JP2007089316A - Microminiature power conversion device and manufacturing method therefor - Google Patents

Microminiature power conversion device and manufacturing method therefor Download PDF

Info

Publication number
JP2007089316A
JP2007089316A JP2005275429A JP2005275429A JP2007089316A JP 2007089316 A JP2007089316 A JP 2007089316A JP 2005275429 A JP2005275429 A JP 2005275429A JP 2005275429 A JP2005275429 A JP 2005275429A JP 2007089316 A JP2007089316 A JP 2007089316A
Authority
JP
Japan
Prior art keywords
substrate
hoop
coil
coil conductor
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005275429A
Other languages
Japanese (ja)
Other versions
JP4661489B2 (en
Inventor
Yoshitomo Hayashi
善智 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2005275429A priority Critical patent/JP4661489B2/en
Publication of JP2007089316A publication Critical patent/JP2007089316A/en
Application granted granted Critical
Publication of JP4661489B2 publication Critical patent/JP4661489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microminiature power conversion device and a manufacturing method therefor wherein a thin-film magnetic induction element that makes it possible to further enhance magnetic induction element characteristics is provided and a cost can be reduced. <P>SOLUTION: The microminiature power conversion device is constructed of second terminal electrodes 7 formed on a second principal surface of a hoop-shaped substrate 1 that is a flexible substrate wound in a roll like a hoop material, first terminal electrodes 6 formed on a first principal surface of the hoop-shaped substrate 1, a semiconductor chip 10 connected with the first terminal electrodes 6 through bumps 11, the thin-film magnetic induction element 100 bonded to the rear face (back face) of the semiconductor chip 10 through adhesive 14; by bending the hoop-shaped substrate 1, first and second windings 4, 5 connecting the first terminal electrodes 6 with first and second coil conductors 2, 3; and the like. The magnetic induction element characteristics can be enhanced by forming an internal magnetic core 13 in the center of the vortical coil conductors 2, 3 of the thin-film magnetic induction element 100. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、DC−DCコンバ−タなどの超小型電力変換装置およびその製造方法に関する。   The present invention relates to a micro power converter such as a DC-DC converter and a method for manufacturing the same.

DC−DCコンバータなどの電力変換装置は、スイッチング素子、整流素子、コンデンサ、制御用ICおよび磁気誘導素子であるコイル、トランスなどの個別部品をセラミックやプラスチックなどのプリント基板上にハイブリッドで搭載したハイブリッド型の電源モジュールが報告されている(例えば、特許文献1)。
このハイブリッド型の電源モジュールの小型化は、MCM(マルチチップモジュール)などの技術により進歩してきている。しかしながら、コイルやトランスなどの磁気誘導素子の小型化は困難であり、その占める体積が大きいため、この電源モジュールの小型化にとって制約条件となっている。
近年、この磁気誘導素子の製作に半導体技術を適用し、半導体基板上に薄型の超小型磁気誘導素子(コイル、トランス)を形成した例が報告されている(例えば、特許文献2や特許文献3)。
A power conversion device such as a DC-DC converter is a hybrid in which individual components such as a switching element, a rectifying element, a capacitor, a control IC, and a coil and a transformer, which are magnetic induction elements, are mounted in a hybrid on a printed circuit board such as ceramic or plastic. A type power supply module has been reported (for example, Patent Document 1).
Miniaturization of this hybrid power supply module has been advanced by technologies such as MCM (multi-chip module). However, it is difficult to reduce the size of magnetic induction elements such as coils and transformers, and the volume occupied by the induction device is large, which is a limiting condition for reducing the size of the power supply module.
In recent years, there have been reported examples in which a semiconductor technology is applied to manufacture the magnetic induction element, and a thin ultra-small magnetic induction element (coil, transformer) is formed on a semiconductor substrate (for example, Patent Document 2 and Patent Document 3). ).

さらに、複数の半導体チップをフレキシブル基板に固着し、このフレキシブル基板を折り曲げて半導体チップを重ね合わせて、低コストで占有面積を縮小化した半導体装置が報告されている(例えば、特許文献4)。
また、フレキシブル基板に渦巻き状の平面コイルおよび端子電極を形成し、この端子電極に半導体チップの表面側をバンプを介して固着し、フレキシブル基板を折り曲げてコイル部分を半導体チップの裏面側(背面)に重ねることで、超小型電力変換装置を製作することが行われている。
特開2001−332681号公報 特開平9−330817号公報 特開2001−196542号公報 特開2003−86760号公報
Furthermore, a semiconductor device has been reported in which a plurality of semiconductor chips are fixed to a flexible substrate, the flexible substrate is bent and the semiconductor chips are overlapped to reduce the occupied area at a low cost (for example, Patent Document 4).
Further, a spiral planar coil and a terminal electrode are formed on the flexible substrate, and the front surface side of the semiconductor chip is fixed to the terminal electrode via a bump, and the flexible substrate is bent to place the coil portion on the back surface side (rear surface) of the semiconductor chip. The super small power conversion device is manufactured by superimposing on.
JP 2001-326881 A JP-A-9-330817 JP 2001-196542 A JP 2003-86760 A

しかし、磁気誘導素子の製作に半導体技術を適用し、半導体基板上に薄型の超小型磁気誘導素子を形成する方法では、製造工程が複雑で、製造時間が長くなり、製造コストが増大する。
また、前記のフレキシブル基板を用いて製作した超小型電力変換装置の薄膜磁気誘導素子では、フレキシブル基板に形成した渦巻き状のコイルは、渦巻きの中心部が磁性材で貫通されていないので、磁気誘導素子特性(インダクタンスや飽和電流など)の一層の向上を図ることは困難である。
この発明の目的は、前記の課題を解決して、磁気誘導素子特性の一層の向上を図ることができる薄膜磁気誘導素子を有し、低コスト化できる超小型電力変換装置およびその製造方法を提供することにある。
However, in the method of applying a semiconductor technology to manufacture a magnetic induction element and forming a thin microminiature magnetic induction element on a semiconductor substrate, the manufacturing process is complicated, the manufacturing time is increased, and the manufacturing cost is increased.
In addition, in the thin film magnetic induction element of the micro power converter manufactured using the flexible substrate, the spiral coil formed on the flexible substrate is not penetrated by a magnetic material at the center of the spiral. It is difficult to further improve the element characteristics (inductance, saturation current, etc.).
An object of the present invention is to provide an ultra-compact power conversion device that has a thin-film magnetic induction element that can further improve the characteristics of the magnetic induction element and that can reduce the cost, and a method for manufacturing the same. There is to do.

前記の目的を達成するために、第1主面に渦巻き状の第1コイル導体と複数の第1端子電極および第2主面に前記第1コイル導体と接続する渦巻き状の第2コイル導体と複数の第2端子電極が形成され、前記第1端子電極と前記第1コイル導体とを接続する第1配線と別の前記第1端子電極と前記第2コイル導体を接続する第2配線が第1主面に形成された絶縁性もしくは半絶縁性のフープ状基板と、前記渦巻きの中心部のフープ状基板を開口し該開口部を埋めるとともに、前記第1、第2コイル導体上を被覆する磁性材と、前記第1端子電極とバンプを介して表面側が接続し、裏面側が前記磁性材と固着する半導体チップとを有する超小型電力変換装置であって、前記半導体チップの裏面側に前記第1、第2配線が形成された箇所の前記フープ状基板を折り曲げて前記磁性材を固着する構成とする。   To achieve the above object, a spiral first coil conductor and a plurality of first terminal electrodes on a first main surface and a spiral second coil conductor connected to the first coil conductor on a second main surface; A plurality of second terminal electrodes are formed, and a first wiring that connects the first terminal electrode and the first coil conductor and a second wiring that connects the other first terminal electrode and the second coil conductor are first An insulating or semi-insulating hoop-like substrate formed on one main surface and a hoop-like substrate at the center of the spiral are opened to fill the opening and cover the first and second coil conductors. An ultra-compact power converter having a magnetic material, a semiconductor chip having a front surface connected to the first terminal electrode and a bump, and a back surface fixed to the magnetic material, wherein the first power is connected to the back surface of the semiconductor chip. 1. The above-mentioned flange at the place where the second wiring is formed. By bending the looped substrate and configured to fix the magnetic material.

また、前記磁性材が磁性体粒子分散樹脂もしくは低温成形フェライト粉を圧縮成形および焼結したフェライトコアであるとよい。
また、前記第1コイル導体と前記第2コイル導体を挟み込む前記磁性材が、中心部が凸状となっている第1フェライト基板と、平坦な第2フェライト基板で構成されるとよい。 また、第1主面に磁性材に巻かれたソレノイド状コイルを構成するコイル導体と複数の第1端子電極および第2主面に複数の第2端子電極とが形成され、コイル導体の両端が別々の第1端子電極と接続する配線が前記第1主面に形成された絶縁性もしくは半絶縁性のフープ状基板と、該フープ状基板の前記第1端子電極とバンプを介して表面側が接続する半導体チップとを有する超小型電力変換装置であって、前記半導体チップの裏面側に前記ソレノイド状コイルを前記フープ状基板を折り曲げることで固着する構成とする。
The magnetic material may be a ferrite core obtained by compression-molding and sintering a magnetic particle-dispersed resin or low-temperature shaped ferrite powder.
The magnetic material sandwiching the first coil conductor and the second coil conductor may be composed of a first ferrite substrate having a convex center portion and a flat second ferrite substrate. Further, a coil conductor constituting a solenoid coil wound around a magnetic material on the first main surface, a plurality of first terminal electrodes, and a plurality of second terminal electrodes on the second main surface are formed, and both ends of the coil conductor are An insulating or semi-insulating hoop-like substrate in which wirings to be connected to different first terminal electrodes are formed on the first main surface, and the surface side of the hoop-like substrate are connected to the first terminal electrodes via bumps An ultra-compact power conversion device having a semiconductor chip to be fixed to the back surface side of the semiconductor chip by bending the solenoid-like coil by bending the hoop-like substrate.

また、前記磁性材がI字型フェライトコアであるとよい。
また、前記I字型フェライトコアの上下にフェライト基板を配置するとよい。
また、前記フープ状基板が、ロール状に巻かれたテープ状の導電パターンが形成されたフレキシブル基板をカットしたものであるとよい。
また、第1主面に渦巻き状の第1コイル導体と複数の第1端子電極および第2主面に前記第1コイル導体と接続する渦巻き状の第2コイル導体と複数の第2端子電極が形成され、前記第1端子電極と前記第1コイル導体とを接続する第1配線と別の前記第1端子電極と前記第2コイル導体を接続する第2配線が第1主面に形成された絶縁性もしくは半絶縁性のフープ状基板の前記渦巻きの中心部と前記第1、第2コイル導体が形成された箇所の第1外周部の前記フープ状基板を開口する工程と、前記中心部と第1外周部に形成された前記開口部を磁性材で埋めるとともに、前記第1、第2コイル導体上を該磁性材で被覆する工程と、前記第1端子電極と半導体チップの表面側とをバンプを介して接続する工程と、前記第1、第2コイル導体、前記第1、第2配線が形成された箇所および前記半導体チップが固着した箇所を残して他の箇所の前記フープ状基板を除去する工程と、前記半導体チップの裏面側に前記フープ状基板を折り曲げて前記磁性材を固着する工程とを含む製造方法とする。
The magnetic material may be an I-shaped ferrite core.
Further, a ferrite substrate may be disposed above and below the I-shaped ferrite core.
Moreover, the said hoop-shaped board | substrate is good in what cut the flexible substrate in which the tape-shaped electroconductive pattern wound by roll shape was formed.
Further, a spiral first coil conductor and a plurality of first terminal electrodes on the first main surface, and a spiral second coil conductor and a plurality of second terminal electrodes connected to the first coil conductor on the second main surface. A first wiring that is formed and connects the first terminal electrode and the first coil conductor and a second wiring that connects the other first terminal electrode and the second coil conductor are formed on the first main surface. Opening the hoop-like substrate in the central portion of the spiral of the insulative or semi-insulating hoop-like substrate and the first outer peripheral portion of the portion where the first and second coil conductors are formed; The step of filling the opening formed in the first outer peripheral portion with a magnetic material, and covering the first and second coil conductors with the magnetic material, and the first terminal electrode and the surface side of the semiconductor chip Connecting via bumps, the first and second coil conductors, The step of removing the hoop-like substrate in other places leaving the place where the first and second wirings are formed and the place where the semiconductor chip is fixed, and folding the hoop-like substrate on the back side of the semiconductor chip And a step of fixing the magnetic material.

また、第1主面に併設される複数のコイル導体と複数の第1端子電極および第2主面に複数の第2端子電極とが形成され、前記複数のコイル導体の最外部に配置されたコイル導体と第1、第2端子電極と接続する第1、第2配線とが形成された絶縁性もしくは半絶縁性のフープ状基板の前記の全コイル導体を横切るように磁性材を配置する工程と、前記フープ状基板の第1端子電極にバンプを介して半導体チップの表面側を固着する工程と、前記磁性材の外周を包むように前記フープ状基板を折り曲げ、各コイル導体の端部を互い違いに接続してソレノイド状のコイルを形成する工程と、前記半導体チップの裏面側に前記第1、第2配線が形成された箇所の前記フープ状基板を折り曲げて前記ソレノイド状のコイルを前記フープ状基板を介して固着する工程とを含む製造方法とする。
また、前記の各工程を自動化ラインで行うとよい。
Also, a plurality of coil conductors and a plurality of first terminal electrodes provided on the first main surface, and a plurality of second terminal electrodes on the second main surface are formed, and arranged at the outermost portion of the plurality of coil conductors. Arranging a magnetic material so as to cross all the coil conductors of the insulating or semi-insulating hoop-like substrate in which the coil conductor and the first and second wirings connected to the first and second terminal electrodes are formed. A step of fixing the surface side of the semiconductor chip to the first terminal electrode of the hoop-like substrate via a bump, and the hoop-like substrate is bent so as to wrap the outer periphery of the magnetic material, and the ends of the coil conductors are staggered. Forming a solenoid-like coil by connecting to the semiconductor chip, and bending the hoop-like substrate where the first and second wirings are formed on the back surface side of the semiconductor chip to form the solenoid-like coil in the hoop-like shape. Through the board A manufacturing method comprising a step of fixing.
Moreover, it is good to perform each said process by an automated line.

この発明によれば、フレキシブル基板としてロール状のフープ状基板を用いることにより、一連の製造工程を連続的に自動化ラインで処理できるため、製造コストの大幅な低減を図ることができる。
また、渦巻き状のコイルの中心部で磁性材を貫通させることができるために、磁気誘導素子特性を一層向上させることができる。
According to the present invention, by using a roll-shaped hoop-shaped substrate as the flexible substrate, a series of manufacturing processes can be continuously processed by an automated line, so that the manufacturing cost can be greatly reduced.
Further, since the magnetic material can be penetrated at the center of the spiral coil, the magnetic induction element characteristics can be further improved.

実施の形態を以下の実施例にて説明する。   Embodiments will be described in the following examples.

図1は、この発明の第1実施例の超小型電力変換装置の構成図であり、同図(a)は要部平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。同図(b)は、半導体チップ10の裏面側に薄膜磁気誘導素子100を固着した断面図である。
この超小型電力変換装置の薄膜化される主要部は、絶縁性もしくは半絶縁性のフレキシブル基板であるフープ状基板1と、フープ状基板1の第2主面に形成された第2端子電極7と、フープ状基板1の第1主面に形成される第1端子電極6と、この第1端子電極6とバンプ11で接続する半導体チップ10と、半導体チップ9の裏面側(背面)にフープ状基板1を折り曲げて接着剤14で固着される薄膜磁気誘導素子100と、第1端子電極6と第1、第2コイル導体2、3を接続する第1、第2配線4、5(第2コイル導体3と第2配線5との接続部はbである)などで構成される。前記の第2端子電極7ははんだ16を介して図示しないプリント基板などに表面実装されるときに用いられる。また、図示しないコンデンサや抵抗などを接続して超小型電力変換装置が完成する。尚、半絶縁性のフープ状基板は絶縁性の基板に導電性物質を混在させて形成する。
FIG. 1 is a configuration diagram of a micro power converter according to a first embodiment of the present invention, where FIG. 1 (a) is a plan view of a main part, and FIG. 1 (b) is an XX line of FIG. 1 (a). It is principal part sectional drawing cut | disconnected by. FIG. 2B is a cross-sectional view in which the thin film magnetic induction element 100 is fixed to the back side of the semiconductor chip 10.
The main parts of the ultra-compact power conversion device that are made thin are a hoop-like substrate 1 that is an insulating or semi-insulating flexible substrate, and a second terminal electrode 7 formed on the second main surface of the hoop-like substrate 1. A first terminal electrode 6 formed on the first main surface of the hoop-like substrate 1, a semiconductor chip 10 connected to the first terminal electrode 6 by a bump 11, and a hoop on the back surface side (back surface) of the semiconductor chip 9. First and second wirings 4, 5 (first) connecting the first terminal electrode 6 and the first and second coil conductors 2, 3 to the thin film magnetic induction element 100 which is bent and fixed with the adhesive 14 by bending the substrate 1 The connection portion between the two-coil conductor 3 and the second wiring 5 is b). The second terminal electrode 7 is used when it is surface-mounted on a printed circuit board (not shown) via a solder 16. In addition, an ultra-compact power converter is completed by connecting a capacitor, a resistor, etc. (not shown). Note that the semi-insulating hoop-like substrate is formed by mixing a conductive substance with an insulating substrate.

薄膜磁気誘導素子100は、フープ状基板1の第1主面に形成した渦巻き状の第1コイル導体2と、第1コイル導体2の一端と接続し第2主面に形成される渦巻き状の第2コイル導体3(両コイル導体の接続部がaである)と、第1、第2コイル導体2、3を被覆し、渦巻きの中心部に位置するフープ状基板1の開口部8を充填する磁性体粒子分散樹脂またはフェライトコアなどの磁性材12とで構成される。第1コイル導体2と第2コイル導体3で形成される渦巻き状のコイルの中心部が磁性体粒子分散樹脂またはフェライトコアなどの磁性材12で埋められているため、埋められていない従来の渦巻き状のコイルと比べて、薄膜磁気誘導素子100の磁気誘導素子特性(インダクタンス、飽和電流などの特性)を向上させることができる。
前記の中心部を貫通する磁性材12は内部磁心13となり、第1、第2コイル導体2、3を被覆する磁性材12は外部磁心となる。従来の渦巻き状コイルにはこの内部磁心13がない。
The thin film magnetic induction element 100 includes a spiral first coil conductor 2 formed on the first main surface of the hoop-like substrate 1 and a spiral shape formed on the second main surface connected to one end of the first coil conductor 2. Covers the second coil conductor 3 (the connecting portion of both coil conductors is a), the first and second coil conductors 2 and 3, and fills the opening 8 of the hoop-like substrate 1 located at the center of the spiral. Magnetic material dispersed resin or magnetic material 12 such as ferrite core. Since the central part of the spiral coil formed by the first coil conductor 2 and the second coil conductor 3 is filled with a magnetic material 12 such as a magnetic particle-dispersed resin or a ferrite core, a conventional spiral that is not filled is used. Compared with a coil-like coil, the magnetic induction element characteristics (characteristics such as inductance and saturation current) of the thin film magnetic induction element 100 can be improved.
The magnetic material 12 penetrating through the central portion is an internal magnetic core 13, and the magnetic material 12 covering the first and second coil conductors 2 and 3 is an external magnetic core. A conventional spiral coil does not have this internal magnetic core 13.

図2〜図6は、図1の超小型電力変換装置の製造方法を工程順に示した要部製造工程図である。図2、図3、図4、図5(a)は要部平面図、図5(b)は斜視図、図6は要部断面図である。
まず、フレキシブル基板として、フープ材のようにロール状に巻かれたテープ状の基板(ここでは、フープ状基板1と称す)を用意する。このフープ状基板1は、導電パターンが予め形成された絶縁基板(ポリイミドなどの樹脂基材シート)であり、フープ状基板1の第1主面の導電パターンは実線で示した半導体チップ接続用の第1端子電極6と渦巻き状の第1コイル導体2であり、第2主面の導電パターンは点線で示した表面実装用の第2端子電極7と渦巻き状の第2コイル導体3である。第1、第2コイル導体2、3は接続部aで接続し、第2コイル導体3と第2配線5は接続部bで接続する。接続部a、bはフープ状基板1に貫通孔を開けてこの貫通孔を導体で充填して形成される。第1コイル導体2と第1配線4はフープ状基板1の同じ第1主面に形成されるので、直接接続する。第1、第2コイル導体2、3の厚さは50μm程度である(図2)。
2 to 6 are main part manufacturing process diagrams illustrating the manufacturing method of the microminiature power converter of FIG. 1 in the order of processes. 2, 3, 4, and 5 (a) are main part plan views, FIG. 5 (b) is a perspective view, and FIG. 6 is a main part cross-sectional view.
First, as a flexible substrate, a tape-shaped substrate (herein referred to as a hoop-shaped substrate 1) wound in a roll shape like a hoop material is prepared. The hoop-shaped substrate 1 is an insulating substrate (resin base material sheet such as polyimide) on which a conductive pattern is formed in advance. The conductive pattern on the first main surface of the hoop-shaped substrate 1 is for connecting a semiconductor chip indicated by a solid line. The first terminal electrode 6 and the spiral first coil conductor 2, and the conductive pattern of the second main surface are the surface-mounted second terminal electrode 7 and the spiral second coil conductor 3 indicated by dotted lines. The first and second coil conductors 2 and 3 are connected by a connection part a, and the second coil conductor 3 and the second wiring 5 are connected by a connection part b. The connecting portions a and b are formed by opening a through hole in the hoop-like substrate 1 and filling the through hole with a conductor. Since the first coil conductor 2 and the first wiring 4 are formed on the same first main surface of the hoop-like substrate 1, they are directly connected. The thickness of the first and second coil conductors 2 and 3 is about 50 μm (FIG. 2).

つぎに、この第1主面に形成された第1端子電極6の表面をプラズマクリーニングで清浄にした後(プラズマクリーニングをしない場合もある)、半導体チップ10に形成されたバンプ11を超音波フリップチップボンディングにより第1端子電極6に固着する。バンプ11はAuワイヤを用いたスタッドバンプやAuメッキバンプなどAuバンプとすると密着性がよい。半導体チップ10とフープ状基板1の第1主面の間の隙間にアンダーフィル15を充填するのが好ましい。また、第2端子電極7と図示しないプリント基板に形成した導電パターンとの固着には、Au膜の熱圧着及び、高温はんだ接合を用いるとよい。これらの工程後に、フープ状基板1の中心部と第1、第2コイル導体2、3の外周部に型抜きにより開口部8、9を形成する(図3)。
つぎに、第1、第2コイル導体2、3の表面を覆うように磁性体粒子分散樹脂をモールドし熱硬化させて磁性材12にするか、または低温成形フェライト粉を型により圧縮成形および焼結によりフェライトコア(外部磁心)を形成して磁性材12にする。このとき磁性材12の外周部は開口部9、磁性材12の中心部は開口部8を貫通して形成される。また、開口部8を貫通した磁性材12は内部磁心13となる。尚、図3の工程と磁性材12の形成する工程の順序を入れ換えてもよい。この場合、まず磁性材12を形成してから、プラズマクリーニングおよびチップの固着を行うことになる(図4)。
Next, after the surface of the first terminal electrode 6 formed on the first main surface is cleaned by plasma cleaning (plasma cleaning may not be performed), the bumps 11 formed on the semiconductor chip 10 are ultrasonically flipped. It adheres to the 1st terminal electrode 6 by chip bonding. If the bump 11 is an Au bump such as a stud bump or an Au plated bump using an Au wire, the adhesiveness is good. The underfill 15 is preferably filled in the gap between the semiconductor chip 10 and the first main surface of the hoop-like substrate 1. In addition, for bonding between the second terminal electrode 7 and a conductive pattern formed on a printed circuit board (not shown), it is preferable to use thermocompression bonding of an Au film and high-temperature solder bonding. After these steps, openings 8 and 9 are formed by die cutting at the center of the hoop-like substrate 1 and the outer peripheral portions of the first and second coil conductors 2 and 3 (FIG. 3).
Next, the magnetic particle-dispersed resin is molded so as to cover the surfaces of the first and second coil conductors 2 and 3 and thermally cured to form the magnetic material 12, or low-temperature formed ferrite powder is compression-molded and sintered by a mold. A ferrite core (external magnetic core) is formed by bonding to form a magnetic material 12. At this time, the outer periphery of the magnetic material 12 is formed through the opening 9, and the central portion of the magnetic material 12 is formed through the opening 8. Further, the magnetic material 12 penetrating through the opening 8 becomes an internal magnetic core 13. Note that the order of the process of FIG. 3 and the process of forming the magnetic material 12 may be interchanged. In this case, the magnetic material 12 is first formed, and then plasma cleaning and chip fixation are performed (FIG. 4).

つぎに、半導体チップ10が固着した箇所と第1、第2配線4、5が形成された箇所と磁性材12が固着した箇所のフープ状基板1を周囲の不要なフープ状基板1から切り離すために型抜きをする。図の右側が薄膜磁気誘導素子100である(図5)。
つぎに、150℃〜200℃に加熱しながら切り離されたフープ状基板1を折り曲げ、半導体チップ10の裏面側(背面)に薄膜磁気誘導素子100を重ねて貼り合わせる。この貼り合わせには接着剤14もしくは図示しないモールド封止を用いるとよい。最後にフープ状基板1の第2主面に形成された第2端子電極7にBGA(ボールグリッドアレイ)用のはんだボールなどのはんだ16を固着させる。はんだボールを付けずにLGA(ランドグリッドアレイ)として平面実装に用いる場合も可能である(図6)。
図7は、図1の超小型電力変換装置の製造工程の全体の流れを示す概略図である。図7に示すように、フープ状基板1を用いることで、半導体チップ10の固着工程と、型抜きによる開口部8、9の形成工程と、磁性材12の形成工程と、フープ状基板1の切断工程と、折り曲げ・接着工程などの一連の製造工程を自動化ラインで行うことができるようになり、大幅なコスト低減を図ることができる。尚、上述のように、プラズマクリーニングおよびチップ固着を磁性材形成と切断の間においてもよい。
Next, in order to separate the hoop-like substrate 1 where the semiconductor chip 10 is fixed, where the first and second wirings 4 and 5 are formed, and where the magnetic material 12 is fixed, from the surrounding unnecessary hoop-like substrate 1. Die-cut. The right side of the figure is the thin film magnetic induction element 100 (FIG. 5).
Next, the hoop-like substrate 1 cut off while being heated to 150 ° C. to 200 ° C. is bent, and the thin film magnetic induction element 100 is laminated and bonded to the back side (back side) of the semiconductor chip 10. For this bonding, an adhesive 14 or a mold seal (not shown) may be used. Finally, a solder 16 such as a BGA (ball grid array) solder ball is fixed to the second terminal electrode 7 formed on the second main surface of the hoop-like substrate 1. It is also possible to use it for planar mounting as an LGA (land grid array) without attaching solder balls (FIG. 6).
FIG. 7 is a schematic diagram showing the overall flow of the manufacturing process of the micro power converter of FIG. As shown in FIG. 7, by using the hoop-shaped substrate 1, the fixing process of the semiconductor chip 10, the forming process of the openings 8 and 9 by die cutting, the forming process of the magnetic material 12, A series of manufacturing processes, such as a cutting process and a bending / bonding process, can be performed by an automated line, and a significant cost reduction can be achieved. As described above, plasma cleaning and chip fixation may be performed between the formation of the magnetic material and the cutting.

また、フープ状基板1を用いると、ロールが回転しフープ状基板1が一方向(進行方向)に伸びて行き、所定のピッチで移動させることで、半導体チップ10や、渦巻きの中心部と外周部に形成される開口部8、9の位置合わせ方向がフープ状基板1の進行方向に対して直角方向のみでよくなり、素早く精度よい位置合わせが容易にできる。また、半導体チップ固着装置、開口部形成装置、フープ状基板の不要箇所の切断除去装置、フープ状基板の折り曲げおよび固着装置などの各製造装置をフープ状基板1の進行方向に一直線に並べて配置することで、一連の製造工程を自動化ラインで行うことができる。   Further, when the hoop-like substrate 1 is used, the roll rotates and the hoop-like substrate 1 extends in one direction (traveling direction) and moves at a predetermined pitch. The alignment direction of the openings 8 and 9 formed in the portion is only required in the direction perpendicular to the traveling direction of the hoop-like substrate 1, and quick and accurate alignment can be easily performed. Also, each manufacturing apparatus such as a semiconductor chip fixing device, an opening forming device, a cutting / removing device for unnecessary portions of the hoop-like substrate, and a hoop-like substrate bending and fixing device are arranged in a straight line in the advancing direction of the hoop-like substrate 1. Thus, a series of manufacturing processes can be performed on an automated line.

図8は、この発明の第2実施例の超小型電力変換装置の要部断面図である。この図は、半導体チップ10の裏面側に薄膜磁気誘導素子100を固着した断面図である。
図1と異なるのは、コア付きフェライト板21(中心部が凸状となっているフェライト板)と平坦なフェライト板22で、コア部を渦巻きの中心に位置合わせして、渦巻き状のコイル導体2、3を表裏両面から挟み込むように包囲した点である。コア部は内部磁心13でありフェライト板22とフェライト板21の下板部は外部磁心である。この場合も第1実施例と同様の効果が得られる。
図9〜図11は、図8の超小型電力変換装置の製造方法であり、工程順に示した要部製造工程図である。尚、図9、図10(a)は要部平面図、図10(b)は要部斜視図、図11は要部断面図である。
FIG. 8 is a cross-sectional view of an essential part of a micro power converter according to a second embodiment of the present invention. This figure is a cross-sectional view in which the thin film magnetic induction element 100 is fixed to the back side of the semiconductor chip 10.
What is different from FIG. 1 is a ferrite plate 21 with a core (ferrite plate having a convex center portion) and a flat ferrite plate 22, and the core portion is aligned with the center of the spiral to form a spiral coil conductor. 2 and 3 are surrounded by both sides of the front and back. The core part is an internal magnetic core 13, and the lower plate part of the ferrite plate 22 and the ferrite plate 21 is an external magnetic core. In this case, the same effect as that of the first embodiment can be obtained.
FIGS. 9-11 is a manufacturing method of the micro power converter device of FIG. 8, and is a main part manufacturing process diagram shown in the order of processes. 9 and 10 (a) are plan views of the main part, FIG. 10 (b) is a perspective view of the main part, and FIG. 11 is a cross-sectional view of the main part.

前記と同様に、まず、フープ状基板1を用意し、フープ状基板1の第1主面に形成された第1端子電極6をプラズマクリーニングにより清浄化した後、半導体チップ10に形成されたバンプ11を超音波フリップチップボンディングにより第1端子電極6に固着する。このときバンプ11はAuワイヤを用いたスタッドバンプやメッキバンプなどのAuバンプとするとよい。半導体チップ10とフープ状基板1の第1主面の間にアンダーフィル15を充填するのが好ましい。また、第2端子電極7と図示しないプリント基板との接合には、Auの熱圧着及び、高温はんだ接合を用いるとよい。続いて、第1、第2コイル導体2、3を形成した箇所のフープ状基板1を型抜きして開口部8、9を形成し、コア付きフェライト板21(中心部が凸状となっているフェライト板)の凸部を開口部8、9に嵌め込む(図9)。   In the same manner as described above, first, a hoop-like substrate 1 is prepared, and after the first terminal electrode 6 formed on the first main surface of the hoop-like substrate 1 is cleaned by plasma cleaning, bumps formed on the semiconductor chip 10 are formed. 11 is fixed to the first terminal electrode 6 by ultrasonic flip chip bonding. At this time, the bump 11 is preferably an Au bump such as a stud bump or a plated bump using an Au wire. It is preferable to fill the underfill 15 between the semiconductor chip 10 and the first main surface of the hoop-shaped substrate 1. Further, for bonding the second terminal electrode 7 and a printed board (not shown), it is preferable to use Au thermocompression bonding and high-temperature solder bonding. Subsequently, the hoop-like substrate 1 where the first and second coil conductors 2 and 3 are formed is punched to form the openings 8 and 9, and the cored ferrite plate 21 (the central portion is convex). The convex portion of the ferrite plate) is fitted into the openings 8 and 9 (FIG. 9).

つぎに、コア付きフェライト板21(中心部が凸状となっているフェライト板)に平坦なフェライト板22を被せて、渦巻き状の第1、第2コイル導体2、3を挟み込み、フェライト板21、22を接着剤23で固着し、半導体チップ10が固着した箇所と第1、第2配線4、5が形成された箇所とフェライト板21が固着した箇所のフープ状基板1を周囲の不要なフープ状基板1から型抜きにより切離す(図10)。
つぎに、150℃〜200℃に加熱しながら切り離されたフープ状基板1を折り曲げ、半導体チップ10の裏面側(背面)に薄膜磁気誘導素子100を重ねて貼り合わせる。この貼り合わせには接着剤14もしくは図示しないモールド封止を用いるとよい。最後にフープ状基板1の第2主面に形成された第2端子電極7にBGA(ボールグリッドアレイ)用のはんだボールなどのはんだ16を固着させる。はんだボールを付けずにLGA(ランドグリッドアレイ)として平面実装に用いる場合も可能である(図11)。
Next, a ferrite plate 21 with a core (ferrite plate having a convex center portion) is covered with a flat ferrite plate 22, and the spiral first and second coil conductors 2 and 3 are sandwiched between the ferrite plates 21. , 22 are fixed with an adhesive 23, and the hoop-like substrate 1 at the position where the semiconductor chip 10 is fixed, the position where the first and second wirings 4 and 5 are formed, and the position where the ferrite plate 21 is fixed is unnecessary in the surrounding area. The hoop-like substrate 1 is separated by die cutting (FIG. 10).
Next, the hoop-like substrate 1 cut off while being heated to 150 ° C. to 200 ° C. is bent, and the thin film magnetic induction element 100 is laminated and bonded to the back side (back side) of the semiconductor chip 10. For this bonding, an adhesive 14 or a mold seal (not shown) may be used. Finally, a solder 16 such as a BGA (ball grid array) solder ball is fixed to the second terminal electrode 7 formed on the second main surface of the hoop-like substrate 1. It is also possible to use it for planar mounting as an LGA (land grid array) without attaching solder balls (FIG. 11).

前記のように、フープ状基板1を用いることで、半導体チップ10の固着工程と、コイル基板型抜きによる開口部8、9の形成工程と、フェライト板21、22の取り付け形成工程と、図示しないプラズマクリーニング工程と、フープ状基板1の切断工程と、折り曲げ・接着工程などの一連の製造工程を自動化ラインで行うことができるようになり、大幅なコスト低減を図ることができる。   As described above, by using the hoop-shaped substrate 1, the fixing process of the semiconductor chip 10, the forming process of the openings 8 and 9 by the coil substrate die cutting, and the attaching and forming process of the ferrite plates 21 and 22 are not shown. A series of manufacturing processes such as a plasma cleaning process, a cutting process of the hoop-like substrate 1 and a bending / bonding process can be performed on an automated line, so that a significant cost reduction can be achieved.

図12は、この発明の第3実施例の超小型電力変換装置の要部断面図である。この図は、半導体チップ10の裏面側に薄膜磁気誘導素子200を固着した断面図である。
図1および図8と異なるのは、渦巻き状のコイル(第1、第2コイル導体2、3で形成されるコイル)ではなくソレノイド状のコイルとし、コイル内に内部磁心としてI字型フェライトコア25を配置した点である。
この超小型電力変換装置の薄膜化される主要部は、一部がフェライトコア25に巻かれて薄膜磁気誘導素子200を構成するフレキシブル基板であるフープ状基板1の第2主面に形成された第2端子電極7と、フープ状基板1の第1主面に形成された第1端子電極6およびコイル導体24と、この第1端子電極6とバンプ11で接続する半導体チップ10と、半導体チップ9の裏面側(背面)にフープ状基板1を折り曲げて接着剤14で固着される薄膜磁気誘導素子200と、第1端子電極6と最外部のコイル導体24と接続する第1、第2配線4、5などで構成される。前記の第2端子電極7ははんだ16を介して図示しないプリント基板などに表面実装されるときに用いられる。また、図示しないコンデンサや抵抗などを接続して超小型電力変換装置が完成する。
FIG. 12 is a cross-sectional view of an essential part of a micro power converter according to a third embodiment of the present invention. This figure is a sectional view in which a thin film magnetic induction element 200 is fixed to the back side of the semiconductor chip 10.
1 and 8 is not a spiral coil (coil formed by the first and second coil conductors 2 and 3) but a solenoid coil, and an I-shaped ferrite core as an internal magnetic core in the coil. 25.
The main part of the ultra-compact power conversion device that is thinned is formed on the second main surface of the hoop-like substrate 1 that is a flexible substrate that is partially wound around the ferrite core 25 and constitutes the thin-film magnetic induction element 200. The second terminal electrode 7, the first terminal electrode 6 and the coil conductor 24 formed on the first main surface of the hoop-like substrate 1, the semiconductor chip 10 connected to the first terminal electrode 6 by the bump 11, and the semiconductor chip 9 is connected to the thin-film magnetic induction element 200, which is bent by the hoop-like substrate 1 and fixed by the adhesive 14, and the first terminal electrode 6 and the outermost coil conductor 24. 4, 5, etc. The second terminal electrode 7 is used when it is surface-mounted on a printed circuit board (not shown) via a solder 16. In addition, an ultra-compact power converter is completed by connecting a capacitor, a resistor, etc. (not shown).

薄膜磁気誘導素子200は、フープ状基板1の第1主面に形成したストレート(直線状)の複数のコイル導体24をI字型フェライトコア25に巻き付け、ソレノイド状のコイルとする。ソレノイド状のコイルの中心部にI字型フェライトコア25があるため、薄膜磁気誘導素子200の磁気誘導素子特性(インダクタンス、飽和電流などの特性)を向上させることができる。
図13〜図15は、図12の超小型電力変換装置の製造方法であり、工程順に示した要部製造工程図である。図13、図14は要部斜視図であり、図15は要部断面図である。 前記と同様に、まず、フープ状基板1を用意し、フープ状基板1の第1主面に形成された第1端子電極6(図12参照)をプラズマクリーニングにより清浄化した後、バンプ11(図12参照)を形成した半導体チップ10を超音波フリップチップボンディングにより接続する。半導体チップ10とフープ状基板1の第1主面の間の隙間にアンダーフィル15を充填するのが好ましい(図13)。
In the thin film magnetic induction element 200, a plurality of straight (linear) coil conductors 24 formed on the first main surface of the hoop-shaped substrate 1 are wound around an I-shaped ferrite core 25 to form a solenoid coil. Since the I-shaped ferrite core 25 is provided at the center of the solenoid coil, the magnetic induction element characteristics (characteristics such as inductance and saturation current) of the thin film magnetic induction element 200 can be improved.
FIGS. 13-15 is a manufacturing method of the microminiature power converter of FIG. 12, and is the principal part manufacturing process drawing shown to process order. 13 and 14 are perspective views of relevant parts, and FIG. 15 is a sectional view of the relevant parts. Similarly to the above, first, a hoop-like substrate 1 is prepared, and after the first terminal electrode 6 (see FIG. 12) formed on the first main surface of the hoop-like substrate 1 is cleaned by plasma cleaning, the bump 11 ( The semiconductor chip 10 having the structure shown in FIG. 12 is connected by ultrasonic flip chip bonding. It is preferable to fill the gap between the semiconductor chip 10 and the first main surface of the hoop-like substrate 1 with the underfill 15 (FIG. 13).

つぎに、コイル導体24上にI字型フェライトコア25を設置する(図14)。
つぎに、フープ状基板1を切断し、150℃〜200℃に加熱しながらフープ状基板1を曲げて、I字型フェライトコア25にコイル導体24を被せ、第2配線5の一端d1とコイル導体24の一端d2を接続し、コイル導体24の他端d3と隣のコイル導体24の一端d4を接続し、これを順次繰り返して接続してソレノイド状のコイルを形成し、薄膜磁気誘導素子200を形成する。この薄膜磁気誘導素子200を半導体チップ200の裏面側に接着剤14で固着する。最後にフープ状基板1の第2主面に形成された第2端子電極7にBGA(ボールグリッドアレイ)用のはんだボールなどのはんだ16を固着させる。はんだボールを付けずにLGA(ランドグリッドアレイ)として平面実装に用いる場合も可能である(図15)。
Next, an I-shaped ferrite core 25 is installed on the coil conductor 24 (FIG. 14).
Next, the hoop-like substrate 1 is cut, the hoop-like substrate 1 is bent while being heated to 150 ° C. to 200 ° C., the coil conductor 24 is covered with the I-shaped ferrite core 25, the one end d 1 of the second wiring 5 and the coil One end d2 of the conductor 24 is connected, the other end d3 of the coil conductor 24 and one end d4 of the adjacent coil conductor 24 are connected, and this is sequentially repeated to form a solenoid-like coil. Form. The thin film magnetic induction element 200 is fixed to the back side of the semiconductor chip 200 with an adhesive 14. Finally, a solder 16 such as a BGA (ball grid array) solder ball is fixed to the second terminal electrode 7 formed on the second main surface of the hoop-like substrate 1. It is also possible to use it for planar mounting as an LGA (land grid array) without attaching solder balls (FIG. 15).

さらに薄膜磁気誘導素子200の形成を詳しく説明すると、フ─プ状基板1の第1主面に予めソレノイド巻き線の1ターンずつのパターンをターン数(ここでは、8ターン)分並べて形成したフレキシブル配線基板(コイル導体24が形成されたフープ状基板1のこと)で高透磁率材料で形成したI字型フェライトコア25を一周巻いて、隣接したコイルパターンの端部同士を接続することにより、一本のソレノイド巻き線構造のインダクタを形成する。接続部の接合には、Auの熱圧着若しくは、超音波接合を用いるとよい。続いて、さらに、フ─プ状基板1を曲げて半導体チップ10の裏面側にI字型フェライトコア25を位置させて固着する。
前記のように、フープ状基板1を用いることで、前記した一連の製造工程を自動化ラインで行うことができるようになり、大幅なコスト低減を図ることができる。
Further, the formation of the thin-film magnetic induction element 200 will be described in detail. A flexible structure in which a pattern of one turn of the solenoid winding is previously arranged on the first main surface of the loop-shaped substrate 1 by the number of turns (here, 8 turns). By winding the I-shaped ferrite core 25 formed of a high magnetic permeability material around the wiring substrate (the hoop-shaped substrate 1 on which the coil conductor 24 is formed) and connecting the ends of adjacent coil patterns, An inductor having a single solenoid winding structure is formed. For joining the connecting portions, it is preferable to use Au thermocompression bonding or ultrasonic bonding. Subsequently, the loop-shaped substrate 1 is further bent, and the I-shaped ferrite core 25 is positioned and fixed to the back surface side of the semiconductor chip 10.
As described above, by using the hoop-shaped substrate 1, the series of manufacturing steps described above can be performed with an automated line, and a significant cost reduction can be achieved.

また、図16、図17は、図13〜図15とは異なる図12の超小型電力変換装置の製造方法であり、工程順に示した要部製造工程図である。図16、図17は要部斜視図である。
図13〜図15の場合は比較的半導体チップ10が大きい場合で、フープ状基板1の進行方向に向かって半導体チップ10と薄膜磁気誘導素子200が一列に配置される場合である。一方、図16、図17は半導体チップ10が比較的小さい場合であり、フープ状基板1の進行方向に向かって直角方向に半導体チップ10と薄膜磁気誘導素子200が一列に配置される場合である。
図13〜図15との違いは、図16、図17に示すようにフープ状基板1に開口部26を形成し、この開口部にI字型フェライトコア25の端部が位置するように配置し、I字型フェライトコア25をコイル導体24が形成された箇所のフープ状基板1を折り曲げてI字型フェライトコア25を覆い隣接したコイル導体24の端部同士を接続した点である。その後の工程は図15の工程の説明と同じである。
FIGS. 16 and 17 are manufacturing methods of the micro power conversion device of FIG. 12 different from FIGS. 13 to 15 and are main part manufacturing process diagrams shown in the order of processes. 16 and 17 are perspective views of main parts.
13 to 15 show a case where the semiconductor chip 10 is relatively large, and the semiconductor chip 10 and the thin film magnetic induction element 200 are arranged in a line in the direction of travel of the hoop-like substrate 1. On the other hand, FIGS. 16 and 17 show the case where the semiconductor chip 10 is relatively small, and the case where the semiconductor chip 10 and the thin film magnetic induction element 200 are arranged in a row in a direction perpendicular to the traveling direction of the hoop-like substrate 1. .
The difference from FIGS. 13 to 15 is that an opening 26 is formed in the hoop-shaped substrate 1 as shown in FIGS. 16 and 17, and the end of the I-shaped ferrite core 25 is positioned in this opening. In addition, the I-shaped ferrite core 25 is bent at the location where the coil conductor 24 is formed and the hoop-like substrate 1 is bent to cover the I-shaped ferrite core 25 and the ends of the adjacent coil conductors 24 are connected to each other. Subsequent processes are the same as those described in FIG.

尚、図示しないが、フープ状基板1を折り曲げる方法としては幅がI字型フェライトコア25の幅およびフープ状基板1とコイル導体24二つ分の厚さを合わせた寸法より多少大き目で、I字型フェライトコア25の厚さとフープ状基板1とコイル導体24のあつさ合わせた寸法より多少大き目の深さの凹型治具を製作し、この凹型治具の凹部にI字型フェライトコア25が載っているフープ状基板1を載せ、上からI字型フェライトコア25を加圧して凹部に嵌め込み、半導体チップ10が固着している左側のフープ状基板1およびコイル導体が形成されている右側のフープ状基板を凹型治具の底面に垂直な面の表面に沿うように直角に曲げ、コイル導体24が形成された垂直に立っている右側のフープ状基板1をI字型フェライトコア25を覆うように曲げ、コイル導体24の端部同士を接続することで薄膜磁気誘導素子200を形成することができる。   Although not shown, the method of bending the hoop-shaped substrate 1 is slightly larger than the combined width of the I-shaped ferrite core 25 and the thickness of the hoop-shaped substrate 1 and two coil conductors. A concave jig having a depth slightly larger than the thickness of the letter-shaped ferrite core 25 and the combined dimensions of the hoop-shaped substrate 1 and the coil conductor 24 is manufactured, and the I-shaped ferrite core 25 is formed in the concave part of the concave jig. The hoop-like substrate 1 that is placed is placed, the I-shaped ferrite core 25 is pressed from above and is fitted into the recess, and the left-side hoop-like substrate 1 to which the semiconductor chip 10 is fixed and the right-hand side on which the coil conductor is formed. The hoop-like substrate 1 is bent at right angles along the surface of the surface perpendicular to the bottom surface of the concave jig, and the right-side hoop-like substrate 1 on which the coil conductor 24 is formed is turned into the I-shaped ferrite core 2. Bending so as to cover, it is possible to form a thin film magnetic induction element 200 by connecting the ends of the coil conductor 24.

この場合もフープ状基板1を用いることで、前記した一連の製造工程を自動化ラインで行うことができるようになり、大幅なコスト低減を図ることができる。   Also in this case, by using the hoop-shaped substrate 1, the series of manufacturing steps described above can be performed with an automated line, and a significant cost reduction can be achieved.

図18は、この発明の第4実施例の超小型電力変換装置の要部断面図である。この図は、半導体チップ10の裏面側に薄膜磁気誘導素子300を固着した断面図である。
図12と異なるのは、I字型フェライトコア25(内部磁心)の上下にフェライト板27、28(外部磁心)を配置した点である。この場合は第3実施例より磁気誘導素子特性を向上させることができる。尚、製造方法については、図15の工程で、I字型フェライトコア25の上下にフェライト板27、28を接着剤29で固着する。または、図14もしくは図17の工程で、上下のフェライト板27、28をフープ状基板1に固着してもよい。
FIG. 18 is a cross-sectional view of an essential part of a micro power converter according to a fourth embodiment of the present invention. This figure is a cross-sectional view in which a thin film magnetic induction element 300 is fixed to the back side of the semiconductor chip 10.
The difference from FIG. 12 is that ferrite plates 27 and 28 (external magnetic cores) are arranged above and below the I-shaped ferrite core 25 (internal magnetic core). In this case, the magnetic induction element characteristics can be improved as compared with the third embodiment. As for the manufacturing method, ferrite plates 27 and 28 are fixed to the top and bottom of the I-shaped ferrite core 25 with an adhesive 29 in the step of FIG. Alternatively, the upper and lower ferrite plates 27 and 28 may be fixed to the hoop-like substrate 1 in the step of FIG.

この発明の第1実施例の超小型電力変換装置の構成図であり、(a)は要部平面図、(b)は(a)のX−X線で切断した要部断面図BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the micro power converter of 1st Example of this invention, (a) is a principal part top view, (b) is principal part sectional drawing cut | disconnected by the XX line of (a). 図1の超小型電力変換装置の要部製造工程図Manufacturing process diagram of the main part of the micro power converter of FIG. 図2に続く、図1の超小型電力変換装置の要部製造工程図2 is a manufacturing process diagram of the main part of the ultra-small power converter of FIG. 図3に続く、図1の超小型電力変換装置の要部製造工程図3 is a manufacturing process diagram of the main part of the micro power converter of FIG. 1 following FIG. 図4に続く、図1の超小型電力変換装置の要部製造工程図4 is a manufacturing process diagram of the main part of the micro power converter of FIG. 1 following FIG. 図5に続く、図1の超小型電力変換装置の要部製造工程図FIG. 5 is a manufacturing process diagram of a main part of the ultra-small power converter of FIG. 図7は、図1の超小型電力変換装置の製造工程の全体の流れを示す図FIG. 7 is a diagram showing an overall flow of a manufacturing process of the micro power converter of FIG. この発明の第2実施例の超小型電力変換装置の要部断面図Sectional drawing of the principal part of the micro power converter of 2nd Example of this invention 図8の超小型電力変換装置の要部製造工程図Manufacturing process diagram of the main part of the micro power converter of FIG. 図9に続く、図8の超小型電力変換装置の要部製造工程図FIG. 9 is a manufacturing process diagram of a main part of the micro power converter of FIG. 図10に続く、図8の超小型電力変換装置の要部製造工程図FIG. 10 is a manufacturing process diagram of the main part of the ultra-small power converter of FIG. この発明の第3実施例の超小型電力変換装置の要部断面図Sectional drawing of the principal part of the micro power converter of 3rd Example of this invention 図12の超小型電力変換装置の要部製造工程図Manufacturing process diagram of the main part of the micro power converter of FIG. 図13に続く、図12の超小型電力変換装置の要部製造工程図FIG. 13 is a manufacturing process diagram of a main part of the micro power converter of FIG. 図14に続く、図12の超小型電力変換装置の要部製造工程図Continuing to FIG. 14, a manufacturing process diagram of a main part of the micro power converter of FIG. 12. 図12の超小型電力変換装置の別の要部製造工程図Another main part manufacturing process diagram of the micro power converter of FIG. 図16に続く、図12の超小型電力変換装置の別の要部製造工程図FIG. 16 is another principal manufacturing process diagram of the micro power converter of FIG. この発明の第4実施例の超小型電力変換装置の要部断面図Sectional drawing of the principal part of the micro power converter of 4th Example of this invention

符号の説明Explanation of symbols

1 フープ状基板
2 第1コイル導体
3 第2コイル導体
4 第1配線
5 第2配線
6 第1端子電極
7 第2端子電極
8、9、26 開口部
10 半導体チップ
11 バンプ
12 磁性材
13 内部磁心
14、23 接着剤
15 アンダーフィル
16 はんだ
21、22 フェライト板
24 コイル導体
25 I字型フェライトコア
100、200、300 薄膜磁気誘導素子
DESCRIPTION OF SYMBOLS 1 Hoop-like board | substrate 2 1st coil conductor 3 2nd coil conductor 4 1st wiring 5 2nd wiring 6 1st terminal electrode 7 2nd terminal electrode 8, 9, 26 Opening 10 Semiconductor chip 11 Bump 12 Magnetic material 13 Internal magnetic core 14, 23 Adhesive 15 Underfill 16 Solder 21, 22 Ferrite plate 24 Coil conductor 25 I-shaped ferrite core 100, 200, 300 Thin film magnetic induction element

Claims (10)

第1主面に渦巻き状の第1コイル導体と複数の第1端子電極および第2主面に前記第1コイル導体と接続する渦巻き状の第2コイル導体と複数の第2端子電極が形成され、前記第1端子電極と前記第1コイル導体とを接続する第1配線と別の前記第1端子電極と前記第2コイル導体を接続する第2配線が第1主面に形成された絶縁性もしくは半絶縁性のフープ状基板と、前記渦巻きの中心部のフープ状基板を開口し該開口部を埋めるとともに、前記第1、第2コイル導体上を被覆する磁性材と、前記第1端子電極とバンプを介して表面側が接続し、裏面側が前記磁性材と固着する半導体チップとを有する超小型電力変換装置であって、
前記半導体チップの裏面側に前記第1、第2配線が形成された箇所の前記フープ状基板を折り曲げて前記磁性材を固着することを特徴とする超小型電力変換装置。
A spiral first coil conductor and a plurality of first terminal electrodes are formed on the first main surface, and a spiral second coil conductor and a plurality of second terminal electrodes connected to the first coil conductor are formed on the second main surface. Insulation in which a first wiring for connecting the first terminal electrode and the first coil conductor and a second wiring for connecting the first terminal electrode and the second coil conductor are formed on the first main surface. Alternatively, a semi-insulating hoop-like substrate, a magnetic material covering the first and second coil conductors while opening the hoop-like substrate at the center of the spiral and filling the opening, and the first terminal electrode And a semiconductor chip having a front surface side connected via a bump and a back surface side fixed to the magnetic material,
An ultra-small power converter characterized in that the magnetic material is fixed by bending the hoop-like substrate where the first and second wirings are formed on the back side of the semiconductor chip.
前記磁性材が磁性体粒子分散樹脂もしくは低温成形フェライト粉を圧縮成形および焼結したフェライトコアであることを特徴とする請求項1に記載の超小型電力変換装置。 The ultra-small power converter according to claim 1, wherein the magnetic material is a ferrite core obtained by compression-molding and sintering a magnetic particle-dispersed resin or low-temperature shaped ferrite powder. 前記第1コイル導体と前記第2コイル導体を挟み込む前記磁性材が、中心部が凸状となっている第1フェライト基板と、平坦な第2フェライト基板で構成されることを特徴とする請求項1に記載の超小型電力変換装置。 The magnetic material sandwiching the first coil conductor and the second coil conductor is composed of a first ferrite substrate having a convex center portion and a flat second ferrite substrate. The ultra-compact power conversion device according to 1. 第1主面に磁性材に巻かれてソレノイド状コイルを構成するコイル導体と複数の第1端子電極および第2主面に複数の第2端子電極とが形成され、コイル導体の両端が別々の第1端子電極と接続する配線が前記第1主面に形成された絶縁性もしくは半絶縁性のフープ状基板と、該フープ状基板の前記第1端子電極とバンプを介して表面側が接続する半導体チップとを有する超小型電力変換装置であって、前記半導体チップの裏面側に前記ソレノイド状コイルをフープ状基板を折り曲げることで固着することを特徴とする超小型電力変換装置。 A coil conductor that is wound around a magnetic material on the first main surface and forms a solenoid coil, a plurality of first terminal electrodes, and a plurality of second terminal electrodes on the second main surface are formed. An insulating or semi-insulating hoop-like substrate in which wiring to be connected to the first terminal electrode is formed on the first main surface, and a semiconductor whose surface side is connected to the first terminal electrode of the hoop-like substrate via bumps A microminiature power converter having a chip, wherein the solenoid coil is fixed to the back side of the semiconductor chip by folding a hoop-shaped substrate. 前記磁性材がI字型フェライトコアであることを特徴とする請求項4に記載の超小型電力変換装置。 The micro power converter according to claim 4, wherein the magnetic material is an I-shaped ferrite core. 前記I字型フェライトコアの上下にフェライト基板を配置することを特徴とする請求項5に記載の超小型電力変換装置。 6. The micro power converter according to claim 5, wherein ferrite substrates are disposed above and below the I-shaped ferrite core. 前記フープ状基板が、ロール状に巻かれたテープ状の導電パターンが形成された絶縁性もしくは半絶縁性のフレキシブル基板をカットしたものであることを特徴とする請求項1〜6のいずれか一項に記載の超小型電力変換装置。 The said hoop-shaped board | substrate is what cut | disconnected the insulating or semi-insulating flexible board | substrate in which the tape-like conductive pattern wound by roll shape was formed, The any one of Claims 1-6 characterized by the above-mentioned. The ultra-compact power converter described in the item. 第1主面に渦巻き状の第1コイル導体と複数の第1端子電極および第2主面に前記第1コイル導体と接続する渦巻き状の第2コイル導体と複数の第2端子電極が形成され、前記第1端子電極と前記第1コイル導体とを接続する第1配線と別の前記第1端子電極と前記第2コイル導体を接続する第2配線が第1主面に形成された絶縁性もしくは半絶縁性のフープ状基板の前記渦巻きの中心部と前記第1、第2コイル導体が形成された箇所の第1外周部の前記フープ状基板を開口する工程と、前記中心部と第1外周部に形成された前記開口部を磁性材で埋めるとともに、前記第1、第2コイル導体上を該磁性材で被覆する工程と、前記第1端子電極と半導体チップの表面側とをバンプを介して接続する工程と、前記第1、第2コイル導体、前記第1、第2配線が形成された箇所および前記半導体チップが固着した箇所を残して他の箇所の前記フープ状基板を除去する工程と、前記半導体チップの裏面側に前記フープ状基板を折り曲げて前記磁性材を固着する工程とを含むことを特徴とする超小型電力変換装置の製造方法。 A spiral first coil conductor and a plurality of first terminal electrodes are formed on the first main surface, and a spiral second coil conductor and a plurality of second terminal electrodes connected to the first coil conductor are formed on the second main surface. Insulation in which a first wiring for connecting the first terminal electrode and the first coil conductor and a second wiring for connecting the first terminal electrode and the second coil conductor are formed on the first main surface. Alternatively, the step of opening the hoop-like substrate in the central portion of the spiral of the semi-insulating hoop-like substrate and the first outer peripheral portion of the portion where the first and second coil conductors are formed, and the central portion and the first A step of filling the opening formed in the outer peripheral portion with a magnetic material, covering the first and second coil conductors with the magnetic material, and bumping the first terminal electrode and the surface side of the semiconductor chip Connecting via the first and second coil conductors, the first A step of removing the hoop-like substrate in other places while leaving a place where the second wiring is formed and a place where the semiconductor chip is fixed; and bending the hoop-like substrate to the back side of the semiconductor chip to And a step of fixing the material. A method for manufacturing a micro power converter. 第1主面に併設される複数のコイル導体と複数の第1端子電極および第2主面に複数の第2端子電極とが形成され、前記複数のコイル導体の最外部に配置されたコイル導体と第1、第2端子電極と接続する第1、第2配線とが形成された絶縁性もしくは半絶縁性のフープ状基板の前記の全コイル導体を横切るように磁性材を配置する工程と、前記フープ状基板の第1端子電極にバンプを介して半導体チップの表面側を固着する工程と、前記磁性材の外周を包むように前記フープ状基板を折り曲げ、各コイル導体の端部を互い違いに接続してソレノイド状のコイルを形成する工程と、前記半導体チップの裏面側に前記第1、第2配線が形成された箇所の前記フープ状基板を折り曲げて前記ソレノイド状のコイルを前記フープ状基板を介して固着する工程とを含むことを特徴とする超小型電力変換装置の製造方法。 A coil conductor in which a plurality of coil conductors provided on the first main surface, a plurality of first terminal electrodes, and a plurality of second terminal electrodes are formed on the second main surface, are arranged at the outermost part of the plurality of coil conductors. And disposing a magnetic material so as to cross all the coil conductors of the insulating or semi-insulating hoop-like substrate in which the first and second wirings connected to the first and second terminal electrodes are formed; The process of fixing the surface side of the semiconductor chip to the first terminal electrode of the hoop-shaped substrate via bumps, the hoop-shaped substrate is bent so as to wrap the outer periphery of the magnetic material, and the ends of the coil conductors are alternately connected. Forming a solenoidal coil, and bending the hoop-like substrate where the first and second wirings are formed on the back side of the semiconductor chip so that the solenoid-like coil becomes the hoop-like substrate. Sticking through Method of manufacturing a micro power converter which comprises a that step. 前記の各工程を自動化ラインで行うことを特徴とする請求項8または9に記載の超小型電力変換装置の製造方法。 10. The method for manufacturing a micro power converter according to claim 8, wherein each of the steps is performed by an automated line.
JP2005275429A 2005-09-22 2005-09-22 Ultra-compact power converter and manufacturing method thereof Expired - Fee Related JP4661489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275429A JP4661489B2 (en) 2005-09-22 2005-09-22 Ultra-compact power converter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275429A JP4661489B2 (en) 2005-09-22 2005-09-22 Ultra-compact power converter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007089316A true JP2007089316A (en) 2007-04-05
JP4661489B2 JP4661489B2 (en) 2011-03-30

Family

ID=37975716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275429A Expired - Fee Related JP4661489B2 (en) 2005-09-22 2005-09-22 Ultra-compact power converter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4661489B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142018A (en) * 2007-12-05 2009-06-25 Fuji Electric Device Technology Co Ltd Micro-power conversion device
KR101958648B1 (en) * 2018-03-15 2019-07-02 주식회사 에이텀 Manufactruing method of plate secondary coil assembly for transformer
WO2019177305A1 (en) * 2018-03-15 2019-09-19 주식회사 에이텀 Secondary coil element for transformer and method for manufacturing same
KR102024849B1 (en) * 2018-11-16 2019-09-24 주식회사 에이텀 Planary secondary coil assembly for transformer
KR102024844B1 (en) * 2018-08-22 2019-09-24 주식회사 에이텀 Secondary coil assembly for transformer
KR102009434B1 (en) * 2018-05-04 2019-10-21 주식회사 에이텀 Plate secondary coil assembly for transformer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615190U (en) * 1979-07-14 1981-02-09
JPH07307440A (en) * 1994-05-11 1995-11-21 Fuji Electric Co Ltd Stabilizing power supply apparatus and its manufacture
JPH10135040A (en) * 1996-10-29 1998-05-22 Fuji Electric Co Ltd Thin-film magnetic element and its method of manufacturing the same
JP2000277681A (en) * 1999-03-25 2000-10-06 Seiko Epson Corp Wiring board, semiconductor device and manufacture thereof, and circuit board and electronic apparatus
JP2004274004A (en) * 2003-01-16 2004-09-30 Fuji Electric Device Technology Co Ltd Microminiature power converter
JP2005093774A (en) * 2003-09-18 2005-04-07 Fuji Electric Holdings Co Ltd Semiconductor device and micro power converting device, and their manufacturing method
JP2005183741A (en) * 2003-12-19 2005-07-07 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
JP2005340754A (en) * 2004-04-27 2005-12-08 Fuji Electric Device Technology Co Ltd Micro power converting apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615190U (en) * 1979-07-14 1981-02-09
JPH07307440A (en) * 1994-05-11 1995-11-21 Fuji Electric Co Ltd Stabilizing power supply apparatus and its manufacture
JPH10135040A (en) * 1996-10-29 1998-05-22 Fuji Electric Co Ltd Thin-film magnetic element and its method of manufacturing the same
JP2000277681A (en) * 1999-03-25 2000-10-06 Seiko Epson Corp Wiring board, semiconductor device and manufacture thereof, and circuit board and electronic apparatus
JP2004274004A (en) * 2003-01-16 2004-09-30 Fuji Electric Device Technology Co Ltd Microminiature power converter
JP2005093774A (en) * 2003-09-18 2005-04-07 Fuji Electric Holdings Co Ltd Semiconductor device and micro power converting device, and their manufacturing method
JP2005183741A (en) * 2003-12-19 2005-07-07 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
JP2005340754A (en) * 2004-04-27 2005-12-08 Fuji Electric Device Technology Co Ltd Micro power converting apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142018A (en) * 2007-12-05 2009-06-25 Fuji Electric Device Technology Co Ltd Micro-power conversion device
KR101958648B1 (en) * 2018-03-15 2019-07-02 주식회사 에이텀 Manufactruing method of plate secondary coil assembly for transformer
WO2019177305A1 (en) * 2018-03-15 2019-09-19 주식회사 에이텀 Secondary coil element for transformer and method for manufacturing same
KR102009434B1 (en) * 2018-05-04 2019-10-21 주식회사 에이텀 Plate secondary coil assembly for transformer
KR102024844B1 (en) * 2018-08-22 2019-09-24 주식회사 에이텀 Secondary coil assembly for transformer
KR102024849B1 (en) * 2018-11-16 2019-09-24 주식회사 에이텀 Planary secondary coil assembly for transformer

Also Published As

Publication number Publication date
JP4661489B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US11437174B2 (en) Inductor and method of manufacturing same
US10389241B2 (en) Power supply converter and method for manufacturing the same
JP5549600B2 (en) Manufacturing method of module with flat coil and module with flat coil
JP5831498B2 (en) Coil component and manufacturing method thereof
JP5614286B2 (en) Semiconductor device and power supply circuit
JP4434268B2 (en) Electronic component module
US10986732B2 (en) Laminated circuit board, and electronic component
CN105225806B (en) Coil module
JP2004274004A (en) Microminiature power converter
JP4661489B2 (en) Ultra-compact power converter and manufacturing method thereof
JP2008171965A (en) Microminiature power converter
JP2020027820A (en) Inductor and manufacturing method of inductor
JPWO2013137044A1 (en) Inductor-embedded substrate manufacturing method, inductor-embedded substrate, and power supply module using the same
JP2005340754A (en) Micro power converting apparatus
JP6443451B2 (en) High frequency components
US20180315543A1 (en) Inductor component and method for manufacturing inductor component
JP2003347124A (en) Magnetic element and power module using the same
US20220254869A1 (en) Inductor structure and fabrication method thereof, electronic package and fabrication method thereof, and method for fabricating packaging carrier
JP2004296816A (en) Magnetic induction element and ultra compact power conversion apparatus using the same
JP5229189B2 (en) Electronic component module
JP2005026384A (en) Inductor element and electronic component including the same, and manufacturing method thereof
US20230187122A1 (en) Inductor component and method of manufacturing inductor component
US11282771B2 (en) Electronic component and method of manufacturing electronic component
US20210350979A1 (en) Coil structure, lead frame, and inductor
JP2007042665A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4661489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees