JP2005093774A - Semiconductor device and micro power converting device, and their manufacturing method - Google Patents

Semiconductor device and micro power converting device, and their manufacturing method Download PDF

Info

Publication number
JP2005093774A
JP2005093774A JP2003325948A JP2003325948A JP2005093774A JP 2005093774 A JP2005093774 A JP 2005093774A JP 2003325948 A JP2003325948 A JP 2003325948A JP 2003325948 A JP2003325948 A JP 2003325948A JP 2005093774 A JP2005093774 A JP 2005093774A
Authority
JP
Japan
Prior art keywords
semiconductor chip
thin film
bump
bump electrode
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003325948A
Other languages
Japanese (ja)
Inventor
Yoshitomo Hayashi
善智 林
Tetsuya Kawashima
鉄也 川島
Akira Amano
彰 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003325948A priority Critical patent/JP2005093774A/en
Publication of JP2005093774A publication Critical patent/JP2005093774A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device and a micro power converting device hard to cause damages such as metal fatigue, crack, or the like in an Al electrode film on a semiconductor chip or a semiconductor chip with a structure having a high bonding strength and a high bonding reliability and to provide a method for manufacturing them. <P>SOLUTION: The semiconductor device comprises a semiconductor chip 1, a stud bump 3 formed on the chip 1, an insulative resist film 4 as an insulative supporting thin film formed on the chip 1 so as to surround the bump 3, and a ceramic substrate 5 with a metal terminal 6 fixed to the chip 1 through the bump 3 by a ultrasonic bonding. Determining the film thickness of the film 4 1/2 to 1/3 of a height of the bump 3 makes the fixing strength of the bump 3 satisfactorily strong to improve the bonding strength. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は,半導体チップをバンプ電極を介して超音波接合で導電パターン付き絶縁基板と固着した半導体装置や半導体チップとバンプ電極を介して超音波振動で薄膜磁気誘導素子とを固着した超小型電力変換装置およびそれらの製造方法に関する。   The present invention relates to a semiconductor device in which a semiconductor chip is fixed to an insulating substrate with a conductive pattern by ultrasonic bonding via a bump electrode, or a micro power having a thin film magnetic induction element fixed by ultrasonic vibration via a semiconductor chip and a bump electrode. The present invention relates to conversion devices and methods for manufacturing them.

近年、携帯電話などの携帯機器やパソコンなどのOA機器の小型、軽量化を一層促進するために、これらの機器に搭載する半導体装置の超小型化と低背化やスイッチング電源として用いられるDC−DCコンバータなどの電力変換装置の超小型化と低背化が求められている。   In recent years, in order to further promote the reduction in size and weight of portable devices such as mobile phones and OA devices such as personal computers, the size of semiconductor devices mounted on these devices is reduced in size and height, and DC- used as a switching power source. There is a demand for ultra-miniaturization and low-profile power conversion devices such as DC converters.

図17は、DC−DCコンバータの回路図である。このDC−DCコンバータは、直流の入力電圧を任意の出力電圧に変換する降圧型の電力変換装置である。図中のViは入力電圧、Ci、CT、Coはコンデンサ、Lは薄膜磁気誘導素子であるインダクタ、Voは出力電圧である。LとCoは出力電圧電流を平滑化するフィルタである。   FIG. 17 is a circuit diagram of a DC-DC converter. This DC-DC converter is a step-down power converter that converts a DC input voltage into an arbitrary output voltage. In the figure, Vi is an input voltage, Ci, CT and Co are capacitors, L is an inductor which is a thin film magnetic induction element, and Vo is an output voltage. L and Co are filters that smooth the output voltage current.

図18は、超小型化と低背化された従来の半導体装置の要部断面図である。セラミック基板5に形成された金属端子6(導電パターン)と半導体チップ1に形成されたスタッドバンプ3が超音波接合で直接固着している。このセラミック基板5の金属端子6が点線で示すプリント基板31の導電パターン32とはんだ33などで面実装される。また、このセラミック基板5はガラスエポキシのプリント基板の場合もある。また、このセラミック基板5に固着した半導体チップ1が単体で樹脂ケース(モールド)や樹脂パッケージに収納されて半導体装置となる場合もある。   FIG. 18 is a cross-sectional view of a main part of a conventional semiconductor device that is ultra-small and low-profile. The metal terminals 6 (conductive pattern) formed on the ceramic substrate 5 and the stud bumps 3 formed on the semiconductor chip 1 are directly fixed by ultrasonic bonding. The metal terminals 6 of the ceramic substrate 5 are surface-mounted with the conductive pattern 32 of the printed circuit board 31 and the solder 33 indicated by dotted lines. The ceramic substrate 5 may be a glass epoxy printed circuit board. In some cases, the semiconductor chip 1 fixed to the ceramic substrate 5 is housed alone in a resin case (mold) or resin package to form a semiconductor device.

図19は、薄膜磁気誘導素子と半導体チップを一体化したDC−DCコンバータなどを超小型化と低背化した従来の超小型電力変換装置の要部断面図である。これは図17の電源用ICとインダクタとCi、CT、Coなどのコンデンサ(セラミックコンデンサアレイ35)を固着した図である。   FIG. 19 is a cross-sectional view of a main part of a conventional micro power converter in which a DC-DC converter or the like in which a thin film magnetic induction element and a semiconductor chip are integrated is miniaturized and reduced in height. This is a diagram in which the power supply IC, inductor, and capacitor (ceramic capacitor array 35) such as Ci, CT, and Co are fixedly attached.

フェライト基板11上にコイル導体12が形成された薄膜磁気誘導素子10の金属端子6と半導体チップ1に形成されたスタッドバンプ3が超音波接合で直接固着されている。このフェライト基板11の金属端子6に、点線で示したセラミックコンデンサアレイ35などが接続されて超小型半導体装置となる。   The metal terminal 6 of the thin film magnetic induction element 10 having the coil conductor 12 formed on the ferrite substrate 11 and the stud bump 3 formed on the semiconductor chip 1 are directly fixed by ultrasonic bonding. A ceramic capacitor array 35 or the like indicated by a dotted line is connected to the metal terminal 6 of the ferrite substrate 11 to form a microminiature semiconductor device.

この超音波接合により直接固着する接合構造は、フリップチップボンディング(以下FCBと略す)構造と呼ばれ、この構造を用いた半導体装置(例えば、特許文献1、特許文献2)および超小型電力変換装置(例えば、特許文献3)が報告されている。   This bonding structure directly fixed by ultrasonic bonding is called a flip chip bonding (hereinafter abbreviated as FCB) structure, and a semiconductor device (for example, Patent Document 1 and Patent Document 2) and an ultra-small power converter using this structure are used. (For example, Patent Document 3) has been reported.

また、バンプと半導体チップを異方性導電膜を介して圧接するとき、押圧で半導体チップにダメージが導入されるのを防止し、その接合強度を増すために樹脂層でバンプを補強した例がある(例えば、特許文献4)。
特開2002−252252号公報 特開2001−127110号公報 特開2002−233140号公報 特開2003−31737号公報
In addition, when the bump and the semiconductor chip are pressed through the anisotropic conductive film, an example in which the bump is reinforced with a resin layer in order to prevent damage to the semiconductor chip due to pressing and to increase the bonding strength. Yes (for example, Patent Document 4).
JP 2002-252252 A JP 2001-127110 A JP 2002-233140 A JP 2003-31737 A

これらの半導体装置および超小型電力変換装置においては,絶縁基板5やフェライト基板11への半導体チップ1のFCBが、超音波振動と圧着させるための加圧でのみで行われるため生産性が良いという利点がある。しかしその反面、はんだ接合に比べると接合の強度が弱く、ヒートサイクル等の熱ストレスに対する信頼性が低いという問題点があった。   In these semiconductor devices and micro power converters, productivity is good because the FCB of the semiconductor chip 1 to the insulating substrate 5 and the ferrite substrate 11 is performed only by ultrasonic vibration and pressurization for pressure bonding. There are advantages. On the other hand, however, there is a problem that the strength of bonding is weaker than that of solder bonding, and the reliability against heat stress such as heat cycle is low.

図20は、半導体チップを超音波によるFCBを行っている様子を示す概念図である。半導体チップ1のAlパット2に形成したAuのスタッドバンプ3をセラミック基板5の金属端子6に超音波でFCBして直接固着する場合、まず、半導体チップ1をボンディングツール51に真空吸着させ、このボンディングツール51でセラミック基板5の金属端子6にスタッドバンプ3を押圧し、超音波発振器52で発生させた超音波振動を超音波伝達部53を介してボンディングスール51に伝達し、この超音波振動が半導体チップ1に伝達し、半導体チップ1が横方向に強制的に揺すられて、スタッドバンプ3とセラミック基板5の金属端子6との接合が進行する。超音波接合が終了するとセラミック基板5を移動させてこの動作を繰り返す。   FIG. 20 is a conceptual diagram showing a state in which the semiconductor chip is subjected to FCB using ultrasonic waves. When the Au stud bump 3 formed on the Al pad 2 of the semiconductor chip 1 is directly fixed to the metal terminal 6 of the ceramic substrate 5 by ultrasonic FCB, first, the semiconductor chip 1 is vacuum-adsorbed to the bonding tool 51. The stud bump 3 is pressed against the metal terminal 6 of the ceramic substrate 5 by the bonding tool 51, and the ultrasonic vibration generated by the ultrasonic oscillator 52 is transmitted to the bonding suit 51 via the ultrasonic transmission unit 53. Is transmitted to the semiconductor chip 1 and the semiconductor chip 1 is forcibly shaken in the lateral direction, and the joining of the stud bump 3 and the metal terminal 6 of the ceramic substrate 5 proceeds. When the ultrasonic bonding is completed, the ceramic substrate 5 is moved and this operation is repeated.

この超音波接合の進行を早めるために、セラミック基板5が乗っているステージ54をヒータ55で加熱する。セラミック基板5の金属端子6とスタッドバンプ3の接合強度を一定の限界値以上に無理に高めようとすると、超音波振動によるストレスが、半導体チップ1上のAlパッド2とAuのスタッドバンプ3の接合部付近に集中し、超音波振動の横方向に働く力(半導体チップの表面と平行する力)により半導体チップ1からスタッドバンプ3がむしり取られる力が作用して、その近傍のAlパッド2やその下の半導体チップ1(母材)に金属疲労やクラック等のダメージが発生するという問題がある。   In order to accelerate the progress of this ultrasonic bonding, the stage 54 on which the ceramic substrate 5 is placed is heated by the heater 55. If the bonding strength between the metal terminal 6 of the ceramic substrate 5 and the stud bump 3 is forcibly increased beyond a certain limit value, the stress due to ultrasonic vibration causes stress between the Al pad 2 on the semiconductor chip 1 and the stud bump 3 of Au. A force concentrated in the vicinity of the joint and acting in the lateral direction of the ultrasonic vibration (a force parallel to the surface of the semiconductor chip) acts to peel off the stud bump 3 from the semiconductor chip 1, and the Al pad 2 and There is a problem that damage such as metal fatigue and cracks occurs in the semiconductor chip 1 (base material) therebelow.

尚、前記の特許文献4では異方性導電膜を圧接する力(半導体チップに対して縦方向の力)で半導体チップのバンプと導電パターンを固着しており、この縦方向の力で半導体チップにダメージが発生することに対する対策は示されているが、本発明では、超音波接合で半導体チップのバンプと導電パターン(または金属端子)を固着しており、この超音波接合での横方向に働く力(超音波振動)でダメージが発生することに対する対策は特許文献4では示されていない。   In Patent Document 4, the bumps of the semiconductor chip and the conductive pattern are fixed with a force that presses the anisotropic conductive film (force in the vertical direction with respect to the semiconductor chip), and the semiconductor chip is applied with this vertical force. However, in the present invention, the bumps of the semiconductor chip and the conductive pattern (or metal terminal) are fixed by ultrasonic bonding, and the horizontal direction in this ultrasonic bonding is shown. A countermeasure against the occurrence of damage due to working force (ultrasonic vibration) is not disclosed in Patent Document 4.

この発明の目的は、前記の課題を解決して、超音波接合での接合強度および接合の信頼性が高い半導体装置と超小型電力変換装置およびそれらの製造方法を提供することにある。   An object of the present invention is to solve the above-described problems and provide a semiconductor device and a micro power converter having high bonding strength and bonding reliability in ultrasonic bonding, and methods for manufacturing the same.

前記の目的を達成するために、半導体チップと、該半導体チップを該半導体チップに形成されたバンプ電極を介して超音波接合で固着させた導電パターン付き絶縁基板とを有する半導体装置において、半導体チップ上にバンプ電極の先端が露出するように形成した該バンプ電極の剥離強度を補強すると共に超音波振動による応力を和らげる働きをする絶縁性支持薄膜を有する構成とする。   In order to achieve the above object, a semiconductor chip having a semiconductor chip and an insulating substrate with a conductive pattern in which the semiconductor chip is fixed by ultrasonic bonding via bump electrodes formed on the semiconductor chip. An insulating support thin film that reinforces the peel strength of the bump electrode formed so that the tip of the bump electrode is exposed and functions to relieve stress due to ultrasonic vibration is provided.

また、前記絶縁性支持薄膜の厚さが、バンプ電極高さの半分以下であるとよい。   Further, the thickness of the insulating support thin film is preferably not more than half the height of the bump electrode.

また、前記バンプ電極が,Auのスタッドバンプであるとよい。   The bump electrode may be an Au stud bump.

また、前記絶縁基板が、ガラスエポキシ基板もしくはセラミック基板であるとよい。   The insulating substrate may be a glass epoxy substrate or a ceramic substrate.

また、半導体チップと、該半導体チップを該半導体チップに形成されたバンプ電極を介して超音波接合で固着させた導電パターン付き絶縁基板とを有する半導体装置の製造方法において、半導体チップ上にバンプが埋没する厚さでバンプ電極の剥離強度を補強する絶縁性支持薄膜を形成し、該絶縁性支持薄膜をエッチバックによりバンプ電極先端が露出するまで薄くする製造方法とする。   Further, in a method of manufacturing a semiconductor device having a semiconductor chip and an insulating substrate with a conductive pattern in which the semiconductor chip is fixed by ultrasonic bonding via a bump electrode formed on the semiconductor chip, bumps are formed on the semiconductor chip. An insulating support thin film that reinforces the peeling strength of the bump electrode with the thickness to be buried is formed, and the insulating support thin film is thinned by etch back until the bump electrode tip is exposed.

また、前記絶縁性支持薄膜が、絶縁性レジスト、ポリイミドおよびエポキシの有機系絶縁物もしくはCVD法により450℃以下の温度で低温形成されたSiO2 、SiN、PSG等およびSOG(スピンオングラス)の無機系絶縁物もしくは蒸着またはスパッタ法で堆積させたAl膜を陽極酸化により形成したAl2 3 であるとよい。 Further, the insulating support thin film is made of an insulating resist, an organic insulator of polyimide and epoxy, or SiO 2 , SiN, PSG, etc. formed at a low temperature by a CVD method at a temperature of 450 ° C. or less, and SOG (spin-on-glass) inorganic. It is preferable to use Al 2 O 3 formed by anodic oxidation of a system insulator or an Al film deposited by vapor deposition or sputtering.

また、半導体チップと、該半導体チップを該半導体チップに形成されたバンプ電極を介して超音波接合で固着させた薄膜磁気誘導素子とを有する超小型電力変換装置において、半導体チップ上にバンプ電極の先端が露出するように形成した該バンプ電極の剥離強度を補強すると共に超音波振動による応力を和らげる働きをする絶縁性支持薄膜を有する構成とする。   Further, in a micro power converter having a semiconductor chip and a thin film magnetic induction element in which the semiconductor chip is fixed by ultrasonic bonding via a bump electrode formed on the semiconductor chip, a bump electrode is formed on the semiconductor chip. The insulating film is provided with an insulating support thin film that reinforces the peel strength of the bump electrode formed so that the tip is exposed, and that reduces the stress caused by ultrasonic vibration.

また、前記絶縁性支持薄膜の厚さが、バンプ電極高さの半分以下であるとよい。   Further, the thickness of the insulating support thin film is preferably not more than half the height of the bump electrode.

また、前記バンプ電極が、Auのスタッドバンプであるとよい。   The bump electrode may be an Au stud bump.

また、前記薄膜磁気誘導素子の基板が、フェライト基板であるとよい。   The substrate of the thin film magnetic induction element may be a ferrite substrate.

また、半導体チップと、該半導体チップを該半導体チップに形成されたバンプ電極を介して超音波接合で固着させた薄膜磁気誘導素子とを有する超小型電力変換装置の製造方法において、半導体チップ上にバンプが埋没する厚さでバンプ電極の剥離強度を補強する絶縁性支持薄膜を形成し、該絶縁性支持薄膜をエッチバックによりバンプ電極先端が露出するまで薄くする製造方法とする。   Further, in a method of manufacturing a micro power converter having a semiconductor chip and a thin film magnetic induction element in which the semiconductor chip is fixed by ultrasonic bonding via a bump electrode formed on the semiconductor chip, An insulating support thin film that reinforces the peeling strength of the bump electrode with a thickness at which the bump is buried is formed, and the insulating support thin film is thinned by etching back until the bump electrode tip is exposed.

また、前記絶縁性支持薄膜が、絶縁性レジスト、ポリイミドおよびエポキシの有機系絶縁物もしくはCVD法により450℃以下の温度で低温形成されたSiO2 、SiN、PSG等およびSOG(スピンオングラス)の無機系絶縁物もしくは蒸着またはスパッタ法で堆積させたAl膜を陽極酸化により形成したAl2 3 であるとよい。
〔作用〕
バンプ電極を支える絶縁性支持薄膜を、半導体チップの金属パッドおよびバンプ電極下部を被覆するように厚く形成することで、FCB時の超音波振動によるバンプ電極の揺れを低減し、パッドや半導体チップに金属疲労やクラック等のダメージが発生することを防止する。
Further, the insulating support thin film is made of an insulating resist, an organic insulator of polyimide and epoxy, or SiO 2 , SiN, PSG, etc. formed at a low temperature by a CVD method at a temperature of 450 ° C. or less, and SOG (spin-on-glass) inorganic. It is preferable to use Al 2 O 3 formed by anodic oxidation of a system insulator or an Al film deposited by vapor deposition or sputtering.
[Action]
The insulating support thin film that supports the bump electrode is formed thick so as to cover the metal pad of the semiconductor chip and the lower part of the bump electrode, thereby reducing the vibration of the bump electrode due to ultrasonic vibration during FCB, and to the pad and the semiconductor chip. Prevents damage such as metal fatigue and cracks.

この発明によれば、バンプ電極を絶縁性支持薄膜で固定補強し、超音波接合時のバンプ電極の横揺れを防止することで、半導体チップにダメージを発生させることなく、バンプ電極と導電パターン(金属端子)との接合強度を従来の1.5倍程度に高めることができる。   According to the present invention, the bump electrode is fixed and reinforced with the insulating support thin film, and the bump electrode is prevented from rolling during the ultrasonic bonding, so that the bump electrode and the conductive pattern ( The bonding strength with the metal terminal can be increased to about 1.5 times the conventional strength.

超音波接合での接合強度を高めることで、接合信頼性の高い半導体装置および超小型電力変換装置を実現することができる。   By increasing the bonding strength in ultrasonic bonding, it is possible to realize a semiconductor device and an ultra-small power conversion device with high bonding reliability.

この発明の実施の形態は、半導体チップに形成されたバンプ電極を導電パターン(金属端子)付き絶縁基板やフェライト基板に超音波接合で固着するときに、超音波振動でバンプ電極が横揺れするのを防止するために、バンプ電極の固定補強と超音波振動による応力緩和を目的に絶縁性支持薄膜を半導体チップ上にバンプ電極を取り囲むように形成したことである。   In the embodiment of the present invention, when a bump electrode formed on a semiconductor chip is fixed to an insulating substrate with a conductive pattern (metal terminal) or a ferrite substrate by ultrasonic bonding, the bump electrode rolls by ultrasonic vibration. In order to prevent this, an insulating support thin film is formed on the semiconductor chip so as to surround the bump electrode in order to fix and reinforce the bump electrode and relieve stress by ultrasonic vibration.

図1は、この発明の第1実施例の半導体装置の要部断面図である。図18と同一部位には同一の符号を付した。   FIG. 1 is a cross-sectional view of a main part of a semiconductor device according to a first embodiment of the present invention. The same parts as those in FIG. 18 are denoted by the same reference numerals.

この半導体装置は、半導体チップ1と、半導体チップ1に形成されたスタッドバンプ3と、このスタッドバンプ3を取り囲むように、半導体チップ1上に形成した絶縁性支持薄膜である絶縁性レジスト膜4と、スタットバンプ3を介して半導体チップ1と超音波接合で固着された金属端子6付きセラミック基板5と、これらを収納する図示しないパッケージで構成される。   This semiconductor device includes a semiconductor chip 1, a stud bump 3 formed on the semiconductor chip 1, and an insulating resist film 4 that is an insulating support thin film formed on the semiconductor chip 1 so as to surround the stud bump 3. The ceramic substrate 5 with the metal terminals 6 fixed by ultrasonic bonding to the semiconductor chip 1 via the stat bumps 3 and a package (not shown) for storing them.

絶縁性レジスト膜4の膜厚はスタッドパンプ3の高さの1/2から1/3程度にする。この絶縁性レジスト膜6の厚さが厚すぎて絶縁性レジスト膜4とセラミック基板15の隙間が10μm程度となると、アンダーフィル充填が良好に行われない。また、絶縁性レジスト膜4の厚さが薄くなり過ぎるとスタッドパンブ3の固定補強が不十分になり、接合強度が低下する。   The thickness of the insulating resist film 4 is set to about ½ to 3 of the height of the stud pump 3. If the thickness of the insulating resist film 6 is too thick and the gap between the insulating resist film 4 and the ceramic substrate 15 is about 10 μm, the underfill is not satisfactorily performed. Further, if the thickness of the insulating resist film 4 becomes too thin, the fixing and reinforcement of the stud pan 3 is insufficient, and the bonding strength is lowered.

この絶縁性レジスト膜4の代わりに、ポリイミド、エポキシ等の有機系絶縁膜、SiO2 (酸化シリコン)、SiN(窒化シリコン)、PSG(リンガラス)およびSOG(スピンオングラス)などの無機系絶縁膜およびAl2 3 (アルミナ)などを絶縁性支持薄膜として用いてもよい。また、セラミック基板5の代わりにガラスエポキシ基板を絶縁基板として用いてもよい。 Instead of the insulating resist film 4, an organic insulating film such as polyimide or epoxy, an inorganic insulating film such as SiO 2 (silicon oxide), SiN (silicon nitride), PSG (phosphorus glass), and SOG (spin on glass). Al 2 O 3 (alumina) or the like may be used as the insulating support thin film. Further, a glass epoxy substrate may be used as an insulating substrate instead of the ceramic substrate 5.

セラミック基板5など半導体チップ1との熱膨張係数の違いが大きい絶縁基板を用いる場合には、スタッドバンプ3とセラミック基板5の隙間にアンダーフィル7を充填して、熱膨張による応力を緩和するとよい。   When an insulating substrate having a large difference in thermal expansion coefficient from the semiconductor chip 1 such as the ceramic substrate 5 is used, the underfill 7 is filled in the gap between the stud bump 3 and the ceramic substrate 5 to relieve stress due to thermal expansion. .

このように絶縁性レジスト膜6などの絶縁性支持薄膜を半導体チップ1上に形成することで、スタッドバンプ3が超音波接合で揺さぶられることが抑制され、スタッドバンプ3と金属端子6との接合強度を従来の1.5倍程度に高めることができる。接合強度が高まることで接合信頼性の高い半導体装置とすることができる。   By forming an insulating support thin film such as the insulating resist film 6 on the semiconductor chip 1 in this manner, the stud bump 3 is suppressed from being shaken by ultrasonic bonding, and the stud bump 3 and the metal terminal 6 are bonded. The strength can be increased to about 1.5 times the conventional level. By increasing the bonding strength, a semiconductor device with high bonding reliability can be obtained.

尚、金属端子6は、端子パターン金属膜6aと表面側、裏面側の最表面金属膜6b、6cで形成される。また、半導体チップ1は集積回路を形成したICチップなどである。   The metal terminal 6 is formed of the terminal pattern metal film 6a and the outermost surface metal films 6b and 6c on the front surface side and the back surface side. The semiconductor chip 1 is an IC chip or the like on which an integrated circuit is formed.

図2から図8は、この発明の第2実施例の半導体装置の製造方法であり、工程順に示した要部製造工程断面図である。この半導体装置は図1に示したものである。   FIGS. 2 to 8 are cross-sectional views of the main part manufacturing process shown in the order of steps in the method of manufacturing the semiconductor device according to the second embodiment of the present invention. This semiconductor device is shown in FIG.

半導体チップ1の外周部にAl(アルミニウム)パッド2を形成する(図2)。つぎに、このAlパッド2上にAuワイヤのボールボンディングにより高さ70μmのスタッドバンプ3を形成する(図3)。つぎに、絶縁性支持薄膜となる液状の保護レジスト剤をコーティングし熱硬化して絶縁性レジスト膜4を形成する(図4)。この場合、絶縁性レジスト膜4の厚さは100μm程度が望ましい。この絶縁性レジスト膜4は、フイルム状のレジストをラミネータで貼付け、熱硬化させて形成してもよい。つぎに、酸素プラズマエッチングによりエッチバックして、スタッドバンプ3を露出させる(図5)。この場合、前記したように残す絶縁性レジスト膜4の厚さは、スタッドバンプ3の高さの1/2から1/3程度が望ましい。   An Al (aluminum) pad 2 is formed on the outer periphery of the semiconductor chip 1 (FIG. 2). Next, a stud bump 3 having a height of 70 μm is formed on the Al pad 2 by ball bonding of an Au wire (FIG. 3). Next, a liquid protective resist agent to be an insulating support thin film is coated and thermally cured to form an insulating resist film 4 (FIG. 4). In this case, the thickness of the insulating resist film 4 is desirably about 100 μm. The insulating resist film 4 may be formed by pasting a film resist with a laminator and thermosetting it. Next, the stud bump 3 is exposed by etching back by oxygen plasma etching (FIG. 5). In this case, the thickness of the insulating resist film 4 to be left as described above is preferably about 1/2 to 1/3 of the height of the stud bump 3.

つぎに、セラミック基板5に形成した金属端子6の位置と半導体チップ1に形成したスタッドバンプ3の位置を合わせ、セラミック基板5と半導体チップ1を配置する(図6)。つぎに、半導体チップ1を超音波FCBにより、スタットバンプ3をセラミック基板5に形成した金属端子6に直接固着する。この固着した後、セラミック基板5を移動させ、再び半導体チップ1を超音波FCBにより固着する(図7)。このとき、金属端子6として、端子パターン金属膜6aは厚み5μmのNiが、また表面側、裏面側の最表面金属膜6b、6cは厚み1μmのAuがそれぞれめっきにより形成されていることが望ましい。つぎに、アンダーフィル7を半導体チップ1とセラミック基板5の間に充填し、Y−Y線で切断して、セラミック基板5と半導体チップ1がスタットバンプ3で固着したチップ型の半導体素子となる(図8)。つぎに、図示しない樹脂やキャンパッケージに収納するして半導体装置が完成する。   Next, the position of the metal terminal 6 formed on the ceramic substrate 5 and the position of the stud bump 3 formed on the semiconductor chip 1 are aligned, and the ceramic substrate 5 and the semiconductor chip 1 are arranged (FIG. 6). Next, the semiconductor chip 1 is directly fixed to the metal terminal 6 formed on the ceramic substrate 5 by the ultrasonic FCB. After the fixing, the ceramic substrate 5 is moved, and the semiconductor chip 1 is again fixed by the ultrasonic FCB (FIG. 7). At this time, as the metal terminal 6, it is desirable that the terminal pattern metal film 6a is formed by plating with 5 μm thick Ni, and the outermost surface metal films 6b and 6c on the front and back surfaces are formed by plating with 1 μm thick Au, respectively. . Next, the underfill 7 is filled between the semiconductor chip 1 and the ceramic substrate 5 and cut along the Y-Y line, so that a chip-type semiconductor element in which the ceramic substrate 5 and the semiconductor chip 1 are fixed by the stat bump 3 is obtained. (FIG. 8). Next, the semiconductor device is completed by being housed in a resin or can package (not shown).

絶縁性支持薄膜として絶縁性レジスト膜7の代わりに用いられるSiO2 、SiN、PSGおよびSOGなどの無機系絶縁膜は、CVD法により450℃以下の温度で低温形成する。また、Al2 3 は、蒸着またはスパッタ法で堆積させたAl膜を陽極酸化して形成する。 An inorganic insulating film such as SiO 2 , SiN, PSG, and SOG used as the insulating support thin film instead of the insulating resist film 7 is formed at a low temperature of 450 ° C. or less by the CVD method. Al 2 O 3 is formed by anodizing an Al film deposited by vapor deposition or sputtering.

図9は、この発明の第3実施例の超小型電力変換装置の要部断面図である。図19と同一部位には同一の符号を付した。   FIG. 9 is a cross-sectional view of an essential part of a micro power converter according to a third embodiment of the present invention. The same parts as those in FIG. 19 are denoted by the same reference numerals.

この超小型電力変換装置は、半導体チップ1と、半導体チップ1に形成されたスタッドバンプ3と、このスタッドバンプ3を取り囲むように、半導体チップ1上に形成した絶縁性支持膜である絶縁性レジスト膜4と、スタットバンプ3を介して半導体チップ1と超音波接合で固着された金属端子6付きフェライト基板11(薄膜磁気誘導素子10)とで構成される。   This micro power conversion device includes a semiconductor chip 1, a stud bump 3 formed on the semiconductor chip 1, and an insulating resist that is an insulating support film formed on the semiconductor chip 1 so as to surround the stud bump 3. A film 4 and a ferrite substrate 11 (thin film magnetic induction element 10) with a metal terminal 6 fixed to the semiconductor chip 1 by ultrasonic bonding via a stat bump 3 are formed.

絶縁性レジスト膜4の膜厚はスタッドパンプ3の高さの1/2から1/3にすることが望ましい。この絶縁性レジスト膜4の厚さが厚すぎて、絶縁性レジスト膜4とフェライト基板11との隙間が10μm程度となるとアンダーフィル7の充填が良好に行われない。また絶縁性レジスト膜4の厚さが薄くなり過ぎるとスタッドパンブ3の固定補強が不十分になり、接合強度が低下する。   The film thickness of the insulating resist film 4 is preferably set to 1/2 to 1/3 of the height of the stud pump 3. If the insulating resist film 4 is too thick and the gap between the insulating resist film 4 and the ferrite substrate 11 is about 10 μm, the underfill 7 is not satisfactorily filled. On the other hand, if the thickness of the insulating resist film 4 becomes too thin, the fixing of the stud pan 3 is insufficient and the bonding strength is lowered.

この絶縁性レジスト膜4の代わりに、ポリイミド、エポキシ等の有機系絶縁膜、SiO2 、SiN、PSGおよびSOGなどの無機系絶縁膜およびAl2 3 などを用いてもよい。 Instead of the insulating resist film 4, an organic insulating film such as polyimide or epoxy, an inorganic insulating film such as SiO 2 , SiN, PSG and SOG, Al 2 O 3 or the like may be used.

このように絶縁性レジスト膜4などの絶縁性支持薄膜を半導体チップ上に形成することで、スタッドバンプが超音波接合で揺さぶられることが抑制され、スタッドバンプと金属端子との接合強度を従来の1.5倍程度に高めることができる。接合強度が高まることで接合信頼性の高い超小型電力変換装置とすることができる。   By forming an insulating support thin film such as the insulating resist film 4 on the semiconductor chip in this way, the stud bumps are suppressed from being shaken by ultrasonic bonding, and the bonding strength between the stud bumps and the metal terminals can be reduced. It can be increased to about 1.5 times. By increasing the bonding strength, an ultra-compact power conversion device with high bonding reliability can be obtained.

前記のアンダーフィル7の充填は、半導体チップ1とフィライト基板11との密着性を増大される働きと、半導体チップ1とフィライト基板11の線熱膨張係数の違いにより発生する応力を緩和する働きがある。そのため、半導体チップ1が大きい場合は特に有効であり、小さい場合は不要とすることができる。   The filling of the underfill 7 serves to increase the adhesion between the semiconductor chip 1 and the philite substrate 11 and to relieve stress generated due to the difference in linear thermal expansion coefficient between the semiconductor chip 1 and the philite substrate 11. is there. Therefore, it is particularly effective when the semiconductor chip 1 is large, and can be made unnecessary when the semiconductor chip 1 is small.

図10から図16は、この発明の第4実施例の超小型電力変換装置の製造方法であり、工程順に示した要部製造工程断面図である。この超小型電力変換装置は図9に示したものである。   FIGS. 10 to 16 are cross-sectional views of the main part manufacturing process shown in the order of steps in the method for manufacturing the micro power converter according to the fourth embodiment of the present invention. This micro power converter is shown in FIG.

半導体チップ1の外周部にAl(アルミニウム)パッド2を形成する(図10)。つぎに、このAlパッド2上にAuワイヤのボールボンディングにより高さ70μmのスタッドバンプ3を形成する(図11)。つぎに、絶縁性支持薄膜となる液状の保護レジスト剤をコーティングし熱硬化して絶縁性レジスト膜4を形成する(図12)。この場合、絶縁性レジスト膜4の厚さは100μm程度が望ましい。この絶縁性レジスト膜4は、フイルム状のレジストをラミネータで貼付け、熱硬化させて形成してもよい。つぎに、酸素プラズマエッチングによりエッチバックして、スタッドバンプ3を露出させる(図13)。この場合、前記したように残す絶縁性レジスト膜4の厚さは、スタッドバンプ3の高さの1/2から1/3程度が望ましい。ここまでは、図2から図5と同じである。   Al (aluminum) pads 2 are formed on the outer periphery of the semiconductor chip 1 (FIG. 10). Next, a stud bump 3 having a height of 70 μm is formed on the Al pad 2 by ball bonding of an Au wire (FIG. 11). Next, a liquid protective resist agent to be an insulating support thin film is coated and thermally cured to form an insulating resist film 4 (FIG. 12). In this case, the thickness of the insulating resist film 4 is desirably about 100 μm. The insulating resist film 4 may be formed by pasting a film resist with a laminator and thermosetting it. Next, the stud bump 3 is exposed by etching back by oxygen plasma etching (FIG. 13). In this case, the thickness of the insulating resist film 4 to be left as described above is preferably about 1/2 to 1/3 of the height of the stud bump 3. Up to this point, the process is the same as that shown in FIGS.

つぎに、フェライト基板5にコイル導体12を形成し、その表面を表面保護膜13で被覆した薄膜磁気誘導素子10を複数個形成する。このフェライト基板11に形成した金属端子6の位置と半導体チップ1に形成したスタッドバンプ3の位置を合わせ、フェライト基板11と半導体チップ1を配置する(図14)。つぎに、半導体チップ1を超音波FCBにより、スタットバンプ3をフェライト基板11に形成した金属端子6に直接固着する。この固着した後、フェライト基板11を移動させ、再び半導体チップ1を超音波FCBにより固着する(図15)。このとき、金属端子6として、端子パターン金属膜6aの表面にはは厚み5μmのNiが、また表面側、裏面側の最表面金属膜6b、6cは厚み1μmのAuがそれぞれめっきにより形成されていることが望ましい。つぎに、アンダーフィル7を半導体チップ1とフェライト基板11の間に充填し、Y−Y線で切断して、フェライト基板11と半導体チップ1がスタットバンプ3で固着したチップ型の超小型電力変換装置となる(図16)。   Next, the coil conductor 12 is formed on the ferrite substrate 5, and a plurality of thin film magnetic induction elements 10 whose surfaces are covered with the surface protective film 13 are formed. The position of the metal terminal 6 formed on the ferrite substrate 11 and the position of the stud bump 3 formed on the semiconductor chip 1 are aligned, and the ferrite substrate 11 and the semiconductor chip 1 are arranged (FIG. 14). Next, the semiconductor chip 1 is directly fixed to the metal terminals 6 formed on the ferrite substrate 11 by the ultrasonic FCB. After the fixing, the ferrite substrate 11 is moved, and the semiconductor chip 1 is again fixed by the ultrasonic FCB (FIG. 15). At this time, as the metal terminal 6, Ni having a thickness of 5 μm is formed on the surface of the terminal pattern metal film 6a, and Au having a thickness of 1 μm is formed on each of the outermost metal films 6b and 6c on the front side and the back side. It is desirable that Next, the underfill 7 is filled between the semiconductor chip 1 and the ferrite substrate 11, cut along the Y-Y line, and the chip-type micro power conversion in which the ferrite substrate 11 and the semiconductor chip 1 are fixed by the stat bump 3. It becomes a device (FIG. 16).

尚、図15の工程で複数個の半導体チップ1とそれに対応する数の薄膜磁気誘導素子10を含むように切断すると、多出力の超小型電力変換装置とすることができる。   In addition, if it cut | disconnects so that the some semiconductor chip 1 and the corresponding number of thin film magnetic induction elements 10 may be included in the process of FIG. 15, it can be set as a multi-output microminiature power converter.

また、絶縁性支持薄膜として絶縁性レジスト膜7の代わりに用いられるSiO2 、SiN、PSGおよびSOGなどの無機系絶縁膜は、CVD法により450℃以下の温度で低温形成する。また、Al2 3 は、蒸着またはスパッタ法で堆積させたAl膜を陽極酸化して形成する。 Further, an inorganic insulating film such as SiO 2 , SiN, PSG and SOG used as an insulating support thin film instead of the insulating resist film 7 is formed at a low temperature of 450 ° C. or less by the CVD method. Al 2 O 3 is formed by anodizing an Al film deposited by vapor deposition or sputtering.

この発明は、半導体チップに形成したバンプと導電パターン(金属端子)付き絶縁基板(セラミック基板やフェライト基板)を超音波接合で直接固着する場合に、バンプの固定を補強するために絶縁性支持薄膜を半導体チップ上にバンプ電極を取り囲むように形成するものであり、半導体装置や超小型電力変換装置に限らず半導体チップとそれを支持する基板とをバンプ電極を介して超音波接合する場合に有効に利用できる。   The present invention provides an insulating support thin film for reinforcing the fixing of bumps when directly bonding a bump formed on a semiconductor chip and an insulating substrate (ceramic substrate or ferrite substrate) with a conductive pattern (metal terminal) by ultrasonic bonding. Is formed so as to surround the bump electrode on the semiconductor chip, and is effective not only for semiconductor devices and ultra-small power converters, but also for ultrasonic bonding of the semiconductor chip and the substrate supporting it via the bump electrode. Available to:

この発明の第1実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 1st Example of this invention. この発明の第2実施例の半導体装置の要部製造工程断面図Sectional view of manufacturing process of main part of semiconductor device according to second embodiment of this invention. 図2に続く、この発明の第2実施例の半導体装置の要部製造工程断面図FIG. 2 is a cross-sectional view of the main part manufacturing process of the semiconductor device according to the second embodiment of the present invention continued from FIG. 図3に続く、この発明の第2実施例の半導体装置の要部製造工程断面図FIG. 3 is a cross-sectional view of the main part manufacturing process of the semiconductor device according to the second embodiment of the present invention continued from FIG. 図4に続く、この発明の第2実施例の半導体装置の要部製造工程断面図FIG. 4 is a cross-sectional view of the main part manufacturing process of the semiconductor device according to the second embodiment of the present invention continued from FIG. 図5に続く、この発明の第2実施例の半導体装置の要部製造工程断面図FIG. 5 is a cross-sectional view of the main part manufacturing process of the semiconductor device according to the second embodiment of the present invention continued from FIG. 図6に続く、この発明の第2実施例の半導体装置の要部製造工程断面図FIG. 6 is a cross-sectional view of the main part manufacturing process of the semiconductor device according to the second embodiment of the present invention continued from FIG. 図7に続く、この発明の第2実施例の半導体装置の要部製造工程断面図FIG. 7 is a cross-sectional view of the essential part manufacturing process of the semiconductor device according to the second embodiment of the present invention, continued from FIG. この発明の第3実施例の半導体装置の要部断面図Sectional drawing of the principal part of the semiconductor device of 3rd Example of this invention. この発明の第4実施例の半導体装置の要部製造工程断面図Sectional view of manufacturing process of main part of semiconductor device according to fourth embodiment of this invention. 図10に続く、この発明の第4実施例の半導体装置の要部製造工程断面図FIG. 10 is a cross-sectional view of the main part manufacturing process of the semiconductor device according to the fourth embodiment of the present invention continued from FIG. 図11に続く、この発明の第4実施例の半導体装置の要部製造工程断面図FIG. 11 is a cross-sectional view of the essential part manufacturing process of the semiconductor device according to the fourth embodiment of the invention, following FIG. 図12に続く、この発明の第4実施例の半導体装置の要部製造工程断面図FIG. 12 is a cross-sectional view of the main part manufacturing process of the semiconductor device according to the fourth embodiment of the invention, following FIG. 図13に続く、この発明の第4実施例の半導体装置の要部製造工程断面図FIG. 13 is a cross-sectional view of the essential part manufacturing process of the semiconductor device according to the fourth embodiment of the invention, following FIG. 図14に続く、この発明の第4実施例の半導体装置の要部製造工程断面図FIG. 14 is a cross-sectional view of the main part manufacturing process of the semiconductor device according to the fourth embodiment of the invention, following FIG. 図15に続く、この発明の第4実施例の半導体装置の要部製造工程断面図FIG. 15 is a cross-sectional view of the essential part manufacturing process of the semiconductor device according to the fourth embodiment of the invention, following FIG. DC−DCコンバータの回路図Circuit diagram of DC-DC converter 超小型化と低背化された従来の半導体装置の要部断面図Cross-sectional view of the main parts of a conventional semiconductor device that has been reduced in size and height 超小型化と低背化された従来の超小型電力変換装置の要部断面図Cross-sectional view of the main part of a conventional ultra-compact power converter with ultra-compact and low profile 超音波接合の概念図Conceptual diagram of ultrasonic bonding

符号の説明Explanation of symbols

1 半導体チップ
2 Alパッド
3 スタッドバンプ
4 絶縁性支持基板
5 セラミック基板
6 金属端子
6a 端子パターン金属膜
6b 表面側の最表面金属膜
6c 裏面側の最表面金属膜
7 アンダーフィル
10 薄膜磁気誘導素子
11 フェライト基板
12 コイル導体
13 絶縁保護膜
DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2 Al pad 3 Stud bump 4 Insulating support board 5 Ceramic substrate 6 Metal terminal 6a Terminal pattern metal film 6b Outermost surface metal film 6c Outermost surface metal film 7 Underfill 10 Thin film magnetic induction element 11 Ferrite substrate 12 Coil conductor 13 Insulating protective film

Claims (12)

半導体チップと、該半導体チップを該半導体チップに形成されたバンプ電極を介して超音波接合で固着させた導電パターン付き絶縁基板とを有する半導体装置において、
半導体チップ上にバンプ電極が露出するように形成した絶縁性支持薄膜を有することを特徴とする半導体装置。
In a semiconductor device having a semiconductor chip and an insulating substrate with a conductive pattern in which the semiconductor chip is fixed by ultrasonic bonding via a bump electrode formed on the semiconductor chip.
A semiconductor device comprising: an insulating support thin film formed on a semiconductor chip so that bump electrodes are exposed.
前記絶縁性支持薄膜の厚さが、バンプ電極高さの半分以下であることを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the thickness of the insulating support thin film is not more than half of the height of the bump electrode. 前記バンプ電極が,Auのスタッドバンプであることを特徴とする請求項1または2に記載の半導体装置。 The semiconductor device according to claim 1, wherein the bump electrode is an Au stud bump. 前記絶縁基板が、ガラスエポキシ基板もしくはセラミック基板であることを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the insulating substrate is a glass epoxy substrate or a ceramic substrate. 半導体チップと、該半導体チップを該半導体チップに形成されたバンプ電極を介して超音波接合で固着させた導電パターン付き絶縁基板とを有する半導体装置の製造方法において、
半導体チップ上にバンプ電極が埋没する厚さで絶縁性支持薄膜を形成する工程と、該絶縁性支持薄膜をエッチバックによりバンプ電極が露出するまで薄くする工程を有することを特徴とする半導体装置の製造方法。
In a method of manufacturing a semiconductor device having a semiconductor chip and an insulating substrate with a conductive pattern in which the semiconductor chip is fixed by ultrasonic bonding via a bump electrode formed on the semiconductor chip.
A semiconductor device comprising: a step of forming an insulating support thin film with a thickness at which a bump electrode is buried on a semiconductor chip; and a step of thinning the insulating support thin film until the bump electrode is exposed by etch back. Production method.
前記絶縁性支持薄膜が、絶縁性レジスト、ポリイミドおよびエポキシの有機系絶縁物もしくはCVD法により450℃以下の温度で低温形成されたSiO2 、SiN、PSG等およびSOG(スピンオングラス)の無機系絶縁物もしくは蒸着またはスパッタ法で堆積させたAl膜を陽極酸化により形成したAl2 3 であることを特徴とする請求項5に記載の半導体装置の製造方法。 The insulating support thin film is made of an organic resist such as an insulating resist, polyimide and epoxy, or an inorganic insulating material such as SiO 2 , SiN, PSG and SOG (spin-on-glass) formed at a low temperature of 450 ° C. or less by a CVD method. the method of manufacturing a semiconductor device according to claim 5, characterized in that the object or Al films deposited by evaporation or sputtering a Al 2 O 3 formed by anodic oxidation. 半導体チップと、該半導体チップを該半導体チップに形成されたバンプ電極を介して超音波接合で固着させた薄膜磁気誘導素子とを有する超小型電力変換装置において、
半導体チップ上にバンプ電極が露出するように形成した絶縁性支持薄膜を有することを特徴とする超小型電力変換装置。
In a micro power converter having a semiconductor chip and a thin film magnetic induction element in which the semiconductor chip is fixed by ultrasonic bonding via a bump electrode formed on the semiconductor chip,
An ultra-compact power conversion device comprising an insulating support thin film formed so that a bump electrode is exposed on a semiconductor chip.
前記絶縁性支持薄膜の厚さが、バンプ電極高さの半分以下であることを特徴とする請求項7に記載の超小型電力変換装置。 The ultra-compact power converter according to claim 7, wherein the thickness of the insulating support thin film is not more than half of the height of the bump electrode. 前記バンプ電極が、Auのスタッドバンプであることを特徴とする請求項7または8に記載の超小型電力変換装置。 The micro power converter according to claim 7 or 8, wherein the bump electrode is an Au stud bump. 前記薄膜磁気誘導素子の基板が、フェライト基板であることを特徴とする請求項7に記載の超小型電力変換装置。 The micro power converter according to claim 7, wherein the substrate of the thin film magnetic induction element is a ferrite substrate. 半導体チップと、該半導体チップを該半導体チップに形成されたバンプ電極を介して超音波接合で固着させた薄膜磁気誘導素子とを有する超小型電力変換装置の製造方法において、
半導体チップ上にバンプが埋没する厚さで絶縁性支持薄膜を形成する工程と、該絶縁性支持薄膜をエッチバックによりバンプ電極が露出するまで薄くする工程を有することを特徴とする超小型電力変換装置の製造方法。
In a method for manufacturing a microminiature power conversion device having a semiconductor chip and a thin film magnetic induction element in which the semiconductor chip is fixed by ultrasonic bonding via a bump electrode formed on the semiconductor chip,
An ultra-compact power conversion comprising: forming an insulating support thin film with a thickness at which a bump is buried on a semiconductor chip; and thinning the insulating support thin film until the bump electrode is exposed by etch back. Device manufacturing method.
前記絶縁性支持薄膜が、絶縁性レジスト、ポリイミドおよびエポキシの有機系絶縁物もしくはCVD法により450℃以下の温度で低温形成されたSiO2 、SiN、PSG等およびSOG(スピンオングラス)の無機系絶縁物もしくは蒸着またはスパッタ法で堆積させたAl膜を陽極酸化により形成したAl2 3 であることを特徴とする請求項11に記載の超小型電力変換装置の製造方法。 The insulating support thin film is made of an organic resist such as an insulating resist, polyimide and epoxy, or an inorganic insulating material such as SiO 2 , SiN, PSG and SOG (spin-on-glass) formed at a low temperature of 450 ° C. or less by a CVD method. 12. The method for manufacturing a micro power converter according to claim 11, wherein the Al film is Al 2 O 3 formed by anodic oxidation of an Al film deposited by an object or vapor deposition or sputtering.
JP2003325948A 2003-09-18 2003-09-18 Semiconductor device and micro power converting device, and their manufacturing method Withdrawn JP2005093774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325948A JP2005093774A (en) 2003-09-18 2003-09-18 Semiconductor device and micro power converting device, and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325948A JP2005093774A (en) 2003-09-18 2003-09-18 Semiconductor device and micro power converting device, and their manufacturing method

Publications (1)

Publication Number Publication Date
JP2005093774A true JP2005093774A (en) 2005-04-07

Family

ID=34456264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325948A Withdrawn JP2005093774A (en) 2003-09-18 2003-09-18 Semiconductor device and micro power converting device, and their manufacturing method

Country Status (1)

Country Link
JP (1) JP2005093774A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089316A (en) * 2005-09-22 2007-04-05 Fuji Electric Device Technology Co Ltd Microminiature power conversion device and manufacturing method therefor
JP2011114127A (en) * 2009-11-26 2011-06-09 Seiko Epson Corp Semiconductor device, electronic component and method for manufacturing the same
US8064211B2 (en) 2006-08-31 2011-11-22 Tdk Corporation Passive component and electronic component module
US8167187B2 (en) * 2005-04-29 2012-05-01 Infineon Technologies Ag Method and device for producing a bondable area region on a carrier
CN103107128A (en) * 2013-01-14 2013-05-15 陆伟 Metal bonding method of three-dimensional chip structure and bonding structure
WO2016194431A1 (en) * 2015-05-29 2016-12-08 リンテック株式会社 Method for manufacturing semiconductor device
JP2017163059A (en) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 Electrode junction method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8167187B2 (en) * 2005-04-29 2012-05-01 Infineon Technologies Ag Method and device for producing a bondable area region on a carrier
JP2007089316A (en) * 2005-09-22 2007-04-05 Fuji Electric Device Technology Co Ltd Microminiature power conversion device and manufacturing method therefor
JP4661489B2 (en) * 2005-09-22 2011-03-30 富士電機システムズ株式会社 Ultra-compact power converter and manufacturing method thereof
US8064211B2 (en) 2006-08-31 2011-11-22 Tdk Corporation Passive component and electronic component module
JP2011114127A (en) * 2009-11-26 2011-06-09 Seiko Epson Corp Semiconductor device, electronic component and method for manufacturing the same
CN103107128A (en) * 2013-01-14 2013-05-15 陆伟 Metal bonding method of three-dimensional chip structure and bonding structure
WO2016194431A1 (en) * 2015-05-29 2016-12-08 リンテック株式会社 Method for manufacturing semiconductor device
JPWO2016194431A1 (en) * 2015-05-29 2018-03-22 リンテック株式会社 Manufacturing method of semiconductor device
TWI697968B (en) * 2015-05-29 2020-07-01 日商琳得科股份有限公司 Manufacturing method of semiconductor device
JP2017163059A (en) * 2016-03-11 2017-09-14 パナソニックIpマネジメント株式会社 Electrode junction method

Similar Documents

Publication Publication Date Title
US6710682B2 (en) Surface acoustic wave device, method for producing the same, and circuit module using the same
TW200415865A (en) Method of manufacturing high-frequency module device
JP2010153822A (en) Electronic device, method of manufacturing the same, and electronic equipment
WO2010087407A1 (en) Semiconductor device and power supply circuit
JP5135246B2 (en) Semiconductor module, method for manufacturing the same, and portable device
WO2011052744A1 (en) Element mounting substrate, method for manufacturing element mounting substrate, semiconductor module, and portable apparatus
JP5423020B2 (en) SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP2006339654A (en) Packaging chip and its packaging method
JP3851320B2 (en) Circuit device and manufacturing method thereof
JP5830702B2 (en) Circuit device manufacturing method
JP2004311574A (en) Interposer, manufacturing method thereof, and electronic device
JP3728847B2 (en) Multi-chip module and manufacturing method thereof
JP2005093774A (en) Semiconductor device and micro power converting device, and their manufacturing method
WO2004102663A1 (en) Semiconductor chip mounting body and manufacturing method thereof
JP2005340754A (en) Micro power converting apparatus
JP2009158830A (en) Substrate for mounting element and manufacturing method thereof, semiconductor module and manufacturing method thereof, and portable equipment
TWI420610B (en) Semiconductor device and manufacturing method therefor
WO2019004266A1 (en) Electronic component module
JP2002368039A (en) Flip-chop mounting structure and method of manufacturing the same
JP2007158989A (en) Electronic parts
JP2002222901A (en) Method of mounting semiconductor device, mounting structure thereof, semiconductor device and manufacturing method thereof
JP2012023409A (en) Circuit device and method for manufacturing thereof
JP3572254B2 (en) Circuit board
JP2008198912A (en) Interposer with built-in capacitor, interposer module with built-in capacitor, and manufacturing method therefor
JP5152157B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071112