JP5109168B2 - Heat-generating fixing belt, manufacturing method thereof, and image fixing apparatus - Google Patents

Heat-generating fixing belt, manufacturing method thereof, and image fixing apparatus Download PDF

Info

Publication number
JP5109168B2
JP5109168B2 JP2007059110A JP2007059110A JP5109168B2 JP 5109168 B2 JP5109168 B2 JP 5109168B2 JP 2007059110 A JP2007059110 A JP 2007059110A JP 2007059110 A JP2007059110 A JP 2007059110A JP 5109168 B2 JP5109168 B2 JP 5109168B2
Authority
JP
Japan
Prior art keywords
heat
layer
fixing belt
insulating layer
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007059110A
Other languages
Japanese (ja)
Other versions
JP2007272223A (en
Inventor
信幸 濱
泰昭 武田
幸司 森内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I.S.T. CORPORATION
Original Assignee
I.S.T. CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I.S.T. CORPORATION filed Critical I.S.T. CORPORATION
Priority to JP2007059110A priority Critical patent/JP5109168B2/en
Publication of JP2007272223A publication Critical patent/JP2007272223A/en
Application granted granted Critical
Publication of JP5109168B2 publication Critical patent/JP5109168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Description

本発明は、複写機、レーザービームプリンター等の画像形成装置の画像定着装置並びにその画像定着装置に組み込まれている定着ベルト及びその製造方法に関し、詳しくは内周側に形成される発熱層に給電されると発熱して未定着トナー像を定着させることができる発熱定着ベルト及びその製造方法並びにその発熱定着ベルトを利用した画像定着装置に関する。   The present invention relates to an image fixing device of an image forming apparatus such as a copying machine or a laser beam printer, a fixing belt incorporated in the image fixing device, and a method of manufacturing the same. In particular, the present invention relates to a heat fixing belt capable of generating heat and fixing an unfixed toner image, a manufacturing method thereof, and an image fixing apparatus using the heat fixing belt.

従来、複写機やレーザービームプリンター等の画像形成装置では、画像成形部において複写紙やOHP等のシート状転写材上に形成された未定着トナー像を熱定着する方法として熱ローラ方式が多く用いられてきた。しかし、省エネルギーなどの観点から近年は、図9に示されるフィルム定着方式が主流になってきている。   Conventionally, in an image forming apparatus such as a copying machine or a laser beam printer, a heat roller method is often used as a method for thermally fixing an unfixed toner image formed on a sheet-like transfer material such as copy paper or OHP in an image forming unit. Has been. However, in recent years, the film fixing method shown in FIG. 9 has become mainstream from the viewpoint of energy saving.

このフィルム定着方式の画像形成装置40では、ポリイミド等の耐熱性フィルムの外面にフッ素樹脂等の離型性層が積層されたシームレスの定着ベルトが用いられている。その一例を図9に基づき説明する。   In the film fixing type image forming apparatus 40, a seamless fixing belt is used in which a release layer such as a fluororesin is laminated on the outer surface of a heat resistant film such as polyimide. One example will be described with reference to FIG.

フィルム定着方式の画像形成装置40では、定着ベルト31の内側にベルトガイド32及びセラミックヒーター33が配置されており、定着ベルト31を介してセラミックヒーター33に圧接される加圧ロール34との間に、未定着トナー像38が形成された複写紙37が順次送り込まれ、トナーが加熱溶融させられて複写紙上に熱定着される。このような画像形成装置40ではトナーが極めて薄いフィルム状の定着ベルト31を介してセラミックヒーターにより実質的に直接加熱されるため、定着ベルト31と加圧ロール34の接触面N(ニップ面)が瞬時に所定の定着温度に達する。したがって、このような画像形成装置40は、電源の投入から定着可能状態に達するまでの待ち時間が短く、消費電力も小さい。このため、このような画像形成装置40は、家庭用から産業用まで広く使用されている。なお、図9中、符号35はサーミスタであり、符号39は定着されたトナー像であり、符号36は加圧ロール34の芯金部である。   In the film fixing type image forming apparatus 40, a belt guide 32 and a ceramic heater 33 are arranged inside the fixing belt 31, and between the pressure roll 34 pressed against the ceramic heater 33 via the fixing belt 31. Then, the copy paper 37 on which the unfixed toner image 38 is formed is sequentially fed, and the toner is heated and melted and thermally fixed on the copy paper. In such an image forming apparatus 40, the toner is substantially directly heated by the ceramic heater through the extremely thin film-like fixing belt 31, so that the contact surface N (nip surface) between the fixing belt 31 and the pressure roll 34 is provided. Instantly reaches a predetermined fixing temperature. Therefore, such an image forming apparatus 40 has a short waiting time from when the power is turned on until it reaches a fixable state, and also has low power consumption. For this reason, such an image forming apparatus 40 is widely used from home use to industrial use. In FIG. 9, reference numeral 35 denotes a thermistor, reference numeral 39 denotes a fixed toner image, and reference numeral 36 denotes a cored bar portion of the pressure roll 34.

ところで、このような従来のフィルム定着方式の画像形成装置40では、上述したように、セラミックヒーターを介して定着フィルム31が加熱され、その表面でトナー像が定着されるため、定着フィルムの熱伝導性が重要なポイントとなる。しかし、定着フィルムを薄膜化して熱伝導性を改善しようとすると機械的特性が低下し高速化が難しくなる問題と、セラミックヒーターが破損しやすいという問題があった。このような問題を解決するために、近年、定着ベルトそのものに発熱体を設け、この発熱体に給電することにより定着ベルトを直接発熱し、トナー像を定着させる方式が提案されている(例えば、特許文献1〜5参照)。この方式の画像形成装置は、電源の投入から定着可能状態に達するまでの待ち時間がさらに短く、消費電力もさらに小さく、熱定着の高速化などの面からも優れている。
特開2000−066539号公報 特開2004−281123号公報 特開平06−202513号公報 特開平10−142972号公報 特開2000−058228号公報
By the way, in such a conventional film fixing type image forming apparatus 40, as described above, the fixing film 31 is heated via the ceramic heater, and the toner image is fixed on the surface thereof. Sex is an important point. However, if the fixing film is made thin to improve the thermal conductivity, there are problems that the mechanical characteristics are lowered and it is difficult to increase the speed, and that the ceramic heater is easily damaged. In order to solve such a problem, in recent years, a method has been proposed in which a heating element is provided on the fixing belt itself and the fixing belt is directly heated by supplying power to the heating element to fix the toner image (for example, Patent References 1 to 5). This type of image forming apparatus has an even shorter waiting time from when the power is turned on until it reaches a fixable state, further reducing power consumption, and is excellent in terms of speeding up thermal fixing.
JP 2000-066539 A JP 2004-281123 A Japanese Patent Laid-Open No. 06-202513 JP-A-10-142972 JP 2000-058228 A

しかしながら、このような新方式の画像形成装置にはまだ多くの問題が山積されており、このような新方式の画像形成装置は実用化に至っていない。   However, many problems still remain in such a new type image forming apparatus, and such a new type image forming apparatus has not yet been put into practical use.

例えば、上記特許文献に記載されたベルトヒーター方式では、以下のような問題点を有する。なお、本願では電子写真画像形成プロセスの定着方式に関して記述するにあたり、図9に示す定着方式を「フィルム定着方式」、上記特許文献に記載される定着方式を「ベルトヒーター方式」、本願の方式を「発熱定着ベルト方式」と記して説明する。   For example, the belt heater system described in the above patent document has the following problems. In describing the fixing method of the electrophotographic image forming process in the present application, the fixing method shown in FIG. 9 is the “film fixing method”, the fixing method described in the above patent document is the “belt heater method”, and the method of the present application is the same. This will be described as “heat-generating fixing belt system”.

ベルトヒーター方式の定着ベルトヒーターでは、カーボン粉末や金属粉末等の導電性材料をポリイミド又はシリコーンゴム等の耐熱絶縁基材に混合して発熱層が形成される。このため、均一な発熱領域を有する発熱体を得ることが難しい。また、特許文献5には、発熱体材料として主にカーボンナノチューブとカーボンマイクコイルとから形成された薄膜抵抗発熱体と、この薄膜抵抗発熱体を用いたトナーの加熱定着用部材とが開示されている。しかしながら、発熱体材料がカーボンナノチューブやカーボンマイクロコイルのみから形成されている場合、体積抵抗率を下げるためにカーボンナノチューブ等の混合量を増加させると、発熱体の機械的特性が急激に低下するという問題があり、体積抵抗率の低い発熱抵抗体を作製することが非常に難しい。   In the belt heater type fixing belt heater, a heat generating layer is formed by mixing a conductive material such as carbon powder or metal powder with a heat-resistant insulating base material such as polyimide or silicone rubber. For this reason, it is difficult to obtain a heating element having a uniform heating region. Patent Document 5 discloses a thin film resistance heating element formed mainly of carbon nanotubes and carbon microphone coils as a heating element material, and a toner heat fixing member using the thin film resistance heating element. Yes. However, when the heating element material is formed only of carbon nanotubes or carbon microcoils, increasing the mixing amount of carbon nanotubes or the like in order to reduce the volume resistivity, the mechanical characteristics of the heating element are drastically reduced. There is a problem and it is very difficult to produce a heating resistor having a low volume resistivity.

また、特許文献1及び3には遠心成形方法で定着ベルトヒーターを成形することが記載されている。しかし、このような成形方法では、内径の小さい(10〜20mm)定着ベルトを大量生産することが難しく、レーザービームプリンター等の低価格化に対応できないという問題がある。   Patent Documents 1 and 3 describe forming a fixing belt heater by a centrifugal molding method. However, such a molding method has a problem that it is difficult to mass-produce a fixing belt having a small inner diameter (10 to 20 mm), and cannot cope with a reduction in cost of a laser beam printer or the like.

本発明は、以上の問題点を鑑みてなされたものであり、極めて均一な発熱領域を有し発熱層と絶縁層とが強固に一体化された発熱定着ベルト及びその製造方法、並びに電源投入からの待機時間が非常に短くクイックスタートができ、消費電力を低く抑えることができると共に高速な定着を行うことができる安全性の高い画像定着装置を提供することを目的とする。   The present invention has been made in view of the above problems, and includes a heat-generating fixing belt having a very uniform heat-generating region in which a heat-generating layer and an insulating layer are firmly integrated, a manufacturing method thereof, and power-on. It is an object of the present invention to provide a highly safe image fixing apparatus that can perform a quick start with a very short standby time, reduce power consumption, and perform high-speed fixing.

第1発明に係る発熱定着ベルトは、電子写真画像形成装置の画像定着部に用いられるシームレスの発熱定着ベルトであって、発熱層、絶縁層及び離型層を備える。発熱層は、カーボンナノ材料及びフィラメント状金属微粒子が分散されるポリイミド樹脂からなる。離型層は、絶縁層又は発熱層の外側に設けられる。   A heat-generating fixing belt according to a first aspect of the present invention is a seamless heat-generating fixing belt used in an image fixing unit of an electrophotographic image forming apparatus, and includes a heat generating layer, an insulating layer, and a release layer. The heat generating layer is made of a polyimide resin in which carbon nanomaterials and filamentary metal fine particles are dispersed. The release layer is provided outside the insulating layer or the heat generating layer.

第2発明に係る発熱定着ベルトは、第1発明に係る発熱定着ベルトであって、絶縁層は、発熱層の外側に設けられる。また、離型層は、絶縁層の外側に設けられる。   The heat generating fixing belt according to the second invention is the heat generating fixing belt according to the first invention, and the insulating layer is provided outside the heat generating layer. The release layer is provided outside the insulating layer.

第3発明に係る発熱定着ベルトは、第1発明に係る発熱定着ベルトであって、発熱層は、絶縁層の外側に設けられる。また、離型層は、発熱層の外側に設けられる。   A heat generating and fixing belt according to a third aspect of the present invention is the heat generating and fixing belt according to the first aspect of the present invention, and the heat generating layer is provided outside the insulating layer. The release layer is provided outside the heat generating layer.

第4発明に係る発熱定着ベルトは、第1発明に係る発熱定着ベルトであって、絶縁層は、第1絶縁層と第2絶縁層とを有する。発熱層は、第1絶縁層の外側に設けられる。第2絶縁層は、発熱層の外側に設けられる。離型層は、第2絶縁層の外側に設けられる。   A heat fixing belt according to a fourth aspect of the present invention is the heat fixing belt according to the first aspect, wherein the insulating layer includes a first insulating layer and a second insulating layer. The heat generating layer is provided outside the first insulating layer. The second insulating layer is provided outside the heat generating layer. The release layer is provided outside the second insulating layer.

第5発明に係る発熱定着ベルトは、第1発明から第4発明のいずれかに係る発熱定着ベルトであって、弾性層をさらに備える。弾性層は、シリコーンゴム及びフッ素ゴムより成る群から選択される少なくとも一つのゴムから成る。そして、離型層は、弾性層の外面に接するように設けられる。   A heat generating fixing belt according to a fifth aspect of the present invention is the heat generating fixing belt according to any one of the first to fourth aspects of the present invention, further comprising an elastic layer. The elastic layer is made of at least one rubber selected from the group consisting of silicone rubber and fluorine rubber. The release layer is provided in contact with the outer surface of the elastic layer.

第6発明に係る発熱定着ベルトは、第1発明から第5発明のいずれかに係る発熱定着ベルトであって、カーボンナノ材料は、カーボンナノファイバー、カーボンナノチューブ及びカーボンマイクロコイルより成る群から選択される少なくとも1つの導電性物質である。   A heat generating fixing belt according to a sixth aspect of the present invention is the heat generating fixing belt according to any one of the first to fifth aspects, wherein the carbon nanomaterial is selected from the group consisting of carbon nanofibers, carbon nanotubes, and carbon microcoils. At least one conductive material.

第7発明に係る発熱定着ベルトは、第1発明から第6発明のいずれかに係る発熱定着ベルトであって、フィラメント状金属微粒子は、ストランドが三次元的に連なった形状を有するニッケル微粒子である。なお、フィラメント状ニッケル微粒子は図5に示される形状を呈するのが好ましい。フィラメント状ニッケル微粒子がカーボンナノファイバー等と絡まり合い、発熱層の低抵抗化が実現されるからである。   A heat-generating fixing belt according to a seventh aspect of the present invention is the heat-generating fixing belt according to any one of the first to sixth aspects of the invention, wherein the filamentous metal fine particles are nickel fine particles having a shape in which strands are three-dimensionally connected. . The filamentary nickel fine particles preferably have the shape shown in FIG. This is because filamentary nickel fine particles are entangled with carbon nanofibers and the like, and the resistance of the heat generating layer is reduced.

第8発明に係る発熱定着ベルトは、第1発明から第7発明のいずれかに係る発熱定着ベルトであって、カーボンナノ材料及びフィラメント状金属微粒子は、略一方向に配向する。   An exothermic fixing belt according to an eighth aspect of the present invention is the exothermic fixing belt according to any one of the first to seventh aspects, wherein the carbon nanomaterial and the filamentous fine metal particles are oriented substantially in one direction.

第9発明に係る発熱定着ベルトは、第8発明に係る発熱定着ベルトであって、カーボンナノ材料及びフィラメント状金属微粒子は、発熱定着ベルトの長さ方向に配向する。そして、カーボンナノ材料及びフィラメント状金属微粒子の配向方向の体積抵抗率は、その配向方向と直交する方向の体積抵抗率よりも小さい。   A heat generating fixing belt according to a ninth aspect of the present invention is the heat generating fixing belt according to the eighth aspect of the present invention, wherein the carbon nanomaterial and the filamentous metal fine particles are oriented in the length direction of the heat generating fixing belt. And the volume resistivity of the orientation direction of a carbon nanomaterial and a filament-shaped metal microparticle is smaller than the volume resistivity of the direction orthogonal to the orientation direction.

第10発明に係る発熱定着ベルトは、第1発明から第9発明のいずれかに係る発熱定着ベルトであって、ポリイミド樹脂は、少なくとも1種の芳香族ジアミンと少なくとも1種の芳香族テトラカルボン酸二無水物とを有機極性溶媒中で重合してなるポリイミド前駆体がイミド転化されたポリイミド樹脂である。   A heat generating fixing belt according to a tenth aspect of the present invention is the heat generating fixing belt according to any one of the first to ninth aspects, wherein the polyimide resin comprises at least one aromatic diamine and at least one aromatic tetracarboxylic acid. A polyimide resin obtained by imidizing a polyimide precursor obtained by polymerizing dianhydride in an organic polar solvent.

第11発明に係る発熱定着ベルトは、第1発明から第10発明のいずれかに係る発熱定着ベルトであって、絶縁層は、少なくとも1種の芳香族ジアミンと少なくとも1種の芳香族テトラカルボン酸二無水物を有機極性溶媒中で重合してなるポリイミド前駆体がイミド転化されたポリイミド樹脂からなる。   An exothermic fixing belt according to an eleventh aspect of the invention is the exothermic fixing belt according to any of the first to tenth aspects of the invention, wherein the insulating layer comprises at least one aromatic diamine and at least one aromatic tetracarboxylic acid. A polyimide precursor obtained by polymerizing a dianhydride in an organic polar solvent comprises a polyimide resin obtained by imide conversion.

第12発明に係る発熱定着ベルトは、第10発明又は第11発明に係る発熱定着ベルトであって、芳香族ジアミンはパラフェニレンジアミン(PPD)である。また、芳香族テトラカルボン酸二無水物は3,3',4,4'−ビフェニルテトラカルボン酸二無水物(BPDA)である。   A heat generating fixing belt according to a twelfth aspect of the present invention is the heat generating fixing belt according to the tenth aspect of the present invention or the eleventh aspect of the present invention, wherein the aromatic diamine is paraphenylene diamine (PPD). The aromatic tetracarboxylic dianhydride is 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA).

第13発明に係る発熱定着ベルトは、第1発明から第12発明のいずれかに係る発熱定着ベルトであって、離型層は、フッ素樹脂、シリコーンゴム及びフッ素ゴムより成る群から選択される少なくとも1つの樹脂又はゴムからなる。   A heat generating fixing belt according to a thirteenth aspect of the present invention is the heat generating fixing belt according to any one of the first to twelfth aspects of the present invention, wherein the release layer is at least selected from the group consisting of fluororesin, silicone rubber and fluororubber. It consists of one resin or rubber.

第14発明に係る発熱定着ベルトの製造方法は、発熱層と、発熱層の外側に設けられる絶縁層と、絶縁層の外側に設けられる離型層とを備える発熱定着ベルトの製造方法であって、(a)ポリイミド前駆体溶液中にカーボンナノ材料及びフィラメント状金属微粉子が混合された導電性組成物を円筒状金型の表面に塗布する工程と、(b)円筒状金型の表面に塗布した導電性組成物を加熱して発熱層を成形する工程と、(c)発熱層の外側に絶縁ポリイミド前駆体溶液を塗布する工程と、(d)絶縁ポリイミド前駆体溶液を加熱して絶縁層を成形する工程と、(e)絶縁層の外側に離型層形成樹脂又は離型層形成樹脂前駆体を塗布する工程と、(f)離型層形成樹脂又は離型層形成樹脂前駆体を加熱して焼成する工程とを備える。   A method for manufacturing a heat-generating fixing belt according to a fourteenth aspect of the present invention is a method for manufacturing a heat-generating fixing belt comprising a heat-generating layer, an insulating layer provided outside the heat-generating layer, and a release layer provided outside the insulating layer. (A) a step of applying a conductive composition in which a carbon nanomaterial and a filamentous metal fine powder are mixed in a polyimide precursor solution to the surface of a cylindrical mold; and (b) a surface of the cylindrical mold. Heating the applied conductive composition to form a heat generating layer; (c) applying an insulating polyimide precursor solution to the outside of the heat generating layer; and (d) heating the insulating polyimide precursor solution to insulate. A step of forming a layer, (e) a step of applying a release layer forming resin or a release layer forming resin precursor to the outside of the insulating layer, and (f) a release layer forming resin or a release layer forming resin precursor. Heating and baking.

第15発明に係る発熱定着ベルトの製造方法は、絶縁層と、絶縁層の外側に設けられる発熱層と、発熱層の外側に設けられる離型層とを備える発熱定着ベルトの製造方法であって、(g)絶縁ポリイミド前駆体溶液を円筒状金型の表面に塗布する工程と、(h)円筒状金型の表面に塗布した絶縁ポリイミド前駆体溶液を加熱して絶縁層を成形する工程と、(i)絶縁層の外側に、ポリイミド前駆体溶液中にカーボンナノ材料及びフィラメント状金属微粉子が混合された導電性組成物を塗布する工程と、(j)導電性組成物を加熱して発熱層を成形する工程と、(k)発熱層の外側に離型層形成樹脂又は離型層形成樹脂前駆体を塗布する工程と、(l)離型層形成樹脂又は離型層形成樹脂前駆体を加熱して焼成する工程とを備える。   A heat-generating fixing belt manufacturing method according to a fifteenth aspect of the present invention is a heat-generating fixing belt manufacturing method comprising an insulating layer, a heat generating layer provided outside the insulating layer, and a release layer provided outside the heat generating layer. (G) applying an insulating polyimide precursor solution to the surface of the cylindrical mold, and (h) forming an insulating layer by heating the insulating polyimide precursor solution applied to the surface of the cylindrical mold. (I) applying a conductive composition in which a carbon nanomaterial and a filamentous metal fine powder are mixed in a polyimide precursor solution to the outside of the insulating layer; and (j) heating the conductive composition. A step of forming a heat generating layer, (k) a step of applying a release layer forming resin or a release layer forming resin precursor to the outside of the heat generating layer, and (l) a release layer forming resin or a release layer forming resin precursor. And a step of heating and baking the body.

第16発明に係る発熱定着ベルトの製造方法は、第1絶縁層と、第1絶縁層の外側に設けられる発熱層と、発熱層の外側に設けられる第2絶縁層と、第2絶縁層の外側に設けられる離型層とを備える発熱定着ベルトの製造方法であって、(m)第1絶縁ポリイミド前駆体溶液を円筒状金型の表面に塗布する工程と、(n)円筒状金型の表面に塗布した第1絶縁ポリイミド前駆体溶液を加熱して第1絶縁層を成形する工程と、(o)第1絶縁層の外側に、ポリイミド前駆体溶液中にカーボンナノ材料及びフィラメント状金属微粉子が混合された導電性組成物を塗布する工程と、(p)導電性組成物を加熱して発熱層を成形する工程と、(q)発熱層の外側に第2絶縁ポリイミド前駆体溶液を塗布する工程と、(r)第2絶縁ポリイミド前駆体溶液を加熱して第2絶縁層を成形する工程と、(s)第2絶縁層の外側に離型層形成樹脂又は離型層形成樹脂前駆体を塗布する工程と、(t)離型層形成樹脂又は離型層形成樹脂前駆体を加熱して焼成する工程と
を備える。なお、この製造方法において、第1絶縁ポリイミド前駆体溶液と第2絶縁ポリイミド前駆体溶液とは同じであってもよいし異なっていてもよい。
According to a sixteenth aspect of the present invention, there is provided a heat fixing belt manufacturing method comprising: a first insulating layer; a heat generating layer provided outside the first insulating layer; a second insulating layer provided outside the heat generating layer; A method of manufacturing a heat-generating fixing belt comprising a release layer provided on the outside, wherein (m) a step of applying a first insulating polyimide precursor solution to the surface of a cylindrical mold, and (n) a cylindrical mold A step of forming a first insulating layer by heating the first insulating polyimide precursor solution applied to the surface of the substrate, and (o) a carbon nanomaterial and a filamentous metal in the polyimide precursor solution outside the first insulating layer. A step of applying a conductive composition mixed with fine powder, (p) a step of heating the conductive composition to form a heat generating layer, and (q) a second insulating polyimide precursor solution outside the heat generating layer. And (r) a second insulating polyimide precursor solution Forming a second insulating layer by heating the substrate, (s) applying a release layer forming resin or a release layer forming resin precursor to the outside of the second insulating layer, and (t) forming a release layer. Heating and baking the resin or the release layer forming resin precursor. In this manufacturing method, the first insulating polyimide precursor solution and the second insulating polyimide precursor solution may be the same or different.

第17発明に係る画像定着装置は、発熱定着ベルト及び給電手段を備える。発熱定着ベルトは、第1発明から第13発明のいずれかに係る発熱定着ベルトである。給電手段は、発熱定着ベルトに給電するためのものである。   An image fixing device according to a seventeenth aspect of the present invention includes a heat generating fixing belt and a power feeding unit. The heat fixing belt is a heat fixing belt according to any one of the first to thirteenth inventions. The power supply means is for supplying power to the heat generating fixing belt.

本発明に係る発熱定着ベルトは、発熱層のマトリックス樹脂および絶縁層の少なくとも発熱層のマトリックス樹脂がポリイミド樹脂である。このため、この発熱定着ベルトは、定着温度範囲である180〜250度Cの高温領域でも連続使用が可能である。また、発熱層中に混合している導電性物質を一定の方向に配向させれば、体積抵抗率のばらつきを小さくすることができると共に、少ない導電性物質の混合量で所望の体積抵抗率を得ることができる。また、カーボンナノ材料とフィラメント状ニッケル微粒子との混合比を変えることによって幅広い領域で精度の高い体積抵抗率を有する発熱定着ベルトを設計することができる。また、本発明に係る発熱定着ベルトの製造方法では、発熱層の成形から最外層の離型層の成形まで、金型の外面に順次積層して加工される。このため、この製造方法では、低コストで発熱定着ベルトを連続生産することができる。また、本発明に係る画像定着装置では、従来のように特別なセラミックヒーター等を必要とすることなく、発熱定着ベルトの発熱層に直接給電することによって定着ベルト自体が発熱する。このため、この画像定着装置は、熱効率が高く、また、電源を投入してから待機時間がなく、クイックスタートができる。   In the heat generating fixing belt according to the present invention, the matrix resin of the heat generating layer and the matrix resin of at least the heat generating layer of the insulating layer are polyimide resins. For this reason, the heat fixing belt can be continuously used even in a high temperature range of 180 to 250 ° C. which is a fixing temperature range. In addition, if the conductive material mixed in the heat generating layer is oriented in a certain direction, variation in volume resistivity can be reduced, and a desired volume resistivity can be obtained with a small amount of mixed conductive material. Obtainable. Further, by changing the mixing ratio of the carbon nanomaterial and the filamentary nickel fine particles, it is possible to design a heat-generating fixing belt having a high volume resistivity in a wide range. In the method for manufacturing a heat-generating fixing belt according to the present invention, the process from the formation of the heat generation layer to the formation of the outermost release layer is sequentially laminated and processed on the outer surface of the mold. For this reason, in this manufacturing method, the heat-generating fixing belt can be continuously produced at low cost. In the image fixing device according to the present invention, the fixing belt itself generates heat by directly supplying power to the heat generating layer of the heat generating fixing belt without requiring a special ceramic heater or the like as in the prior art. For this reason, this image fixing apparatus has high thermal efficiency, and there is no waiting time after the power is turned on, and a quick start can be performed.

次に、本発明の実施の形態について詳細に説明する。   Next, embodiments of the present invention will be described in detail.

図1は本発明の発熱定着ベルトの概略横断面図及び縦断面図である。本発明の発熱定着ベルト10は、図1に示されるように、発熱層1、絶縁層2及び離型層3からなるシームレスベルトである。なお、符号4はプライマー層であり、プライマー層4は絶縁層と離型層との接着性を安定させるための層である。発熱層のマトリックス樹脂及び絶縁層はすべてポリイミド樹脂である。このような構成を採用すると、発熱ベルトの内側の発熱層に給電端子を接触させることができ、ひいては発熱層に給電することできる。このため、発熱層を発熱させることができる。   FIG. 1 is a schematic cross-sectional view and vertical cross-sectional view of a heat-generating fixing belt of the present invention. The heat-generating fixing belt 10 of the present invention is a seamless belt comprising a heat-generating layer 1, an insulating layer 2, and a release layer 3, as shown in FIG. Reference numeral 4 denotes a primer layer, and the primer layer 4 is a layer for stabilizing the adhesion between the insulating layer and the release layer. The matrix resin and insulating layer of the heat generating layer are all polyimide resin. When such a configuration is adopted, the power supply terminal can be brought into contact with the heat generating layer inside the heat generating belt, and power can be supplied to the heat generating layer. For this reason, the heat generating layer can generate heat.

また、図2は本発明の別の発熱定着ベルト側面の概略側面図及び縦断面図である。この発熱定着ベルトには、最外層の両端部に給電用の電極54が設けられている。そして、この給電用の電極54に給電ローラや電極ブラシが接触しこの給電用の電極54に給電が行われると、この発熱定着ベルトは発熱する。なお、この発熱定着ベルトでは、最も内側にポリイミド樹脂絶縁層が形成されており、また、ポリイミド樹脂絶縁層の外側に発熱層が形成されており、さらに発熱層の外側に給電用電極部を除いて離型層が形成されている。このような構成を採用すると、ポリイミド樹脂絶縁層の熱伝導性は定着条件に関係がなくなり、発熱定着ベルトの十分な機械的特性を満たすためのみの目的で絶縁層の厚みを決定することができる。また、発熱層の外側には離型層のみが存在することになるため、クイックスタートあるいは省エネルギーの面からも好ましい。なお、熱伝導性、機械的特性あるいは離型性などの特性を複合的に得るために、必要に応じて発熱定着ベルトを多層化し発熱定着ベルトに機能を付加することができる。なお、図2中、電極54には導電性インクやペーストあるいは金属箔、金属網などを塗布あるいは接着してもかまわない。   FIG. 2 is a schematic side view and a longitudinal sectional view of another side surface of the heat fixing belt of the present invention. The heat generating fixing belt is provided with power supply electrodes 54 at both ends of the outermost layer. When the power supply roller or electrode brush comes into contact with the power supply electrode 54 and power is supplied to the power supply electrode 54, the heat generating fixing belt generates heat. In this heat generating fixing belt, a polyimide resin insulating layer is formed on the innermost side, a heat generating layer is formed on the outer side of the polyimide resin insulating layer, and a power supply electrode portion is excluded on the outer side of the heat generating layer. Thus, a release layer is formed. When such a configuration is adopted, the thermal conductivity of the polyimide resin insulating layer is not related to the fixing conditions, and the thickness of the insulating layer can be determined only for the purpose of satisfying sufficient mechanical characteristics of the heat-generating fixing belt. . Moreover, since only the release layer exists outside the heat generating layer, it is preferable from the viewpoint of quick start or energy saving. In order to obtain composite properties such as thermal conductivity, mechanical properties, and releasability, the heat fixing belt can be multi-layered as necessary to add a function to the heat fixing belt. In FIG. 2, conductive ink, paste, metal foil, metal net, or the like may be applied or bonded to the electrode 54.

なお、本実施の形態において、発熱定着ベルトの発熱層中のマトリックス樹脂及び絶縁層はすべてポリイミド樹脂である。このため、発熱定着ベルトは、薄膜であっても、十分な機械的特性と剛性とを有する。また、ポリイミド樹脂は、プラスチック材料の中では最高の耐熱性、絶縁性及び安全性を有する。   In the present embodiment, the matrix resin and the insulating layer in the heat generating layer of the heat fixing belt are all polyimide resin. For this reason, even if the heat generating fixing belt is a thin film, it has sufficient mechanical characteristics and rigidity. Polyimide resin has the highest heat resistance, insulation and safety among plastic materials.

本発明の発熱定着ベルトは、レーザービームプリンターの用途では10mm〜30mmの内径のものが、また、複写機など高速定着の用途では40mm〜150mmのサイズの内径のものが好適に用いられる。   The heat-generating fixing belt of the present invention preferably has an inner diameter of 10 mm to 30 mm for use in a laser beam printer, and has an inner diameter of 40 mm to 150 mm for use in high-speed fixing such as a copying machine.

本発明の実施の形態において、発熱定着ベルトの発熱層では、ポリイミドからなるマトリックス樹脂中にカーボンナノ材料とフィラメント状金属微粒子とが実質的に均一に分散されて存在している。カーボンナノ材料はカーボンナノファイバー、カーボンナノチューブ及びカーボンマイクロコイルより成る群から選択される少なくとも1つの導電性物質であることが好ましい。これらのカーボンナノ材料は、その繊維径が数nm〜数百nmであり、繊維長さが数μm〜数十μmであり、嵩密度が0.01〜0.3g/cm3であり、比表面積が10〜100m2/gである。この中でも、カーボンナノファイバーは特に好ましい導電性物質であり、特に、繊維径が20〜200nmであり、繊維長が0.1〜10μmであるものが好ましい。ポリイミド前駆体溶液に均一に分散させやすく、また、略一方向に配向させやすいからである。 In the embodiment of the present invention, in the heat generating layer of the heat fixing belt, the carbon nanomaterial and the filamentous metal fine particles are substantially uniformly dispersed in the matrix resin made of polyimide. The carbon nanomaterial is preferably at least one conductive substance selected from the group consisting of carbon nanofibers, carbon nanotubes, and carbon microcoils. These carbon nanomaterials have a fiber diameter of several nm to several hundred nm, a fiber length of several μm to several tens of μm, a bulk density of 0.01 to 0.3 g / cm 3 , and a ratio The surface area is 10 to 100 m 2 / g. Among these, carbon nanofibers are particularly preferable conductive materials, and those having a fiber diameter of 20 to 200 nm and a fiber length of 0.1 to 10 μm are particularly preferable. It is because it is easy to disperse | distribute uniformly to a polyimide precursor solution, and to make it orientate to a substantially one direction.

また、本発明の実施の形態では、上述したように、発熱層にはカーボンナノ材料と共にフィラメント状金属微粒子を含むことが必須条件である。レーザービームプリンターなどの画像定着装置では、A4サイズ用紙上の未定着トナー像を、1分間に30〜40枚の速度で熱定着させる能力が要求されるため、定着部では500〜1000Wの発熱量が必要であり、かつ、均一な発熱面が要求されるからである。なお、このような発熱特性をカーボンナノ材料のみでコントロールすることは困難である。なぜならば、カーボンナノ材料のみを混合して数オームレベルの低い電気抵抗を得るためには、ポリイミド前駆体の固形分に対して多量のカーボンナノ材料を混合させる必要があり、このような混合量では発熱層の機械的特性を著しく低下させることになるからである。したがって、このような特性に必要な発熱量と十分な機械的特性とを両立させるためには、カーボンナノ材料とともに、カーボンナノ材料よりも導電性の高いフィラメント状金属微粒子を含むことが必須条件である。   Further, in the embodiment of the present invention, as described above, it is an essential condition that the heat generating layer contains filamentous metal fine particles together with the carbon nanomaterial. Image fixing devices such as laser beam printers require the ability to thermally fix an unfixed toner image on A4 size paper at a rate of 30 to 40 sheets per minute, so the fixing unit generates 500 to 1000 W of heat. This is because a uniform heat generation surface is required. Note that it is difficult to control such heat generation characteristics only with the carbon nanomaterial. This is because in order to obtain a low electrical resistance of several ohms by mixing only carbon nanomaterials, it is necessary to mix a large amount of carbon nanomaterials with the solid content of the polyimide precursor. This is because the mechanical properties of the heat generating layer are significantly reduced. Therefore, in order to achieve both the calorific value necessary for such characteristics and sufficient mechanical characteristics, it is essential to include filamentous metal fine particles having higher conductivity than the carbon nanomaterial together with the carbon nanomaterial. is there.

フィラメント状金属微粒子としては、針状結晶状の銀、アルミニウム及びニッケルなどが挙げられる。より好ましくはストランドが三次元的に連なった形状を有するニッケル微粒子である。このニッケル微粒子は、平均粒子径が0.1〜5.0μmであり、比表面積が1.0〜100m2/gであり、図5の写真のようにストランドが三次元的に連なった形状を有し、カーボンナノ材料と線状に絡み合うことによって、低い発熱抵抗体を形成でき、均一な体積抵抗率を有する発熱層を成形できるからである。カーボンナノ材料と混合されて用いられている金属微粒子が粒状や粉末あるいは塊状の場合、その金属微粒子は、カーボンナノ材料と絡み合わず、点接触になり、均一な発熱層を作製することが難しい。なお、金属微粒子とカーボンナノ材料とが点状接触となると、通電中に極微細なスパークが発生しやすく、発熱体の寿命を著しく低下させることになる。 Examples of the filamentary metal fine particles include acicular crystal silver, aluminum, and nickel. More preferably, it is nickel fine particles having a shape in which strands are three-dimensionally connected. The nickel fine particles have an average particle diameter of 0.1 to 5.0 μm, a specific surface area of 1.0 to 100 m 2 / g, and have a shape in which strands are three-dimensionally connected as shown in the photograph of FIG. This is because a low heating resistor can be formed by entangled with the carbon nanomaterial in a linear manner, and a heating layer having a uniform volume resistivity can be formed. When the metal fine particles mixed with the carbon nanomaterial are used in the form of particles, powders or lumps, the metal fine particles are not entangled with the carbon nanomaterial, are in point contact, and it is difficult to produce a uniform heating layer. . In addition, when the metal fine particles and the carbon nanomaterial are in point contact, extremely fine sparks are likely to occur during energization, and the life of the heating element is significantly reduced.

また、本発明の実施の形態において、発熱層中の導電性物質は一定方向に配向して存在していることが好ましい。本発明で用いられるカーボンナノ材料は、繊維径が20〜200nmであり、繊維長さが0.1〜10μm形状である。これらのカーボンナノ材料は、単純にポリイミド前駆体溶液に混合されてガラス板上に流延されると、縦横の方向がまちまちになる。そして、この状態でポリイミド前駆体がイミド転化されると、形成されるフィルムの抵抗値のばらつきが大きくなるという問題がある。また、カーボンナノ材料を配向させる場合に比べてカーボンナノ材料をより多く混合する必要があり、必然的に発熱層の機械的特性の低下を招くことになる。   Further, in the embodiment of the present invention, it is preferable that the conductive substance in the heat generating layer is oriented in a certain direction. The carbon nanomaterial used in the present invention has a fiber diameter of 20 to 200 nm and a fiber length of 0.1 to 10 μm. When these carbon nanomaterials are simply mixed in a polyimide precursor solution and cast on a glass plate, the vertical and horizontal directions vary. And when a polyimide precursor is imide-converted in this state, there exists a problem that the dispersion | variation in the resistance value of the film formed becomes large. Moreover, it is necessary to mix more carbon nanomaterials compared with the case where the carbon nanomaterials are oriented, which inevitably leads to a decrease in mechanical properties of the heat generating layer.

したがって、これらのカーボンナノ材料は略一方向、すなわちカーボンナノ材料の個々の繊維がその長さ方向に束ねられたように配向していることが好ましい。このようにすれば、少ないカーボンナノ材料混合量で電気抵抗値を下げることができ、かつ、均一な発熱特性が得られるからである。   Therefore, it is preferable that these carbon nanomaterials are oriented substantially in one direction, that is, the individual fibers of the carbon nanomaterial are bundled in the length direction. This is because the electrical resistance value can be lowered with a small amount of carbon nanomaterial mixed, and uniform heat generation characteristics can be obtained.

導電特性等の改善を目的として、各種形状粒径の黒鉛、カーボンブラック、カーボンナノチューブ、カーボンマイクロコイル、ニッケル粉や銀粉などの金属粒子、ステンレス粉などの金属合金粒子、炭化タングステンや炭化タンタル、硼化タングステン等の金属間化合物、銀コートカーボンなどの金属被覆粉等の導電性粒子、熱伝導向上等を目的として、アルミナ、窒化硼素、窒化アルミニウム、炭化珪素、酸化チタン、シリカ等の非導電性粒子、機械的特性向上等を目的としてチタン酸カリウム繊維、針状酸化チタン、ホウ酸アルミニウムウィスカ、テトラポット状酸化亜鉛ウィスカ、セピオライト、ガラス繊維等の繊維状粒子、モンモリロナイト、タルク等の粘度鉱物を本来の目的を損なわない程度に加えても差し支えない。他に塗工性や分散性改善、機械的特性の向上等を目的として、界面活性剤、消泡剤、分散剤、シランカップリング剤等のカップリング剤、チオール化合物等の金属捕捉剤、イミダゾール類等のイミド化剤等を本来の目的を損なわない程度に加えても差し支えない。   For the purpose of improving conductive properties, graphite, carbon black, carbon nanotubes, carbon microcoils, metal particles such as nickel powder and silver powder, metal alloy particles such as stainless steel powder, tungsten carbide, tantalum carbide, boron Non-conductive materials such as alumina, boron nitride, aluminum nitride, silicon carbide, titanium oxide, silica, etc. for the purpose of improving the thermal conductivity, intermetallic compounds such as tungsten fluoride, metal coated powders such as silver-coated carbon, etc. For the purpose of improving particles, mechanical properties, etc., potassium titanate fiber, acicular titanium oxide, aluminum borate whisker, tetrapotted zinc oxide whisker, sepiolite, glass fiber and other fibrous particles, montmorillonite, talc and other viscous minerals It may be added to such an extent that the original purpose is not impaired. In addition, surfactants, antifoaming agents, dispersants, coupling agents such as silane coupling agents, metal scavengers such as thiol compounds, imidazole, etc. for the purpose of improving coating properties and dispersibility, and improving mechanical properties It is possible to add an imidizing agent such as a kind to the extent that the original purpose is not impaired.

なお、導電性組成物を円筒形金型の外面に塗布し、図8のようにリング状ダイスを塗布物の外表面に走らせて組成物の塗布被膜を形成させると、カーボンナノ材料は、リング状ダイスが走行した方向に向かって略一方向に並び、配向された状態となる。その後、導電性組成物を乾燥し、イミド化を完結することによって、図6の写真のように、カーボンナノ材料が配向したままの状態で固形化した最も好ましい発熱層を成形することができる。なお、写真のカーボンナノ材料21は、カーボンナノファイバーである。また、図6の写真からも判るように、カーボンナノ材料とともに混合しているフィラメント状金属微粒子22は、カーボンナノ材料に絡み合い、カーボンナノ材料の配向方向に配列した状態で存在し、発熱層として最も好ましい状態になっている。なお、フィラメント状金属微粒子は、ストランドが三次元的に連なった形状を有するニッケル微粒子を用いたものである。   When the conductive composition is applied to the outer surface of the cylindrical mold and a ring-shaped die is run on the outer surface of the applied material to form a coating film of the composition as shown in FIG. It will be in the state in which it aligned in one direction toward the direction which the shape die traveled, and was oriented. Thereafter, by drying the conductive composition and completing imidization, the most preferable heating layer solidified with the carbon nanomaterial oriented as shown in the photograph of FIG. 6 can be formed. The carbon nanomaterial 21 in the photograph is a carbon nanofiber. In addition, as can be seen from the photograph of FIG. 6, the filamentous fine metal particles 22 mixed with the carbon nanomaterial are entangled with the carbon nanomaterial and exist in a state of being aligned in the orientation direction of the carbon nanomaterial. It is in the most preferable state. The filamentous metal fine particles are nickel fine particles having a shape in which strands are three-dimensionally connected.

また、本発明の実施の形態において、発熱層中の導電性物質は発熱定着ベルトの長さ方向に配向して存在し、この配向方向の体積抵抗率がこの配向方向と直交する方向の体積抵抗率よりも小さいことが好ましい。本発明者らは導電性物質の配向方向と体積抵抗率の関係について多くの実験を重ねた結果、導電性物質の配向方向の体積抵抗率と、この方向と交差する方向の体積抵抗率が異なることを見出した。すなわち、導電性物質の配向方向の体積抵抗率をLD及び配向方向と直交する方向の体積抵抗率をDDとした場合、その比(Ra=DD/LD)は2倍以上にもなることがわかった。   Further, in the embodiment of the present invention, the conductive material in the heat generating layer is oriented in the longitudinal direction of the heat generating fixing belt, and the volume resistivity in the orientation direction is perpendicular to the orientation direction. It is preferable to be smaller than the rate. As a result of repeated experiments on the relationship between the orientation direction of the conductive material and the volume resistivity, the present inventors have found that the volume resistivity in the orientation direction of the conductive material is different from the volume resistivity in the direction intersecting this direction. I found out. That is, when the volume resistivity in the orientation direction of the conductive material is LD and the volume resistivity in the direction perpendicular to the orientation direction is DD, the ratio (Ra = DD / LD) is found to be more than twice. It was.

上記のように導電性物質は、Raの値が大きいほど一定の方向に、かつ、均一に配向していることになる。したがって、所望の発熱層の成形において、配向をより均一にさせるほど、導電性物質の混合量は少ない量でよいことになる。このように、カーボンナノ材料を均一に配向させ、且つ、カーボンナノ材料とフィラメント状金属微粒子を混在させることによって体積抵抗率の微調整が可能になり、発熱層の機械的特性を低下させることなく、均一な体積抵抗率と、優れた耐久性を有する発熱定着ベルトを得ることができる。   As described above, the conductive material is uniformly oriented in a certain direction as the value of Ra is larger. Accordingly, in forming the desired heat generating layer, the smaller the amount of the conductive material mixed, the more uniform the orientation. In this way, the volume resistivity can be finely adjusted by uniformly orienting the carbon nanomaterial and mixing the carbon nanomaterial and the filamentous metal fine particles, without reducing the mechanical properties of the heating layer. Thus, it is possible to obtain a heat-generating fixing belt having uniform volume resistivity and excellent durability.

本発明の好ましい実施の形態においては、発熱層中のカーボンナノ材料とフィラメント状金属微粒子との存在量は、ポリイミド固形分に対して5〜50vol%であることが好ましい。より好ましくは10〜40vol%の範囲である。存在量が5vol%未満であると体積抵抗率のバラつきが大きく、均一な発熱領域を得ることが難しい。一方、存在量が50vol%以上になると、発熱層の機械的特性及び耐久性が低下し好ましくない。また、カーボンナノ材料とフィラメント状金属微粒子との混合比率は、発熱層の体積抵抗率及び所望する発熱量等によって任意に選定できる。発熱定着ベルトでの発熱量は500〜1000Wの範囲であるため、発熱定着ベルトの内径、厚み、長さ(複写紙サイズA4またはA3)などの仕様によって調節することができる。   In preferable embodiment of this invention, it is preferable that the abundance of the carbon nanomaterial and filament-like metal microparticles | fine-particles in a heat generating layer is 5-50 vol% with respect to a polyimide solid content. More preferably, it is the range of 10-40 vol%. If the abundance is less than 5 vol%, the volume resistivity varies greatly and it is difficult to obtain a uniform heat generation region. On the other hand, if the abundance is 50 vol% or more, the mechanical properties and durability of the heat generating layer are lowered, which is not preferable. Moreover, the mixing ratio of the carbon nanomaterial and the filamentous metal fine particles can be arbitrarily selected depending on the volume resistivity of the heat generating layer, the desired heat generation amount, and the like. Since the heat generation amount of the heat fixing belt is in the range of 500 to 1000 W, it can be adjusted according to the specifications such as the inner diameter, thickness, length (copy paper size A4 or A3) of the heat fixing belt.

また、本発明の実施の形態において、発熱層のマトリックス樹脂及び絶縁層は、少なくとも一種の芳香族ジアミンと少なくとも一種の芳香族テトラカルボン酸二無水物が有機極性溶媒中で重合させられて得られるポリイミド前駆体を、イミド転化してなるポリイミド樹脂から成ることが好ましい。   In the embodiment of the present invention, the matrix resin and the insulating layer of the heat generating layer are obtained by polymerizing at least one aromatic diamine and at least one aromatic tetracarboxylic dianhydride in an organic polar solvent. The polyimide precursor is preferably made of a polyimide resin obtained by imide conversion.

芳香族ジアミンの代表例としては、パラフェニレンジアミン(PPD)、メタフェニレンジアミン(MPDA)、2,5−ジアミノトルエン、2,6−ジアミノトルエン、4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ビフェニル、3,3’−ジメトキシ−4,4’−ビフェニル、2,2−ビス(トリフルオロメチル)−4、4’−ジアミノビフェニル、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン(MDA)、2,2−ビス−(4−アミノフェニル)プロパン、3,3’−ジアミノジフェニルスルホン(33DDS)、4,4’−ジアミノジフェニルスルホン(44DDS)、3,3’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル(34ODA)、4,4’−ジアミノジフェニルエーテル(ODA)、1,5−ジアミノナフタレン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、1,3−ビス(3−アミノフェノキシ)ベンゼン(133APB)、1,3−ビス(4−アミノフェノキシ)ベンゼン(134APB)、1,4−ビス(4−アミノフェノキシ)ベンゼン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン(BAPSM)、ビス[4−(4−アミノフェノキシ)フェニル]スルホン(BAPS)、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)、2,2−ビス(3−アミノフェニル)1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)1,1,1,3,3,3−ヘキサフルオロプロパン及び9,9−ビス(4−アミノフェニル)フルオレン等を挙げることができる。中でも好ましいジアミンは、パラフェニレンジアミン(PPD)、メタフェニレンジアミン(MPDA)、4,4’−ジアミノジフェニルメタン(MDA)、3,3’−ジアミノジフェニルスルホン(33DDS)、4,4’−ジアミノジフェニルスルホン(44DDS)、3,4’−ジアミノジフェニルエーテル(34ODA)、4,4’−ジアミノジフェニルエーテル(ODA)、1,3−ビス(3−アミノフェノキシ)ベンゼン(133APB)、1,3−ビス(4−アミノフェノキシ)ベンゼン(134APB)、ビス[4−(3−アミノフェノキシ)フェニル]スルホン(BAPSM)、ビス[4−(4−アミノフェノキシ)フェニル]スルホン(BAPS)、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)である。   Representative examples of aromatic diamines include paraphenylenediamine (PPD), metaphenylenediamine (MPDA), 2,5-diaminotoluene, 2,6-diaminotoluene, 4,4'-diaminobiphenyl, 3,3'- Dimethyl-4,4′-biphenyl, 3,3′-dimethoxy-4,4′-biphenyl, 2,2-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane (MDA), 2,2-bis- (4-aminophenyl) propane, 3,3′-diaminodiphenylsulfone (33DDS), 4,4′-diaminodiphenylsulfone (44DDS), 3 , 3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diamino Phenyl ether, 3,4'-diaminodiphenyl ether (34 ODA), 4,4'-diaminodiphenyl ether (ODA), 1,5-diaminonaphthalene, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane 4,4′-diaminodiphenylethylphosphine oxide, 1,3-bis (3-aminophenoxy) benzene (133APB), 1,3-bis (4-aminophenoxy) benzene (134APB), 1,4-bis ( 4-aminophenoxy) benzene, bis [4- (3-aminophenoxy) phenyl] sulfone (BAPSM), bis [4- (4-aminophenoxy) phenyl] sulfone (BAPS), 2,2-bis [4- ( 4-Aminophenoxy) phenyl] propane (BAPP), 2,2 Bis (3-aminophenyl) 1,1,1,3,3,3-hexafluoropropane, 2,2-bis (4-aminophenyl) 1,1,1,3,3,3-hexafluoropropane and 9,9-bis (4-aminophenyl) fluorene and the like can be mentioned. Among them, preferable diamines are paraphenylenediamine (PPD), metaphenylenediamine (MPDA), 4,4′-diaminodiphenylmethane (MDA), 3,3′-diaminodiphenylsulfone (33DDS), and 4,4′-diaminodiphenylsulfone. (44DDS), 3,4'-diaminodiphenyl ether (34 ODA), 4,4'-diaminodiphenyl ether (ODA), 1,3-bis (3-aminophenoxy) benzene (133APB), 1,3-bis (4- Aminophenoxy) benzene (134APB), bis [4- (3-aminophenoxy) phenyl] sulfone (BAPSM), bis [4- (4-aminophenoxy) phenyl] sulfone (BAPS), 2,2-bis [4- (4-Aminophenoxy) phenyl] propane ( It is an APP).

また、芳香族テトラカルボン酸二無水物の代表例としては、ピロメリット酸二無水物(PMDA)、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、2,3,3’4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BPADA)、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、オキシジフタル酸無水物(ODPA)、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)スルホキシド二無水物、チオジフタル酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、2,3,6,7−アントラセンテトラカルボン酸二無水物、1,2,7,8−フェナントレンテトラカルボン酸二無水物、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン二無水物及び9,9−ビス[4−(3,4’−ジカルボキシフェノキシ)フェニル]フルオレン二無水物等を挙げることができる。中でも好ましいテトラカルボン酸二無水物は、ピロメリット酸二無水物(PMDA)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、2,2−ビス[3,4−(ジカルボキシフェノキシ)フェニル]プロパン二無水物(BPADA)、オキシジフタル酸無水物(ODPA)である。なお、これらをメタノール、エタノール等のアルコール類と反応させてエステル化合物としてもよい。   Moreover, as a typical example of aromatic tetracarboxylic dianhydride, pyromellitic dianhydride (PMDA), 1,2,5,6-naphthalene tetracarboxylic dianhydride, 1,4,5,8- Naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 2,3,3′4 ′ -Biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA), 2,2', 3,3'-benzophenone tetracarboxylic dianhydride, 2, 3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), bis (3,4-dicarboxyphenyl) sulfone dianhydride Bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, 2,2-bis [3,4- (dicarboxyphenoxy) phenyl] propane dianhydride (BPADA), 4,4 ′-( Hexafluoroisopropylidene) diphthalic anhydride, oxydiphthalic anhydride (ODPA), bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) sulfoxide dianhydride, thiodiphthalic acid Dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 1,2, , 8-phenanthrenetetracarboxylic dianhydride, 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride and 9,9-bis [4- (3,4'-dicarboxyphenoxy) phenyl] And fluorene dianhydride. Among them, preferred tetracarboxylic dianhydrides are pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3 ′, 4,4 ′. -Benzophenone tetracarboxylic dianhydride (BTDA), 2,2-bis [3,4- (dicarboxyphenoxy) phenyl] propane dianhydride (BPADA), oxydiphthalic anhydride (ODPA). These may be reacted with alcohols such as methanol and ethanol to form ester compounds.

なお、これらの芳香族ジアミン及び芳香族テトラカルボン酸二無水物は単独で又は混合して用いることができる。また、複数種類のポリイミド前駆体溶液を調製し、それらのポリイミド前駆体溶液を混合して用いることもできる。   In addition, these aromatic diamine and aromatic tetracarboxylic dianhydride can be used individually or in mixture. Moreover, multiple types of polyimide precursor solutions can be prepared and these polyimide precursor solutions can be mixed and used.

芳香族テトラカルボン酸二無水物と芳香族ジアミンとを反応させる有機極性溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチル−2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、N−メチルカプロラクタム、ヘキサメチルホスホリックトリアミド、1,2−ジメトキシエタン、ジグライム及びトリグライム等が挙げられる。中でも好ましい溶媒はN,N−ジメチルアセトアミド(DMAC)、N−メチル−2−ピロリドン(NMP)である。これらの溶媒を単独で又は混合物としてあるいはトルエン、キシレン、すなわち芳香族炭化水素などの他の溶媒と混合して用いることができる。   Organic polar solvents for reacting aromatic tetracarboxylic dianhydrides with aromatic diamines include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone 1,3-dimethyl-2-imidazolidinone, N-methylcaprolactam, hexamethylphosphoric triamide, 1,2-dimethoxyethane, diglyme and triglyme. Among them, preferred solvents are N, N-dimethylacetamide (DMAC) and N-methyl-2-pyrrolidone (NMP). These solvents can be used alone or as a mixture or mixed with other solvents such as toluene, xylene, that is, aromatic hydrocarbons.

また、本発明の実施の形態において、芳香族ジアミンはパラフェニレンジアミンであり、芳香族テトラカルボン酸二無水物は3,3',4,4'−ビフェニルテトラカルボン酸二無水物であることが特に好ましい。これらのモノマーから得られるポリイミド樹脂は機械的特性に優れ強靭であり、発熱層の温度が上昇しても熱可塑性樹脂のように軟化、あるいは溶融することが無く、優れた耐熱性を有するからである。   In the embodiment of the present invention, the aromatic diamine is paraphenylene diamine, and the aromatic tetracarboxylic dianhydride is 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. Particularly preferred. Polyimide resins obtained from these monomers are excellent in mechanical properties and tough, and do not soften or melt like thermoplastic resins even when the temperature of the heat generating layer rises, and have excellent heat resistance. is there.

これらのポリイミド前駆体溶液は、芳香族テトラカルボン酸二無水物と芳香族ジアミンとを有機極性溶媒中で通常は、90℃以下で反応させることによって得られ、溶媒中の固形分濃度は、導電性物質の混合割合や、あるいは塗布の条件によって所望の濃度を得ることができる。その好ましい範囲は10〜30質量%である。   These polyimide precursor solutions are obtained by reacting an aromatic tetracarboxylic dianhydride and an aromatic diamine in an organic polar solvent, usually at a temperature of 90 ° C. or less. The desired concentration can be obtained depending on the mixing ratio of the active substance or the application conditions. The preferable range is 10-30 mass%.

また、有機極性溶媒中で芳香族テトラカルボン酸二無水物と芳香族ジアミンとを反応させると、その重合状況によって溶液の粘度が上昇するが、使用に際しては溶媒で希釈して所望の粘度にしてから使用することができる。製造条件や作業条件によって通常1〜5000ポイズの粘度で使用される。   In addition, when aromatic tetracarboxylic dianhydride and aromatic diamine are reacted in an organic polar solvent, the viscosity of the solution increases depending on the polymerization state. Can be used from. It is usually used at a viscosity of 1 to 5000 poise depending on manufacturing conditions and working conditions.

なお、導電性組成物を略一方向に配向させて塗布するためには、あるいは金型の表面にキャスティング方法で塗布するためには、導電性組成物の粘度が10〜1500ポイズの範囲であることが好ましい。より好ましくは50〜1000ポイズの範囲である。また、本発明の発熱定着ベルトにおいて発熱層の外側に絶縁層が設けられる場合、その絶縁層には窒化硼素、チタン酸カリウム、酸化チタン、窒化アルミニウム、アルミナ、炭化珪素、窒化珪素等の電気絶縁性を有する熱伝導性物質を混合することが好ましい。熱伝導性を付与したり均一な発熱面を得たりすることができるからである。また、絶縁層を成形するための絶縁ポリイミド前駆体溶液の粘度も50〜1000ポイズであることが好ましい。   In order to apply the conductive composition so that it is oriented substantially in one direction, or to apply the conductive composition to the surface of the mold by a casting method, the viscosity of the conductive composition is in the range of 10 to 1500 poise. It is preferable. More preferably, it is the range of 50-1000 poise. In the heat-fixing belt of the present invention, when an insulating layer is provided outside the heat-generating layer, the insulating layer is electrically insulated from boron nitride, potassium titanate, titanium oxide, aluminum nitride, alumina, silicon carbide, silicon nitride, etc. It is preferable to mix a heat conductive material having a property. This is because thermal conductivity can be imparted and a uniform heating surface can be obtained. The viscosity of the insulating polyimide precursor solution for forming the insulating layer is also preferably 50 to 1000 poise.

また、本発明の実施の形態において、発熱定着ベルトの離型層は、フッ素樹脂、シリコーンゴム及びフッ素ゴムより成る群から選択される少なくとも1つの樹脂又はゴムから成ることが好ましい。モノクロプリンターに用いられる発熱定着ベルトにおいては、フッ素樹脂から成る離型層が好ましい。また、フッ素樹脂の中ではポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)を単体で又は混合して用いることがより好ましい。   In the embodiment of the present invention, the release layer of the heat fixing belt is preferably made of at least one resin or rubber selected from the group consisting of fluororesin, silicone rubber and fluororubber. In a heat-generating fixing belt used for a monochrome printer, a release layer made of a fluororesin is preferable. Also, among fluororesins, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP) are used alone or in combination. More preferably, it is used.

フッ素樹脂からなる離型層は、5〜30μmの厚みであることが好ましく、10〜20μmの厚みであることがより好ましい。また、絶縁層とフッ素樹脂との層間には接着性を安定させるためにプライマーを用いることが好ましい。また、そのプライマー層の厚みは2〜5μmであることが好ましい。   The release layer made of a fluororesin preferably has a thickness of 5 to 30 μm, more preferably 10 to 20 μm. In addition, it is preferable to use a primer between the insulating layer and the fluororesin in order to stabilize the adhesiveness. Moreover, it is preferable that the thickness of the primer layer is 2-5 micrometers.

所望する電気発熱量を得るために必要な発熱定着ベルトの発熱層の厚みは、導電性物質の混合量、発熱ベルトの内径あるいは給電端子の接触幅などの要素から設定することができる。また、絶縁層は定着ベルトの機械的特性を維持する層であり20μm〜80μmの厚みであることが好ましい。絶縁層の機械的特性と熱伝導特性とは一般的に相反する特性であるが、絶縁層に窒化硼素などの熱伝導性物質を混合し厚みを最適化すれば両特性を満たすことができる。   The thickness of the heat generating layer of the heat generating fixing belt necessary for obtaining a desired amount of electric heat generated can be set from factors such as the amount of conductive material mixed, the inner diameter of the heat generating belt, or the contact width of the power supply terminal. The insulating layer is a layer that maintains the mechanical characteristics of the fixing belt, and preferably has a thickness of 20 μm to 80 μm. The mechanical characteristics and thermal conductivity characteristics of the insulating layer are generally contradictory characteristics, but both characteristics can be satisfied by mixing a thermal conductive material such as boron nitride in the insulating layer and optimizing the thickness.

また、発熱層の内側にさらにもう1層の絶縁層(最内面絶縁層と記す)を成形することが好ましい。最内面絶縁層を設けることによって、熱伝導性に関係なく発熱定着ベルトの機械的特性のみを考慮して最内面絶縁層の厚みを設計することが可能になるからである。   Further, it is preferable to form another insulating layer (referred to as the innermost insulating layer) inside the heat generating layer. By providing the innermost insulating layer, it is possible to design the thickness of the innermost insulating layer in consideration of only the mechanical characteristics of the heat-generating fixing belt regardless of the thermal conductivity.

発熱層の内側に最内面絶縁層を設けた場合、発熱層の外面に設ける絶縁層は電気絶縁性のみを確保すればよいことになり、その厚みを薄くできるため、高い熱伝導性を得ることができ、ひいては、クイックスタートの実現や省エネルギーに貢献する。   When the innermost insulating layer is provided on the inner side of the heat generating layer, the insulating layer provided on the outer surface of the heat generating layer only needs to ensure electrical insulation, and its thickness can be reduced, so that high thermal conductivity is obtained. Can contribute to the realization of quick start and energy saving.

また、フルカラー画像を熱定着する場合には、赤、青、黄、黒の4色のトナーを十分に熱溶融させ混色し、中間色や濃淡を鮮明に定着する必要がある。このため、定着ベルトの表面に近いところに弾性層が形成されるのが好ましい。具体的には、図1に示される発熱定着ベルトでは、絶縁層の外面にシリコーンゴム等の弾性層を設け、さらにその弾性層の外面にフッ素樹脂等の離型層を設けることが好ましい。また、図2に示される発熱定着ベルトでは、発熱層の外側に弾性層を設け、さらにその弾性層の外面にフッ素樹脂等の離型層を設けることが好ましい。   When a full-color image is thermally fixed, it is necessary to sufficiently fuse and mix the four colors of red, blue, yellow, and black toners, and to fix the intermediate colors and shades clearly. For this reason, it is preferable that the elastic layer is formed near the surface of the fixing belt. Specifically, in the heat-generating fixing belt shown in FIG. 1, it is preferable to provide an elastic layer such as silicone rubber on the outer surface of the insulating layer and further provide a release layer such as a fluororesin on the outer surface of the elastic layer. In the heat-generating fixing belt shown in FIG. 2, it is preferable to provide an elastic layer outside the heat-generating layer and further provide a release layer such as a fluororesin on the outer surface of the elastic layer.

また、本実施の形態において、絶縁層の外面に発熱層が設けられ、発熱層の外面に離型層が設けられてもよい。   In the present embodiment, a heat generating layer may be provided on the outer surface of the insulating layer, and a release layer may be provided on the outer surface of the heat generating layer.

また、この弾性層は、ゴム硬度の低く柔らかいものが好ましい。具体的には、例えばJIS−A硬度で3〜40度のシリコーンゴムなどが好適である。弾性層の厚さは100〜300μmの範囲が好ましい。また、本発明においては、定着ベルトそのものが給電によって発熱するため、絶縁層、弾性層及び離型層が積層された構造であっても発熱効率が高く、定着ムラや光沢ムラのない、高い画像品質を得ることができる。   Further, this elastic layer is preferably soft and has a low rubber hardness. Specifically, silicone rubber having a JIS-A hardness of 3 to 40 degrees is suitable. The thickness of the elastic layer is preferably in the range of 100 to 300 μm. In the present invention, since the fixing belt itself generates heat by power feeding, even if it has a structure in which an insulating layer, an elastic layer, and a release layer are laminated, heat generation efficiency is high, and there is no fixing unevenness or gloss unevenness. Quality can be obtained.

また、本発明の発熱定着ベルトは、(a)ポリイミド前駆体溶液中にカーボンナノ材料及びフィラメント状金属微粉子を混合した導電性組成物を円筒状金型の表面に塗布する工程、(b)塗布された導電性組成物を加熱して発熱層を成形する工程、(c)前記発熱層の外面に絶縁層となる絶縁ポリイミド前駆体溶液を塗布する工程、(d)前記絶縁ポリイミド前駆体溶液を加熱して絶縁層を成形する工程、(e)前記絶縁層の外面に離型層を塗布する工程及び(f)前記離型層を加熱して焼成する工程を経て製造される。   Further, the heat-generating fixing belt of the present invention includes (a) a step of applying a conductive composition in which a carbon nanomaterial and a filamentous metal fine powder are mixed in a polyimide precursor solution to the surface of a cylindrical mold, (b) Heating the applied conductive composition to form a heat generating layer, (c) applying an insulating polyimide precursor solution to be an insulating layer on the outer surface of the heat generating layer, and (d) the insulating polyimide precursor solution. And (e) a step of applying a release layer to the outer surface of the insulating layer, and (f) a step of heating and firing the release layer.

本発明の製造方法によれば、発熱定着ベルトの内層の発熱層の成形から、外層の離型層の成形まで、一貫した連続ラインで製造でき好ましい。また、円筒状金型の表面を鏡面に仕上げておくことにより、発熱層の内面の表面粗度を、最も小さくすることができ好ましい。   The production method of the present invention is preferable because it can be produced in a continuous continuous line from the formation of the heat generation layer of the inner layer of the heat fixing belt to the formation of the release layer of the outer layer. Moreover, it is preferable that the surface roughness of the inner surface of the heat generating layer can be minimized by finishing the surface of the cylindrical mold to a mirror surface.

また、本発明において、発熱定着ベルトは、(g)絶縁ポリイミド前駆体溶液を円筒状金型の表面に塗布する工程と、(h)円筒状金型の表面に塗布した絶縁ポリイミド前駆体溶液を加熱して絶縁層を成形する工程と、(i)絶縁層の外面に、ポリイミド前駆体溶液中にカーボンナノ材料及びフィラメント状金属微粉子が混合された導電性組成物を塗布する工程と、(j)導電性組成物を加熱して発熱層を成形する工程と、(k)発熱層の外面に離型層形成樹脂又は離型層形成樹脂前駆体を塗布する工程と、(l)離型層形成樹脂又は離型層形成樹脂前駆体を加熱して焼成する工程を経て製造されてもよい。   In the present invention, the heat fixing belt includes (g) a step of applying an insulating polyimide precursor solution to the surface of the cylindrical mold, and (h) an insulating polyimide precursor solution applied to the surface of the cylindrical mold. (I) a step of applying a conductive composition in which a carbon nanomaterial and a filamentous metal fine powder are mixed in a polyimide precursor solution to the outer surface of the insulating layer; j) heating the conductive composition to form a heat generating layer; (k) applying a release layer forming resin or a release layer forming resin precursor to the outer surface of the heat generating layer; You may manufacture through the process of heating and baking layer forming resin or mold release layer forming resin precursor.

さらに、本発明において、発熱定着ベルトは、(m)第1絶縁ポリイミド前駆体溶液を円筒状金型の表面に塗布する工程と、(n)円筒状金型の表面に塗布した第1絶縁ポリイミド前駆体溶液を加熱して第1絶縁層を成形する工程と、(o)第1絶縁層の外面に、ポリイミド前駆体溶液中にカーボンナノ材料及びフィラメント状金属微粉子が混合された導電性組成物を塗布する工程と、(p)導電性組成物を加熱して発熱層を成形する工程と、(q)発熱層の外面に第2絶縁ポリイミド前駆体溶液を塗布する工程と、(r)第2絶縁ポリイミド前駆体溶液を加熱して第2絶縁層を成形する工程と、(s)第2絶縁層の外面に離型層形成樹脂又は離型層形成樹脂前駆体を塗布する工程と、(t)離型層形成樹脂又は離型層形成樹脂前駆体を加熱して焼成する工程を経て製造されてもよい。なお、この製造方法において、第1絶縁ポリイミド前駆体溶液と第2絶縁ポリイミド前駆体溶液とは同じであってもよいし異なっていてもよい。   Further, in the present invention, the heat-generating fixing belt includes (m) a step of applying a first insulating polyimide precursor solution to the surface of the cylindrical mold, and (n) a first insulating polyimide applied to the surface of the cylindrical mold. A step of forming the first insulating layer by heating the precursor solution; and (o) a conductive composition in which a carbon nanomaterial and a filamentous metal fine powder are mixed in the polyimide precursor solution on the outer surface of the first insulating layer. A step of applying an object, (p) a step of forming a heat generating layer by heating the conductive composition, (q) a step of applying a second insulating polyimide precursor solution to the outer surface of the heat generating layer, and (r) Heating the second insulating polyimide precursor solution to mold the second insulating layer; and (s) applying a release layer forming resin or a release layer forming resin precursor to the outer surface of the second insulating layer; (T) Heat release layer forming resin or release layer forming resin precursor It may be manufactured through a step of firing Te. In this manufacturing method, the first insulating polyimide precursor solution and the second insulating polyimide precursor solution may be the same or different.

なお、本発明の実施形態において、導電性組成物を円筒状金型の外面に塗布した後、導電性組成物中のカーボンナノ材料やフィラメント状金属微粒子を、略一方向、すなわちその長さ方向に束ねられたような状態に配向させるためには、導電性組成物を円筒状金型に塗布した後、塗布面を一定方向にしごき拭うような工程を設けることが好ましい。   In the embodiment of the present invention, after the conductive composition is applied to the outer surface of the cylindrical mold, the carbon nanomaterial and the filamentous metal fine particles in the conductive composition are substantially unidirectional, that is, the length direction thereof. In order to orient the film in a bundled state, it is preferable to provide a step of wiping the coated surface in a certain direction after coating the conductive composition on the cylindrical mold.

なお、導電性組成物を略一方向に配向させるためには、本発明の製造方法の(a)工程において、図8に示すように、円筒状金型61の外面に導電性組成物64を塗布し、リング状ダイス62を金型の上部から挿入して通過させるのが最も好ましい。導電性組成物の塗布厚みの制御と導電性物質の配向とを1つの工程で処理をできるからである。なお、図8中、符号63は一定厚みで塗布された導電性組成物塗膜である。   In order to orient the conductive composition in substantially one direction, as shown in FIG. 8, in the step (a) of the manufacturing method of the present invention, the conductive composition 64 is placed on the outer surface of the cylindrical mold 61. Most preferably, the ring-shaped die 62 is inserted and passed through the upper part of the mold. This is because the control of the coating thickness of the conductive composition and the orientation of the conductive material can be processed in one step. In addition, in FIG. 8, the code | symbol 63 is the electrically conductive composition coating film apply | coated by fixed thickness.

また、本発明の製造方法では、工程(a)で円筒状金型表面に導電性組成物を塗布した後、工程(b)でその塗布された導電性組成物中のポリイミド樹脂が半硬化状態となるように加熱されるのが好ましく、さらに、工程(c)でその半硬化状態の発熱層の外面に、絶縁ポリイミド前駆体溶液を塗布し、さらに工程(d)でその絶縁ポリイミド前駆体溶液を加熱して発熱層と絶縁層とのイミド化を同時に完結するのが好ましい。発熱層と絶縁層とをイミド化によって強固に接着でき、かつ、製造ラインの熱効率を高めることができるからである。   Moreover, in the manufacturing method of this invention, after apply | coating an electroconductive composition to the cylindrical metal mold | die surface at a process (a), the polyimide resin in the electroconductive composition apply | coated at the process (b) is a semi-hardened state. In step (c), an insulating polyimide precursor solution is applied to the outer surface of the semi-cured heat generating layer, and in step (d), the insulating polyimide precursor solution is further heated. It is preferable to complete the imidization of the heat generating layer and the insulating layer at the same time. This is because the heat generation layer and the insulating layer can be firmly bonded by imidization and the thermal efficiency of the production line can be increased.

さらにまた、絶縁層の外面にフッ素樹脂離型層を成形する工程(e)、(f)においても、発熱層、絶縁層をそれぞれ半硬化の状態で積層させ、その外面にフッ素樹脂ディスパージョン等を塗布し、乾燥後、発熱層、絶縁層の2層のイミド化の完結とフッ素樹脂の焼成とを同時に行うことが好ましい。各層の接着力を高めるこができるからである。ポリイミドのイミド化温度及びフッ素樹脂の焼成温度は、いずれも350度C〜400度Cの高温下での処理になるため、これらを同時に処理することで各熱処理工程を短縮でき、製造時の熱効率を高めることができるからである。なお、絶縁層の外面にフッ素樹脂離型層を成形させる場合、その接着強度を安定させるために、プライマー層を介在させることが好ましい。   Furthermore, in the steps (e) and (f) of forming the fluororesin release layer on the outer surface of the insulating layer, the heat generating layer and the insulating layer are laminated in a semi-cured state, and the fluororesin dispersion or the like is formed on the outer surface. After coating and drying, it is preferable to simultaneously complete the imidization of the two layers of the heat generation layer and the insulating layer and to fire the fluororesin. This is because the adhesive strength of each layer can be increased. Since both the imidization temperature of polyimide and the firing temperature of fluororesin are treatments at a high temperature of 350 ° C. to 400 ° C., each heat treatment step can be shortened by treating these simultaneously, and the thermal efficiency during production It is because it can raise. When forming a fluororesin release layer on the outer surface of the insulating layer, it is preferable to interpose a primer layer in order to stabilize the adhesive strength.

なお、半硬化の状態とは、導電性組成物あるいは絶縁ポリイミド前駆体溶液が80〜120度Cの温度で乾燥された後、200〜250度Cまでの温度で加熱された状態をいう。なお、かかる場合、導電性組成物中のポリイミド前駆体は、イミド化が完結する前の状態にある。また、この状態になるまでにかかる処理時間は30分〜2時間の範囲である。   The semi-cured state means a state where the conductive composition or the insulating polyimide precursor solution is dried at a temperature of 80 to 120 ° C. and then heated at a temperature of 200 to 250 ° C. In such a case, the polyimide precursor in the conductive composition is in a state before imidization is completed. Further, the processing time required to reach this state is in the range of 30 minutes to 2 hours.

次に、本発明の発熱定着ベルトを用いた画像定着装置の一実施形態を図3に基づき説明する。この定着装置は、発熱定着ベルト11と、発熱定着ベルト11の内側に配置される耐熱絶縁性樹脂からなるベルト支持ホルダー12と、加圧ロール14とから構成される。発熱定着ベルトに給電するための一対の給電端子13は、ベルト支持ホルダー12の両端に設けられており、加圧ロール14の加圧力によって、発熱定着ベルト内側の発熱層と摺接するようになっている。なお、図3中、符号16は加圧ロールのシャフトであり、その加圧ロールのシャフト16は駆動モーター(図示せず)に連結されている。また、符号17は電源であり、符号18はリード線である。また、符号15は耐熱絶縁性樹脂からなるベルトガイド板であり、そのベルトガイド板15は発熱定着ベルトが蛇行した場合のストッパーの役割を担う。ベルト支持ホルダー12及びベルトガイド板15の材料としては、ポリフェニレンサルファイド、ポリアミドイミド、ポリエーテルエーテルケトン、液晶ポリマー等の耐熱性樹脂が用いられることが好ましい。なお、(b)図は(a)図のI−I間の概略断面図である。   Next, an embodiment of an image fixing apparatus using the heat generating fixing belt of the present invention will be described with reference to FIG. The fixing device includes a heat generating fixing belt 11, a belt support holder 12 made of a heat-resistant insulating resin disposed inside the heat generating fixing belt 11, and a pressure roll 14. A pair of power supply terminals 13 for supplying power to the heat fixing belt are provided at both ends of the belt support holder 12, and come into sliding contact with the heat generating layer inside the heat fixing belt by the pressure of the pressure roll 14. Yes. In FIG. 3, reference numeral 16 denotes a pressure roll shaft, and the pressure roll shaft 16 is connected to a drive motor (not shown). Reference numeral 17 denotes a power source, and reference numeral 18 denotes a lead wire. Reference numeral 15 denotes a belt guide plate made of a heat-resistant insulating resin, and the belt guide plate 15 serves as a stopper when the heat-generating fixing belt meanders. As a material for the belt support holder 12 and the belt guide plate 15, it is preferable to use a heat resistant resin such as polyphenylene sulfide, polyamide imide, polyether ether ketone, or liquid crystal polymer. In addition, (b) figure is a schematic sectional drawing between II of (a) figure.

本願の画像定着装置では、駆動源を持つ加圧ロールによって、加圧ロールと圧接された発熱定着ベルトが従動し、加圧ロールと定着ベルトとのニップ部Nに、未定着のトナー像20が形成された複写紙19が順次送り込まれ熱定着がなされる。   In the image fixing apparatus of the present application, the heat-generating fixing belt brought into pressure contact with the pressure roll is driven by the pressure roll having the driving source, and the unfixed toner image 20 is formed in the nip portion N between the pressure roll and the fixing belt. The formed copy paper 19 is sequentially fed and heat-fixed.

以下に実施例により、さらに具体的に説明する。本発明の評価は下記に示される測定器を用い下記に示される条件下で行った。   Hereinafter, the present invention will be described more specifically with reference to examples. The evaluation of the present invention was performed under the conditions shown below using a measuring instrument shown below.

(1)体積抵抗率の測定
デジタルマルチメーターModel7562(横河電気製)を用い、4線式プローブにより発熱体の体積抵抗率を測定した。
(1) Measurement of volume resistivity Using a digital multimeter Model 7562 (manufactured by Yokogawa Electric), the volume resistivity of the heating element was measured with a four-wire probe.

(2)温度分布の測定
サーモトレーサTH1101(日本電気三栄製)を用いて測定した。
(2) Measurement of temperature distribution The temperature distribution was measured using a thermotracer TH1101 (manufactured by NEC Sanei).

本実施例では、以下に示すようにして図1に示される発熱定着ベルトを製作した後、その発熱定着ベルトの定着テストを行った。   In this example, after the heat generating fixing belt shown in FIG. 1 was manufactured as shown below, a fixing test of the heat generating fixing belt was performed.

(1)発熱層用導電性組成物の作製
ポリイミド前駆体溶液(ポリイミドワニス「Pyre−ML RC5063」,I.S.T社製)を用意した。このポリイミド前駆体溶液はN−メチル−2−ピロリドン(NMP)中で3,3',4,4'−ビフェニルテトラカルボン酸二無水物「BPDA」とパラフェニレンジアミン「PPD」とを重合したものであり、固形分濃度は17.5wt%であった。そして、このポリイミド前駆体溶液の固形分に対してカーボンナノファイバー(VGCF−H、昭和電工製)を20vol%、フィラメント状ニッケル微粒子(TYPE210、インコ社製)を13vol%、容器に投入し1時間攪拌した後、その内容物を150番のSUSメッシュで濾過して粘度(23度C、B型粘度計による)800ポイズの発熱層用導電性組成物を調製した。なお、カーボンナノファイバー(VGCF−H)の真密度は2.0g/cm3であり、フィラメント状ニッケル微粒子(TYPE210)の真密度は8.9g/cm3である。
(1) Production of Conductive Composition for Heat Generation Layer A polyimide precursor solution (polyimide varnish “Pyre-ML RC5063”, manufactured by IS Co., Ltd.) was prepared. This polyimide precursor solution is obtained by polymerizing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride “BPDA” and paraphenylenediamine “PPD” in N-methyl-2-pyrrolidone (NMP). The solid content concentration was 17.5 wt%. Then, 20% by volume of carbon nanofiber (VGCF-H, manufactured by Showa Denko) and 13% by volume of filamentous nickel fine particles (TYPE210, manufactured by Inco) are charged into the container for 1 hour with respect to the solid content of the polyimide precursor solution. After stirring, the content was filtered through a No. 150 SUS mesh to prepare a conductive composition for a heat generating layer having a viscosity (according to a B-type viscometer at 23 degrees C) of 800 poise. The true density of the carbon nanofiber (VGCF-H) is 2.0 g / cm 3 , and the true density of the filamentary nickel fine particles (TYPE 210) is 8.9 g / cm 3 .

(2)絶縁層用ポリイミド前駆体溶液の作製
絶縁層のためのポリイミド前駆体溶液としてポリイミドワニス「Pyre−ML RC5063」(I.S.T社製)を用意した。そして、そのポリイミド前駆体溶液に、窒化硼素粉末(三井化学「MBN−010T」)を、ポリイミド前駆体溶液の固形分濃度に対して18wt%混合して絶縁層用ポリイミド前駆体溶液を調製した。
(2) Production of Polyimide Precursor Solution for Insulating Layer A polyimide varnish “Pyre-ML RC5063” (manufactured by IST Co.) was prepared as a polyimide precursor solution for the insulating layer. Then, boron nitride powder (Mitsui Chemical "MBN-010T") was mixed with the polyimide precursor solution at 18 wt% with respect to the solid content concentration of the polyimide precursor solution to prepare a polyimide precursor solution for an insulating layer.

(3)発熱層の成形
外径が24mmであり長さが500mmであるアルミニウム製円筒状金型の表面に、酸化珪素コーティング剤をディッピング法によりコーティングして焼付けてアルミニウム製円筒状金型を酸化珪素膜で被覆した。なお、この円筒状金型の平均表面粗度はRz0.2μmであった。次いで、図8に示す浸漬キャスティング方法により、(1)項で調製した発熱層用導電組成物64に金型61を下部から400mm部分まで浸漬して金型61に発熱層用導電組成物64を塗布した後、内径24.95mmのリング状ダイス62を金型61の上部から挿入して走行させ、金型61の外側に導電性キャスト膜63を形成した。
(3) Molding of heat generating layer The surface of an aluminum cylindrical mold having an outer diameter of 24 mm and a length of 500 mm is coated with a silicon oxide coating agent by a dipping method and baked to oxidize the aluminum cylindrical mold. Covered with a silicon film. The average surface roughness of this cylindrical mold was Rz 0.2 μm. Next, by the immersion casting method shown in FIG. 8, the mold 61 is immersed in the heat generating layer conductive composition 64 prepared in the item (1) from the lower part to the 400 mm portion, and the heat generating layer conductive composition 64 is placed in the mold 61. After coating, a ring-shaped die 62 having an inner diameter of 24.95 mm was inserted from the upper part of the mold 61 and traveled to form a conductive cast film 63 on the outer side of the mold 61.

その後、導電性キャスト膜63が形成された金型を120度Cのオーブンに入れ60分間乾燥させた後、200度Cの温度まで30分間で昇温させ、同温度で15分間保持してオーブンから取り出し、室温(25度C)まで冷却し半硬化導電層ベルトを得た。   Thereafter, the mold on which the conductive cast film 63 is formed is placed in an oven at 120 ° C. and dried for 60 minutes, and then heated up to a temperature of 200 ° C. over 30 minutes and held at that temperature for 15 minutes. And cooled to room temperature (25 ° C.) to obtain a semi-cured conductive layer belt.

(4)絶縁層の成形
次に、(3)項の半硬化導電性ベルトが成形された金型を(2)項で調製した絶縁層用ポリイミド前駆体溶液中に浸漬し、図8の浸漬キャスティング方法でイミド化後の厚みが35μmになるように半硬化絶縁層被膜を成形した。次いで、発熱層の熱処理と同じようにこの金型を120度Cのオーブンに入れ60分間乾燥させた後、200度Cの温度まで30分間で昇温させ、同温度で15分間保持し、発熱層の外面に半硬化状態のポリイミド絶縁層が積層された半硬化積層ベルトを得た。
(4) Molding of insulating layer Next, the mold on which the semi-cured conductive belt of (3) was molded was immersed in the polyimide precursor solution for insulating layer prepared in (2), and the immersion shown in FIG. A semi-cured insulating layer film was formed by casting so that the thickness after imidization was 35 μm. Next, as in the heat treatment of the heat generating layer, this mold was put in an oven at 120 ° C. and dried for 60 minutes, then heated to a temperature of 200 ° C. over 30 minutes and held at that temperature for 15 minutes. A semi-cured laminated belt in which a semi-cured polyimide insulating layer was laminated on the outer surface of the layer was obtained.

(5)プライマー層の成形
(4)項で作製した半硬化積層ベルトをフッ素樹脂プライマー液(デュポン社製:「テフロン(登録商標)」855−300)に浸漬し所定の速度で引上げることによりフッ素樹脂プライマー液を約4μmの厚みにコーティングした後、180度Cの温度で20分間乾燥して再び常温まで冷却した。
(5) Molding of primer layer By immersing the semi-cured laminated belt produced in (4) in a fluororesin primer solution (manufactured by DuPont: “Teflon (registered trademark)” 855-300) and pulling it up at a predetermined speed. After coating the fluororesin primer solution to a thickness of about 4 μm, it was dried at a temperature of 180 ° C. for 20 minutes and then cooled to room temperature again.

(6)離型層の成形
次に、発熱定着ベルトの離型層材料としてのPTFEディスパーション(デュポン社製:「テフロン(登録商標)」855−510)に、(5)項においてフッ素樹脂プライマー液を塗布された半硬化積層ベルトを浸漬して引き上げることにより、PTFEディスパーションを15μmの厚みにコーティングした。なお、PTFEディスパージョンには、画像定着時のオフセットを防止するためにカーボンブラック(ケッチンブラック「W−310A」ライオン社製)を固形分比で0.6wt%加えた。その後、この半硬化積層ベルトを200度Cで10分間乾燥した後、400度Cまで30分間で昇温し、同温度で20分間加熱してPTFE樹脂の焼成と、半硬化状態の発熱層及び絶縁層のイミド化を同時に完結し、最後に金型61から定着ベルトを脱型し発熱定着ベルトを得た。
(6) Molding of Release Layer Next, PTFE Dispersion (manufactured by DuPont: “Teflon (registered trademark)” 855-510) as a release layer material of the heat-generating fixing belt, and a fluororesin primer in the item (5) PTFE dispersion was coated to a thickness of 15 μm by immersing and pulling up the semi-cured laminated belt coated with the liquid. The PTFE dispersion was added with 0.6 wt% of carbon black (Ketchin Black “W-310A” manufactured by Lion) in order to prevent offset during image fixing. Thereafter, the semi-cured laminated belt was dried at 200 ° C. for 10 minutes, then heated to 400 ° C. for 30 minutes, heated at the same temperature for 20 minutes to sinter the PTFE resin, The imidization of the insulating layer was completed at the same time, and finally the fixing belt was removed from the mold 61 to obtain a heat generating fixing belt.

発熱定着ベルトを図1に示す、この発熱定着ベルトの内径は24mmであり、ベルト内側の発熱層1の厚みは約35μmであり、絶縁層2は約35μmであり、最外層の離型層は約15μmであり、総厚みは88μmであった。   The heat-generating fixing belt shown in FIG. 1 has an inner diameter of 24 mm, the thickness of the heat-generating layer 1 inside the belt is about 35 μm, the insulating layer 2 is about 35 μm, and the outermost release layer is The total thickness was about 88 μm.

(7)発熱定着ベルトの評価
(7−1)体積抵抗率及び電極間抵抗値の測定
発熱定着ベルトを240mmの長さに切断し、デジタルマルチメーターModel7562を用いて体積抵抗率を測定した。発熱定着ベルトの長さ方向の体積抵抗率(LD)は36×10-4Ωcmであり、長さ方向と直交する方向の体積抵抗率(DD)の測定値は63×10-4Ωcmであり、Ra値は1.75であった。
(7) Evaluation of Heat Fixing Belt (7-1) Measurement of Volume Resistivity and Interelectrode Resistance The heat fixing belt was cut to a length of 240 mm, and the volume resistivity was measured using a digital multimeter Model 7562. The volume resistivity (LD) in the length direction of the heat generating fixing belt is 36 × 10 −4 Ωcm, and the measured value of the volume resistivity (DD) in the direction perpendicular to the length direction is 63 × 10 −4 Ωcm. , Ra value was 1.75.

(7−2)発熱温度分布の測定
発熱定着ベルトの内側にステンレス製の給電端子を取り付け図5に示される方法で発熱テストを行った。給電端子をベルトの両端部から12mmのベルト内面の直線上に設け、発熱定着ベルトをその給電端子54から加電した。なお、給電端子の寸法は、幅及び長さが10mmであった。また、給電端子は、発熱定着ベルト内側の発熱層に密着させてクリップ固定した。図5に示されるように、電源には可変電圧調整器を接続し、その電源から電圧を設定しながら発熱層51に給電した。まず、始めにサーモトレーサを標準モードにして、発熱定着ベルトの表面温度を観測しながらベルトの表面(離型層表面)が220度Cとなる様に可変電圧調整器の出力電圧を調整し、その表面が220度Cとなった以降はこの状態で給電を続け、そのときの温度分布を測定した。この時の出力電圧は45Vであった。その後、給電を停止し、発熱定着ベルトが室温になるまで自然冷却した。
(7-2) Measurement of heat generation temperature distribution A stainless steel power supply terminal was attached inside the heat generation fixing belt, and a heat generation test was performed by the method shown in FIG. A power supply terminal was provided on a straight line on the inner surface of the belt 12 mm from both ends of the belt, and the heat generating fixing belt was energized from the power supply terminal 54. The dimensions of the power supply terminal were 10 mm in width and length. In addition, the power supply terminal was fixed in a clip by being brought into close contact with the heat generation layer inside the heat fixing belt. As shown in FIG. 5, a variable voltage regulator was connected to the power source, and power was supplied to the heat generating layer 51 while setting the voltage from the power source. First, the thermotracer is set to the standard mode, and the output voltage of the variable voltage regulator is adjusted so that the belt surface (release layer surface) is 220 ° C. while observing the surface temperature of the heat-generating fixing belt. After the surface reached 220 ° C., power supply was continued in this state, and the temperature distribution at that time was measured. The output voltage at this time was 45V. Thereafter, the power supply was stopped and the heat fixing belt was naturally cooled until it reached room temperature.

次に、サーモトレーサをタイムトレースモードに切り替えて通電開始から10秒間の発熱定着ベルトの温度上昇変化を観測し記録した。記録データから通電開始10秒後の長さ方向の発熱体表面温度を読み取ると最高温度210.8度Cであり、最低温度は208度Cであり、温度分布は3度C以内であった。すなわち、均一な発熱上昇特性を確認することができた。特に、発熱定着ベルトの給電端子間の温度差はほとんど無く、非常に均一な発熱特性が得られた。また、発熱定着ベルトは、発熱状態において、図4のように長さ方向の中央部に膨らみ57を有する楕円に近い形状を有していた。   Next, the thermotracer was switched to the time trace mode, and the temperature rise change of the heat generating fixing belt for 10 seconds from the start of energization was observed and recorded. When the surface temperature of the heating element in the length direction 10 seconds after the start of energization was read from the recorded data, the maximum temperature was 210.8 degrees C, the minimum temperature was 208 degrees C, and the temperature distribution was within 3 degrees C. That is, a uniform heat generation increase characteristic could be confirmed. In particular, there was almost no temperature difference between the power supply terminals of the heat generating fixing belt, and very uniform heat generation characteristics were obtained. In addition, the heat-generating fixing belt had a shape close to an ellipse having a bulge 57 at the center in the length direction as shown in FIG.

(7−3)カーボンナノファイバーの配向状態の確認
発熱層のカーボンナノファイバー及びフィラメント状ニッケル微粒子の配向状態を電子顕微鏡で撮影した結果を図6に示す。カーボンナノファイバーは写真の左右方向(発熱定着ベルトの長さ方向)に配向した状態で存在しており、フィラメント状ニッケル微粒子は一定方向に配向したカーボンナノファイバーに絡み合ったような状態で存在していることが確認できた。
(7-3) Confirmation of Orientation State of Carbon Nanofiber FIG. 6 shows the result of photographing the orientation state of the carbon nanofiber and filamentary nickel fine particles in the heat generation layer with an electron microscope. Carbon nanofibers exist in a state of being oriented in the left-right direction of the photograph (the length direction of the heat-generating fixing belt), and filamentary nickel fine particles exist in a state of being entangled with carbon nanofibers oriented in a certain direction. It was confirmed that

(7−4)画像定着装置に組み込み評価
発熱定着ベルトを図3に示す画像定着装置に組み込み、トナー像の定着テストを行った。定着温度はサーミスタで200度Cに設定し、毎分16枚の通紙をおこなったところ、電源投入から瞬時に定着ができ、オフセットなどの発生もなく鮮明な定着画像が得られた。
(7-4) Evaluation of incorporation into image fixing device A heat fixing belt was incorporated into the image fixing device shown in FIG. 3, and a toner image fixing test was conducted. The fixing temperature was set to 200 ° C. with a thermistor and 16 sheets were passed every minute. As a result, fixing was possible immediately after the power was turned on, and a clear fixed image was obtained without occurrence of offset.

本実施例では、シリコーン弾性層が成形された発熱ベルトを説明する。   In this embodiment, a heat generating belt formed with a silicone elastic layer will be described.

(1)発熱ベルト中間体の作製
実施例1の(3)項で作製した半硬化導電層ベルトの外面に絶縁層を形成した半硬化積層ベルトをさらに400度Cまで加熱することによりイミド化を完結した発熱定着ベルト中間体を作製した。
(1) Production of heat generating belt intermediate body A semi-cured laminated belt in which an insulating layer is formed on the outer surface of the semi-cured conductive layer belt produced in the item (3) of Example 1 is further heated to 400 ° C. to perform imidization. A complete exothermic fixing belt intermediate was prepared.

(2)シリコーンゴム弾性層の成形
発熱定着ベルト中間体の絶縁層の外面にプライマーを塗布した。具体的には、プライマーとしてGE東芝シリコーン社製商品名「XP−81−405」のA及びB2液を予め1:1の割合で混合したものを、発熱定着ベルト中間体の絶縁層の外面に刷毛で均一に塗布した後、その発熱定着ベルト中間体を室温で20分乾燥した後、150度Cのオーブンに入れ、20分間乾燥した。その後、リング状ダイスを用いその発熱定着ベルト中間体のプライマー処理面の外側に液状シリコーンゴム(GE東芝シリコーン社製商品名「XE15−B7354」A及びB2液を予め1:1の割合で混合した液状ゴム)を200μmの厚みで塗布した。その後、150度Cの温度で10分、その液状シリコーンゴムの一次加硫を行い、さらに200度Cの温度で4時間、その液状シリコーンゴムの二次加硫を行った。その結果、発熱定着ベルト中間体の外面に200μmの厚みでシリコーンゴムを成形した弾性層積層ベルトが作製された。同加硫条件で作製したテストピースのゴム硬度は30度であった。
(2) Molding of silicone rubber elastic layer A primer was applied to the outer surface of the insulating layer of the heat-generating fixing belt intermediate. Specifically, as a primer, a mixture of A and B2 liquids of trade name “XP-81-405” manufactured by GE Toshiba Silicone Co., Ltd. in a ratio of 1: 1 in advance is applied to the outer surface of the insulating layer of the heat-generating fixing belt intermediate. After uniformly coating with a brush, the exothermic fixing belt intermediate was dried at room temperature for 20 minutes, then placed in an oven at 150 ° C. and dried for 20 minutes. Thereafter, liquid silicone rubber (trade name “XE15-B7354” A and B2 liquid manufactured by GE Toshiba Silicone Co., Ltd., and B2 liquid was mixed in a ratio of 1: 1 in advance on the outside of the primer-treated surface of the heat-generating fixing belt intermediate using a ring-shaped die. Liquid rubber) was applied in a thickness of 200 μm. Thereafter, primary vulcanization of the liquid silicone rubber was performed at a temperature of 150 ° C. for 10 minutes, and secondary vulcanization of the liquid silicone rubber was further performed at a temperature of 200 ° C. for 4 hours. As a result, an elastic layer laminated belt was produced in which silicone rubber was molded with a thickness of 200 μm on the outer surface of the heat generating belt intermediate. The test piece produced under the same vulcanization conditions had a rubber hardness of 30 degrees.

(3)弾性層積層ベルト外面の離型層成形
弾性層積層ベルトのシリコーンゴム表面を#500のサンドペーパーで軽く粗らし、表面をアルコールで洗浄した。次いで、そのシリコーンゴム表面に液状プライマー(三井デュポンフロロケミカル社製PR−990CL)を塗布し、室温で10分乾燥した。次いで、その弾性層積層ベルトを、粘度200センチポイズに調整したPFAディスパーション(デュポン社製商品名PFA920HPプラス「ENA−162−8」)の中に浸漬した後、その弾性層積層ベルトを所定の速度で引上げ、離型層の最終の厚さが15μmになるように弾性層積層ベルトにPFAディスパーションをコーティングし、その弾性層積層ベルトを常温で30分乾燥した後、330度Cのオーブンに入れ、15分間焼成することにより目的とする弾性層が積層された発熱体着ベルトを作製した。
(3) Release layer molding of outer surface of elastic layer laminated belt The silicone rubber surface of the elastic layer laminated belt was lightly roughened with # 500 sandpaper, and the surface was washed with alcohol. Next, a liquid primer (PR-990CL manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) was applied to the silicone rubber surface and dried at room temperature for 10 minutes. Next, the elastic layer laminated belt was immersed in a PFA dispersion (trade name PFA920HP plus “ENA-162-8” manufactured by DuPont) adjusted to a viscosity of 200 centipoise, and then the elastic layer laminated belt was moved to a predetermined speed. The elastic layer laminated belt is coated with PFA dispersion so that the final thickness of the release layer is 15 μm, and the elastic layer laminated belt is dried at room temperature for 30 minutes, and then placed in an oven at 330 ° C. The heating element wearing belt on which the target elastic layer was laminated was produced by baking for 15 minutes.

この発熱定着ベルトは内径が24mmであり総厚みが305μmであった。この発熱定着ベルトを本発明の画像定着装置に組み込み、さらにこの画像定着装置をタンデム型フルカラー画像形成装置に装着して毎分8枚のプリントを行ったところ良好な画像が得られた。すなわち、この発熱定着ベルトがフルカラー画像の定着ベルトとして好適に用いることができることが確認された。   This heat-generating fixing belt had an inner diameter of 24 mm and a total thickness of 305 μm. When this heat fixing belt was incorporated in the image fixing apparatus of the present invention and this image fixing apparatus was mounted on a tandem type full color image forming apparatus, printing was performed 8 sheets per minute, and a good image was obtained. That is, it was confirmed that this heat generating fixing belt can be suitably used as a fixing belt for full-color images.

本発明に係る発熱定着ベルトの横断面図及び縦断面図である。FIG. 2 is a transverse sectional view and a longitudinal sectional view of a heat generating fixing belt according to the present invention. 本発明に係る別の発熱定着ベルトの側面図及び縦断面図である。It is the side view and longitudinal cross-sectional view of another heat-generating fixing belt according to the present invention. 本発明に係る画像定着装置の概略図である。1 is a schematic diagram of an image fixing device according to the present invention. 本発明に係る発熱定着ベルトの発熱温度分布測定方法を説明するための図である。It is a figure for demonstrating the heat_generation | fever temperature distribution measuring method of the heat fixing belt which concerns on this invention. ストランドが三次元的に連なったニッケル微粒子の顕微鏡写真である。It is a microscope picture of the nickel fine particle in which the strand connected in three dimensions. 実施例1の記載に基づき作製した発熱層中におけるカーボンナノファイバーの配向状態を示す電子顕微鏡写真である。2 is an electron micrograph showing an orientation state of carbon nanofibers in a heat generation layer produced based on the description of Example 1. FIG. 本発明に係る給電端子取り付け板の概略図である。It is the schematic of the electric power feeding terminal attachment board which concerns on this invention. 本発明の実施例において用いられた浸漬キャスティング方法を説明するための概略図である。It is the schematic for demonstrating the immersion casting method used in the Example of this invention. 本発明に係るフィルム定着装置の概略図である。1 is a schematic view of a film fixing device according to the present invention.

符号の説明Explanation of symbols

1,51 発熱層
2,52 絶縁層
3,53 離型層
4 プライマー層
10,11 発熱定着ベルト
12 ベルト支持ホルダー
13,54、42給電端子
14 加圧ロール
15 ベルトガイド板
16 加圧ロール芯金
17,55 電源
18,56 配線
19 複写紙
20 未定着トナー像
N ニップ部
DESCRIPTION OF SYMBOLS 1,51 Heat generation layer 2,52 Insulating layer 3,53 Release layer 4 Primer layer 10,11 Heat-fixing belt 12 Belt support holder 13,54,42 Feed terminal 14 Pressure roll 15 Belt guide plate 16 Pressure roll cored bar 17, 55 Power supply 18, 56 Wiring 19 Copy paper 20 Unfixed toner image N Nip part

Claims (17)

電子写真画像形成装置の画像定着部に用いられるシームレスの発熱定着ベルトであって、
カーボンナノ材料及びフィラメント状金属微粒子が分散されるポリイミド樹脂からなる発熱層と、
絶縁層と、
前記絶縁層又は前記発熱層の外側に設けられる離型層と
を備える発熱定着ベルト。
A seamless heat-generating fixing belt used in an image fixing unit of an electrophotographic image forming apparatus,
A heating layer made of a polyimide resin in which carbon nanomaterials and filamentary metal fine particles are dispersed;
An insulating layer;
A heat-generating fixing belt comprising a release layer provided outside the insulating layer or the heat-generating layer.
前記絶縁層は、前記発熱層の外側に設けられ、
前記離型層は、前記絶縁層の外側に設けられる
請求項1に記載の発熱定着ベルト。
The insulating layer is provided outside the heat generating layer,
The heat-generating fixing belt according to claim 1, wherein the release layer is provided outside the insulating layer.
前記発熱層は、前記絶縁層の外側に設けられ、
前記離型層は、前記発熱層の外側に設けられる
請求項1に記載の発熱定着ベルト。
The heat generating layer is provided outside the insulating layer,
The heat-generating fixing belt according to claim 1, wherein the release layer is provided outside the heat-generating layer.
前記絶縁層は、第1絶縁層と第2絶縁層とを有し、
前記発熱層は、前記第1絶縁層の外側に設けられ、
前記第2絶縁層は、前記発熱層の外側に設けられ、
前記離型層は、前記第2絶縁層の外側に設けられる
請求項1に記載の発熱定着ベルト。
The insulating layer has a first insulating layer and a second insulating layer,
The heat generating layer is provided outside the first insulating layer,
The second insulating layer is provided outside the heat generating layer,
The heat-generating fixing belt according to claim 1, wherein the release layer is provided outside the second insulating layer.
シリコーンゴム及びフッ素ゴムより成る群から選択される少なくとも一つのゴムから成る弾性層をさらに備え、
前記離型層は、前記弾性層の外面に接するように設けられる
請求項1から4のいずれかに記載の発熱定着ベルト。
An elastic layer made of at least one rubber selected from the group consisting of silicone rubber and fluororubber;
The heat-generating fixing belt according to claim 1, wherein the release layer is provided so as to be in contact with an outer surface of the elastic layer.
前記カーボンナノ材料は、カーボンナノファイバー、カーボンナノチューブ及びカーボンマイクロコイルより成る群から選択される少なくとも1つの導電性物質である
請求項1から5のいずれかに記載の発熱定着ベルト。
6. The heat-generating fixing belt according to claim 1, wherein the carbon nanomaterial is at least one conductive material selected from the group consisting of carbon nanofibers, carbon nanotubes, and carbon microcoils.
前記フィラメント状金属微粒子は、ストランドが三次元的に連なった形状を有するニッケル微粒子である
請求項1から6のいずれかに記載の発熱定着ベルト。
The heat-generating fixing belt according to any one of claims 1 to 6, wherein the filamentary metal fine particles are nickel fine particles having a shape in which strands are three-dimensionally connected.
前記カーボンナノ材料及び前記フィラメント状金属微粒子は、略一方向に配向する
請求項1から7のいずれかに記載の発熱定着ベルト。
The heat-generating fixing belt according to any one of claims 1 to 7, wherein the carbon nanomaterial and the filament-shaped metal fine particles are oriented substantially in one direction.
前記カーボンナノ材料及び前記フィラメント状金属微粒子は、発熱定着ベルトの長さ方向に配向し、
前記カーボンナノ材料及び前記フィラメント状金属微粒子の配向方向の体積抵抗率は、前記配向方向と直交する方向の体積抵抗率よりも小さい
請求項8に記載の発熱定着ベルト。
The carbon nanomaterial and the filamentous fine metal particles are oriented in the length direction of the heat-generating fixing belt,
The heat generating fixing belt according to claim 8, wherein the volume resistivity in the orientation direction of the carbon nanomaterial and the filamentous metal fine particles is smaller than the volume resistivity in a direction orthogonal to the orientation direction.
前記ポリイミド樹脂は、少なくとも1種の芳香族ジアミンと少なくとも1種の芳香族テトラカルボン酸二無水物とを有機極性溶媒中で重合してなるポリイミド前駆体がイミド転化されたポリイミド樹脂である
請求項1から9のいずれかに記載の発熱定着ベルト。
The polyimide resin is a polyimide resin obtained by imidizing a polyimide precursor obtained by polymerizing at least one aromatic diamine and at least one aromatic tetracarboxylic dianhydride in an organic polar solvent. The heat-generating fixing belt according to any one of 1 to 9.
前記絶縁層は、少なくとも1種の芳香族ジアミンと少なくとも1種の芳香族テトラカルボン酸二無水物を有機極性溶媒中で重合してなるポリイミド前駆体がイミド転化されたポリイミド樹脂からなる
請求項1から10のいずれかに記載の発熱定着ベルト。
2. The insulating layer comprises a polyimide resin obtained by imidizing a polyimide precursor obtained by polymerizing at least one aromatic diamine and at least one aromatic tetracarboxylic dianhydride in an organic polar solvent. To 10. The heat generating fixing belt according to any one of items 1 to 10.
前記芳香族ジアミンは、パラフェニレンジアミン(PPD)であり、
前記芳香族テトラカルボン酸二無水物は、3,3',4,4'−ビフェニルテトラカルボン酸二無水物(BPDA)である
請求項10又は11に記載の発熱定着ベルト。
The aromatic diamine is paraphenylenediamine (PPD),
The heat generating fixing belt according to claim 10 or 11, wherein the aromatic tetracarboxylic dianhydride is 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (BPDA).
前記離型層は、フッ素樹脂、シリコーンゴム及びフッ素ゴムより成る群から選択される少なくとも1つの樹脂又はゴムからなる
請求項1から12のいずれかに記載の発熱定着ベルト。
The heat-generating fixing belt according to any one of claims 1 to 12, wherein the release layer is made of at least one resin or rubber selected from the group consisting of fluororesin, silicone rubber, and fluororubber.
発熱層と、前記発熱層の外側に設けられる絶縁層と、前記絶縁層の外側に設けられる離型層とを備える発熱定着ベルトの製造方法であって、
(a)ポリイミド前駆体溶液中にカーボンナノ材料及びフィラメント状金属微粉子が混合された導電性組成物を円筒状金型の表面に塗布する工程と、
(b)前記円筒状金型の表面に塗布した導電性組成物を加熱して発熱層を成形する工程と、
(c)前記発熱層の外側に絶縁ポリイミド前駆体溶液を塗布する工程と、
(d)前記絶縁ポリイミド前駆体溶液を加熱して絶縁層を成形する工程と、
(e)前記絶縁層の外側に離型層形成樹脂又は離型層形成樹脂前駆体を塗布する工程と、
(f)前記離型層形成樹脂又は離型層形成樹脂前駆体を加熱して焼成する工程と
を備える発熱定着ベルトの製造方法。
A heat-generating fixing belt comprising a heat-generating layer, an insulating layer provided outside the heat-generating layer, and a release layer provided outside the insulating layer,
(A) applying a conductive composition in which a carbon nanomaterial and a filamentous metal fine powder are mixed in a polyimide precursor solution to the surface of a cylindrical mold;
(B) heating the conductive composition applied to the surface of the cylindrical mold to form a heat generating layer;
(C) applying an insulating polyimide precursor solution to the outside of the heat generating layer;
(D) heating the insulating polyimide precursor solution to form an insulating layer;
(E) applying a release layer forming resin or a release layer forming resin precursor to the outside of the insulating layer;
(F) A method for producing a heat-generating fixing belt, comprising a step of heating and firing the release layer forming resin or the release layer forming resin precursor.
絶縁層と、前記絶縁層の外側に設けられる発熱層と、前記発熱層の外側に設けられる離型層とを備える発熱定着ベルトの製造方法であって、
(g)絶縁ポリイミド前駆体溶液を円筒状金型の表面に塗布する工程と、
(h)前記円筒状金型の表面に塗布した絶縁ポリイミド前駆体溶液を加熱して絶縁層を成形する工程と、
(i)前記絶縁層の外側に、ポリイミド前駆体溶液中にカーボンナノ材料及びフィラメント状金属微粉子が混合された導電性組成物を塗布する工程と、
(j)前記導電性組成物を加熱して発熱層を成形する工程と、
(k)前記発熱層の外側に離型層形成樹脂又は離型層形成樹脂前駆体を塗布する工程と、
(l)前記離型層形成樹脂又は離型層形成樹脂前駆体を加熱して焼成する工程と
を備える発熱定着ベルトの製造方法。
A method of manufacturing a heat-generating fixing belt comprising an insulating layer, a heat generating layer provided outside the insulating layer, and a release layer provided outside the heat generating layer,
(G) applying an insulating polyimide precursor solution to the surface of the cylindrical mold;
(H) heating the insulating polyimide precursor solution applied to the surface of the cylindrical mold to form an insulating layer;
(I) A step of applying a conductive composition in which a carbon nanomaterial and a filamentous metal fine powder are mixed in a polyimide precursor solution to the outside of the insulating layer;
(J) forming the heat generating layer by heating the conductive composition;
(K) applying a release layer forming resin or a release layer forming resin precursor to the outside of the heat generating layer;
(L) A method for producing a heat-generating fixing belt, comprising a step of heating and firing the release layer forming resin or the release layer forming resin precursor.
第1絶縁層と、前記第1絶縁層の外側に設けられる発熱層と、前記発熱層の外側に設けられる第2絶縁層と、前記第2絶縁層の外側に設けられる離型層とを備える発熱定着ベルトの製造方法であって、
(m)第1絶縁ポリイミド前駆体溶液を円筒状金型の表面に塗布する工程と、
(n)前記円筒状金型の表面に塗布した第1絶縁ポリイミド前駆体溶液を加熱して第1絶縁層を成形する工程と、
(o)前記第1絶縁層の外側に、ポリイミド前駆体溶液中にカーボンナノ材料及びフィラメント状金属微粉子が混合された導電性組成物を塗布する工程と、
(p)前記導電性組成物を加熱して発熱層を成形する工程と、
(q)前記発熱層の外側に第2絶縁ポリイミド前駆体溶液を塗布する工程と、
(r)前記第2絶縁ポリイミド前駆体溶液を加熱して第2絶縁層を成形する工程と、
(s)前記第2絶縁層の外側に離型層形成樹脂又は離型層形成樹脂前駆体を塗布する工程と、
(t)前記離型層形成樹脂又は離型層形成樹脂前駆体を加熱して焼成する工程と
を備える発熱定着ベルトの製造方法。
A first insulating layer; a heat generating layer provided outside the first insulating layer; a second insulating layer provided outside the heat generating layer; and a release layer provided outside the second insulating layer. A method of manufacturing an exothermic fixing belt,
(M) applying a first insulating polyimide precursor solution to the surface of the cylindrical mold;
(N) forming a first insulating layer by heating the first insulating polyimide precursor solution applied to the surface of the cylindrical mold;
(O) applying a conductive composition in which a carbon nanomaterial and a filamentous metal fine powder are mixed in a polyimide precursor solution to the outside of the first insulating layer;
(P) heating the conductive composition to form a heat generating layer;
(Q) applying a second insulating polyimide precursor solution to the outside of the heat generating layer;
(R) heating the second insulating polyimide precursor solution to form a second insulating layer;
(S) applying a release layer forming resin or a release layer forming resin precursor to the outside of the second insulating layer;
(T) A method for producing a heat-generating fixing belt comprising a step of heating and firing the release layer forming resin or the release layer forming resin precursor.
請求項1から13のいずれかに記載の発熱定着ベルトと、
前記発熱定着ベルトに給電するための給電手段と
を備える画像定着装置。
A heat-generating fixing belt according to any one of claims 1 to 13,
An image fixing apparatus comprising: a power supply means for supplying power to the heat generating fixing belt.
JP2007059110A 2006-03-10 2007-03-08 Heat-generating fixing belt, manufacturing method thereof, and image fixing apparatus Active JP5109168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059110A JP5109168B2 (en) 2006-03-10 2007-03-08 Heat-generating fixing belt, manufacturing method thereof, and image fixing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006065042 2006-03-10
JP2006065042 2006-03-10
JP2007059110A JP5109168B2 (en) 2006-03-10 2007-03-08 Heat-generating fixing belt, manufacturing method thereof, and image fixing apparatus

Publications (2)

Publication Number Publication Date
JP2007272223A JP2007272223A (en) 2007-10-18
JP5109168B2 true JP5109168B2 (en) 2012-12-26

Family

ID=38675020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059110A Active JP5109168B2 (en) 2006-03-10 2007-03-08 Heat-generating fixing belt, manufacturing method thereof, and image fixing apparatus

Country Status (1)

Country Link
JP (1) JP5109168B2 (en)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101636005B (en) * 2008-07-25 2012-07-18 清华大学 Plane heat source
CN101409962B (en) 2007-10-10 2010-11-10 清华大学 Surface heat light source and preparation method thereof
CN101400198B (en) 2007-09-28 2010-09-29 北京富纳特创新科技有限公司 Surface heating light source, preparation thereof and method for heat object application
JP5200278B2 (en) * 2007-10-05 2013-06-05 株式会社アイ.エス.テイ Heat fixing belt and image fixing device
KR100941487B1 (en) * 2007-12-13 2010-02-10 제일모직주식회사 Intermediate Transfer Belt Having Multilayered Structure
JP4680979B2 (en) * 2007-12-25 2011-05-11 住友電気工業株式会社 Polyimide tube, manufacturing method thereof, and fixing belt
WO2009081986A1 (en) * 2007-12-26 2009-07-02 Nano Carbon Technologies Co., Ltd. Planar heating element obtained using dispersion of fine carbon fibers in water and process for producing the planar heating element
CN101636010A (en) * 2008-07-25 2010-01-27 清华大学 Hollow heat source
CN101868074B (en) * 2009-04-20 2013-07-03 清华大学 Line heat source
CN101868071A (en) * 2009-04-20 2010-10-20 清华大学 Line heat source
CN101868070B (en) * 2009-04-20 2013-08-28 清华大学 Line heat source
CN101616515B (en) * 2008-06-27 2012-10-10 清华大学 Linear heat source
CN101868061A (en) * 2009-04-20 2010-10-20 清华大学 Three-dimensional heat source
CN101868060B (en) * 2009-04-20 2012-08-29 清华大学 Three-dimensional heat source
CN101868072B (en) * 2009-04-20 2015-06-03 清华大学 Preparation method of line heat source
CN101868073B (en) * 2009-04-20 2013-04-10 清华大学 Line heat source
CN101636011B (en) * 2008-07-25 2012-07-18 清华大学 Hollow heat source
CN101868059B (en) * 2009-04-20 2013-10-09 清华大学 Three-dimensional heat source
CN101616514B (en) * 2008-06-27 2011-07-27 清华大学 Linear heat source
CN101868058B (en) * 2009-04-20 2013-11-06 清华大学 Preparation method of three-dimensional heat source
CN101868057B (en) * 2009-04-20 2012-08-29 清华大学 Three-dimensional heat source
CN101636009B (en) * 2008-07-25 2012-08-29 清华大学 Method for preparing hollow heat source
CN101636002B (en) * 2008-07-25 2012-03-14 清华大学 Three-dimensional heat source
CN101848564B (en) * 2009-03-27 2012-06-20 清华大学 Heating element
US8563086B2 (en) 2009-07-22 2013-10-22 Korea Institute Research and Business Foundation Nano pattern formation
US8592732B2 (en) 2009-08-27 2013-11-26 Korea University Research And Business Foundation Resistive heating device for fabrication of nanostructures
JP5414450B2 (en) * 2009-10-19 2014-02-12 キヤノン株式会社 Pressure member, image heating apparatus, and image forming apparatus
US8099035B2 (en) * 2009-11-16 2012-01-17 Xerox Corporation Induction heated member
JP5473569B2 (en) 2009-12-02 2014-04-16 キヤノン株式会社 Image heating device
JP5780741B2 (en) 2009-12-18 2015-09-16 キヤノン株式会社 Fixing device
KR101269422B1 (en) 2009-12-30 2013-06-04 제일모직주식회사 Polycarbonate Resin Composition having Excellent Wear resistance and Electric Conductivity, and Method of Preparing the Same
CN102147147A (en) * 2010-02-08 2011-08-10 清华大学 Heating guide pipe
CN102147148A (en) * 2010-02-08 2011-08-10 清华大学 Fluid heater and using method thereof
JP5470086B2 (en) * 2010-02-19 2014-04-16 シャープ株式会社 Heat fixing belt, fixing device, and image forming apparatus including the fixing device
JP5564699B2 (en) * 2010-03-12 2014-07-30 コニカミノルタ株式会社 Fixing apparatus, fixing heating body, and image forming apparatus
JP5445440B2 (en) * 2010-03-15 2014-03-19 コニカミノルタ株式会社 Fixing rotator, fixing device and image forming apparatus
JP5407951B2 (en) 2010-03-15 2014-02-05 コニカミノルタ株式会社 Fixing apparatus and image forming apparatus
JP2011248190A (en) * 2010-05-28 2011-12-08 Konica Minolta Business Technologies Inc Heat generating belt for fixing device and image forming device
JP5163697B2 (en) 2010-06-02 2013-03-13 コニカミノルタビジネステクノロジーズ株式会社 Fixing apparatus and image forming apparatus
JP4998597B2 (en) 2010-06-03 2012-08-15 コニカミノルタビジネステクノロジーズ株式会社 Fixing apparatus and image forming apparatus
JP2011253083A (en) 2010-06-03 2011-12-15 Konica Minolta Business Technologies Inc Fixing device and image forming device
JP5104905B2 (en) 2010-06-03 2012-12-19 コニカミノルタビジネステクノロジーズ株式会社 Fixing apparatus and image forming apparatus
JP5556425B2 (en) 2010-06-24 2014-07-23 コニカミノルタ株式会社 Heat generating belt for fixing device and image forming apparatus
JP5527112B2 (en) * 2010-08-30 2014-06-18 コニカミノルタ株式会社 Heat-generating fixing belt and image forming apparatus using the same
KR101813637B1 (en) 2011-05-19 2018-01-02 에스프린팅솔루션 주식회사 Heating apparatus and fusing apparatus including heating composite
JP2012242642A (en) * 2011-05-20 2012-12-10 Konica Minolta Business Technologies Inc Heat generating fixing belt, and image forming apparatus using the same
JP5494582B2 (en) * 2011-07-22 2014-05-14 コニカミノルタ株式会社 Heat fixing belt
US8725051B2 (en) 2011-08-18 2014-05-13 Konica Minolta Business Technologies, Inc. Heat-producing fixing belt and image forming apparatus using the same
JP5568782B2 (en) 2011-10-24 2014-08-13 コニカミノルタ株式会社 Fixing apparatus, image forming apparatus, and damage detection method
JP5800686B2 (en) 2011-11-04 2015-10-28 キヤノン株式会社 Fixing device
KR101171741B1 (en) 2011-12-02 2012-08-07 (주)상아프론테크 Exothermic fixing belt
JP5768725B2 (en) * 2012-01-12 2015-08-26 コニカミノルタ株式会社 Endless heating element, heating belt and fixing device
KR101850277B1 (en) * 2012-03-23 2018-04-20 에스프린팅솔루션 주식회사 heating member and fusing device adopting the same
EP2680087B1 (en) 2012-05-08 2014-11-19 Samsung Electronics Co., Ltd Heating member and fusing apparatus including the same
JP5953973B2 (en) * 2012-06-21 2016-07-20 コニカミノルタ株式会社 Planar heating element and image fixing apparatus having the same
KR20140019899A (en) * 2012-08-06 2014-02-18 삼성전자주식회사 Fusing unit and image forming apparatus using the same
JP5910419B2 (en) * 2012-08-29 2016-04-27 コニカミノルタ株式会社 Flexible heating element
JP6173040B2 (en) * 2013-05-23 2017-08-02 キヤノン株式会社 Fixing belt and fixing device
KR101592983B1 (en) * 2013-09-30 2016-02-11 코오롱인더스트리 주식회사 exothermic fixing belt and manufacturing method the same
WO2015174697A1 (en) 2014-05-13 2015-11-19 전자부품연구원 Heating paste composition, and sheet heating element, heating roller, heating unit and heating module using same
KR101572802B1 (en) * 2014-05-13 2015-12-02 전자부품연구원 Heating paste composition and panel heater and heating roller using the same
WO2015178337A1 (en) * 2014-05-19 2015-11-26 株式会社アイ.エス.テイ Planar resistance heating element, resistance heating seamless tubular body, and resin solution containing conductive particles
US10423107B2 (en) 2014-07-22 2019-09-24 Sumitomo Electric Industries, Ltd. Polyimide tube for fixing belts
KR101698908B1 (en) * 2015-05-14 2017-02-01 주식회사 대화알로이테크 Battery preheating device for hybrid vehicle and method for controlling the same
JP6106305B1 (en) 2016-03-22 2017-03-29 株式会社金陽社 Heat fixing belt and image fixing apparatus including the same
JP6759024B2 (en) 2016-09-13 2020-09-23 キヤノン株式会社 Fixing device
JP6991727B2 (en) * 2017-03-23 2022-01-12 キヤノン株式会社 Image forming device
JP7320324B1 (en) 2023-04-12 2023-08-03 株式会社アイ.エス.テイ polyimide tube

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05173438A (en) * 1991-12-25 1993-07-13 Alps Electric Co Ltd Fixing device
JPH06202513A (en) * 1992-12-28 1994-07-22 Gunze Ltd Fixing device
JP3495831B2 (en) * 1995-11-22 2004-02-09 キヤノン株式会社 Toner fixing film and heat fixing device
JP4076280B2 (en) * 1998-08-12 2008-04-16 株式会社タイカ Thin film resistance heating element and toner heat fixing member using the same
JP2004281123A (en) * 2003-03-13 2004-10-07 Minolta Co Ltd Heat generating belt and fixing device using the same

Also Published As

Publication number Publication date
JP2007272223A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5109168B2 (en) Heat-generating fixing belt, manufacturing method thereof, and image fixing apparatus
JP2009109997A (en) Image fixing device
JP5200278B2 (en) Heat fixing belt and image fixing device
JP5017522B2 (en) Planar heating element and manufacturing method thereof
JP2009109998A (en) Heat generation fixing roll and image fixing device
JP2009092785A5 (en)
JP5491031B2 (en) Polyimide tube, method for producing the same, method for producing polyimide varnish, and fixing belt
US20080149211A1 (en) Tubing and Process for Production Thereof
JP2009156965A (en) Polyimide tube, process for producing the same and fixing belt
US9335689B2 (en) Polyimide tube, method for producing same, and fixing belt
CN101943878B (en) Member for image forming apparatus, image forming apparatus, and unit for image forming apparatus
JP5533818B2 (en) Heat generating belt for fixing device and image forming apparatus
US8872072B2 (en) Heat-producing element for fixing device and image forming apparatus
JP5527112B2 (en) Heat-generating fixing belt and image forming apparatus using the same
JP5696699B2 (en) Planar heating element and image fixing apparatus having the same
JP5768725B2 (en) Endless heating element, heating belt and fixing device
JP6045925B2 (en) Exothermic rotating body
JP6670490B2 (en) Planar resistance heating element, resistance heating seamless tubular article, and resin solution containing conductive particles
JPH09328610A (en) Tubular material made of heat-resistant resin
JP3352134B2 (en) Fixing belt
JP2001040102A (en) Tubular article
JP2012225990A (en) Polyimide tube and fixing belt
JP2006301196A (en) Seamless belt
KR101171741B1 (en) Exothermic fixing belt
TW200950961A (en) Heating fixing roller and manufacturing method of the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090413

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5109168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250