィルム。   The polyimide composite film according to claim 1 or 2, wherein the content of the fluororesin particles in the film is 5 to 50% by weight. 前記フッ素樹脂粒子が、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(PETFE)から選ばれる少なくとも一つのフッ素樹脂である請求項1〜3のいずれかに記載のポリイミド複合フィルム。   The fluororesin particles are polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP). 4) The polyimide composite film according to any one of claims 1 to 3, which is at least one fluororesin selected from tetrafluoroethylene-ethylene copolymer (PETFE). 前記フッ素樹脂粒子の平均粒子径が、0.1〜100μmである請求項1〜4のいずれかに記載のポリイミド複合フィルム。   The polyimide composite film according to any one of claims 1 to 4, wherein the fluororesin particles have an average particle diameter of 0.1 to 100 µm. 前記ポリイミドが、少なくとも1種の芳香族テトラカルボン酸二無水物と、少なくとも1種の芳香族ジアミンからなるポリイミド前駆体溶液を加熱イミド化したポリイミドである請求項1〜5のいずれかに記載のポリイミド複合フィルム。   6. The polyimide according to claim 1, wherein the polyimide is a polyimide obtained by heating and imidizing a polyimide precursor solution comprising at least one aromatic tetracarboxylic dianhydride and at least one aromatic diamine. Polyimide composite film. 前記ポリイミド複合フィルムは、平板シート状フィルム若しくはテープ又はこれらの巻き取り体である請求項1〜6のいずれかに記載のポリイミド複合フィルム。   The polyimide composite film according to any one of claims 1 to 6, wherein the polyimide composite film is a flat sheet film, a tape, or a wound body thereof. ポリイミド前駆体溶液とフッ素樹脂粒子との混合溶液を所定の厚みにキャスティング成形し、加熱してイミド化し、フィルム成形したポリイミド複合フィルムの製造方法であって、
前記イミド化の最高温度をフッ素樹脂の融点を越える温度とし、前記フィルムの表層近傍に存在する少なくとも一部のフッ素樹脂粒子を、前記フィルムの片面または両面に溶融流動して析出させ、部分的又は全面にフッ素樹脂被膜を形成させることを特徴とするポリイミド複合フィルムの製造方法。
Casting a mixed solution of a polyimide precursor solution and fluororesin particles to a predetermined thickness, heating to imidize, and a method for producing a polyimide composite film formed into a film,
The maximum temperature of the imidization is set to a temperature exceeding the melting point of the fluororesin, and at least a part of the fluororesin particles existing in the vicinity of the surface layer of the film is melt-flowed and deposited on one or both surfaces of the film, and partially or A method for producing a polyimide composite film, comprising forming a fluororesin film over the entire surface.
前記ポリイミドが、ビフェニルテトラカルボン酸二無水物(BPDA)と、パラフェニレンジアミン(PPD)からなるポリイミド前駆体溶液を加熱イミド化したポリイミドである請求項8に記載のポリイミド複合フィルムの製造方法。   The method for producing a polyimide composite film according to claim 8, wherein the polyimide is a polyimide obtained by heating and imidizing a polyimide precursor solution composed of biphenyltetracarboxylic dianhydride (BPDA) and paraphenylenediamine (PPD).
JP2006165098A 2005-06-21 2006-06-14 Polyimide composite film and its manufacturing process Pending JP2007030501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006165098A JP2007030501A (en) 2005-06-21 2006-06-14 Polyimide composite film and its manufacturing process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005180708 2005-06-21
JP2006165098A JP2007030501A (en) 2005-06-21 2006-06-14 Polyimide composite film and its manufacturing process

Publications (1)

Publication Number Publication Date
JP2007030501A true JP2007030501A (en) 2007-02-08

Family

ID=37790321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006165098A Pending JP2007030501A (en) 2005-06-21 2006-06-14 Polyimide composite film and its manufacturing process

Country Status (1)

Country Link
JP (1) JP2007030501A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244190A (en) * 2007-03-28 2008-10-09 Tomoegawa Paper Co Ltd Electrostatic chuck device
WO2014192733A1 (en) * 2013-05-31 2014-12-04 株式会社カネカ Insulated coating material and use of same
KR101503332B1 (en) 2013-12-18 2015-03-18 에스케이씨코오롱피아이 주식회사 Polyimide film and preparation method thereof
JP2017145520A (en) * 2016-02-16 2017-08-24 平岡織染株式会社 High-temperature heat resistant sheet
KR20170134610A (en) 2015-04-01 2017-12-06 미쓰비시 엔피쯔 가부시키가이샤 Based resin-containing polyimide precursor solution composition, polyimide, polyimide film, adhesive composition for circuit board, and method for manufacturing the same
US10112368B2 (en) 2014-09-30 2018-10-30 Shengyi Technology Co., Ltd. Flexible metal laminate and preparation method of the same
JP2018192788A (en) * 2017-05-18 2018-12-06 キヤノン株式会社 Film arranged at slide part such as shutter for camera
CN109485892A (en) * 2018-12-17 2019-03-19 万达集团股份有限公司 A kind of preparation method and black polyamide thin film of black polyamide thin film
KR20190081508A (en) * 2017-12-29 2019-07-09 에스케이씨코오롱피아이 주식회사 Black Polyimide Film Comprising Fluorine Resin and Method for Preparing The Same
US10665362B2 (en) 2014-11-27 2020-05-26 Kaneka Corporation Insulating coating material having excellent wear resistance
US10703860B2 (en) 2014-11-27 2020-07-07 Kaneka Corporation Insulating coating material having excellent wear resistance
KR102166032B1 (en) * 2020-06-17 2020-10-15 에스케이이노베이션 주식회사 Polyimide film and flexible display panel including the same
CN113035470A (en) * 2021-03-16 2021-06-25 东华大学 Polyimide composite membrane and preparation method and application thereof
CN113773745A (en) * 2021-08-31 2021-12-10 上海源祁精密机械有限公司 Wear-resistant coating for foil air dynamic pressure bearing and preparation method thereof
US11661481B2 (en) 2020-07-30 2023-05-30 Sk Innovation Co., Ltd. Polyimide film and flexible display panel including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142572A (en) * 2003-11-05 2005-06-02 E I Du Pont De Nemours & Co Polyimide-based composition derived partially from (micro powdered) fluoropolymer and useful as electronic substrate, and related method and composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142572A (en) * 2003-11-05 2005-06-02 E I Du Pont De Nemours & Co Polyimide-based composition derived partially from (micro powdered) fluoropolymer and useful as electronic substrate, and related method and composition

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244190A (en) * 2007-03-28 2008-10-09 Tomoegawa Paper Co Ltd Electrostatic chuck device
WO2014192733A1 (en) * 2013-05-31 2014-12-04 株式会社カネカ Insulated coating material and use of same
JPWO2014192733A1 (en) * 2013-05-31 2017-02-23 株式会社カネカ Insulation coating material and use thereof
US10487239B2 (en) 2013-05-31 2019-11-26 Kaneka Corporation Insulating coating material and use of same
KR101503332B1 (en) 2013-12-18 2015-03-18 에스케이씨코오롱피아이 주식회사 Polyimide film and preparation method thereof
WO2015093749A1 (en) * 2013-12-18 2015-06-25 에스케이씨코오롱피아이 주식회사 Polyimide film and manufacturing method therefor
CN106062049A (en) * 2013-12-18 2016-10-26 韩国爱思开希可隆Pi股份有限公司 Polyimide film and manufacturing method therefor
TWI661004B (en) * 2013-12-18 2019-06-01 南韓商韓國愛思開希可隆Pi股份有限公司 Polyimide film and preparation method thereof
US10112368B2 (en) 2014-09-30 2018-10-30 Shengyi Technology Co., Ltd. Flexible metal laminate and preparation method of the same
US10665362B2 (en) 2014-11-27 2020-05-26 Kaneka Corporation Insulating coating material having excellent wear resistance
US10703860B2 (en) 2014-11-27 2020-07-07 Kaneka Corporation Insulating coating material having excellent wear resistance
KR20170134610A (en) 2015-04-01 2017-12-06 미쓰비시 엔피쯔 가부시키가이샤 Based resin-containing polyimide precursor solution composition, polyimide, polyimide film, adhesive composition for circuit board, and method for manufacturing the same
JP2017145520A (en) * 2016-02-16 2017-08-24 平岡織染株式会社 High-temperature heat resistant sheet
JP7059088B2 (en) 2017-05-18 2022-04-25 キヤノン株式会社 How to manufacture membranes, focal plane shutters, cameras, and membranes
JP2018192788A (en) * 2017-05-18 2018-12-06 キヤノン株式会社 Film arranged at slide part such as shutter for camera
KR20190081508A (en) * 2017-12-29 2019-07-09 에스케이씨코오롱피아이 주식회사 Black Polyimide Film Comprising Fluorine Resin and Method for Preparing The Same
KR102081090B1 (en) 2017-12-29 2020-02-25 에스케이씨코오롱피아이 주식회사 Black Polyimide Film Comprising Fluorine Resin and Method for Preparing The Same
CN109485892A (en) * 2018-12-17 2019-03-19 万达集团股份有限公司 A kind of preparation method and black polyamide thin film of black polyamide thin film
KR102166032B1 (en) * 2020-06-17 2020-10-15 에스케이이노베이션 주식회사 Polyimide film and flexible display panel including the same
US11655338B2 (en) 2020-06-17 2023-05-23 Sk Innovation Co., Ltd. Polyimide film and flexible display panel including the same
US11661481B2 (en) 2020-07-30 2023-05-30 Sk Innovation Co., Ltd. Polyimide film and flexible display panel including the same
CN113035470A (en) * 2021-03-16 2021-06-25 东华大学 Polyimide composite membrane and preparation method and application thereof
CN113035470B (en) * 2021-03-16 2022-03-15 东华大学 Polyimide composite membrane and preparation method and application thereof
CN113773745A (en) * 2021-08-31 2021-12-10 上海源祁精密机械有限公司 Wear-resistant coating for foil air dynamic pressure bearing and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2007030501A (en) Polyimide composite film and its manufacturing process
JP6517146B2 (en) Graphite laminate
JP4930724B2 (en) Copper-clad laminate
JP6590568B2 (en) Insulating film, method for producing insulating film, and method for producing metal-clad laminate
JP5200278B2 (en) Heat fixing belt and image fixing device
KR20070104898A (en) Tubing and process for production thereof
JP2007109640A (en) Planar heating element and manufacturing method of the same
JP6515180B2 (en) Multilayer adhesive film and flexible metal-clad laminate
JP2006169533A (en) Heat conductive polyimide film composite material having large mechanical strength and useful as heat conductive part of electronic device
CN113227232B (en) Powder dispersion, laminate, and printed board
JP6907378B2 (en) Insulation coating material with excellent wear resistance
JP2011080002A (en) Insulative polyimide film, coverlay film, and flexible printed wiring board
JP7093608B2 (en) Fluorine-based resin-containing polyimide precursor solution composition, polyimide using the same, polyimide film, and a method for producing them.
JP2006256323A (en) Tubular object and its manufacturing process
WO2021095662A1 (en) Nonaqueous dispersions, method for producing layered product, and molded object
JP2021091858A (en) Liquid composition and method for producing laminate
US10703860B2 (en) Insulating coating material having excellent wear resistance
JP5961511B2 (en) Black polyimide film
JP2005126707A (en) Polyimide film improved in slipperiness and substrate obtained by using the same
WO2020241607A1 (en) Liquid composition
JP2006301196A (en) Seamless belt
JP2005264047A (en) Sheet-like film and method for manufacturing the same
JP2023149143A (en) Laminate, and production method thereof
JP2001159851A (en) Multilayer endless belt
JP2004004393A (en) Seamless belt and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025