JP2007059939A - Organic light emitting device and display unit - Google Patents

Organic light emitting device and display unit Download PDF

Info

Publication number
JP2007059939A
JP2007059939A JP2006295017A JP2006295017A JP2007059939A JP 2007059939 A JP2007059939 A JP 2007059939A JP 2006295017 A JP2006295017 A JP 2006295017A JP 2006295017 A JP2006295017 A JP 2006295017A JP 2007059939 A JP2007059939 A JP 2007059939A
Authority
JP
Japan
Prior art keywords
phosphorescent
organic light
emitting device
light emitting
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006295017A
Other languages
Japanese (ja)
Other versions
JP4629643B2 (en
Inventor
Shizuo Tokito
静士 時任
Michinori Suzuki
充典 鈴木
Isao Tanaka
功 田中
Yoji Inoue
陽司 井上
Hiroo Shirane
浩朗 白根
Masataka Takeuchi
正隆 武内
Naoko Ito
直子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Showa Denko KK
Priority to JP2006295017A priority Critical patent/JP4629643B2/en
Publication of JP2007059939A publication Critical patent/JP2007059939A/en
Application granted granted Critical
Publication of JP4629643B2 publication Critical patent/JP4629643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic light emitting device using an organic polymeric phosphorescent compound which is stable and emits extremely highly efficient phosphorescence, and a display unit using the organic light emitting device. <P>SOLUTION: This organic light emitting device contains a plurality of organic polymeric layers sandwiched by an anode and a cathode, in which at least one layer of the organic polymeric layer includes a neutral organic polymeric phosphorescent compound emitting phosphorescence and the phosphorescent compound includes a phosphorescent unit being a repeat unit for emitting phosphorescence and a carrier transporting unit being a repeat unit for transporting a carrier. This display unit has a display screen in which each pixel of the display screen is made of the organic light emitting device and each pixel has a plurality of transistors. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燐光発光性化合物、燐光発光性組成物、有機発光素子、及び表示装置に関する。   The present invention relates to a phosphorescent compound, a phosphorescent composition, an organic light emitting device, and a display device.

フラットパネルディスプレイなどの表示装置やバックライトなどの照明器具として、有機化合物からなる薄膜から電界発光する有機発光素子が、低電圧で高輝度の発光を得られる素子として注目されている。   2. Description of the Related Art Organic light-emitting elements that emit light from a thin film made of an organic compound are attracting attention as elements that can emit light with high brightness at a low voltage as display devices such as flat panel displays and backlights.

有機発光素子における薄膜材料として、有機溶媒や水に可溶な発光性有機高分子を用いた大面積化の研究開発が、スチレン系やフルオレン系の有機高分子で活発に行われてきている。このような有機高分子の成膜法としては、スピンコート法、印刷法、インクジェト法などの湿式法が用いられている。特にインクジェット法は、フルカラーディスプレイの表示画面の現実的な画素形成法として期待され、すでに小型のフルカラー試作パネルも開示されている。   Research and development for increasing the area using a light-emitting organic polymer soluble in an organic solvent or water as a thin film material in an organic light-emitting element has been actively conducted with a styrene-based or fluorene-based organic polymer. As a method for forming such an organic polymer, wet methods such as a spin coating method, a printing method, and an inkjet method are used. In particular, the inkjet method is expected as a realistic pixel forming method for a display screen of a full color display, and a small full color prototype panel has already been disclosed.

一方、真空蒸着法で成膜される低分子化合物系で、発光の超高効率化の研究が活発に行われており、有機化合物の三重項励起状態からの発光である燐光を活用する白金やイリジウムの有機金属錯体が報告されている。この燐光発光性化合物を利用した有機発光素子の外部発光量子効率は、従来の蛍光発光を利用した素子の5%を凌ぎ、8%と高効率が得られ、ごく最近では、素子の構成を工夫することで15%もの超高効率も達成されている(例えば、非特許文献1参照。)。   On the other hand, in the low-molecular compound system formed by vacuum evaporation, research on ultra-high efficiency of light emission has been actively conducted, and platinum and other materials that utilize phosphorescence, which is light emission from triplet excited states of organic compounds, are being studied. An organometallic complex of iridium has been reported. The external light emission quantum efficiency of organic light-emitting devices using this phosphorescent compound exceeds the 5% of conventional devices using fluorescent light emission, and is as high as 8%. Most recently, the device structure has been devised. As a result, an ultra-high efficiency of 15% has been achieved (for example, see Non-Patent Document 1).

この低分子燐光化合物を有機高分子に分散したドープ型有機高分子発光素子の研究報告もあり、イリジウム錯体をポリ(N−ビニルカルバゾール)(PVK)にドープした素子では、外部発光量子効率として4%ほどの値が得られ、大幅な改善が認められている(例えば、非特許文献2参照。)。また、ルテニウム錯体を含む有機高分子では、電気化学的な発光が報告されている(例えば、非特許文献3参照。)。   There is also a research report of a doped organic polymer light emitting device in which this low molecular phosphorescent compound is dispersed in an organic polymer. In the device doped with iridium complex in poly (N-vinylcarbazole) (PVK), the external light emission quantum efficiency is 4 % Is obtained, and a significant improvement is recognized (for example, see Non-Patent Document 2). In addition, in organic polymers containing a ruthenium complex, electrochemical light emission has been reported (for example, see Non-Patent Document 3).

しかしながら大面積化を低コストで実現することを意図した従来の有機高分子発光素子では、発光効率の点でまだ十分ではない。この原因は、従来の有機高分子の一重項励起状態からの発光である蛍光を利用している為、理論的な外部発光効率として、5%の上限の壁が存在する為である。有機高分子の発光素子は、有機高分子層が有機溶剤や水の溶液から湿式法により成膜できるという大きな特徴を有するが、さらなる発光効率の改善が将来の実用化に対する課題となっている。   However, conventional organic polymer light-emitting devices intended to realize a large area at a low cost are still not sufficient in terms of light emission efficiency. The reason for this is that there is a wall with an upper limit of 5% as the theoretical external light emission efficiency because fluorescence that is light emission from a singlet excited state of a conventional organic polymer is used. An organic polymer light-emitting element has a great feature that an organic polymer layer can be formed from a solution of an organic solvent or water by a wet method. However, further improvement in luminous efficiency is an issue for practical use in the future.

また有機高分子の発光素子に低分子の燐光発光性化合物を分散させることで、発光の超高効率化が試みられているが、ホストとなる高分子内に分散されている低分子は安定ではなく、長期信頼性に耐え得る長寿命の表示装置は実現できない。   In addition, ultra-high efficiency of light emission has been attempted by dispersing low-molecular phosphorescent compounds in organic polymer light-emitting elements, but small molecules dispersed in the host polymer are not stable. Therefore, a long-life display device that can withstand long-term reliability cannot be realized.

従って、有機発光素子の将来の実用化を考慮して、有機溶剤や水の溶液から湿式法で成膜でき、これにより大面積化が低コストで実現でき、かつ安定即ち長寿命であって、超高効率の発光が実現できる新しい有機高分子の発光材料の開発が望まれる。
Appl.Phys.Lett.,77,904(2000) Jpn.J.Appl.Phys,39,L828(2000) J.Mater.Chem.,9,2103(1999)
Therefore, in consideration of the future practical application of organic light-emitting elements, it is possible to form a film from a solution of an organic solvent or water by a wet method, whereby a large area can be realized at low cost, and stable, that is, a long life, Development of a new organic polymer light-emitting material capable of realizing ultra-high efficiency light emission is desired.
Appl. Phys. Lett. , 77, 904 (2000) Jpn. J. et al. Appl. Phys, 39, L828 (2000) J. et al. Mater. Chem. , 9, 2103 (1999)

本発明は、上記問題に鑑みなされたものであり、有機発光素子の材料として使用され、安定で、超高効率の燐光を発光する有機高分子の燐光発光性化合物及び燐光発光性組成物を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a phosphorescent compound and a phosphorescent composition of an organic polymer that is used as a material for an organic light-emitting device and emits stable and ultrahigh-efficiency phosphorescence. The purpose is to do.

また本発明は、前記有機高分子の燐光発光性化合物及び燐光発光性組成物を用いた有機発光素子並びにこの有機発光素子を用いた表示装置を提供することを目的とする。   Another object of the present invention is to provide an organic light-emitting device using the organic polymer phosphorescent compound and the phosphorescent composition, and a display device using the organic light-emitting device.

本発明の第一の態様は、陽極と陰極に挟まれた一又は複数の有機高分子層を含む有機発光素子において、前記有機高分子層の少なくとも一層は、燐光を発光する中性の有機高分子の燐光発光性化合物を含み、該燐光発光性化合物は、燐光を発光する繰り返し単位である燐光発光性単位及びキャリアを輸送する繰り返し単位であるキャリア輸送性単位を含む
ことを特徴とする有機発光素子である。
According to a first aspect of the present invention, in an organic light emitting device including one or more organic polymer layers sandwiched between an anode and a cathode, at least one of the organic polymer layers is a neutral organic high light emitting phosphorescent material. An organic light emitting device comprising a phosphorescent compound of a molecule, the phosphorescent compound comprising a phosphorescent unit that is a repeating unit that emits phosphorescence and a carrier transporting unit that is a repeating unit that transports carriers. It is an element.

本発明の第二の態様は、表示画面を有する表示装置において、該表示画面の各画素は、本発明の第一の態様である有機発光素子からなり、該各画素は、複数のトランジスタを有することを特徴とする表示装置である。   According to a second aspect of the present invention, in a display device having a display screen, each pixel of the display screen includes the organic light emitting element according to the first aspect of the present invention, and each pixel includes a plurality of transistors. This is a display device.

本発明によれば、有機発光素子の材料として使用され、安定で、超高効率の燐光を発光する有機高分子の燐光発光性化合物を提供することができる。また本発明は、前記有機高分子の燐光発光性化合物を用いた有機発光素子を提供することができる。   According to the present invention, it is possible to provide an organic polymer phosphorescent compound which is used as a material for an organic light emitting device and which emits a stable and ultra-high efficiency phosphorescence. In addition, the present invention can provide an organic light emitting device using the organic polymer phosphorescent compound.

次に、本発明の実施の形態を図面と共に説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

本発明の第1の実施形態は、有機発光素子に使用される燐光を発光する中性の有機高分子の燐光発光性化合物であって、燐光を発光する繰り返し単位である燐光発光性単位と、キャリアを輸送する繰り返し単位であるキャリア輸送性単位と、を含むことを特徴とする。   A first embodiment of the present invention is a phosphorescent compound of a neutral organic polymer that emits phosphorescence used in an organic light emitting device, and a phosphorescent unit that is a repeating unit that emits phosphorescence, and And a carrier transporting unit, which is a repeating unit for transporting carriers.

本発明の第1の実施形態によれば、有機発光素子に使用される燐光を発光する中性の有機高分子の燐光発光性化合物であって、燐光を発光する繰り返し単位である燐光発光性単位と、キャリアを輸送する繰り返し単位であるキャリア輸送性単位と、を含むので、有機発光素子の材料として使用され、安定で、超高効率の燐光を発光する有機高分子の燐光発光性化合物を提供することができる。   According to the first embodiment of the present invention, a phosphorescent compound of a neutral organic polymer that emits phosphorescence used in an organic light emitting device, and is a phosphorescent unit that is a repeating unit that emits phosphorescence. And a carrier transporting unit, which is a repeating unit for transporting carriers, provides a phosphorescent compound of an organic polymer that is used as a material for an organic light emitting device and emits stable and ultrahigh efficiency phosphorescence. can do.

本発明の第2の実施形態は、本発明の第1の実施形態の燐光発光性化合物において、前記燐光発光性単位の繰り返し数m、及び前記キャリア輸送性単位の繰り返し数nは、m<nの関係を満たすことを特徴とする。   According to a second embodiment of the present invention, in the phosphorescent compound of the first embodiment of the present invention, the number m of repeating phosphorescent units and the number n of repeating carrier transporting units are m <n. It is characterized by satisfying the relationship.

本発明の第2の実施形態によれば、前記燐光発光性単位の繰り返し数m、及び前記キャリア輸送性単位の繰り返し数nは、m<nの関係を満たすので、燐光の発光効率をより向上させることができる。   According to the second embodiment of the present invention, the number of repetitions of the phosphorescent unit m and the number of repetitions n of the carrier transporting unit satisfy the relationship m <n, so that the phosphorescence efficiency is further improved. Can be made.

本発明の第3の実施形態は、本発明の第2の実施形態の燐光発光性化合物において、前記燐光発光性単位の繰り返し数m、及び前記キャリア輸送性単位の繰り返し数nは、0.0001≦m/(m+n)≦0.2の関係を満たすことを特徴とする。   According to a third embodiment of the present invention, in the phosphorescent compound of the second embodiment of the present invention, the repeating number m of the phosphorescent unit and the repeating number n of the carrier transporting unit are 0.0001. ≦ m / (m + n) ≦ 0.2 is satisfied.

本発明の第3の実施形態によれば、前記燐光発光性単位の繰り返し数m、及び前記キャリア輸送性単位の繰り返し数nは、0.0001≦m/(m+n)≦0.2の関係を満たすので、更に効率良く燐光を発生させることができる。   According to the third embodiment of the present invention, the repeating number m of the phosphorescent unit and the repeating number n of the carrier transporting unit have a relationship of 0.0001 ≦ m / (m + n) ≦ 0.2. Since it satisfies, phosphorescence can be generated more efficiently.

本発明の第4の実施形態は、本発明の第1乃至3のいずれかの実施形態の燐光発光性化合物において、前記燐光発光性化合物が有機溶剤又は水に可溶であることを特徴とする。   According to a fourth embodiment of the present invention, in the phosphorescent compound according to any one of the first to third embodiments of the present invention, the phosphorescent compound is soluble in an organic solvent or water. .

本発明の第4の実施形態によれば、前記燐光発光性化合物が有機溶剤又は水に可溶であるので、溶液からの湿式法による成膜が可能となる。   According to the fourth embodiment of the present invention, since the phosphorescent compound is soluble in an organic solvent or water, it is possible to form a film by a wet method from a solution.

本発明の第5の実施形態は、本発明の第1乃至4のいずれかの実施形態の燐光発光性化合物において、前記燐光発光性化合物の重合度が5乃至5000であることを特徴とする。   According to a fifth embodiment of the present invention, in the phosphorescent compound according to any one of the first to fourth embodiments of the present invention, the polymerization degree of the phosphorescent compound is 5 to 5000.

本発明の第5の実施形態によれば、前記燐光発光性化合物の重合度が5乃至5000であるので、有機溶剤に可溶であり、均一かつ安定な膜を成膜することができる。   According to the fifth embodiment of the present invention, since the degree of polymerization of the phosphorescent compound is 5 to 5000, it is possible to form a uniform and stable film that is soluble in an organic solvent.

本発明の第6の実施形態は、本発明の第1乃至5のいずれかの実施形態の燐光発光性化合物において、前記燐光発光性単位の燐光発光性部位、及び/又は前記キャリア輸送性単位のキャリア輸送性部位が前記燐光発光性化合物の側鎖を構成していることを特徴とする。   According to a sixth embodiment of the present invention, in the phosphorescent compound according to any one of the first to fifth embodiments of the present invention, the phosphorescent site of the phosphorescent unit and / or the carrier transporting unit. A carrier transporting site constitutes a side chain of the phosphorescent compound.

本発明の第6の実施形態によれば、前記燐光発光性単位の燐光発光性部位、及び/又は前記キャリア輸送性単位のキャリア輸送性部位が前記燐光発光性化合物の側鎖を構成しているので、合成することが容易であり、有機溶剤に溶解し易い燐光発光性化合物とすることができる。   According to the sixth embodiment of the present invention, the phosphorescent site of the phosphorescent unit and / or the carrier transporting site of the carrier transport unit constitutes a side chain of the phosphorescent compound. Therefore, a phosphorescent compound that can be easily synthesized and easily dissolved in an organic solvent can be obtained.

本発明の第7の実施形態は、本発明の第1乃至5のいずれかの実施形態の燐光発光性化合物において、前記燐光発光性単位の燐光発光性部位、及び/又は前記キャリア輸送性単位のキャリア輸送性部位が前記燐光発光性化合物の主鎖を構成していることを特徴とする。   According to a seventh embodiment of the present invention, in the phosphorescent compound according to any one of the first to fifth embodiments of the present invention, the phosphorescent site of the phosphorescent unit and / or the carrier transporting unit. A carrier transporting site constitutes a main chain of the phosphorescent compound.

本発明の第7の実施形態によれば、前記燐光発光性単位の燐光発光性部位、及び/又は前記キャリア輸送性単位のキャリア輸送性部位が前記燐光発光性化合物の主鎖を構成しているので、錯体部分の運動が抑えられ、高温でも安定な燐光発光性化合物を得ることができる。   According to the seventh embodiment of the present invention, the phosphorescent site of the phosphorescent unit and / or the carrier transporting site of the carrier transport unit constitutes the main chain of the phosphorescent compound. Therefore, the movement of the complex portion is suppressed, and a phosphorescent compound that is stable even at high temperatures can be obtained.

本発明の第8の実施形態は、本発明の第1乃至7のいずれかの実施形態の燐光発光性化合物において、前記キャリア輸送性単位のキャリア輸送性部位がホール輸送性部位であることを特徴とする。   According to an eighth embodiment of the present invention, in the phosphorescent compound according to any one of the first to seventh embodiments of the present invention, the carrier transporting portion of the carrier transporting unit is a hole transporting portion. And

本発明の第8の実施形態によれば、前記キャリア輸送性単位のキャリア輸送性部位がホール輸送性部位であるので、燐光発光性部位とホール輸送性部位の比率を変えることで、キャリアバランスが良好で発光効率の高い燐光発光性化合物を得ることができる。   According to the eighth embodiment of the present invention, since the carrier transporting part of the carrier transporting unit is a hole transporting part, the carrier balance is improved by changing the ratio of the phosphorescent light emitting part and the hole transporting part. A phosphorescent compound having good emission efficiency and high luminous efficiency can be obtained.

本発明の第9の実施形態は、本発明の第1乃至7のいずれかの実施形態の燐光発光性化合物において、前記キャリア輸送性単位のキャリア輸送性部位が電子輸送性部位であることを特徴とする。   According to a ninth embodiment of the present invention, in the phosphorescent compound according to any one of the first to seventh embodiments of the present invention, the carrier transporting site of the carrier transporting unit is an electron transporting site. And

本発明の第9の実施形態によれば、前記キャリア輸送性単位のキャリア輸送性部位が電子輸送性部位であるので、燐光発光性部位と電子輸送性部位の比率を変えることで、キャリアバランスが良好で発光効率の高い燐光発光性化合物を得ることができる。   According to the ninth embodiment of the present invention, since the carrier transporting part of the carrier transporting unit is an electron transporting part, the carrier balance is improved by changing the ratio of the phosphorescent light emitting part and the electron transporting part. A phosphorescent compound having good emission efficiency and high luminous efficiency can be obtained.

本発明の第10の実施形態は、本発明の第1乃至7のいずれかの実施形態の燐光発光性化合物において、前記キャリア輸送性単位のキャリア輸送性部位がホール輸送性部位及び電子輸送性部位からなることを特徴とする。   A tenth embodiment of the present invention is the phosphorescent compound according to any one of the first to seventh embodiments of the present invention, wherein the carrier transporting portion of the carrier transporting unit is a hole transporting portion and an electron transporting portion. It is characterized by comprising.

本発明の第10の実施形態によれば、本発明の第1乃至7のいずれかの実施形態の燐光発光性化合物において、前記キャリア輸送性単位のキャリア輸送性部位がホール輸送性部位及び電子輸送性部位からなるので、発光性、ホール輸送性及び電子輸送性の全ての機能を備え、他の有機材料を配合することなく、熱的に安定で長寿命である。   According to a tenth embodiment of the present invention, in the phosphorescent compound according to any one of the first to seventh embodiments of the present invention, the carrier transporting part of the carrier transporting unit is a hole transporting part and an electron transporting part. Since it is composed of an active site, it has all the functions of light emitting property, hole transporting property and electron transporting property, and is thermally stable and has a long life without blending other organic materials.

本発明の第11の実施形態は、本発明の第1乃至10のいずれかの実施形態の燐光発光性化合物において、前記燐光発光性単位は、燐光発光性部位が遷移金属又は希土類金属の錯体の一価基又は二価基であることを特徴とする。   An eleventh embodiment of the present invention is the phosphorescent compound according to any one of the first to tenth embodiments of the present invention, wherein the phosphorescent unit is a complex of a transition metal or a rare earth metal at the phosphorescent site. It is a monovalent group or a divalent group.

本発明の第11の実施形態によれば、前記燐光発光性単位の燐光発光性部位が遷移金属又は希土類金属の錯体の一価基又は二価基であるので、燐光の発光効率が高い燐光発光性部位とすることができる。   According to the eleventh embodiment of the present invention, since the phosphorescent site of the phosphorescent unit is a monovalent or divalent group of a transition metal or rare earth metal complex, phosphorescence emission with high phosphorescence emission efficiency is achieved. It can be a sex site.

本発明の第12の実施形態は、本発明の第11の実施形態の燐光発光性化合物において、前記遷移金属又は希土類金属の錯体の一価基は、主鎖に対してスペーサー部分を介して側鎖として結合し、該スペーサー部分は、ヘテロ原子を有していてもよい炭素数1乃至30の有機基又は炭素原子を有しないヘテロ原子数1乃至10の無機基を含むことを特徴とする。   A twelfth embodiment of the present invention is the phosphorescent compound according to the eleventh embodiment of the present invention, wherein the monovalent group of the transition metal or rare earth metal complex is located on the side of the main chain via a spacer moiety. The spacer portion, which is bonded as a chain, includes an organic group having 1 to 30 carbon atoms which may have a hetero atom or an inorganic group having 1 to 10 hetero atoms which does not have a carbon atom.

本発明の第12の実施形態によれば、前記遷移金属又は希土類金属の錯体の一価基は、主鎖に対してスペーサー部分を介して側鎖として結合し、該スペーサー部分は、ヘテロ原子を有していてもよい炭素数1乃至30の有機基又は炭素原子を有しないヘテロ原子数1乃至10の無機基を含むので、錯体部分の運動の自由度が高まり、有機溶剤への溶解性が高められ、均一な薄膜を塗布法で作製できることで、安定で、高い発光効率を得ることができる。   According to a twelfth embodiment of the present invention, the monovalent group of the transition metal or rare earth metal complex is bonded to the main chain as a side chain via a spacer moiety, and the spacer moiety includes a heteroatom. Since it contains an organic group having 1 to 30 carbon atoms that may have or an inorganic group having 1 to 10 hetero atoms that does not have carbon atoms, the degree of freedom of movement of the complex portion is increased and the solubility in organic solvents is increased. Since a uniform thin film can be produced by a coating method, a stable and high luminous efficiency can be obtained.

本発明の第13の実施形態は、本発明の第1乃至11のいずれかの実施形態の燐光発光性化合物において、前記キャリア輸送性単位のキャリア輸送性部位がカルバゾールの一価基、第3級アミンの一価基、イミダゾール誘導体の一価基、トリアゾール誘導体の一価基、オキサジアゾール誘導体の一価基、スチレンの二価基、及びフルオレンの二価基からなる基の群、並びに該基を置換基で置換した基の群より、少なくとも1種類以上選択される基を含むことを特徴とする。   A thirteenth embodiment of the present invention is the phosphorescent compound according to any one of the first to eleventh embodiments of the present invention, wherein the carrier transporting portion of the carrier transporting unit is a monovalent group of carbazole, a tertiary group A group of groups consisting of a monovalent group of an amine, a monovalent group of an imidazole derivative, a monovalent group of a triazole derivative, a monovalent group of an oxadiazole derivative, a divalent group of styrene, and a divalent group of fluorene, and the group It contains at least one group selected from the group of groups substituted with a substituent.

本発明の第13の実施形態によれば、前記キャリア輸送性単位は、キャリア輸送性部位がカルバゾールの一価基、第3級アミンの一価基、イミダゾール誘導体の一価基、トリアゾール誘導体の一価基、オキサジアゾール誘導体の一価基、スチレンの二価基、及びフルオレンの二価基からなる基の群、並びに該基を置換基で置換した基の群より、少なくとも1種類以上選択される基を含むので、キャリアを輸送する性能が高いキャリア輸送性部位とすることができる。   According to a thirteenth embodiment of the present invention, the carrier transporting unit has a carrier transporting site having a monovalent group of carbazole, a monovalent group of a tertiary amine, a monovalent group of an imidazole derivative, or a triazole derivative. At least one selected from the group consisting of a valent group, a monovalent group of an oxadiazole derivative, a divalent group of styrene, and a divalent group of fluorene, and a group of groups in which the group is substituted with a substituent. Therefore, the carrier transporting portion having high performance for transporting carriers can be obtained.

本発明の第14の実施形態は、本発明の第1乃至13のいずれかの実施形態の燐光発光性化合物において、所定の1色に発光する1種類又は所定の相互に異なる2色以上に発光する2種類以上の燐光発光性単位を有することを特徴とする。   According to a fourteenth embodiment of the present invention, in the phosphorescent compound according to any one of the first to thirteenth embodiments of the present invention, one kind of light emitted in a predetermined color or light emitted in two or more different colors. And having two or more types of phosphorescent units.

本発明の第14の実施形態によれば、所定の1色に発光する1種類又は所定の相互に異なる2色以上に発光する2種類以上の燐光発光性単位を有するので、任意に選択した単色又は複数の色に好適に発光することができる。   According to the fourteenth embodiment of the present invention, since one or more phosphorescent units that emit one kind of light of a predetermined color or two or more kinds of light that emit light of two or more different colors are included, an arbitrarily selected single color Alternatively, light can be emitted suitably for a plurality of colors.

本発明の第15の実施形態は、本発明の第14の実施形態の燐光発光性化合物において、前記燐光発光性単位は、青色若しくは緑色及び黄色若しくは赤色に発光する2種類からなり、全体として白色に発光することを特徴とする。   According to a fifteenth embodiment of the present invention, in the phosphorescent compound according to the fourteenth embodiment of the present invention, the phosphorescent unit is composed of two types of light emitting in blue or green and yellow or red, and is white as a whole. It emits light.

本発明の第15の実施形態によれば、前記燐光発光性単位は、青色若しくは緑色及び黄色若しくは赤色に発光する2種類からなり、全体として白色に発光するので、白色の色に好適に発光することができる。   According to the fifteenth embodiment of the present invention, the phosphorescent unit consists of two types of light emitting in blue or green and yellow or red, and emits in white as a whole, so that it emits light suitably in white color. be able to.

本発明の第16の実施形態は、本発明の第14の実施形態の燐光発光性化合物において、前記燐光発光性単位は、青色、緑色及び赤色に発光する3種類のからなり、全体として白色に発光することを特徴とする。   According to a sixteenth embodiment of the present invention, in the phosphorescent compound according to the fourteenth embodiment of the present invention, the phosphorescent unit is composed of three types that emit blue, green, and red, and is white as a whole. It emits light.

本発明の第16の実施形態によれば、前記燐光発光性単位は、青色、緑色及び赤色に発光する3種類からなり、全体として白色に発光するので、白色の色に好適に発光することができる。   According to the sixteenth embodiment of the present invention, the phosphorescent unit consists of three kinds of light emitting in blue, green and red, and emits in white as a whole, so that it can suitably emit light in white color. it can.

本発明の第17の実施形態は、本発明の第1乃至16のいずれかの実施形態の燐光発光性化合物を含むことを特徴とする燐光発光性組成物である。   A seventeenth embodiment of the present invention is a phosphorescent composition comprising the phosphorescent compound according to any one of the first to sixteenth embodiments of the present invention.

本発明の第17の実施形態によれば、本発明の第1乃至16のいずれかの実施形態の燐光発光性化合物を含むので、好適な燐光発光性組成物を提供することができる。   According to the seventeenth embodiment of the present invention, since the phosphorescent compound according to any one of the first to sixteenth embodiments of the present invention is included, a suitable phosphorescent composition can be provided.

本発明の第18の実施形態は、本発明の第14の実施形態の燐光発光性化合物であって相互に異なる色に発光する燐光発光性単位を1又は2種類以上有するものを複数配合してなることを特徴とする燐光発光性組成物である。   An eighteenth embodiment of the present invention is a phosphorescent compound according to the fourteenth embodiment of the present invention, in which a plurality of compounds having one or more types of phosphorescent units that emit light of different colors are blended. A phosphorescent composition characterized by that.

本発明の第18の実施形態によれば、本発明の第14の実施形態の燐光発光性化合物であって相互に異なる色に発光する燐光発光性単位を1又は2種類以上有するものを複数配合してなるので、好適な燐光発光性組成物を提供することができる。   According to an eighteenth embodiment of the present invention, a plurality of phosphorescent compounds according to the fourteenth embodiment of the present invention having one or more phosphorescent units that emit light of mutually different colors Therefore, a suitable phosphorescent composition can be provided.

本発明の第19の実施形態は、本発明の第18の実施形態の燐光発光性組成物において、全体として白色に発光することを特徴とする。   The nineteenth embodiment of the present invention is characterized in that the phosphorescent composition according to the eighteenth embodiment of the present invention emits white light as a whole.

本発明の第19の実施形態によれば、全体として白色に発光するので、好適な燐光発光性組成物を提供することができる。   According to the nineteenth embodiment of the present invention, since it emits white light as a whole, a suitable phosphorescent composition can be provided.

本発明の第20の実施形態は、本発明の第18の実施形態の燐光発光性組成物において、青色若しくは緑色に発光する燐光発光性単位を有する燐光発光性化合物及び黄色若しくは赤色に発光する燐光発光性単位を有する燐光発光性化合物を配合してなり、全体として白色に発光することを特徴とする。   The twentieth embodiment of the present invention is the phosphorescent composition according to the eighteenth embodiment of the present invention, wherein the phosphorescent compound having a phosphorescent unit emitting blue or green and the phosphorescence emitting yellow or red is used. A phosphorescent compound having a luminescent unit is blended to emit white light as a whole.

本発明の第20の実施形態によれば、青色若しくは緑色に発光する燐光発光性単位を有する燐光発光性化合物及び黄色若しくは赤色に発光する燐光発光性単位を有する燐光発光性化合物を配合してなり、全体として白色に発光するので、好適な燐光発光性組成物を提供することができる。   According to the twentieth embodiment of the present invention, a phosphorescent compound having a phosphorescent unit emitting blue or green and a phosphorescent compound having a phosphorescent unit emitting yellow or red are blended. Since it emits white light as a whole, a suitable phosphorescent composition can be provided.

本発明の第21の実施形態は、本発明の第1乃至20のいずれかの実施形態の燐光発光性化合物若しくは燐光発光性組成物及びキャリア輸送性高分子化合物を配合してなることを特徴とする燐光発光性組成物である。   A twenty-first embodiment of the present invention is characterized by comprising the phosphorescent compound or phosphorescent composition of any one of the first to twentieth embodiments of the present invention and a carrier transporting polymer compound. A phosphorescent composition.

本発明の第21の実施形態によれば、燐光発光性組成物が本発明の第1乃至20のいずれかの実施形態の燐光発光性化合物若しくは燐光発光性組成物及びキャリア輸送性高分子化合物を配合してなるので、安定で長寿命である。また、燐光発光性化合物及びキャリア輸送性高分子化合物の比率を変えることで、キャリアバランスが良好で発光効率の高い燐光発光性組成物を提供することができる。   According to a twenty-first embodiment of the present invention, the phosphorescent composition comprises the phosphorescent compound or phosphorescent composition and carrier transporting polymer compound according to any one of the first to twentieth embodiments of the present invention. Since it is blended, it is stable and has a long life. Further, by changing the ratio of the phosphorescent compound and the carrier transporting polymer compound, a phosphorescent composition having a good carrier balance and high emission efficiency can be provided.

本発明の第22の実施形態は、本発明の第21の実施形態の燐光発光性組成物において、前記キャリア輸送性高分子化合物は、ホール輸送性高分子化合物であることを特徴とする。   According to a twenty-second embodiment of the present invention, in the phosphorescent composition according to the twenty-first embodiment of the present invention, the carrier transporting polymer compound is a hole transporting polymer compound.

本発明の第22の実施形態によれば、前記キャリア輸送性高分子化合物は、ホール輸送性高分子化合物であるので、安定で長寿命である。また、燐光発光性化合物及びホール輸送性高分子化合物の比率を変えることで、キャリアバランスが良好で発光効率の高い燐光発光性組成物を提供することができる。   According to the twenty-second embodiment of the present invention, since the carrier transporting polymer compound is a hole transporting polymer compound, it is stable and has a long life. Further, by changing the ratio of the phosphorescent compound and the hole transporting polymer compound, it is possible to provide a phosphorescent composition having a good carrier balance and high luminous efficiency.

本発明の第23の実施形態は、本発明の第21の実施形態の燐光発光性組成物において、前記キャリア輸送性高分子化合物は、電子輸送性高分子化合物であることを特徴とする。   A twenty-third embodiment of the present invention is the phosphorescent composition according to the twenty-first embodiment of the present invention, wherein the carrier transporting polymer compound is an electron transporting polymer compound.

本発明の第23の実施形態によれば、前記キャリア輸送性高分子化合物は、電子輸送性高分子化合物であるので、安定で長寿命である。また、燐光発光性化合物及び電子輸送性高分子化合物の比率を変えることで、キャリアバランスが良好で発光効率の高い燐光発光性組成物を提供することができる。   According to the twenty-third embodiment of the present invention, since the carrier transporting polymer compound is an electron transporting polymer compound, it is stable and has a long life. Further, by changing the ratio of the phosphorescent compound and the electron transporting polymer compound, a phosphorescent composition having a good carrier balance and high emission efficiency can be provided.

本発明の第24の実施形態は、本発明の第1乃至20のいずれかの実施形態の燐光発光性化合物及びキャリア輸送性低分子化合物を配合してなることを特徴とする燐光発光性組成物である。   A twenty-fourth embodiment of the present invention is a phosphorescent composition comprising the phosphorescent compound according to any one of the first to twentieth embodiments of the present invention and a carrier transporting low molecular weight compound. It is.

本発明の第24の実施形態によれば、燐光発光性組成物が本発明の第1乃至20のいずれかの実施形態の燐光発光性化合物及びキャリア輸送性低分子化合物を配合してなるので、安定で長寿命である。また、燐光発光性化合物及びキャリア輸送性低分子化合物の比率を変えることで、キャリアバランスが良好で発光効率の高い燐光発光性組成物を提供することができる。   According to the twenty-fourth embodiment of the present invention, the phosphorescent composition comprises the phosphorescent compound according to any one of the first to twentieth embodiments of the present invention and the carrier transporting low molecular weight compound. Stable and long life. Further, by changing the ratio of the phosphorescent compound and the carrier transporting low molecular weight compound, a phosphorescent composition having a good carrier balance and high emission efficiency can be provided.

本発明の第25の実施形態は、本発明の第24の実施形態の燐光発光性組成物において、前記キャリア輸送性低分子化合物は、ホール輸送性低分子化合物であることを特徴とする。   A twenty-fifth embodiment of the present invention is the phosphorescent composition according to the twenty-fourth embodiment of the present invention, wherein the carrier transporting low molecular compound is a hole transporting low molecular compound.

本発明の第25の実施形態によれば、前記キャリア輸送性低分子化合物は、ホール輸送性低分子化合物であるので、安定で長寿命である。また、燐光発光性化合物及びホー輸送性低分子化合物の比率を変えることで、キャリアバランスが良好で発光効率の高い燐光発光性組成物を提供することができる。   According to the twenty-fifth embodiment of the present invention, since the carrier transporting low molecular weight compound is a hole transporting low molecular weight compound, it is stable and has a long life. In addition, by changing the ratio of the phosphorescent compound and the low transporting low molecular weight compound, a phosphorescent composition having a good carrier balance and high emission efficiency can be provided.

本発明の第26の実施形態は、本発明の第24の実施形態の燐光発光性組成物において、前記キャリア輸送性低分子化合物は、電子輸送性低分子化合物であることを特徴とする。   According to a twenty-sixth embodiment of the present invention, in the phosphorescent composition according to the twenty-fourth embodiment of the present invention, the carrier transporting low molecular weight compound is an electron transporting low molecular weight compound.

本発明の第26の実施形態によれば、前記キャリア輸送性低分子化合物は、電子輸送性低分子化合物であるので、安定で長寿命である。また、燐光発光性化合物及び電子輸送性低分子化合物の比率を変えることで、キャリアバランスが良好で発光効率の高い燐光発光性組成物を提供することができる。   According to the twenty-sixth embodiment of the present invention, since the carrier transporting low molecular weight compound is an electron transporting low molecular weight compound, it is stable and has a long lifetime. Further, by changing the ratio of the phosphorescent compound and the electron transporting low molecular weight compound, a phosphorescent composition having a good carrier balance and high emission efficiency can be provided.

本発明の第27の実施形態は、陽極と陰極に挟まれた一又は複数の有機高分子層を含む有機発光素子において、前記有機高分子層の少なくとも一層は、本発明の第1乃至26のいずれかの実施形態の燐光発光性化合物又は燐光発光性組成物を含むことを特徴とする。   According to a twenty-seventh embodiment of the present invention, in an organic light-emitting device including one or a plurality of organic polymer layers sandwiched between an anode and a cathode, at least one of the organic polymer layers is the first to twenty-sixth aspects of the present invention. The phosphorescent compound or phosphorescent composition of any embodiment is included.

本発明の第27の実施形態によれば、前記有機高分子層の少なくとも一層は、本発明の第1乃至26のいずれかの実施形態の燐光発光性化合物又は燐光発光性組成物を含むので、安定で、超高効率の燐光を発光する有機発光素子を提供することができる。   According to a twenty-seventh embodiment of the present invention, at least one layer of the organic polymer layer contains the phosphorescent compound or phosphorescent composition according to any one of the first to twenty-sixth embodiments of the present invention. An organic light-emitting element that emits stable and ultra-high-efficiency phosphorescence can be provided.

本発明の第28の実施形態は、陽極と陰極に挟まれた一又は複数の有機高分子層を含む有機発光素子において、陽極と、陽極が設けられる透明基板との間にカラーフィルターが配設され、前記有機高分子層の少なくとも一層は、本発明の第15若しくは16の実施形態の燐光発光性化合物又は本発明の第19若しくは20の実施形態の燐光発光性組成物を含むことを特徴とする。   According to a twenty-eighth embodiment of the present invention, in an organic light emitting device including one or more organic polymer layers sandwiched between an anode and a cathode, a color filter is disposed between the anode and a transparent substrate on which the anode is provided. And at least one of the organic polymer layers contains the phosphorescent compound according to the fifteenth or sixteenth embodiment of the present invention or the phosphorescent composition according to the nineteenth or twentieth embodiment of the present invention. To do.

本発明の第28の実施形態によれば、陽極と、陽極が設けられる透明基板との間にカラーフィルターが配設され、前記有機高分子層の少なくとも一層は、本発明の第15若しくは16の実施形態の燐光発光性化合物又は本発明の第19若しくは20の実施形態の燐光発光性組成物を含むので、安定で、超高効率のカラー光を発光する有機発光素子を提供することができる。   According to a twenty-eighth embodiment of the present invention, a color filter is disposed between an anode and a transparent substrate on which the anode is provided, and at least one of the organic polymer layers is the fifteenth or sixteenth aspect of the present invention. Since the phosphorescent compound according to the embodiment or the phosphorescent composition according to the nineteenth or twentieth embodiment of the present invention is included, an organic light-emitting element that emits stable and ultra-high-efficiency color light can be provided.

本発明の第29の実施形態は、本発明の第27又は28の実施形態の有機発光素子において、前記陽極は、プラスチック基板上に形成されることを特徴とする。   A twenty-ninth embodiment of the present invention is the organic light-emitting device according to the twenty-seventh or twenty-eighth embodiment of the present invention, wherein the anode is formed on a plastic substrate.

本発明の第29の実施形態によれば、前記陽極は、プラスチック基板上に形成されるので、柔軟な有機発光素子を提供することができる。   According to the twenty-ninth embodiment of the present invention, since the anode is formed on a plastic substrate, a flexible organic light emitting device can be provided.

本発明の第30の実施形態は、本発明の第27乃至29のいずれかの実施形態の有機発光素子において、前記有機高分子層は、インクジェット法又は印刷法により形成されることを特徴とする。   According to a thirtieth embodiment of the present invention, in the organic light-emitting device according to any one of the twenty-seventh to twenty-ninth embodiments, the organic polymer layer is formed by an inkjet method or a printing method. .

本発明の第30の実施形態によれば、前記有機高分子層は、インクジェット法又は印刷法により形成されるので、大面積の有機高分子層を簡便に製造することができる。   According to the thirtieth embodiment of the present invention, since the organic polymer layer is formed by an ink jet method or a printing method, a large-area organic polymer layer can be easily produced.

本発明の第31の実施形態は、表示画面を有する表示装置において、前記表示画面の各画素は、本発明の第27乃至30のいずれかの実施形態の有機発光素子からなり、前記各画素は、二又はそれ以上のトランジスタにより駆動されることを特徴とする。   In a thirty-first embodiment of the present invention, in a display device having a display screen, each pixel of the display screen is composed of the organic light emitting element according to any one of the twenty-seventh to thirty embodiments of the present invention, and each of the pixels is Driven by two or more transistors.

本発明の第31の実施形態によれば、表示画面の各画素は、本発明の第27乃至30のいずれかの実施形態の有機発光素子からなり、前記各画素は、二又はそれ以上のトランジスタを有するので、アクティブマトリックス方式の表示装置を提供することができる。   According to the thirty-first embodiment of the present invention, each pixel of the display screen is composed of the organic light emitting device according to any one of the twenty-seventh to thirtieth embodiments of the present invention, and each pixel includes two or more transistors. Therefore, an active matrix display device can be provided.

次に、本発明の実施の形態について図面と共に説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

本発明は、有機発光素子の材料として使用する有機高分子の燐光発光性化合物の発明であって、燐光を発光する繰り返し単位(燐光発光性単位と呼ぶ)と電子やホールなどのキャリアを輸送する繰り返し単位(キャリア輸送性単位と呼ぶ)とを含む。本発明の有機高分子の燐光発光性化合物は、燐光発光性単位とキャリア輸送性単位とが高分子鎖中に不規則に配列されるランダム共重合体であってもよく、また非イオン性、即ち中性の高分子である。本発明の燐光発光性化合物では、燐光発光性単位とキャリア輸送単位とが高分子鎖に連結しており、燐光発光性単位の凝集は抑制される為、安定即ち長寿命であり、かつ蛍光ではなく燐光発光性単位を有する為、超高効率の発光を実現できる。   The present invention is an invention of an organic polymer phosphorescent compound used as a material of an organic light emitting device, and transports a repeating unit that emits phosphorescence (referred to as a phosphorescent unit) and carriers such as electrons and holes. Repeating units (referred to as carrier transporting units). The organic polymer phosphorescent compound of the present invention may be a random copolymer in which phosphorescent units and carrier transporting units are randomly arranged in a polymer chain, and is nonionic, That is, it is a neutral polymer. In the phosphorescent compound of the present invention, the phosphorescent unit and the carrier transport unit are linked to the polymer chain, and aggregation of the phosphorescent unit is suppressed. In addition, since it has a phosphorescent unit, ultra-high efficiency light emission can be realized.

本発明の燐光発光性化合物の構造は、典型的には図1に示すように、燐光発光性単位とキャリア輸送性単位とを形成する単量体の種類によって、(a)燐光発光性部位とキャリア輸送性部位とが共に高分子の主鎖内にある場合、(b)燐光発光性部位は高分子の側鎖にあり、キャリア輸送性部位は高分子の主鎖内にある場合、(c)燐光発光性部位は高分子の主鎖内にあり、キャリア輸送性部位は高分子の側鎖にある場合、(d)燐光発光性部位とキャリア輸送性部位とが共に高分子の側鎖にある場合、の四通りがある。ただし燐光発光性部位とは、燐光発光性単位中で燐光を発光する機能を有する部分を示し、キャリア輸送性部位とは、キャリア輸送性単位中で、キャリアを輸送する機能を有する部分を表す。   As shown in FIG. 1, the structure of the phosphorescent compound of the present invention typically includes (a) a phosphorescent moiety depending on the type of monomer that forms the phosphorescent unit and the carrier transporting unit. When the carrier transporting site is in the main chain of the polymer, (b) the phosphorescent site is in the side chain of the polymer, and the carrier transporting site is in the main chain of the polymer (c ) When the phosphorescent site is in the main chain of the polymer and the carrier transporting site is in the side chain of the polymer, (d) both the phosphorescent site and the carrier transporting site are in the polymer side chain. If there are, there are four ways. However, the phosphorescent site indicates a part having a function of emitting phosphorescence in the phosphorescent unit, and the carrier transporting part indicates a part having a function of transporting carriers in the carrier transporting unit.

ここで、燐光発光性部位、キャリア輸送性部位の少なくとも一方は、燐光発光性化合物の高分子の主鎖に、側鎖として結合していることが望ましい(図1(b)〜(d))。この場合には、燐光発光性化合物を合成することが容易であり、また有機溶剤に溶解し易い燐光発光性化合物とすることができる。   Here, it is desirable that at least one of the phosphorescent site and the carrier transporting site be bonded as a side chain to the polymer main chain of the phosphorescent compound (FIGS. 1B to 1D). . In this case, it is easy to synthesize a phosphorescent compound, and a phosphorescent compound that is easily dissolved in an organic solvent can be obtained.

さらに燐光の発光効率が高い燐光発光性部位とする為に、燐光発光性部位は、遷移金属又は希土類金属の錯体の一価基又は二価基であることが望ましい。   Further, in order to obtain a phosphorescent moiety having high phosphorescence emission efficiency, the phosphorescent moiety is preferably a monovalent group or a divalent group of a transition metal or rare earth metal complex.

燐光発光性部位の具体例としては   Specific examples of phosphorescent sites

Figure 2007059939

に示す群から選択される配位子を含む、遷移金属錯体の一価基若しくは二価基又は希土類金属錯体の一価基若しくは二価基がある。上記の遷移金属錯体に使用される遷移金属は、周期表の第一遷移元素系列すなわち原子番号21のScから30のZnまで、第二遷移元素系列すなわち原子番号39のYから48のCdまで、第三遷移元素系列すなわち原子番号72のHfから80のHgまで、を含む。また上記の希土類金属錯体に使用される希土類金属は、周期表のランタノイド系列すなわち原子番号57のLaから71のLuまでを含む。なお配位子は、上記の配位子と異なる配位子であってもよい。
Figure 2007059939

Or a monovalent or divalent group of a transition metal complex or a monovalent or divalent group of a rare earth metal complex containing a ligand selected from the group shown in FIG. The transition metal used in the above transition metal complex includes the first transition element series of the periodic table, that is, Sc of atomic number 21 to Zn of 30, the second transition element series, that is, Y of atomic number 39 to Cd of 48, The third transition element series, that is, Hf of atomic number 72 to Hg of 80 is included. The rare earth metal used in the above rare earth metal complex includes the lanthanoid series of the periodic table, that is, La from atomic number 57 to 71 Lu. The ligand may be a ligand different from the above ligand.

キャリアを輸送する性能の高いキャリア輸送性部位の具体例は、本発明の有機高分子の燐光発光性化合物がホール輸送性高分子の場合と電子輸送性高分子の場合とで異なる。   Specific examples of the carrier transporting portion having high performance for transporting carriers differ depending on whether the organic polymer phosphorescent compound of the present invention is a hole transporting polymer or an electron transporting polymer.

ホール輸送性高分子の場合には、   In the case of hole transporting polymers,

Figure 2007059939

に示す、第3級アミンであるカルバゾール(HT−1)、トリフェニルアミン(HT−2)、それらの多量体(HT−3)などの一価基が代表的であり、これらの一価基は、置換基で置換されていてもよい。
Figure 2007059939

The monovalent groups such as carbazole (HT-1), triphenylamine (HT-2), and their multimers (HT-3), which are tertiary amines, are representative, and these monovalent groups May be substituted with a substituent.

電子輸送性高分子の場合では、   In the case of electron transporting polymers,

Figure 2007059939

に示すオキサジアゾール誘導体(ET−1、2)、トリアゾール誘導体(ET−4)、又はイミダゾール誘導体(ET−3)の一価基が挙げられる。これら誘導体の一価基の芳香環は、置換基で置換されていてもよい。また、
Figure 2007059939

The monovalent group of the oxadiazole derivative (ET-1, 2), triazole derivative (ET-4), or imidazole derivative (ET-3) shown in FIG. The monovalent aromatic ring of these derivatives may be substituted with a substituent. Also,

Figure 2007059939

に示すような、蛍光性高分子においてホールの輸送能力を有し主鎖が共役系となる高分子を形成する、置換基で置換された、チオフェンの二価基(TF)、ベンゼンの二価基(PP)、スチレンの二価基(PV)、又はフルオレンの二価基(FO)を用いてもよい。ここで置換基Rは、アルキル基又はアルコキシ基を表す。本発明の燐光発光性化合物において、これらの二価基はキャリア輸送性部位として、高分子の主鎖に組み込まれる。
Figure 2007059939

As shown in FIG. 1, a thiophene divalent group (TF) substituted with a substituent, a benzene divalent group that forms a polymer having a hole transport capability in a fluorescent polymer and a main chain as a conjugated system. A group (PP), a divalent group of styrene (PV), or a divalent group of fluorene (FO) may be used. Here, the substituent R represents an alkyl group or an alkoxy group. In the phosphorescent compound of the present invention, these divalent groups are incorporated into the main chain of the polymer as a carrier transporting site.

上述の繰り返し単位を含む共重合高分子の例としては、   As an example of the copolymer polymer containing the above repeating unit,

Figure 2007059939

に示すような、主鎖であるビニル構造の側鎖に、燐光発光性部位のイリジウム錯体又は白金錯体の一価基と、ホール(キャリア)輸送性部位としてのカルバゾール、又はその誘導体の一価基とを有する高分子(P1、P3、P4)があり、また電子(キャリア)輸送性部位として、側鎖にオキサジアゾール誘導体の一価基を使用した高分子(P2)がある。これら共重合高分子は、ビニル化合物から反応開始剤を使ったラジカル共重合で合成できる。イリジウム錯体の配位子の一つをビニル基で置換した単量体は
Figure 2007059939

The side chain of the vinyl structure as the main chain has a monovalent group of an iridium complex or a platinum complex as a phosphorescent moiety and a monovalent group of carbazole as a hole (carrier) transport moiety or a derivative thereof. There are polymers (P1, P3, and P4) having the following structure, and there are polymers (P2) that use a monovalent group of an oxadiazole derivative in the side chain as an electron (carrier) transporting site. These copolymerized polymers can be synthesized from a vinyl compound by radical copolymerization using a reaction initiator. A monomer in which one of the ligands of the iridium complex is replaced with a vinyl group

Figure 2007059939

のように、イリジウム錯体の配位子置換反応の途中で、ビニル基で置換されたフェニルピリジンを反応させて生成し単離する。
Figure 2007059939

In the middle of the ligand substitution reaction of the iridium complex, phenylpyridine substituted with a vinyl group is reacted to produce and isolate.

さらに、   further,

Figure 2007059939

に示すような、イリジウム錯体の配位子の一つがアセチルアセトン又はピコリン酸であって、このアセチルアセトン等を介してイリジウム錯体が高分子の主鎖に結合した構造の共重合高分子もある。ここで、化学式中の*印は、高分子の化学式中に示した置換基Rに接続する部分(結合)であることを示す。
Figure 2007059939

There is also a copolymer polymer having a structure in which one of the ligands of the iridium complex is acetylacetone or picolinic acid and the iridium complex is bonded to the main chain of the polymer via the acetylacetone or the like as shown in FIG. Here, the * mark in the chemical formula indicates a portion (bond) connected to the substituent R shown in the chemical formula of the polymer.

また、上記の共重合高分子のように、燐光発光性部位としてのイリジウム錯体などの遷移金属錯体部分あるいは希土類金属錯体部分が高分子の主鎖に対して側鎖として結合する場合には、遷移金属錯体あるいは希土類金属錯体の一価基と高分子の主鎖との間にスペーサー部分を介在させることが好ましい。   In addition, when the transition metal complex part such as an iridium complex or a rare earth metal complex part as a phosphorescent moiety is bonded as a side chain to the main chain of the polymer as in the above copolymerized polymer, It is preferable to interpose a spacer portion between the monovalent group of the metal complex or rare earth metal complex and the main chain of the polymer.

スペーサー部分とは、主鎖を構成する高分子化合物における置換可能な原子が結合している多価原子と、燐光発光部位の元となる低分子化合物における置換可能な原子が結合している多価原子との間を結合する部分をいう。このようなスペーサー部分は、ヘテロ原子を有していてもよい炭素数1乃至30の有機基又は炭素原子を有しないヘテロ原子数1乃至10の無機基を含む構造であることが好ましい。   The spacer part is a polyvalent atom to which a substitutable atom in a polymer compound constituting the main chain is bonded, and a polyvalent atom to which a substitutable atom in a low molecular compound that is a source of a phosphorescent light emitting site is bonded. This is the part that bonds with an atom. Such a spacer portion preferably has a structure containing an organic group having 1 to 30 carbon atoms which may have a hetero atom or an inorganic group having 1 to 10 hetero atoms which does not have a carbon atom.

スペーサー部分として、例えば、炭素数1乃至20のアルキレン基や、   As the spacer portion, for example, an alkylene group having 1 to 20 carbon atoms,

Figure 2007059939
Figure 2007059939

Figure 2007059939

に示す、(S−1)から(S−15)のような連結基などを挙げることができるが、これらに限定されるものではない。
Figure 2007059939

(S-1) to (S-15), and the like, which are shown below, can be mentioned, but are not limited thereto.

なお、(S−1)から(S−15)において、R、R及びRはそれぞれ独立にメチレン基又は置換若しくは未置換のフェニレン基を示し、k、m及びnはそれぞれ独立に0、1、又は2である。 In (S-1) to (S-15), R 1 , R 2 and R 3 each independently represents a methylene group or a substituted or unsubstituted phenylene group, and k, m and n are each independently 0 1 or 2.

また、燐光発光性部位及びキャリア輸送性部位を側鎖ではなく、主鎖に組み込んだ構造の共重合高分子もある。   In addition, there is a copolymer polymer having a structure in which a phosphorescent site and a carrier transporting site are incorporated in the main chain instead of the side chain.

Figure 2007059939

に示すように、置換された、チオフェン、ベンゼン、フルオレンの二価基とイリジウム錯体の二価基とが重合して主鎖を形成している。
Figure 2007059939

As shown in FIG. 2, the substituted divalent groups of thiophene, benzene and fluorene and the divalent group of the iridium complex are polymerized to form a main chain.

以上、共重合高分子の例として、ホール輸送性部位あるいは電子輸送性部位のうちのいずれか一方と燐光性発光部位との共重合体を挙げたが、本発明の燐光発光性化合物は、ホール輸送性部位、電子輸送性部位及び燐光性発光部位の共重合体であってもよい。この場合、ホール輸送性部位、電子輸送性部位及び燐光性発光部位は、それぞれ独立に共重合体の主鎖を構成していてもよく、また、側鎖を構成していてもよい。   As mentioned above, as an example of the copolymer, a copolymer of either one of a hole transporting site or an electron transporting site and a phosphorescent light emitting site has been mentioned. It may be a copolymer of a transporting site, an electron transporting site, and a phosphorescent light emitting site. In this case, the hole transporting site, the electron transporting site, and the phosphorescent light emitting site may each independently constitute the main chain of the copolymer or may constitute the side chain.

燐光発光性単位の繰り返し数をm、キャリア輸送性単位の繰り返し数をnとすると、本発明においては、燐光の発光効率を向上させる為には、m<nの関係、即ち燐光発光性単位の繰り返し数がキャリア輸送性単位の繰り返し数より小さいこと望ましい。ただしm、nは両方とも、1又はそれ以上の自然数である。逆にm≧nの場合には、濃度消光により燐光の発光が抑制されてしまう。なお燐光の超高効率の発光を実現する為には、燐光発光性単位及びキャリア輸送性単位の総数の内、燐光発光性単位の繰り返し数の割合は0.2以下が好ましい。また、燐光発光性単位の繰り返し数の割合が小さすぎると、燐光発光部性位が少なくなって発光効率が落ちる。この為、燐光発光性単位の繰り返し数の割合は、少なすぎてはならず、0.0001以上であることが望ましい。即ち、
0.0001≦m/(m+n)≦0.2
であることが望ましい。
Assuming that the number of repeating phosphorescent units is m and the number of repeating carrier transporting units is n, in the present invention, in order to improve the phosphorescence efficiency, the relationship m <n, that is, It is desirable that the number of repeats is smaller than the number of repeats of the carrier transporting unit. However, both m and n are natural numbers of 1 or more. Conversely, in the case of m ≧ n, phosphorescence emission is suppressed by concentration quenching. In order to realize ultra-high-efficiency light emission of phosphorescence, the ratio of the number of repetitions of the phosphorescence emission unit is preferably 0.2 or less in the total number of phosphorescence emission units and carrier transportability units. On the other hand, when the ratio of the number of repeating phosphorescent units is too small, the phosphorescent light emitting unit property decreases and the luminous efficiency decreases. For this reason, the ratio of the number of repeating phosphorescent units should not be too small and is preferably 0.0001 or more. That is,
0.0001 ≦ m / (m + n) ≦ 0.2
It is desirable that

本発明の燐光発光性化合物は、1色に発光する1種類の燐光発光性単位を有してもよく、又、相互に異なる2色以上に発光する2種類以上の燐光発光性単位を有してもよい。   The phosphorescent compound of the present invention may have one kind of phosphorescent unit that emits light in one color, or two or more kinds of phosphorescent units that emit light in two or more different colors. May be.

本発明の燐光発光性化合物は、相互に異なる2色以上に発光する2種類以上の燐光発光性単位を導入することにより、1色に発光する1種類の燐光発光性単位のみを有する燐光発光性化合物では得られない発光色を得ることができる。   The phosphorescent compound of the present invention has only one phosphorescent unit emitting one color by introducing two or more types of phosphorescent units emitting two or more different colors. An emission color that cannot be obtained with a compound can be obtained.

例えば、それぞれ青色、緑色及び赤色に発光する3種類の燐光発光性単位を適当な比率で1つの化合物に導入することにより、白色発光用の燐光発光性化合物が得られる。ここで、青色、緑色又は赤色に発光する燐光発光性単位とは、それぞれ単独に用いて1つの燐光発光性化合物を形成した場合に、フォトルミネッセンスの発光色がそれぞれ青色、緑色又は赤色を示すものか、又はさらに後述の有機発光素子を作製して発光させた場合に、その発光色がそれぞれ青色、緑色又は赤色を示すものをいう。   For example, a phosphorescent compound for white light emission can be obtained by introducing three types of phosphorescent units each emitting blue, green and red into one compound at an appropriate ratio. Here, the phosphorescent unit emitting blue, green, or red means that when one phosphorescent compound is formed by using each independently, the emission color of photoluminescence indicates blue, green, or red, respectively. Or when an organic light-emitting device described below is further produced and emitted, its emission color indicates blue, green or red, respectively.

なお、ここでいう発光色の青色は、発光スペクトルにおけるピーク波長が400〜490nmであるものをいう。同様に、緑色は、ピーク波長が490〜570nmであるものをいい、赤色は、ピーク波長が570〜700nmであるものをいう。   In addition, blue of luminescent color here means that whose peak wavelength in an emission spectrum is 400-490 nm. Similarly, green means that the peak wavelength is 490 to 570 nm, and red means that the peak wavelength is 570 to 700 nm.

また、白色発光用の燐光発光性化合物は、それぞれ青色若しくは緑色および黄色若しくは赤色に発光する2種類の燐光発光性単位を適当な比率で1つの化合物に導入することによっても得られる。   A phosphorescent compound for white light emission can also be obtained by introducing two types of phosphorescent units emitting blue, green and yellow or red, respectively, into one compound at an appropriate ratio.

なお、ここでいう発光色の青色若しくは緑色は発光スペクトルにおけるピーク波長が400〜570nmであるものをいい、同様に、黄色若しくは赤色はピーク波長が570〜700nmであるものをいう。   In addition, blue or green of the luminescent color here means that whose peak wavelength in the emission spectrum is 400 to 570 nm, and similarly, yellow or red means that whose peak wavelength is 570 to 700 nm.

また、白色発光用の燐光発光性材料は、上記のような単一の燐光発光性化合物としてだけではなく、相互に異なる発光色を示す1種類以上の燐光発光性単位を有する複数の燐光発光性化合物を配合した組成物としても得ることができる。   The phosphorescent material for white light emission is not only a single phosphorescent compound as described above, but also a plurality of phosphorescent materials having one or more types of phosphorescent units exhibiting mutually different emission colors. It can also be obtained as a composition containing a compound.

例えば、青色に発光する燐光発光性単位及び緑色に発光する燐光発光性単位の2種類の燐光発光性単位を有する第1の燐光発光性化合物と、赤色に発光する1種類の燐光発光性単位を有する第2の燐光発光性化合物を配合した燐光発光性組成物、それぞれ青色、緑色及び赤色に発光する燐光発光性単位を1種類ずつ有する3つの燐光発光性化合物を配合した燐光発光性組成物、それぞれ青色および橙色に発光する燐光発光性単位を1種類ずつ有する2つの燐光発光性化合物を配合した燐光発光性組成物等を挙げることができるが、何らこれらに限定されるものではない。   For example, a first phosphorescent compound having two types of phosphorescent units, a phosphorescent unit emitting blue light and a phosphorescent unit emitting green light, and one kind of phosphorescent unit emitting red light are included. A phosphorescent composition containing the second phosphorescent compound, a phosphorescent composition containing three phosphorescent compounds each having one kind of phosphorescent unit emitting blue, green and red, Examples thereof include, but are not limited to, a phosphorescent composition containing two phosphorescent compounds each having one phosphorescent unit emitting blue and orange.

本発明の有機高分子の燐光発光性化合物は、湿式法で成膜できることが望ましい。湿式法では燐光発光性化合物を溶液とするので、有機溶剤又は水に可溶であることが必要である。特に燐光発光性化合物を有機溶媒に可溶とする為には、燐光発光性部位にアルキル基又はアルコキシ基などの比較的長い炭素鎖で置換した金属錯体を使用することが望ましい。   It is desirable that the organic polymer phosphorescent compound of the present invention can be formed by a wet process. In the wet method, since a phosphorescent compound is used as a solution, it is necessary to be soluble in an organic solvent or water. In particular, in order to make the phosphorescent compound soluble in an organic solvent, it is desirable to use a metal complex in which the phosphorescent moiety is substituted with a relatively long carbon chain such as an alkyl group or an alkoxy group.

本発明の有機高分子の燐光発光性化合物は、重合度が5乃至5000であることが好ましい。重合度が5より小さいと、均一な膜の形成が困難になり、また結晶化が起こり易く膜の安定性が悪くなる。また重合度が5000より大きい有機高分子は、生成が困難であり、有機溶剤に溶けにくくなる。従って重合度を5乃至5000とすることで、均一かつ安定な膜を成膜することができる。   The organic polymer phosphorescent compound of the present invention preferably has a polymerization degree of 5 to 5,000. When the degree of polymerization is less than 5, it becomes difficult to form a uniform film, and crystallization is likely to occur, resulting in poor film stability. An organic polymer having a degree of polymerization greater than 5000 is difficult to produce and is difficult to dissolve in an organic solvent. Therefore, by setting the polymerization degree to 5 to 5000, a uniform and stable film can be formed.

つぎに、本発明の有機発光素子について説明する。   Next, the organic light emitting device of the present invention will be described.

本発明の有機発光素子は、以上説明した本発明の有機高分子の燐光発光性化合物を発光材料として用いることができる。   In the organic light emitting device of the present invention, the organic polymer phosphorescent compound of the present invention described above can be used as a light emitting material.

また、本発明の有機発光素子は、本発明の燐光発光性化合物のキャリア輸送性をさらに高めるために、本発明の燐光発光性化合物とキャリア輸送性化合物とを配合した組成物を発光材料として用いることができる。   In addition, the organic light emitting device of the present invention uses a composition in which the phosphorescent compound of the present invention and a carrier transport compound are blended as a light emitting material in order to further enhance the carrier transport property of the phosphorescent compound of the present invention. be able to.

すなわち、本発明の燐光発光性化合物がホール輸送性の場合は電子輸送性化合物を混合することができ、また、本発明の燐光発光性化合物が電子輸送性の場合はホール輸送性化合物を混合することができる。このとき、電子輸送性化合物及びホール輸送性化合物は、それぞれ低分子化合物であってもよく、また、高分子化合物であってもよい。   That is, when the phosphorescent compound of the present invention is hole transporting, an electron transporting compound can be mixed, and when the phosphorescent compound of the present invention is electron transporting, a hole transporting compound is mixed. be able to. At this time, each of the electron transporting compound and the hole transporting compound may be a low molecular compound or a high molecular compound.

本発明の燐光発光性化合物に配合する低分子のホール輸送性化合物としては、TPD(N,N’−ジフェニル−N,N’−(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン)、α−NPD(4,4’−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル)、m−MTDATA(4,4’,4”−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン)などのトリフェニルアミン誘導体、CBP(4,4’−N−N’−ジカルバゾール−ビフェニル)などのカルバゾール誘導体をはじめとする既知のホール輸送材料が使用できるが、これらに限定されるものではない。   As a low molecular weight hole transporting compound to be blended with the phosphorescent compound of the present invention, TPD (N, N′-diphenyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4, 4′-diamine), α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), m-MTDATA (4,4 ′, 4 ″ -tris (3-methyl) Known hole transport materials such as triphenylamine derivatives such as phenylphenylamino) triphenylamine) and carbazole derivatives such as CBP (4,4′-NN′-dicarbazole-biphenyl) can be used, It is not limited to these.

また、本発明の燐光発光性化合物に配合する高分子のホール輸送性化合物としては、ポリビニルカルバゾール、トリフェニルアミン系の低分子化合物に重合性官能基を導入して高分子化したもの、例えば、特開平8−157575号公報に開示されているトリフェニルアミン骨格の高分子化合物などが使用できるが、これらに限定されるものではない。   In addition, as the polymer hole transporting compound to be blended with the phosphorescent compound of the present invention, a polymer obtained by introducing a polymerizable functional group into a polyvinylcarbazole, triphenylamine-based low molecular compound, for example, A polymer compound having a triphenylamine skeleton disclosed in JP-A-8-157575 can be used, but is not limited thereto.

一方、本発明の燐光発光性化合物に配合する低分子の電子輸送性化合物としては、Alq(トリスアルミニウムキノリノール)などのキノリノール誘導体金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、トリアジン誘導体などが使用できるが、これらに限定されるものではない。 On the other hand, examples of the low molecular electron transporting compound to be blended with the phosphorescent compound of the present invention include quinolinol derivative metal complexes such as Alq 3 (tris aluminum quinolinol), oxadiazole derivatives, triazole derivatives, imidazole derivatives, triazine derivatives, and the like. However, it is not limited to these.

また、本発明の燐光発光性化合物に配合する高分子の電子輸送性化合物としては、上記の低分子の電子輸送性化合物に重合性官能基を導入して高分子化したもの、例えば、特開平10−1665号公報に開示されているポリPBDなどが使用できるが、これらに限定されるものではない。   The polymer electron transport compound to be blended with the phosphorescent compound of the present invention is a polymer obtained by introducing a polymerizable functional group into the above low molecular electron transport compound, for example, Poly PBD etc. which are indicated by 10-1665 gazette can be used, but it is not limited to these.

また、成膜して得られる膜の物性などをさらに改良する目的で、本発明の燐光発光性化合物あるいは燐光発光性組成物に、発光特性には関与しない高分子化合物を混合して組成物とし、これを発光材料として用いることもできる。例えば、膜に柔軟性を付与するためにPMMA(ポリメチルメタクリレート)を混合することができるが、これに限定されるものではない。   In addition, for the purpose of further improving the physical properties of the film obtained by film formation, the phosphorescent compound or phosphorescent composition of the present invention is mixed with a polymer compound that does not participate in the emission characteristics to obtain a composition. This can also be used as a light emitting material. For example, in order to impart flexibility to the film, PMMA (polymethyl methacrylate) can be mixed, but is not limited thereto.

本発明はまた、少なくとも一層に上述の有機高分子の燐光発光性化合物を含むことを特徴とする有機発光素子を提供する。本発明の有機発光素子は、燐光発光性化合物の燐光発光性単位とキャリア輸送単位とが高分子鎖に連結している為、有機発光素子の連続駆動や過熱による燐光発光性化合物の燐光発光性単位の凝集が抑制され、安定な表示装置を提供でき、かつ蛍光ではなく燐光発光性単位を有する為、超高効率の発光を実現できる。   The present invention also provides an organic light-emitting device comprising at least one layer of the above-described organic polymer phosphorescent compound. In the organic light emitting device of the present invention, since the phosphorescent unit of the phosphorescent compound and the carrier transport unit are linked to the polymer chain, the phosphorescent property of the phosphorescent compound by continuous driving or overheating of the organic light emitting device. Aggregation of units is suppressed, a stable display device can be provided, and phosphorescence units are used instead of fluorescence, so that ultra-high efficiency light emission can be realized.

本発明の燐光発光性化合物を用いた有機発光素子は、図2(a)に示すように、本発明の燐光発光性化合物を一対の陽極と陰極で挟んだ一層構成でも機能するが、燐光の発光効率を高める為には、図2(b)のような電子輸送性高分子を用いた電子輸送層との積層構成、又は図2(c)のようなホール輸送性高分子を用いたホール輸送層との積層構成が望ましい。これらのキャリア(電子、ホール)輸送性高分子としては   The organic light emitting device using the phosphorescent compound of the present invention functions as a single layer structure in which the phosphorescent compound of the present invention is sandwiched between a pair of anode and cathode as shown in FIG. In order to increase the luminous efficiency, a layered structure with an electron transport layer using an electron transport polymer as shown in FIG. 2B or a hole using a hole transport polymer as shown in FIG. A laminated structure with a transport layer is desirable. As these carrier (electron, hole) transport polymers,

Figure 2007059939

のような第3級アミン及びその誘導体(HTP1、2)、オキサジアゾール誘導体(ETP1、2)、イミダゾール誘導体(ETP3)の基を含む高分子、ポリパラフェニレンビニレン(CP1)、ポリジアルキルフルオレン(CP2)などが挙げられる。
Figure 2007059939

Tertiary amines and derivatives thereof (HTP1,2), oxadiazole derivatives (ETP1,2), polymers containing groups of imidazole derivatives (ETP3), polyparaphenylene vinylene (CP1), polydialkylfluorene ( CP2) and the like.

図2(b)の積層構成を有する発光素子において、燐光発光性化合物として前記P1の高分子を用い、電子輸送性高分子としてオキサジアゾール誘導体の基を含む高分子ETP2を用いた有機発光素子で、発光機構を簡単に説明する。金属陰極から注入された電子は、電子輸送層を通じて輸送され、燐光発光性化合物P1の層へ注入され、一方、ITO陽極から注入されたホールは燐光発光性化合物P1のカルバゾール環を含む繰り返し単位を伝導する。注入された電子がカルバゾール環上でホールと再結合することによって、カルバゾール環の繰り返し単位の励起状態が生成し、次にイリジウム錯体の繰り返し単位ヘエネルキー移動する。その結果、イリジウム錯体の繰り返し単位において励起三重項状態が形成され、エネルギー緩和により燐光の発光が観察される。ただし、注入されたホールと電子の再結合がイリジウム錯体の繰り返し単位上で起こる機構も考えられる。   2B, the organic light-emitting device using the polymer P1 as the phosphorescent compound and the polymer ETP2 containing an oxadiazole derivative group as the electron-transporting polymer. Now, the light emission mechanism will be briefly described. The electrons injected from the metal cathode are transported through the electron transport layer and injected into the layer of the phosphorescent compound P1, while the holes injected from the ITO anode are repeating units containing the carbazole ring of the phosphorescent compound P1. Conduct. The injected electrons recombine with holes on the carbazole ring to generate an excited state of the repeating unit of the carbazole ring, and then transfer to the repeating unit of the iridium complex. As a result, an excited triplet state is formed in the repeating unit of the iridium complex, and phosphorescence is observed by energy relaxation. However, a mechanism in which recombination of injected holes and electrons occurs on the repeating unit of the iridium complex is also conceivable.

陽極は、一般には透明基板であるガラス基板上に形成され、発光透過性材料を用いる。ITO(酸化スズインジウム)、酸化インジウム、酸化スズ、又は酸化インジウム酸化亜鉛合金が好ましい。金、白金、銀、マグネシウムなどの金属の薄膜を用いてもよい。ポリアニリン、ポリチオフェン、ポリピロール、及びそれらの誘導体からなる導電性高分子も使用可能である。   The anode is generally formed on a glass substrate that is a transparent substrate, and a light-transmitting material is used. ITO (indium tin oxide), indium oxide, tin oxide, or an indium zinc oxide alloy is preferable. A thin film of a metal such as gold, platinum, silver, or magnesium may be used. Conductive polymers composed of polyaniline, polythiophene, polypyrrole, and derivatives thereof can also be used.

陰極には、仕事関数の低いLi、Kなどのアルカり金属やMg、Caなどのアルカリ土類金属を用いるのが、電子注入効率の観点から好ましい。また、これらの金属と比較して化学的に安定なAlなどを用いることも望ましい。電子注入効率と化学的安定性とを両立させるために2種以上の材料を含む層にしてもよい。それらの材料については特開平2−15595、特開平5−121172などに記載されており、セシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ金属やアルカリ土類金属の薄層(0.01〜10μm程度)をAl層の下に(陰極側を上側、陽極側を下側とする)挟んでもよい。   For the cathode, it is preferable to use an alkali metal such as Li or K having a low work function or an alkaline earth metal such as Mg or Ca from the viewpoint of electron injection efficiency. It is also desirable to use Al that is chemically stable compared to these metals. In order to achieve both electron injection efficiency and chemical stability, a layer containing two or more materials may be used. These materials are described in JP-A-2-15595, JP-A-5-121172, and the like, and a thin layer (about 0.01 to 10 μm) of an alkali metal or alkaline earth metal such as cesium, calcium, strontium, and barium. May be sandwiched under the Al layer (the cathode side is the upper side and the anode side is the lower side).

陽極と陰極は、真空蒸着法、スパッタリング法、イオンプレーティング法などの公知の方法で形成できる。また、電極(特に発光透過性材料の電極)のパターニングは、フォトリソグラフィーなどによる化学的エッチング、レーザーなどを用いた物理的エッチングなどにより行うことが好ましい。また、マスクを重ねて真空蒸着やスパッタリングなどを行なってパターニングしてもよい。   The anode and the cathode can be formed by a known method such as vacuum deposition, sputtering, or ion plating. The patterning of the electrode (particularly, the electrode of the light-transmitting material) is preferably performed by chemical etching using photolithography, physical etching using a laser, or the like. Further, patterning may be performed by stacking masks and performing vacuum deposition, sputtering, or the like.

本発明において、透明基板として通常のガラス基板の他にプラスチック基板を使用することができる。基板として用いるプラスチックは耐熱性、寸法安定性、耐溶剤性、電気絶縁性、加工性、低通気性及び低吸湿性に優れていることが必要である。このようなプラスチックとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミドなどが挙げられる。これら柔軟な基板を用いることで、柔軟な有機発光素子を提供できる。基板の電極側の面、電極と反対側の面、又はその両方の面に透湿防止層(ガスバリア層)を設置することが好ましい。透湿防止層を構成する材料としては窒化ケイ素や酸化ケイ素などの無機物が好ましい。透湿防止層は高周波スパッタリング法などにより成膜できる。また、必要に応じてハードコート層やアンダーコート層を設けてもよい。   In the present invention, a plastic substrate can be used in addition to a normal glass substrate as the transparent substrate. The plastic used as the substrate must be excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, workability, low air permeability and low moisture absorption. Examples of such plastic include polyethylene terephthalate, polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, and polyimide. By using these flexible substrates, a flexible organic light emitting element can be provided. It is preferable to provide a moisture permeation preventive layer (gas barrier layer) on the surface of the substrate on the electrode side, the surface opposite to the electrode, or both surfaces. As a material constituting the moisture permeation preventing layer, inorganic substances such as silicon nitride and silicon oxide are preferable. The moisture permeation preventing layer can be formed by a high frequency sputtering method or the like. Moreover, you may provide a hard-coat layer and an undercoat layer as needed.

燐光発光性化合物、電子輸送性高分子、ホール輸送性高分子などの有機高分子層の成膜法としては、溶液からのスピンコート法が一般的であり、そのほかにも大面積の有機高分子層を簡便に製造することができる方法として印刷法、インクジェット法、スプレー法、ディスペンサー法などを挙げることができるが、何らこれらに限定されるものではない。これにより表示画面の各画素が本発明の有機発光素子からなる表示装置において、画素ごとに有機高分子を塗り別けることができ、表示装置の表示画面をフルカラー化することができる。特にインクジェット法は、この画素ごとの塗り別け、表示画面のフルカラー化を容易に行うことができる。   As a method for forming an organic polymer layer such as a phosphorescent compound, an electron transporting polymer, and a hole transporting polymer, a spin coating method from a solution is generally used. Examples of the method for easily producing the layer include a printing method, an inkjet method, a spray method, a dispenser method, and the like, but are not limited thereto. As a result, in the display device in which each pixel of the display screen is composed of the organic light emitting device of the present invention, the organic polymer can be separately applied to each pixel, and the display screen of the display device can be made full color. In particular, the ink jet method can easily perform the pixel-by-pixel painting and full color display screen.

表示画面の各画素が本発明の有機発光素子からなる表示装置において、画素ごとに二個以上のトランジスタを配置し、これらのトランジスタによる画素のアドレスと駆動によって、アクティブマトリックス方式の表示装置を提供できる。最低限必要な二個のトランジスタの内、一個は画素を構成する有機発光素子に電流を注入する駆動用トランジスタであり、他の一個は、この駆動用トランジスタへの電流注入のオン/オフを制御する切り換え用トランジスタである。さらにこれらのトランジスタを有機トランジスタにすることで、プラスチック基板への適用も可能となる。   In the display device in which each pixel of the display screen is composed of the organic light emitting device of the present invention, an active matrix display device can be provided by arranging two or more transistors for each pixel and by addressing and driving the pixels by these transistors. . Of the two required transistors, one is a driving transistor that injects current into the organic light-emitting element that constitutes the pixel, and the other one controls on / off of current injection into the driving transistor. This is a switching transistor. Further, by making these transistors organic transistors, application to plastic substrates is possible.

[実施例]
以下に本発明の燐光発光性化合物の実施例、及びその合成法を説明する。これらの実施例は、説明の為の単なる例示であって、本発明は、これらの実施例に制限されない。
[Example]
Examples of the phosphorescent compound of the present invention and the synthesis method thereof will be described below. These examples are merely illustrative examples, and the present invention is not limited to these examples.

(実施例1−1)燐光発光性化合物の単量体:[2−(3−メタクリルフェニル)ピリジン]ビス[2−(3−プロピオニルフェニル)ピリジン]イリジウム(III)(以下、Ir(MPPy)(PrCOPPy)と略す)の合成
まず、スキーム(1)の常法に従い2−(3−メトキシフェニル)ピリジン(MeOPPy)を合成した。
(Example 1-1) Monomer of phosphorescent compound: [2- (3-methacrylphenyl) pyridine] bis [2- (3-propionylphenyl) pyridine] iridium (III) (hereinafter referred to as Ir (MPPy)) Synthesis of (PrCOPPy) 2 ) First, 2- (3-methoxyphenyl) pyridine (MeOPPy) was synthesized according to a conventional method of Scheme (1).

Figure 2007059939

具体的には、3−ブロモアニソール8.98g(48mmol)を脱水テトラヒドロフラン(THF)60ml中でMgを用いて3−メトキシフェニルマグネシウムブロミドを合成した。さらに、2−ブロモピリジン6.32g(40mmo1)、[1,2−ビス(ジフェニルホスフィノ)エタン]ジクロロニッケル(0)(Ni(dppe)Cl)0.74gを脱水THF40mlに溶解した溶液に、先に得られた3−メトキシフェニルマグネシウムブロミドを添加し、室温で12時間反応させることにより無色透明の2−(3−メトキシフェニル)ピリジン(MeOPPy)を6.03g(32.4mmol)得た。同定はCHN元素分析、NMR、IRで行った。
Figure 2007059939

Specifically, 3-methoxyphenylmagnesium bromide was synthesized using 8.98 g (48 mmol) of 3-bromoanisole in 60 ml of dehydrated tetrahydrofuran (THF) using Mg. Further, in a solution of 6.32 g (40 mmol) of 2-bromopyridine and 0.74 g of [1,2-bis (diphenylphosphino) ethane] dichloronickel (0) (Ni (dppe) Cl 2 ) dissolved in 40 ml of dehydrated THF. Then, 3-methoxyphenylmagnesium bromide obtained above was added and reacted at room temperature for 12 hours to obtain 6.03 g (32.4 mmol) of colorless and transparent 2- (3-methoxyphenyl) pyridine (MeOPPy). . Identification was performed by CHN elemental analysis, NMR, and IR.

次に、スキーム(1)で得られたMeOPPyとトリス(アセチルアセトナト)イリジウム(III)(Ir(acac))を、スキーム(2)に示すように、高温で反応させ、トリス(2−(3−メトキシフェニル)ピリジン)イリジウム(III)(Ir(MeOPPy))を合成した。 Next, MeOPPy obtained in scheme (1) and tris (acetylacetonato) iridium (III) (Ir (acac) 3 ) are reacted at high temperature as shown in scheme (2), and tris (2- (3-Methoxyphenyl) pyridine) iridium (III) (Ir (MeOPPy) 3 ) was synthesized.

Figure 2007059939

具体的には、MeOPPy0.50g(2.70mmol)とIr(acac)0.20g(0.41mmol)をグリセロール20ml中、250℃で9時間反応させ、カラムで精製することにより、蛍光性黄色粉末としてIr(MeOPPy)0.020g(0.027mmol)を得た。同定はCHN及びIr元素分析、IRで行った。
Figure 2007059939

Specifically, 0.50 g (2.70 mmol) of MeOPPy and 0.20 g (0.41 mmol) of Ir (acac) 3 were reacted in 20 ml of glycerol at 250 ° C. for 9 hours, and purified by a column. As a powder, 0.020 g (0.027 mmol) of Ir (MeOPPy) 3 was obtained. Identification was performed by CHN and Ir elemental analysis and IR.

スキーム(2)で得られたIr(MeOPPy)を、スキーム(3)の常法に従い、塩酸水溶液中でMeO基を加水分解してOH基とし、粉末のトリス(2−(3−ヒドロキシフェニル)ピリジン)イリジウム(III)(Ir(HOPPy))を得た。 Ir (MeOPPy) 3 obtained in scheme (2) is hydrolyzed to form an OH group by hydrolyzing the MeO group in an aqueous hydrochloric acid solution in accordance with the usual method of scheme (3) to obtain tris (2- (3-hydroxyphenyl) powder. ) Pyridine) iridium (III) (Ir (HOPPy) 3 ).

Figure 2007059939

スキーム(3)で得られたIr(HOPPy)を、スキーム(4)に従い、メタクリル酸クロリドとモル比1:1で反応させることにより、OH基の一部分をメタクリル化させIr(MPPy)(HOPPy)が主成分となる錯体を合成した。次いで残りのOH基をプロピオン酸クロリド(PrCOCl)と反応させ、Ir(MPPy)(PrCOPPy)が主成分となる錯体を得た。
Figure 2007059939

According to scheme (4), Ir (HOPPy) 3 obtained in scheme (3) is reacted with methacrylic acid chloride at a molar ratio of 1: 1 to methacrylate a part of the OH group to give Ir (MPPy) (HOPPy). ) A complex having 2 as a main component was synthesized. Subsequently, the remaining OH group was reacted with propionic acid chloride (PrCOCl) to obtain a complex mainly composed of Ir (MPPy) (PrCOPPy) 2 .

Figure 2007059939

具体的には、反応容器に脱水THF8ml、Ir(HOPPy)0.706g(1mmol)、脱酸剤としてトリエチルアミン0.600g(5.9mmo1)を入れた後、メタクリル酸クロリド0.106g(1mmol)を脱水THF4mlに溶解した溶液を30分かけて滴下し、20℃で5時間反応させた。この反応溶液に更にプロピオン酸クロリド0.370g(4mmol)を脱水THF4mlに溶解した溶液を30分かけて滴下し、20℃で5時間反応させることにより残りのOH基を反応させ、トリエチルアミンの塩酸塩を濾別した。濾液の溶媒を蒸発乾固し、得られた固形成分はクロロホルム/メタノール混合溶媒にて再結晶を2回行うことによって精製し、目的とするIr(MPPy)(PrCOPPy)0.523g(0.59mmol)を粉末として得た。この錯体の同定はCHN及びIrの元素分析、IRで行った。
Figure 2007059939

Specifically, 8 ml of dehydrated THF, 0.706 g (1 mmol) of Ir (HOPPy) 3 and 0.600 g (5.9 mmol) of triethylamine as a deoxidizing agent were placed in a reaction vessel, and then 0.106 g (1 mmol) of methacrylic acid chloride. Was added dropwise over 30 minutes and reacted at 20 ° C. for 5 hours. To this reaction solution, a solution of 0.370 g (4 mmol) of propionic acid chloride dissolved in 4 ml of dehydrated THF was added dropwise over 30 minutes, and the remaining OH group was reacted by reacting at 20 ° C. for 5 hours to obtain triethylamine hydrochloride. Was filtered off. The solvent of the filtrate was evaporated to dryness, and the obtained solid component was purified by recrystallization twice with a chloroform / methanol mixed solvent, and the target Ir (MPPy) (PrCOPPy) 2 0.523 g (0. 59 mmol) as a powder. This complex was identified by CHN and Ir elemental analysis and IR.

(実施例1−2)燐光発光性化合物:[2−(3−メタクリルフェニル)ピリジン]ビス[2−(3−プロピオニルフェニル)ピリジン]イリジウム(III)/N−ビニルカルバゾール共重合体(以下、Ir(MPPy)(PrCOPPy)/VCz共重合体と略す)の合成
スキーム(5)に従って、反応容器に実施例1で合成したIr(MPPy)(PrCOPPy)錯体0.222g(0.25mmol)、N−ビニルカルバゾール(VCz)0.918g(4.75mmol)(Ir(MPPy)(PrCOPPy)とVCzがモル比で5:95)、2,2’−アゾビス(イソブチロニトリル)(AIBN)0.010g(0.061mmol)、酢酸ブチル10mlを入れて窒素置換を行った後、80℃で10時間反応させた。
(Example 1-2) Phosphorescent compound: [2- (3-methacrylphenyl) pyridine] bis [2- (3-propionylphenyl) pyridine] iridium (III) / N-vinylcarbazole copolymer (hereinafter, Synthesis of Ir (MPPy) (PrCOPPy) 2 / VCz copolymer) According to scheme (5), 0.222 g (0.25 mmol) of Ir (MPPy) (PrCOPPy) 2 complex synthesized in Example 1 in a reaction vessel N-vinylcarbazole (VCz) 0.918 g (4.75 mmol) (Ir (MPPy) (PrCOPPy) 2 and VCz in a molar ratio of 5:95), 2,2′-azobis (isobutyronitrile) (AIBN) ) 0.010 g (0.061 mmol) and 10 ml of butyl acetate were added to perform nitrogen substitution, followed by reaction at 80 ° C. for 10 hours. It was.

Figure 2007059939

反応後、生成物をアセトンに投入して再沈殿を行い、濾過により共重合体を回収した。回収した共重合体のクロロホルム溶液をメタノール中に投入して再沈殿させることを更に2回行うことにより精製し、沈殿回収後に真空乾燥して、目的とするIr(MPPy)(PrCOPPy)/VCz共重合体0.946gを粉末として得た。得られた共重合体のCHN及びIrの元素分析は、Ir(MPPy)(PrCOPPy)とVCzが5:95のモル比で共重合していることを支持していた。即ち燐光発光性単位の繰り返し数m/キャリア輸送性単位の繰り返し数n=5/95であると考えられる。また、共重合体のクロロホルム中のGPCから、重量平均分子量はポリスチレン換算で12000であった(重量平均分子量から計算される平均の重合度は37)。さらに本発明の燐光発光性化合物はクロロホルムなどの有機溶剤に可溶である。
Figure 2007059939

After the reaction, the product was put into acetone for reprecipitation, and the copolymer was recovered by filtration. The recovered chloroform solution of the copolymer is put into methanol and reprecipitated twice to purify, and after the precipitate is recovered, vacuum drying is performed to obtain the target Ir (MPPy) (PrCOPPy) 2 / VCz. 0.946 g of copolymer was obtained as a powder. Elemental analysis of CHN and Ir of the resulting copolymer supported that Ir (MPPy) (PrCOPPy) 2 and VCz were copolymerized in a molar ratio of 5:95. That is, it is considered that the number of repeating phosphorescent units m / the number of repeating carrier transporting units n = 5/95. Moreover, from GPC in chloroform of a copolymer, the weight average molecular weight was 12000 in terms of polystyrene (the average degree of polymerization calculated from the weight average molecular weight was 37). Furthermore, the phosphorescent compound of the present invention is soluble in an organic solvent such as chloroform.

(実施例1−3)有機発光素子の試作
Ir(MPPy)(PrCOPPy)/VCz共重合体と電子輸送材料であるオキサジアゾール誘導体(tBu−PBD)のクロロホルム溶液を調製した。比率は、Ir(MPPy)(PrCOPPy)/VCz共重合体が65重量パーセントに対しtBu−PBDを35重量パーセントとした。この溶液を透明電極である酸化スズインジウム(ITO)がついたガラス基板上にスピンコートして厚さ100nmの膜を形成し、その上に真空蒸着法でCaを10nm、Alを100nm蒸着し陰極とした。この有機発光素子のITO側に正の、Al側に負の電圧を印加したところ、イリジウム錯体に起因した緑色の発光が観察された。発光量子効率は約4%であった。
Example 1-3 Trial Manufacture of Organic Light-Emitting Element A chloroform solution of an Ir (MPPy) (PrCOPPy) 2 / VCz copolymer and an oxadiazole derivative (tBu-PBD) as an electron transport material was prepared. The ratio was 65 weight percent for Ir (MPPy) (PrCOPPy) 2 / VCz copolymer and 35 weight percent for tBu-PBD. This solution is spin-coated on a glass substrate with indium tin oxide (ITO), which is a transparent electrode, to form a 100 nm thick film, on which 10 nm of Ca and 100 nm of Al are vapor deposited by vacuum deposition. It was. When a positive voltage was applied to the ITO side of the organic light emitting device and a negative voltage was applied to the Al side, green light emission due to the iridium complex was observed. The emission quantum efficiency was about 4%.

(実施例2−1)燐光発光性化合物の単量体:{2−[3−(2−メタクリロイルオキシエチル)カルバモイルオキシフェニル]ピリジン}ビス[2−(3−プロピオニルフェニル)ピリジン]イリジウム(III)(以下、Ir(MiPPy)(PrCOPPy)と略す)の合成
実施例1−1で合成した単量体の中間体Ir(HOPPy)をスキーム(6)に示すように、メタクリロイルオキシエチルイソシアナート(MOI、昭和電工製)と1:1で反応させ、次いで残りのOH基をPrCOClと反応させ、Ir(MiPPy)(PrCOPPy)が主成分となる錯体を得た。
(Example 2-1) Monomer of phosphorescent compound: {2- [3- (2-methacryloyloxyethyl) carbamoyloxyphenyl] pyridine} bis [2- (3-propionylphenyl) pyridine] iridium (III ) (Hereinafter, abbreviated as Ir (MiPPy) (PrCOPPy) 2 ) The monomer intermediate Ir (HOPPy) 3 synthesized in Example 1-1 was converted into methacryloyloxyethyl isocyanate as shown in Scheme (6). It was made to react 1: 1 with Naert (MOI, Showa Denko), and then the remaining OH group was reacted with PrCOCl to obtain a complex containing Ir (MiPPy) (PrCOPPy) 2 as a main component.

Figure 2007059939

具体的には、反応容器に脱水THF8ml、Ir(HOPPy)0.706g(1mmol)、MOI0.106g(1mmol)を入れて、20℃で5時間反応させた。この反応溶液に脱酸剤としてトリエチルアミン0.600g(5.9mmo1)を加えた後、プロピオニルクロリド0.370g(4mmol)を脱水THF4mlに溶解させた溶液を30分かけて滴下し、更に20℃で5時間反応させることにより残りのOH基を反応させ、トリエチルアミンの塩酸塩を濾別した。濾液の溶媒を蒸発乾固し、得られた固形成分はクロロホルム/メタノール混合溶媒で再結晶を2回行うことにより精製し、目的とするIr(MiPPy)(PrCOPPy)0.613g(0.63mmol)を粉末として得た。この同定はCHN及びIrの元素分析、IRで行った。
Figure 2007059939

Specifically, 8 ml of dehydrated THF, 0.706 g (1 mmol) of Ir (HOPPy) 3 and 0.106 g (1 mmol) of MOI were put in a reaction vessel, and reacted at 20 ° C. for 5 hours. After adding 0.600 g (5.9 mmol) of triethylamine as a deoxidizer to this reaction solution, a solution prepared by dissolving 0.370 g (4 mmol) of propionyl chloride in 4 ml of dehydrated THF was added dropwise over 30 minutes, and further at 20 ° C. The remaining OH groups were reacted by reacting for 5 hours, and triethylamine hydrochloride was filtered off. The solvent of the filtrate was evaporated to dryness, and the obtained solid component was purified by recrystallization twice with a chloroform / methanol mixed solvent to obtain 0.613 g (0.63 mmol) of the desired Ir (MiPPy) (PrCOPPy) 2. ) Was obtained as a powder. This identification was performed by elemental analysis of CHN and Ir and IR.

(実施例2−2)燐光発光性化合物:{2−[3−(2−メタクリロイルオキシエチル)カルバモイルオキシフェニル]ピリジン}ビス[2−(3−プロピオニルフェニル)ピリジン]イリジウム(III)/N−ビニルカルバゾール共重合体(以下、Ir(MiPPy)(PrCOPPy)/VCz共重合体と略す)の合成
スキーム(7)に従って、反応容器に実施例3で合成したIr(MiPPy)(PrCOPPy)錯体0.243g(0.25mmol)、N−ビニルカルバゾール(VCz)0.918g(4.75mmol)(Ir(MiPPy)(PrCOPPy)とVCzがモル比で5:95)、2,2’−アゾビス(イソブチロニトリル)(AIBN)0.010g(0.061mmol)、酢酸ブチル10mlを入れて窒素置換を行った後、80℃で10時間反応させた。
Example 2-2 Phosphorescent Compound: {2- [3- (2-Methacryloyloxyethyl) carbamoyloxyphenyl] pyridine} bis [2- (3-propionylphenyl) pyridine] iridium (III) / N— Synthesis of vinyl carbazole copolymer (hereinafter, abbreviated as Ir (MiPPy) (PrCOPPy) 2 / VCz copolymer) Ir (MiPPy) (PrCOPPy) 2 complex synthesized in Example 3 in a reaction vessel according to scheme (7) 0.243 g (0.25 mmol), N-vinylcarbazole (VCz) 0.918 g (4.75 mmol) (Ir (MiPPy) (PrCOPPy) 2 and VCz in a molar ratio of 5:95), 2,2′-azobis (Isobutyronitrile) (AIBN) 0.010 g (0.061 mmol), 10 ml of butyl acetate After nitrogen substitution was was reacted at 80 ° C. 10 hours.

Figure 2007059939

反応後、アセトンに投入して再沈殿を行い、濾過により共重合体を回収した。回収した共重合体のクロロホルム溶液をメタノール中に投入して再沈殿させることを更に2回行うことにより精製し、沈殿回収後に真空乾燥して、目的とするIr(MiPPy)(PrCOPPy)/VCz共重合体1.053gを粉末として得た。得られた共重合体のCHN及びIrの元素分析はIr(MiPPy)(PrCOPPy)とVCzが5:95のモル比で共重合していることを支持していた。即ち燐光発光性単位の繰り返し数m/キャリア輸送性単位の繰り返し数n=5/95であると考えられる。また、共重合体のクロロホルム中のGPCから、重量平均分子量はポリスチレン換算で23000であった(重量平均分子量から計算される平均の重合度は64)。さらに本発明の燐光発光性化合物はクロロホルムなどの有機溶剤に可溶である。
Figure 2007059939

After the reaction, it was poured into acetone for reprecipitation, and the copolymer was recovered by filtration. The recovered chloroform solution of the copolymer is added to methanol and reprecipitated twice to purify, and after the precipitate is recovered, vacuum drying is performed to obtain the target Ir (MiPPy) (PrCOPPy) 2 / VCz. 1.053 g of copolymer was obtained as a powder. Elemental analysis of CHN and Ir of the resulting copolymer supported that Ir (MiPPy) (PrCOPPy) 2 and VCz were copolymerized in a molar ratio of 5:95. That is, it is considered that the number of repeating phosphorescent units m / the number of repeating carrier transporting units n = 5/95. Moreover, from GPC in chloroform of a copolymer, the weight average molecular weight was 23000 in polystyrene conversion (the average degree of polymerization calculated from the weight average molecular weight was 64). Furthermore, the phosphorescent compound of the present invention is soluble in an organic solvent such as chloroform.

(実施例2−3)有機発光素子の試作
Ir(MiPPy)(PrCOPPy)/VCz共重合体とtBu−PBDのクロロホルム溶液を調製した。比率は、Ir(MiPPy)(PrCOPPy)/VCz共重合体が65重量パーセントに対しtBu−PBDを35重量パーセントとした。この溶液をITOがついたガラス基板上にスピンコートして厚さ100nmの膜を形成し、その上に真空蒸着法でCaを10nm、Alを100nm蒸着し陰極とした。この有機発光素子のITO側に正の、Al側に負の電圧を印加したところ、イリジウム錯体に起因した緑色の発光が観察された。発光量子効率は約3%であった。
Example 2-3 Trial Manufacture of Organic Light-Emitting Element A chloroform solution of Ir (MiPPy) (PrCOPPy) 2 / VCz copolymer and tBu-PBD was prepared. The ratio was 65 weight percent for Ir (MiPPy) (PrCOPPy) 2 / VCz copolymer and 35 weight percent for tBu-PBD. This solution was spin-coated on a glass substrate with ITO to form a film having a thickness of 100 nm, and a cathode was deposited thereon by vapor deposition of 10 nm of Ca and 100 nm of Al. When a positive voltage was applied to the ITO side of the organic light emitting device and a negative voltage was applied to the Al side, green light emission due to the iridium complex was observed. The emission quantum efficiency was about 3%.

(実施例3−1)燐光発光性化合物:[2−(3−ヘキシルフェニル)ピリジン]ビス(2−フェニルピリジン)イリジウム(III)/3−ヘキシルチオフェン共重合体(以下、Ir(HPPy)PPy/HT共重合体と略す)の合成
スキーム(8)に示すように、5−ブロモ−2−(4−ブロモ−3−ヘキシルフェニル)ピリジン(HPPyBr)0.099g(0.25mmol)と3−ヘキシル−2,5−ジブロモチオフェン(HTBr)1.549g(4.75mmol)((HPPyBr)と(HTBr)がモル比で5:95)とを常法に従い、ジメチルホルムアミド(DMF)10ml中でNi(COD)(0)(ただしCODはシクロオクタジエニル基を示す)触媒で共重合し、2−(3−ヘキシルフェニル)ピリジン/3−ヘキシルチオフェン共重合体(HPPy/HT共重合体)を合成した。次に、このHPPy/HT共重合体0.625g(4mmol)とIr(acac)0.099g(0.2mmol)をメタクレゾール中で溶解し、250℃で10時間反応させた。さらにこの溶液にフェニルピリジン(PPy)を0.062g(0.4mmol)を加え、250℃で10時間反応させた。
(Example 3-1) Phosphorescent compound: [2- (3-hexylphenyl) pyridine] bis (2-phenylpyridine) iridium (III) / 3-hexylthiophene copolymer (hereinafter referred to as Ir (HPPy) PPy) 2 / HT copolymer) As shown in Scheme (8), 0.099 g (0.25 mmol) of 5-bromo-2- (4-bromo-3-hexylphenyl) pyridine (HPPyBr 2 ) and According to a conventional method, 1.549 g (4.75 mmol) of 3-hexyl-2,5-dibromothiophene (HTBr 2 ) ((HPPyBr 2 ) and (HTBr 2 ) in a molar ratio of 5:95) was added to dimethylformamide (DMF ) Copolymerized with Ni (COD) 2 (0) (where COD represents a cyclooctadienyl group) catalyst in 10 ml, and 2- (3-hexylsulfate) Nyl) pyridine / 3-hexylthiophene copolymer (HPPy / HT copolymer) was synthesized. Next, 0.625 g (4 mmol) of this HPPy / HT copolymer and 0.099 g (0.2 mmol) of Ir (acac) 3 were dissolved in metacresol and reacted at 250 ° C. for 10 hours. Further, 0.062 g (0.4 mmol) of phenylpyridine (PPy) was added to this solution and reacted at 250 ° C. for 10 hours.

Figure 2007059939

反応後、アセトンに投入して再沈殿を行い、濾過により共重合体を回収した。回収した共重合体のDMF溶液をアセトン中に投入して再沈殿を更に2回行うことにより精製し、沈殿回収後に真空乾燥して、目的とするIr(HPPy)PPy/HT共重合体0.564gを粉末として得た。
Figure 2007059939

After the reaction, it was poured into acetone for reprecipitation, and the copolymer was recovered by filtration. The recovered DMF solution of the copolymer is put into acetone and re-precipitated twice to purify it. After the precipitate is recovered, it is vacuum dried to obtain the desired Ir (HPPy) PPy 2 / HT copolymer 0. .564 g was obtained as a powder.

共重合体のCHN及びIrの元素分析は推定構造を支持していた。即ち燐光発光性単位の繰り返し数m/キャリア輸送性単位の繰り返し数n=5/95であると考えられる。また、ヘキサフルオロイソプロパノール中の共重合体のGPCから、重量平均分子量はポリスチレン換算で18000であった(重量平均分子量から計算される平均の重合度は68)。さらに本発明の燐光発光性化合物はDMFなどの有機溶剤に可溶である。   Elemental analysis of CHN and Ir in the copolymer supported the putative structure. That is, it is considered that the number of repeating phosphorescent units m / the number of repeating carrier transporting units n = 5/95. Moreover, from GPC of the copolymer in hexafluoroisopropanol, the weight average molecular weight was 18000 in polystyrene conversion (the average degree of polymerization calculated from the weight average molecular weight was 68). Furthermore, the phosphorescent compound of the present invention is soluble in an organic solvent such as DMF.

(実施例3−2)有機発光素子の試作
Ir(HPPy)PPy/HT共重合体とtBu−PBDのクロロホルム溶液を調製した。比率は、Ir(HPPy)PPy/HT共重合体が65重量パーセントに対しtBu−PBDを35重量パーセントとした。この溶液をITOがついたガラス基板上にスピンコートして厚さ100nmの膜を形成し、その上に真空蒸着法でCaを10nm、Alを100nm蒸着し陰極とした。この有機発光素子のITO側に正の、Al側に負の電圧を印加したところ、イリジウム錯体に起因した黄色の発光が観察された。発光量子効率は約1%であった。
Example 3-2 Trial Manufacture of Organic Light-Emitting Element A chloroform solution of Ir (HPPy) PPy 2 / HT copolymer and tBu-PBD was prepared. The ratio was 35 weight percent for tBu-PBD with respect to 65 weight percent for Ir (HPPy) PPy 2 / HT copolymer. This solution was spin-coated on a glass substrate with ITO to form a film having a thickness of 100 nm, and a cathode was deposited thereon by vapor deposition of 10 nm of Ca and 100 nm of Al. When a positive voltage was applied to the ITO side of the organic light emitting device and a negative voltage was applied to the Al side, yellow light emission due to the iridium complex was observed. The emission quantum efficiency was about 1%.

(実施例4−1)電子輸送性化合物の単量体:2−(4−tert−ブチル−フェニル)−(4’−ビニル−ビフェニル−4−イル)−[1,3,4]オキサジアゾール(以下、VPBDと略す。)の合成
特開平10−1665号公報に開示されている方法に従い、VPBDを合成した。
Example 4-1 Monomer of electron transporting compound: 2- (4-tert-butyl-phenyl)-(4′-vinyl-biphenyl-4-yl)-[1,3,4] oxadi Synthesis of azole (hereinafter abbreviated as VPBD) VPBD was synthesized according to the method disclosed in JP-A-10-1665.

(実施例4−2)燐光発光性化合物:[2−(3−メタクリルフェニル)ピリジン]ビス[2−(3−プロピオニルフェニル)ピリジン]イリジウム(III)/N−ビニルカルバゾール/2−(4−tert−ブチル−フェニル)−5−(4’−ビニル−ビフェニル−4−イル)−[1,3,4]オキサジアゾール共重合体(以下、Ir(MPPy)(PrCOPPy)/VCz/VPBD共重合体と略す。)の合成
下記スキーム(9)に従って、実施例1−1で合成したIr(MPPy)(PrCOPPy)錯体0.222g(0.25mmol)、VCz0.628g(3.25mmol)、上記実施例4−1で合成したVPBD0.571g(1.50mmol)(モル比がIr(MPPy)(PrCOPPy):VCz:VPBD=5:65:30)、2,2’−アゾビス(イソブチロニトリル)(AIBN)0.010g(0.061mmol)、ベンゼン10mlを反応容器にいれて窒素置換を行った後、80℃で10時間反応させた。
(Example 4-2) Phosphorescent compound: [2- (3-methacrylphenyl) pyridine] bis [2- (3-propionylphenyl) pyridine] iridium (III) / N-vinylcarbazole / 2- (4- tert-butyl-phenyl) -5- (4′-vinyl-biphenyl-4-yl)-[1,3,4] oxadiazole copolymer (hereinafter Ir (MPPy) (PrCOPPy) 2 / VCz / VPBD Synthesis of abbreviated as a copolymer) According to the following scheme (9), Ir (MPPy) (PrCOPPy) 2 complex synthesized in Example 1-1 0.222 g (0.25 mmol), VCz 0.628 g (3.25 mmol) 0.571 g (1.50 mmol) of VPBD synthesized in Example 4-1 above (molar ratio Ir (MPPy) (PrCOPPy) 2 : VCz: VPBD = 5: 65: 30), 2,2′-azobis (isobutyronitrile) (AIBN) 0.010 g (0.061 mmol), and 10 ml of benzene were placed in a reaction vessel and purged with nitrogen. For 10 hours.

反応後、生成物をアセトンに投入して再沈殿を行い、濾過により共重合体を回収した。回収した共重合体のクロロホルム溶液をメタノール中に投入して再沈殿させることをさらに2回行うことにより精製し、沈殿回収後に真空乾燥して、目的とするIr(MPPy)(PrCOPPy)/VCz/VPBD共重合体0.080gを粉末として得た。 After the reaction, the product was put into acetone for reprecipitation, and the copolymer was recovered by filtration. The recovered chloroform solution of the copolymer is added to methanol and re-precipitated twice to purify, and the precipitate is recovered and vacuum dried to obtain the target Ir (MPPy) (PrCOPPy) 2 / VCz. 0.080 g of a / VPBD copolymer was obtained as a powder.

Figure 2007059939

得られた共重合体(燐光発光性化合物)のCHN及びIrの元素分析は、モル比がIr(MPPy)(PrCOPPy):VCz:VPBD=5:65:25で共重合していることを支持していた。すなわち、(燐光発光性単位の繰り返し数:k)/(キャリア輸送単位の繰り返し数m+n)=5/90であると考えられる。また、共重合体のクロロホルム中のGPCから、共重合体の重量平均分子量はポリスチレン換算で30000であった(重量平均分子量から計算される平均の重合度は2.5)。この共重合体は、クロロホルムなどの有機溶剤に可溶である。
Figure 2007059939

The elemental analysis of CHN and Ir of the obtained copolymer (phosphorescent compound) shows that the molar ratio is Ir (MPPy) (PrCOPPy) 2 : VCz: VPBD = 5: 65: 25. I supported it. That is, it is considered that (the number of repeating phosphorescent units: k) / (the number of repeating carrier transport units m + n) = 5/90. Moreover, from GPC in chloroform of the copolymer, the weight average molecular weight of the copolymer was 30000 in terms of polystyrene (the average degree of polymerization calculated from the weight average molecular weight was 2.5). This copolymer is soluble in organic solvents such as chloroform.

(実施例4−3)有機発光素子の試作
実施例4−2で得られたIr(MPPy)(PrCOPPy)/VCz/VPBD共重合体のクロロホルム溶液を調製した。この溶液を透明電極である酸化スズインジウム(ITO)が付いたガラス基板上にスピンコートして厚さ100nmの膜を形成し、その上に真空蒸着法でCaを10nm、Alを100nm蒸着して陰極とし、有機発光素子を得た。この有機発光素子のITO側を正とし、Al側を負として電圧を印加したところ、イリジウム錯体に起因した緑色の発光が観察された。発光量子効率は約3%であった。
(Example 4-3) Trial Production of Organic Light-Emitting Element A chloroform solution of Ir (MPPy) (PrCOPPy) 2 / VCz / VPBD copolymer obtained in Example 4-2 was prepared. This solution is spin-coated on a glass substrate with indium tin oxide (ITO), which is a transparent electrode, to form a film with a thickness of 100 nm. Then, 10 nm of Ca and 100 nm of Al are evaporated by vacuum deposition. An organic light emitting device was obtained using a cathode. When a voltage was applied with the ITO side of the organic light-emitting element being positive and the Al side being negative, green light emission due to the iridium complex was observed. The emission quantum efficiency was about 3%.

(実施例5−1)電子輸送性高分子化合物:ポリ−VPBD(以下、PVPBDと略す。)の合成
特開平10−1655号公報に開示されている方法に従いPVPBDを合成した。
Example 5-1 Synthesis of electron-transporting polymer compound: poly-VPBD (hereinafter abbreviated as PVPBD) PVPBD was synthesized according to the method disclosed in JP-A-10-1655.

(実施例5−2)
実施例1−2で得られたIr(MPPy)(PrCOPPy)/VCz共重合体と実施例5−1で得られたPVPBDのクロロホルム溶液を調製した。比率は、Ir(MPPy)(PrCOPPy)/VCz共重合体が65重量%に対しPVPBDを35重量%とした。この溶液を透明電極である酸化スズインジウム(ITO)が付いたガラス基板上にスピンコートして厚さ100nmの膜を形成し、その上に真空蒸着法でCaを10nm、Alを100nm蒸着して陰極とし、有機発光素子を得た。この有機発光素子のITO側を正とし、Al側を負として電圧を印加したところ、イリジウム錯体に起因した緑色の発光が観察された。発光量子効率は約4.5%であった。
(Example 5-2)
A chloroform solution of Ir (MPPy) (PrCOPPy) 2 / VCz copolymer obtained in Example 1-2 and PVPBD obtained in Example 5-1 was prepared. The ratio was such that Ir (MPPy) (PrCOPPy) 2 / VCz copolymer was 65% by weight and PVPBD was 35% by weight. This solution is spin-coated on a glass substrate with indium tin oxide (ITO), which is a transparent electrode, to form a film with a thickness of 100 nm. Then, 10 nm of Ca and 100 nm of Al are evaporated by vacuum deposition. An organic light emitting device was obtained using a cathode. When a voltage was applied with the ITO side of the organic light-emitting element being positive and the Al side being negative, green light emission due to the iridium complex was observed. The light emission quantum efficiency was about 4.5%.

(実施例6−1)青色燐光発光部位を有する単量体:イリジウム(III)ビス(2−(2,4−ジフルオロフェニル)ピリジナート)(5−メタクリロイロキシメチルピコリナート)(以下、Ir(2,4−F−ppy)(5−CHMA−pic)と略す。)の合成
スキーム(10)に示すように、イリジウム(III)ビス(2−(2,4−ジフルオロフェニル)ピリジナート)(5−(ヒドロキシメチル)ピコリナート)(以下、Ir(2,4−F−ppy)(5−CHOH−pic)と略す。)を合成した。即ち、[Ir(2,4−F−ppy)Cl] 121.6mg(0.1mmol)、5−ヒドロキシメチルピコリン酸45.9mg(0.3mmol)、炭酸ナトリウム106.0mg(1.0mmol)にアルゴン気流下において脱水N,N−ジメチルホルムアミド10mlを加え、80℃で2時間攪拌した。反応液に50mlの水を加えた後、酢酸エチルで抽出した。その溶液を硫酸マグネシウムで乾燥後、濃縮し、カラムクロマトグラフィー(シリカゲル、メタノール:クロロホルム=1:19(体積比))で精製した。さらにそれをヘキサン/クロロホルムより再結晶することにより黄色の結晶としてIr(2,4−F−ppy)(5−CHOH−pic)108.7mgを得た。収率75%。同定はH−NMRとCHN元素分析で行った。H−NMR(270MHz,DMSO−d), ppm: 8.54(d,1H,J=4.6), 8.3 − 8.2(m,2H), 8.1 − 8.0(m,4H), 7.70(s,1H), 7.61(d,1H,J=4.9), 7.49(dd,1H,J=6.6,.6.6), 7.32(dd,1H,J=6.6,.6.6), 6.9 − 6.7(m,2H), 5.71(dd,1H,J=8.9,2.4), 5.46(dd,1H,J=8.5,2.3), 5.42(t,1H,J=4.6), 4.49(d,2H,J=4.6). Anal. Found: C 48.05, H 2.54, N 5.86. Calcd: C 48.06, H 2.50, N 5.80.
Example 6-1 Monomer having a blue phosphorescent site: Iridium (III) bis (2- (2,4-difluorophenyl) pyridinate) (5-methacryloyloxymethylpicolinate) (hereinafter, Ir ( Synthesis of 2,4-F-ppy) 2 (abbreviated as 5-CH 2 MA-pic)) As shown in Scheme (10), iridium (III) bis (2- (2,4-difluorophenyl) pyridinate ) (5- (hydroxymethyl) picolinate) (hereinafter abbreviated as Ir (2,4-F-ppy) 2 (5-CH 2 OH-pic)). That is, [Ir (2,4-F-ppy) 2 Cl] 2 121.6 mg (0.1 mmol), 5-hydroxymethylpicolinic acid 45.9 mg (0.3 mmol), sodium carbonate 106.0 mg (1.0 mmol) ) Was added with 10 ml of dehydrated N, N-dimethylformamide under an argon stream and stirred at 80 ° C. for 2 hours. 50 ml of water was added to the reaction solution, followed by extraction with ethyl acetate. The solution was dried over magnesium sulfate, concentrated and purified by column chromatography (silica gel, methanol: chloroform = 1: 19 (volume ratio)). Further, it was recrystallized from hexane / chloroform to obtain 108.7 mg of Ir (2,4-F-ppy) 2 (5-CH 2 OH-pic) as yellow crystals. Yield 75%. Identification was performed by 1 H-NMR and CHN elemental analysis. 1 H-NMR (270 MHz, DMSO-d 6 ), ppm: 8.54 (d, 1H, J = 4.6), 8.3-8.2 (m, 2H), 8.1-8.0 (M, 4H), 7.70 (s, 1H), 7.61 (d, 1H, J = 4.9), 7.49 (dd, 1H, J = 6.6, 6.6.6), 7.32 (dd, 1H, J = 6.6, 6.6.6), 6.9-6.7 (m, 2H), 5.71 (dd, 1H, J = 8.9, 2.4) ), 5.46 (dd, 1H, J = 8.5, 2.3), 5.42 (t, 1H, J = 4.6), 4.49 (d, 2H, J = 4.6) . Anal. Found: C 48.05, H 2.54, N 5.86. Calcd: C 48.06, H 2.50, N 5.80.

Figure 2007059939

次いで、スキーム(11)に示すように、Ir(2,4−F−ppy)(5−CHMA−pic)を合成した。即ち、Ir(2,4−F−ppy)(5−CHOH−pic) 72.5mg(0.1mmol)と2,6−ジ−tert−4−メチルフェノール0.2mgをアルゴン気流下に脱水ジクロロメタン10mlに溶解し、トリエチルアミン101.2mg(1.0mmol)とメタクリル酸クロライド52.3mg(0.5mmol)を加え、室温で2時間攪拌した。反応液に水50mlを加え、クロロホルムで抽出した。その溶液を硫酸マグネシウムで乾燥後、濃縮し、カラムクロマトグラフィー(シリカゲル、メタノール:クロロホルム=3:97(体積比))で精製した。さらにそれをヘキサン/クロロホルムより再結晶することにより黄色の結晶としてIr(2,4−F−ppy)(5−CHMA−pic) 70.6mgを得た。収率89%。同定はH−NMRとCHN元素分析で行った。H−NMR(270MHz,DMSO−d), ppm: 8.53(d,1H,J=5.1), 8.28(d,1H,J=8.4), 8.22(d,1H,J=8.6), 8.1 − 8.0(m,4H), 7.70(s,1H), 7.66(d,1H,J=4.9), 7.48(dd,1H,J=6.5,.6.5), 7.31(dd,1H,J=6.5,.6.5), 6.9 − 6.7(m,2H), 5.84(s,1H), 5.7 − 5.6(m,2H), 5.47(dd,1H,J=8.8,2.6), 5.24(d,2H,J=2.7), 1.78(s,3H). Anal. Found: C 49.92, H 2.87, N 5.28. Calcd: C 50.00, H 2.80, N 5.30.
Figure 2007059939

Next, Ir (2,4-F-ppy) 2 (5-CH 2 MA-pic) was synthesized as shown in Scheme (11). That is, Ir (2,4-F-ppy) 2 (5-CH 2 OH-pic) 72.5 mg (0.1 mmol) and 2,6-di-tert-4-methylphenol 0.2 mg were added under an argon stream. In 10 ml of dehydrated dichloromethane, 101.2 mg (1.0 mmol) of triethylamine and 52.3 mg (0.5 mmol) of methacrylic acid chloride were added and stirred at room temperature for 2 hours. 50 ml of water was added to the reaction solution and extracted with chloroform. The solution was dried over magnesium sulfate, concentrated, and purified by column chromatography (silica gel, methanol: chloroform = 3: 97 (volume ratio)). Further, it was recrystallized from hexane / chloroform to obtain 70.6 mg of Ir (2,4-F-ppy) 2 (5-CH 2 MA-pic) as yellow crystals. Yield 89%. Identification was performed by 1 H-NMR and CHN elemental analysis. 1 H-NMR (270 MHz, DMSO-d 6 ), ppm: 8.53 (d, 1H, J = 5.1), 8.28 (d, 1H, J = 8.4), 8.22 (d , 1H, J = 8.6), 8.1-8.0 (m, 4H), 7.70 (s, 1H), 7.66 (d, 1H, J = 4.9), 7.48. (Dd, 1H, J = 6.5, 6.6.5), 7.31 (dd, 1H, J = 6.5, 6.6.5), 6.9-6.7 (m, 2H), 5.84 (s, 1H), 5.7-5.6 (m, 2H), 5.47 (dd, 1H, J = 8.8, 2.6), 5.24 (d, 2H, J = 2.7), 1.78 (s, 3H). Anal. Found: C 49.92, H 2.87, N 5.28. Calcd: C 50.00, H 2.80, N 5.30.

Figure 2007059939

(実施例6−2)緑色の燐光発光性部位を有する単量体:[6−(4−ビニルフェニル)−2,4−ヘキサンジオナート]ビス(2−フェニルピリジン)イリジウム(III)(以下Ir(ppy)[1−(StMe)−acac]と略す)の合成
スキーム(12)に示すように、アセチルアセトンと4−ビニルベンジルクロライドを反応させて6−(4−ビニルフェニル)−2,4−ヘキサジオンを合成した。即ち、水素化ナトリウム1.23g(60% in oil)(31mmol)を窒素雰囲気下で秤量し、これに乾燥テトラヒドロフラン(以下THFと略す)60mlを加えて氷浴で0℃に冷却した。この懸濁液にアセチルアセトン2.5g(24mmol)とヘキサメチルホスホリックトリアミド1mlの混合溶液を滴下すると無色の沈殿が生成した。0℃で10分間攪拌した後、n−ブチルリチウムのヘキサン溶液(1.6M)17.5ml(28mmol)を滴下すると沈殿が溶解し、更に0℃で20分間攪拌した。得られた薄黄色の溶液に4−ビニルベンジルクロライド4.0g(26mmol)を滴下し、反応液を室温に戻して20分間攪拌後、希塩酸を加えて水層を酸性にした。有機層を飽和塩化ナトリウム水溶液で洗浄し、硫酸マグネシウムで乾燥した後、ロータリーエバポレータで溶媒を留去した。得られた反応混合物をシリカゲルカラムに加えてヘキサン/ジクロロメタンの1:1(体積比)混合溶媒で展開し、主生成物を分取した。得られた溶液から減圧で溶媒を留去することにより、目的とする6−(4−ビニルフェニル)−2,4−ヘキサジオン3.0g(14mmol)を褐色の液体として得た。収率56%。同定はCHN元素分析、H−NMRで行った。H NMR (CDCl): enol; d 7.33 (d,J=8.1Hz,2H,aromatic), 7.14 (d,J=8.4Hz,2H,aromatic), 6.68 (dd,J=8.1Hz,1H,vinylic), 5.70 (d,J=17.0Hz,1H,vinylic), 5.46 (s,1H,diketonate−methine), 5.20 (d,J=11.1Hz,1H,vinylic), 2.91 (t,J=5.7Hz,2H,methylene), 2.58 (t,J=7.3Hz,2H,methylene), 2.03 (s,3H,methyl). keto; d 7.33 (d,J=8.1Hz,2H,aromatic), 7.14 (d,J=8.4Hz,2H,aromatic), 6.68 (dd,J=8.1Hz,1H,vinylic), 5.70 (d,J=17.0Hz,1H,vinylic), 5.20 (d,J=11.1Hz,1H,vinylic), 3.53 (s,2H,C(=O)CHC(=O)), 2.89 (m,4H,ethylene), 2.19 (s,3H,methyl). enol : keto = 6 : 1. E.A.: Calcd for C14: C, 77.75; H, 7.46. Found: C, 77.49; H, 7.52.
Figure 2007059939

(Example 6-2) Monomer having a green phosphorescent moiety: [6- (4-vinylphenyl) -2,4-hexanedionate] bis (2-phenylpyridine) iridium (III) Synthesis of Ir (ppy) 2 [abbreviated as 1- (StMe) -acac]) As shown in Scheme (12), acetylacetone and 4-vinylbenzyl chloride are reacted to produce 6- (4-vinylphenyl) -2, 4-hexadione was synthesized. That is, 1.23 g (60% in oil) (31 mmol) of sodium hydride was weighed under a nitrogen atmosphere, 60 ml of dry tetrahydrofuran (hereinafter abbreviated as THF) was added thereto, and the mixture was cooled to 0 ° C. in an ice bath. When a mixed solution of 2.5 g (24 mmol) of acetylacetone and 1 ml of hexamethylphosphoric triamide was added dropwise to this suspension, a colorless precipitate was formed. After stirring at 0 ° C. for 10 minutes, 17.5 ml (28 mmol) of n-butyllithium in hexane (1.6M) was added dropwise to dissolve the precipitate, and the mixture was further stirred at 0 ° C. for 20 minutes. To the obtained pale yellow solution, 4.0 g (26 mmol) of 4-vinylbenzyl chloride was added dropwise, the reaction solution was returned to room temperature and stirred for 20 minutes, and diluted hydrochloric acid was added to acidify the aqueous layer. The organic layer was washed with a saturated aqueous sodium chloride solution and dried over magnesium sulfate, and then the solvent was distilled off with a rotary evaporator. The obtained reaction mixture was added to a silica gel column and developed with a 1: 1 (volume ratio) mixed solvent of hexane / dichloromethane to fractionate the main product. The solvent was distilled off from the resulting solution under reduced pressure to obtain 3.0 g (14 mmol) of the intended 6- (4-vinylphenyl) -2,4-hexadione as a brown liquid. Yield 56%. Identification was performed by CHN elemental analysis and 1 H-NMR. 1 H NMR (CDCl 3 ): enol; d 7.33 (d, J = 8.1 Hz, 2H, aromatic), 7.14 (d, J = 8.4 Hz, 2H, aromatic), 6.68 (dd , J = 8.1 Hz, 1H, vinylic), 5.70 (d, J = 17.0 Hz, 1H, vinylic), 5.46 (s, 1H, diketonate-methine), 5.20 (d, J = 11.1 Hz, 1H, vinylic), 2.91 (t, J = 5.7 Hz, 2H, methylene), 2.58 (t, J = 7.3 Hz, 2H, methylene), 2.03 (s, 3H , Methyl). d 7.33 (d, J = 8.1 Hz, 2H, aromatic), 7.14 (d, J = 8.4 Hz, 2H, aromatic), 6.68 (dd, J = 8.1 Hz, 1H) , Vinylic), 5.70 (d, J = 17.0 Hz, 1H, vinylic), 5.20 (d, J = 11.1 Hz, 1H, vinylic), 3.53 (s, 2H, C (= O ) CH 2 C (= O) ), 2.89 (m, 4H, ethylene), 2.19 (s, 3H, methyl). enol: keto = 6: 1. E. A. : Calcd for C 14 H 9 O 2: C, 77.75; H, 7.46. Found: C, 77.49; H, 7.52.

Figure 2007059939

次いで、スキーム(13)に示すように、この6−(4−ビニルフェニル)−2,4−ヘキサンジオンと常法に従い合成した[Ir(ppy)Cl]を反応させてIr(ppy)[1−(StMe)−acac]を合成した。即ち、[Ir(ppy)Cl]342mg(0.32mmol)、炭酸ナトリウム158mg(1.5mmol)および2,6−ジ−tert−ブチル−4−メチルフェノール5mg(0.023mmol)を5 mlのN,N−ジメチルホルムアミド(以下DMFと略す)に溶解し、これに6−(4−ビニルフェニル)−2,4−ヘキサンジオン210mg(0.97mmol)を加えて65℃で1時間加熱攪拌した。次に室温まで冷却した反応溶液に希塩酸水溶液を加えた後、薄黄色の成分をクロロホルムで抽出した。ロータリーエバポレータを用いて溶媒を留去後、残渣を少量のジクロロメタンに溶解し、シリカゲルカラムクロマトグラフィー(展開液:ジクロロメタン)で黄色の主生成物を分取した。この溶液を減圧乾固し、ジクロロメタン−ヘキサン混合溶液を加えて−20℃で再結晶を行い、目的とするIr(ppy)[1−(StMe)−acac]354mg(0.49mmol)を薄黄色結晶として得た。収率78%。同定はCHN元素分析、H−NMRで行った。H NMR (CDCl): d 8.47 (d,J=5.7Hz,1H,ppy), 8.21 (d,J=5.7Hz,1H,ppy), 7.9 − 7.5 (m,6H,ppy), 7.18 (d,J=8.1Hz,2H,stylyl−aromatic), 7.00 (m,2H,ppy), 6.89 (d,J=8.1Hz,2H,stylyl−aromatic), 6.75 (m,5H,ppy and vinylic), 6.28 (t,J=7.3Hz,2H,ppy), 7.67 (d,J=17.6Hz,1H,vinylic), 5.19 (d,J=9.5Hz,1H,vinylic), 5.17 (s,1H,diketonate−methine), 2.60 (t,J=7.3Hz,2H,ethylene), 2.36 (m,2H,ethylene), 1.75 (s,3H,methyl). E.A.: Calcd for C3631IrN: C, 60.40; H, 4.36; N, 3.91. Found: C, 61.35; H, 4.34; N, 3.83.
Figure 2007059939

Next, as shown in Scheme (13), this 6- (4-vinylphenyl) -2,4-hexanedione was reacted with [Ir (ppy) 2 Cl] 2 synthesized according to a conventional method to give Ir (ppy) 2 [1- (StMe) -acac] was synthesized. That is, 5 ml of [Ir (ppy) 2 Cl] 2 342 mg (0.32 mmol), sodium carbonate 158 mg (1.5 mmol) and 2,6-di-tert-butyl-4-methylphenol 5 mg (0.023 mmol) In N, N-dimethylformamide (hereinafter abbreviated as DMF), 210 mg (0.97 mmol) of 6- (4-vinylphenyl) -2,4-hexanedione was added thereto, and the mixture was heated and stirred at 65 ° C. for 1 hour. did. Next, a diluted hydrochloric acid aqueous solution was added to the reaction solution cooled to room temperature, and the light yellow component was extracted with chloroform. After distilling off the solvent using a rotary evaporator, the residue was dissolved in a small amount of dichloromethane, and the yellow main product was fractionated by silica gel column chromatography (developing solution: dichloromethane). This solution was dried under reduced pressure, a dichloromethane-hexane mixed solution was added and recrystallization was performed at −20 ° C., and 354 mg (0.49 mmol) of the target Ir (ppy) 2 [1- (StMe) -acac] was diluted. Obtained as yellow crystals. Yield 78%. Identification was performed by CHN elemental analysis and 1 H-NMR. 1 H NMR (CDCl 3 ): d 8.47 (d, J = 5.7 Hz, 1H, ppy), 8.21 (d, J = 5.7 Hz, 1H, ppy), 7.9-7.5 (M, 6H, ppy), 7.18 (d, J = 8.1 Hz, 2H, stylly-aromatic), 7.00 (m, 2H, ppy), 6.89 (d, J = 8.1 Hz, 2H, stylly-aromatic), 6.75 (m, 5H, ppy and vinylic), 6.28 (t, J = 7.3 Hz, 2H, ppy), 7.67 (d, J = 17.6 Hz, 1H) , Vinylic), 5.19 (d, J = 9.5 Hz, 1H, vinylic), 5.17 (s, 1H, diketonate-methine), 2.60 (t, J = 7.3 Hz, 2H, ethylene) , 2.36 (m, 2H, ethylene), 1.75 (s, 3H, methyl). E. A. : Calcd for C 36 H 31 IrN 2 O 2: C, 60.40; H, 4.36; N, 3.91. Found: C, 61.35; H, 4.34; N, 3.83.

Figure 2007059939

(実施例6−3)赤色の燐光発光性部位を有する単量体:[6−(4−ビニルフェニル)−2,4−ヘキサンジオナート]ビス[2−(2−ピリジル)ベンゾチエニル]イリジウム(III){以下Ir(btp)[1−(StMe)−acac]と略す}の合成
スキーム(14)に示すように、アセチルアセトンと4−ビニルベンジルクロライドを反応させて6−(4−ビニルフェニル)−2,4−ヘキサンジオンを合成した。即ち、水素化ナトリウム1.23g(60% in oil)(31mmol)を窒素雰囲気下で秤量し、これに乾燥テトラヒドロフラン(以下THFと略す)60mlを加えて氷浴で0℃に冷却した。この懸濁液にアセチルアセトン2.5g(24mmol)とヘキサメチルホスホリックトリアミド(以下HMPAと略す)1mlの混合溶液を滴下すると無色の沈殿が生成した。0℃で10分間撹拌した後、n−ブチルリチウムのヘキサン溶液(1.6M)17.5ml(28mol)を滴下すると沈殿が溶解し、更に0℃で20分間撹拌した。得られた薄黄色の溶液に4−ビニルベンジルクロライド4.0g(26mmol)を滴下し、反応液を室温に戻して20分間撹拌後、希塩酸を加えて水層を酸性にした。有機層を飽和塩化ナトリウム水溶液で洗浄し、硫酸マグネシウムで乾燥した後、ロータリーエバポレータで溶媒を留去した。得られた反応混合物をシリカゲルカラムに加えてヘキサン/ジクロロメタンの1:1(体積比)混合溶媒で展開し、主生成物を分取した。得られた溶液から減圧で溶媒を留去することにより、目的とする6−(4−ビニルフェニル)−2,4−ヘキサンジオン3.0g(14mmol)を褐色の液体として得た。収率56%。同定はCHN元素分析、H−NMRで行った。H NMR: enol; d 7.33 (d,J=8.1Hz,2H,aromatic), 7.14 (d,J=8.4Hz,2H,aromatic), 6.68 (dd,J=8.1Hz,1H,vinylic), 5.70 (d,J=17.0Hz,1H,vinylic), 5.46 (s,1H,enol−methine), 5.20 (d,J=11.1Hz,1H,vinylic), 2.91 (t,J=5.7Hz,2H,methylene), 2.58 (t,J=7.3Hz,2H,methylene), 2.03 (s,3H,methyl). keto; d 7.33 (d,J=8.1Hz,2H,aromatic), 7.14 (d,J=8.4Hz,2H,aromatic), 6.68 (dd,J=8.1Hz,1H,vinylic), 5.70 (d,J=17.0Hz,1H,vinylic), 5.20 (d,J=11.1Hz,1H,vinylic), 3.53 (s,2H,C(=O)CHC(=O)), 2.89 (m,4H,ethylene), 2.19 (s,3H,methyl). enol : keto = 6 : 1. E.A.: Calcd for C14: C, 77.75; H, 7.46. Found: C, 77.49; H, 7.52.
Figure 2007059939

(Example 6-3) Monomer having a red phosphorescent moiety: [6- (4-vinylphenyl) -2,4-hexanedionate] bis [2- (2-pyridyl) benzothienyl] iridium Synthesis of (III) {Hereinafter Abbreviated as Ir (btp) 2 [1- (StMe) -acac]} As shown in Scheme (14), acetylacetone and 4-vinylbenzyl chloride are reacted to produce 6- (4-vinyl Phenyl) -2,4-hexanedione was synthesized. That is, 1.23 g (60% in oil) (31 mmol) of sodium hydride was weighed under a nitrogen atmosphere, 60 ml of dry tetrahydrofuran (hereinafter abbreviated as THF) was added thereto, and the mixture was cooled to 0 ° C. in an ice bath. When a mixed solution of 2.5 g (24 mmol) of acetylacetone and 1 ml of hexamethylphosphoric triamide (hereinafter abbreviated as HMPA) was added dropwise to this suspension, a colorless precipitate was formed. After stirring at 0 ° C. for 10 minutes, 17.5 ml (28 mol) of a n-butyllithium hexane solution (1.6 M) was added dropwise to dissolve the precipitate, and the mixture was further stirred at 0 ° C. for 20 minutes. To the obtained pale yellow solution, 4.0 g (26 mmol) of 4-vinylbenzyl chloride was added dropwise, the reaction solution was returned to room temperature and stirred for 20 minutes, and diluted hydrochloric acid was added to acidify the aqueous layer. The organic layer was washed with a saturated aqueous sodium chloride solution and dried over magnesium sulfate, and then the solvent was distilled off with a rotary evaporator. The obtained reaction mixture was added to a silica gel column and developed with a 1: 1 (volume ratio) mixed solvent of hexane / dichloromethane to fractionate the main product. The solvent was distilled off from the resulting solution under reduced pressure to obtain 3.0 g (14 mmol) of the intended 6- (4-vinylphenyl) -2,4-hexanedione as a brown liquid. Yield 56%. Identification was performed by CHN elemental analysis and 1 H-NMR. 1 H NMR: enol; d 7.33 (d, J = 8.1 Hz, 2H, aromatic), 7.14 (d, J = 8.4 Hz, 2H, aromatic), 6.68 (dd, J = 8 .1 Hz, 1 H, vinylic), 5.70 (d, J = 17.0 Hz, 1 H, vinylic), 5.46 (s, 1 H, enol-methine), 5.20 (d, J = 11.1 Hz, 1H, vinylic), 2.91 (t, J = 5.7 Hz, 2H, methylene), 2.58 (t, J = 7.3 Hz, 2H, methylene), 2.03 (s, 3H, methyl). d 7.33 (d, J = 8.1 Hz, 2H, aromatic), 7.14 (d, J = 8.4 Hz, 2H, aromatic), 6.68 (dd, J = 8.1 Hz, 1H) , Vinylic), 5.70 (d, J = 17.0 Hz, 1H, vinylic), 5.20 (d, J = 11.1 Hz, 1H, vinylic), 3.53 (s, 2H, C (= O ) CH 2 C (= O) ), 2.89 (m, 4H, ethylene), 2.19 (s, 3H, methyl). enol: keto = 6: 1. E. A. : Calcd for C 14 H 9 O 2: C, 77.75; H, 7.46. Found: C, 77.49; H, 7.52.

Figure 2007059939

次いで、スキーム(15)に示すように、この6−(4−ビニルフェニル)−2,4−ヘキサンジオンと常法(例えば S.Lamansky,et al.,Inorganic Chemistry,40,1704(2001)に記載)に従い合成したジ(μ−クロロ)テトラキス(2−(2−ピリジル)ベンゾチエニル)ジイリジウム(以下、[Ir(btp)Cl]と略す。)を反応させてIr(btp)[1−(St−Me)−acac]を合成した。即ち、[Ir(btp)Cl] 253mg(0.20mmol)を10mlのN,N−ジメチルホルムアミド(以下DMFと略す)に懸濁させ、161mgの6−(4−ビニルフェニル)−2,4−ヘキサンジオン(0.74mmol)と64mgの炭酸ナトリウムおよび1.9mgの2,6−ジ−tert−ブチル−4−、メチルフェノール(以下BHTと略す)(0.0086mmol)を加えて80℃で1時間加熱撹拌した。得られた反応混合物に100mlの水と50mlのクロロホルムを加えてよく振とうし、有機層を硫酸マグネシウムで乾燥後、ロータリーエバポレータで減圧乾固した。次にジクロロメタンを溶出液として、粗精製物をシリカゲルカラムで精製し、赤褐色の溶液を得た。この溶液を減圧下で濃縮し、ヘキサンを加えて−20℃で再結晶することによって目的とするIr(btp)[1−(StMe)−acac]153mg(0.18mmol)を赤褐色の固体として得た(収率47%)。同定はCHN元素分析、H−NMRで行った。H NMR: d 8.40 (d,J=5.4Hz,1H,btp), 7.97 (d,J=5.4Hz,1H,btp), 7.65 (m,6H,btp), 7.1 − 6.7 (m,10H,aromatic), 6.63 (dd,J=17.8,11.1Hz,1H,vinylic), 6.24 (d,J=8.1Hz,1H,btp), 6.16 (d,J=7.8Hz,1H,btp), 5.65 (d,J=17.8Hz,1H,vinylic), 5.22 (s,1H,diketonate−methine), 5.18 (d,J=11.1Hz,1H,vinylic), 2.56 (m,2H,ethylene), 2.37 (m,2H,ethylene), 1.75 (s,3H,methyl). E.A.: Calcd for C4031IrN: C, 58.02; H, 3.77; N, 3.38. Found: C, 57.79; H, 3.81; N, 3.55.
Figure 2007059939

Then, as shown in Scheme (15), this 6- (4-vinylphenyl) -2,4-hexanedione and conventional methods (for example, S. Lamansky, et al., Inorganic Chemistry, 40, 1704 (2001)) Di (μ-chloro) tetrakis (2- (2-pyridyl) benzothienyl) diiridium (hereinafter abbreviated as [Ir (btp) 2 Cl] 2 ) synthesized in accordance with the description, and Ir (btp) 2 [1- (St-Me) -acac] was synthesized. That is, 253 mg (0.20 mmol) of [Ir (btp) 2 Cl] 2 was suspended in 10 ml of N, N-dimethylformamide (hereinafter abbreviated as DMF), and 161 mg of 6- (4-vinylphenyl) -2, 4-Hexanedione (0.74 mmol), 64 mg of sodium carbonate and 1.9 mg of 2,6-di-tert-butyl-4-, methylphenol (hereinafter abbreviated as BHT) (0.0086 mmol) were added at 80 ° C. And stirred for 1 hour. 100 ml of water and 50 ml of chloroform were added to the resulting reaction mixture and shaken well. The organic layer was dried over magnesium sulfate and then dried under reduced pressure on a rotary evaporator. Next, the crude product was purified with a silica gel column using dichloromethane as an eluent to obtain a reddish brown solution. The solution was concentrated under reduced pressure, hexane was added and recrystallized at −20 ° C. to obtain 153 mg (0.18 mmol) of the target Ir (btp) 2 [1- (StMe) -acac] as a reddish brown solid. Obtained (yield 47%). Identification was performed by CHN elemental analysis and 1 H-NMR. 1 H NMR: d 8.40 (d, J = 5.4 Hz, 1H, btp), 7.97 (d, J = 5.4 Hz, 1H, btp), 7.65 (m, 6H, btp), 7.1-6.7 (m, 10H, aromatic), 6.63 (dd, J = 17.8, 11.1 Hz, 1H, vinylic), 6.24 (d, J = 8.1 Hz, 1H, btp), 6.16 (d, J = 7.8 Hz, 1H, btp), 5.65 (d, J = 17.8 Hz, 1H, vinylic), 5.22 (s, 1H, diketonate-methine), 5.18 (d, J = 11.1 Hz, 1H, vinylic), 2.56 (m, 2H, ethylene), 2.37 (m, 2H, ethylene), 1.75 (s, 3H, methyl). E. A. : Calcd for C 40 H 31 IrN 2 O 2 S 2: C, 58.02; H, 3.77; N, 3.38. Found: C, 57.79; H, 3.81; N, 3.55.

Figure 2007059939

(実施例6−4)白色燐光発光性化合物の合成
実施例6−1〜6−3で合成した発光機能を有する3種類の単量体及びホール輸送機能を有するN−ビニルカルバゾールを含有する共重合体を合成した。
Figure 2007059939

(Example 6-4) Synthesis of white phosphorescent compound Compound containing three types of monomers having a light emitting function synthesized in Examples 6-1 to 6-3 and N-vinylcarbazole having a hole transport function. A polymer was synthesized.

N−ビニルカルバゾール1.55g(8.0mmol)、Ir(2,4−F−ppy)(3−ST−pic)58.0mg(0.08mmol)、Ir(ppy)[1−(St−Me)−acac]1.1mg(0.0015mmol)、Ir(btp)[1−(StMe)−acac] 1.2mg(0.0015mmol)、AIBN13mg(0.08mmol)を脱水トルエン40mlに溶解させ、さらに1時間アルゴンを吹き込んだ。この溶液を80℃まで昇温し、重合反応を開始させ、そのまま8時間攪拌した。冷却後、反応液をメタノール250ml中に滴下して重合物を沈殿させ、濾過により回収した。さらに、回収した重合物をクロロホルム25mlに溶解させ、この溶液をメタノール250ml中に滴下して再沈殿させることにより精製した後、60℃で12時間真空乾燥させることにより目的とする青色、緑色及び赤色に発光する3種類の燐光発光性単位を有する白色燐光発光性化合物116.3mgを得た。 N-vinylcarbazole 1.55 g (8.0 mmol), Ir (2,4-F-ppy) 2 (3-ST-pic) 58.0 mg (0.08 mmol), Ir (ppy) 2 [1- (St -Me) -acac] 1.1 mg (0.0015 mmol), Ir (btp) 2 [1- (StMe) -acac] 1.2 mg (0.0015 mmol), AIBN 13 mg (0.08 mmol) dissolved in dehydrated toluene 40 ml And argon was blown for another hour. This solution was heated to 80 ° C. to initiate the polymerization reaction and stirred as it was for 8 hours. After cooling, the reaction solution was dropped into 250 ml of methanol to precipitate a polymer, and recovered by filtration. Further, the recovered polymer was dissolved in 25 ml of chloroform, and this solution was added dropwise to 250 ml of methanol and purified by reprecipitation, followed by vacuum drying at 60 ° C. for 12 hours to obtain the desired blue, green and red colors. As a result, 116.3 mg of a white phosphorescent compound having three types of phosphorescent units emitting light was obtained.

得られた共重合体(燐光発光性化合物)のIrの元素分析結果から、Ir錯体(燐光発光性単位)の含有量は1.07mol%であった。又、共重合体のクロロホルム中のGPCから、重量平均分子量はポリスチレン換算で12400であった。   From the result of Ir elemental analysis of the obtained copolymer (phosphorescent compound), the content of Ir complex (phosphorescent unit) was 1.07 mol%. Moreover, the weight average molecular weight was 12400 in polystyrene conversion from GPC in chloroform of a copolymer.

(実施例6−5)有機発光素子の試作
Ir(MPPy)(PrCOPPy)/VCz共重合体に替えて、実施例6−2で合成した共重合体を用いること以外は実施例1−3と同様にして有機発光素子の試作を行った。
Example 6-5 Trial Manufacture of Organic Light-Emitting Element Example 1-3 except that the copolymer synthesized in Example 6-2 was used instead of the Ir (MPPy) (PrCOPPy) 2 / VCz copolymer. In the same manner, an organic light-emitting device was prototyped.

この有機発光素子のITO側に正の、Al側に負の電圧を印加したところ、肉眼で白色の発光が観察された。   When a positive voltage was applied to the ITO side of the organic light emitting device and a negative voltage was applied to the Al side, white light emission was observed with the naked eye.

有機発光素子の発光スペクトルを図3に示す。3種類の燐光発光性単位(青、緑、赤)に対応する発光ピークがそれぞれ、480nm、520nm、620nmに観測された。発光色の色度は(0.32、0.33)であった。   The emission spectrum of the organic light emitting device is shown in FIG. Emission peaks corresponding to three types of phosphorescent units (blue, green, red) were observed at 480 nm, 520 nm, and 620 nm, respectively. The chromaticity of the emission color was (0.32, 0.33).

(実施例7−1)青色の燐光発光性部位を有する単量体:イリジウム(III)ビス(2−(2,4−ジフルオロフェニル)ピリジナート)(3−(4−ビニルフェニル)メトキシピコリナート)(以下、Ir(2,4−F−ppy)(3−ST−pic)と略す。)の合成
スキーム(16)に示すように、2−(2,4−ジフルオロフェニル)ピリジンを合成した。即ち、アルゴン気流下において2−ブロモピリジン8.69g(55.0mmol)を脱水テトラヒドロフラン200mlに溶解して−78℃まで冷却し、1.6M n−ブチルリチウムのヘキサン溶液38.7ml(61.9mmol)を30分かけて滴下した。滴下後、さらに塩化亜鉛7.5g(55.0mmol)を脱水テトラヒドロフラン(THF)50mlに溶解した溶液を30分かけて滴下した。滴下後、0℃までゆっくりと昇温し、1−ブロモ−2,4−ジフルオロベンゼン9.65g(55.0mmol)とテトラキス(トリフェニルホスフィン)パラジウム(0)2.31g(2.0mmol)を加え、還流下に6時間攪拌した後、反応液に飽和食塩水200mlを加えジエチルエーテルで抽出した。抽出液を乾燥後、濃縮し、カラムクロマトグラフィー(シリカゲル;クロロホルム:ヘキサン=1:1(体積比))で精製することにより、2−(2,4−ジフルオロフェニル)ピリジンを無色透明のオイルとして得た。収量6.00g。収率63%。同定はH−NMRとCHN元素分析で行った。H−NMR(270MHz,CDCl), ppm: 8.71(d,1H,J=4.6Hz), 8.00(td,1H,J=8.9,6.5Hz), 7.8 − 7.7(m,2H), 7.3 − 7.2(over wrapped with CHCl,1H), 7.1 − 6.8(m,2H). Anal. Found: C 68.98, H 3.80, N 7.31. Calcd: C 69.11, H 3.69, N 7.33.
(Example 7-1) Monomer having a blue phosphorescent moiety: Iridium (III) bis (2- (2,4-difluorophenyl) pyridinate) (3- (4-vinylphenyl) methoxypicolinate) Synthesis of (hereinafter abbreviated as Ir (2,4-F-ppy) 2 (3-ST-pic)) As shown in Scheme (16), 2- (2,4-difluorophenyl) pyridine was synthesized. . That is, 8.69 g (55.0 mmol) of 2-bromopyridine was dissolved in 200 ml of dehydrated tetrahydrofuran under an argon stream, cooled to −78 ° C., and 38.7 ml (61.9 mmol) of a 1.6 M n-butyllithium hexane solution. ) Was added dropwise over 30 minutes. After dropwise addition, a solution prepared by dissolving 7.5 g (55.0 mmol) of zinc chloride in 50 ml of dehydrated tetrahydrofuran (THF) was further added dropwise over 30 minutes. After the dropwise addition, the temperature was slowly raised to 0 ° C., and 9.65 g (55.0 mmol) of 1-bromo-2,4-difluorobenzene and 2.31 g (2.0 mmol) of tetrakis (triphenylphosphine) palladium (0) were added. After stirring for 6 hours under reflux, 200 ml of saturated brine was added to the reaction solution, and the mixture was extracted with diethyl ether. The extract is dried, concentrated, and purified by column chromatography (silica gel; chloroform: hexane = 1: 1 (volume ratio)) to give 2- (2,4-difluorophenyl) pyridine as a colorless and transparent oil. Obtained. Yield 6.00 g. Yield 63%. Identification was performed by 1 H-NMR and CHN elemental analysis. 1 H-NMR (270 MHz, CDCl 3 ), ppm: 8.71 (d, 1H, J = 4.6 Hz), 8.00 (td, 1H, J = 8.9, 6.5 Hz), 7.8 - 7.7 (m, 2H), 7.3 - 7.2 (over wrapped with CHCl 3, 1H), 7.1 - 6.8 (m, 2H). Anal. Found: C 68.98, H 3.80, N 7.31. Calcd: C 69.11, H 3.69, N 7.33.

Figure 2007059939

次いで、スキーム(17)に示すように、イリジウムの2核錯体、ビス(μ−クロロ)テトラキス(2−(2,4−ジフルオロフェニル)ピリジン)ジイリジウム(III)(以下、[Ir(2,4−F−ppy)Cl]と略す。)を合成した。即ち、2−(2,4−ジフルオロフェニル)ピリジン0.96g(5.0mmol)とヘキサクロロイリジウム(III)酸ナトリウムn水和物(和光純薬工業製)1.00gを2−エトキシエタノール:水=3:1の混合溶媒40mlに溶解し、30分間アルゴンガスを吹き込んだ後、還流下に5時間攪拌した。生じた沈殿をろ取し、エタノールと少量のアセトンで洗浄し、真空下で5時間乾燥することにより、[Ir(2,4−F−ppy)Cl]を黄色粉末として得た。収量0.79g。収率86%。同定はH−NMRとCHN元素分析で行った。H−NMR(270MHz,CDCl), ppm: 9.12(d,4H,J=5.7Hz), 8.31(d,4H,J=8.6Hz), 7.83(dd,4H,J=7.6,7.6Hz), 6.82(dd,4H,J=7.3,7.3Hz), 6.34(ddd,4H,J=11.6,10.0,2.4Hz), 5.29(dd,4H,J=9.5,2.4Hz). Anal. Found: C 43.69, H 3.53, N 3.54. Calcd: C 43.88, H 3.45, N 3.56.
Figure 2007059939

Next, as shown in Scheme (17), a binuclear complex of iridium, bis (μ-chloro) tetrakis (2- (2,4-difluorophenyl) pyridine) diiridium (III) (hereinafter referred to as [Ir (2, 4-F-ppy) 2 Cl] 2 ) was synthesized. That is, 0.96 g (5.0 mmol) of 2- (2,4-difluorophenyl) pyridine and 1.00 g of sodium hexachloroiridium (III) sodium hydrate (manufactured by Wako Pure Chemical Industries) were mixed with 2-ethoxyethanol: water. = 3: 1 The mixture was dissolved in 40 ml of a mixed solvent, and argon gas was blown for 30 minutes, followed by stirring under reflux for 5 hours. The resulting precipitate was collected by filtration, washed with ethanol and a small amount of acetone, and dried under vacuum for 5 hours to obtain [Ir (2,4-F-ppy) 2 Cl] 2 as a yellow powder. Yield 0.79g. Yield 86%. Identification was performed by 1 H-NMR and CHN elemental analysis. 1 H-NMR (270 MHz, CDCl 3 ), ppm: 9.12 (d, 4H, J = 5.7 Hz), 8.31 (d, 4H, J = 8.6 Hz), 7.83 (dd, 4H) , J = 7.6, 7.6 Hz), 6.82 (dd, 4H, J = 7.3, 7.3 Hz), 6.34 (ddd, 4H, J = 11.6, 10.0, 2 .4 Hz), 5.29 (dd, 4H, J = 9.5, 2.4 Hz). Anal. Found: C 43.69, H 3.53, N 3.54. Calcd: C 43.88, H 3.45, N 3.56.

Figure 2007059939

次いで、スキーム(18)に示すように、イリジウム(III)ビス(2−(2,4−ジフルオロフェニル)ピリジナート)(3−ヒドロキシピコリナート)(以下、Ir(2,4−F−ppy)(3−OH−pic)と略す。)を合成した。即ち、[Ir(2,4−F−ppy)Cl]121.6mg(0.1mmol)、3−ヒドロキシピコリン酸41.7mg(0.3mmol)、炭酸ナトリウム106.0mg(1.0mmol)にアルゴン気流下において脱水N,N−ジメチルホルムアミド(DMF)10mlを加え、80℃で2時間攪拌した。反応液に50mlの水を加えた後、酢酸エチルで抽出した。その溶液を硫酸マグネシウムで乾燥後、濃縮し、カラムクロマトグラフィー(シリカゲル、メタノール:クロロホルム=3:97(体積比))で精製した。さらにそれをヘキサン/クロロホルムより再結晶することにより黄色の結晶としてIr(2,4−F−ppy)(3−OH−pic)101.0mgを得た。収率71%。同定はH−NMRとCHN元素分析で行った。H−NMR(270MHz,DMSO−d), ppm: 13.6(br,1H), 8.50(d,1H,J=5.9Hz), 8.25(d,2H,J=11.1Hz), 8.1 − 8.0(m,2H), 7.69(d,1H,J=5.7Hz), 7.62(d,1H,J=8.1Hz), 7.53(d,1H,J=4.6Hz), 7.50(d,1H,J=5.7Hz), 7.36(t,1H,J=4.5Hz), 7.24(d,1H,J=5.1Hz), 6.9 − 6.7(m,2H), 5.66(dd,1H,J=8.6,2.4Hz), 5.48(dd,1H,J=8.6,2.4Hz). Anal. Found: C 47.29, H 2.33, N 5.86. Calcd: C 47.32, H 2.27, N 5.91.
Figure 2007059939

Next, as shown in Scheme (18), iridium (III) bis (2- (2,4-difluorophenyl) pyridinate) (3-hydroxypicolinate) (hereinafter, Ir (2,4-F-ppy) 2 (Abbreviated as 3-OH-pic)) was synthesized. That is, [Ir (2,4-F-ppy) 2 Cl] 2 121.6 mg (0.1 mmol), 3-hydroxypicolinic acid 41.7 mg (0.3 mmol), sodium carbonate 106.0 mg (1.0 mmol) Under an argon stream, 10 ml of dehydrated N, N-dimethylformamide (DMF) was added and stirred at 80 ° C. for 2 hours. 50 ml of water was added to the reaction solution, followed by extraction with ethyl acetate. The solution was dried over magnesium sulfate, concentrated, and purified by column chromatography (silica gel, methanol: chloroform = 3: 97 (volume ratio)). Further, it was recrystallized from hexane / chloroform to obtain 101.0 mg of Ir (2,4-F-ppy) 2 (3-OH-pic) as yellow crystals. Yield 71%. Identification was performed by 1 H-NMR and CHN elemental analysis. 1 H-NMR (270 MHz, DMSO-d 6 ), ppm: 13.6 (br, 1H), 8.50 (d, 1H, J = 5.9 Hz), 8.25 (d, 2H, J = 11) .1 Hz), 8.1-8.0 (m, 2H), 7.69 (d, 1H, J = 5.7 Hz), 7.62 (d, 1H, J = 8.1 Hz), 7.53 (D, 1H, J = 4.6 Hz), 7.50 (d, 1H, J = 5.7 Hz), 7.36 (t, 1H, J = 4.5 Hz), 7.24 (d, 1H, J = 5.1 Hz), 6.9-6.7 (m, 2H), 5.66 (dd, 1H, J = 8.6, 2.4 Hz), 5.48 (dd, 1H, J = 8) .6, 2.4 Hz). Anal. Found: C 47.29, H 2.33, N 5.86. Calcd: C 47.32, H 2.27, N 5.91.

Figure 2007059939

次いで、スキーム(19)に示すように、Ir(2,4−F−ppy)(3−ST−pic)を合成した。即ち、Ir(2,4−F−ppy)(3−OH−pic)106.5mg(0.15mmol)、炭酸カリウム207.3mg(1.5mmol)、2,6−ジ−t−ブチルヒドロキシトルエン0.3mgにアルゴン気流下において脱水N,N−ジメチルホルムアミド15mlを加え、さらに4−ビニルベンジルクロライド91.5mg(0.6mmol)を加え、80℃で4時間攪拌した。反応液に水100mlを加えて生成物を沈殿させてろ取し、カラムクロマトグラフィー(シリカゲル、メタノール:クロロホルム=3:97(体積比))で精製した。さらにそれをヘキサン/クロロホルムより再結晶することにより黄色の結晶としてIr(2,4−F−ppy)(3−ST−pic)72.0mgを得た。収率58%。同定はH−NMRとCHN元素分析で行った。H−NMR(270MHz,DMSO−d), ppm: 8.59(d,1H,J=5.1Hz), 8.3 − 8.2(m,2H), 8.1 − 8.0(m,2H), 7.9(d,1H,J=8.6Hz), 7.67(d,1H,J=5.1Hz), 7.6 − 7.3(m,7H), 6.9 − 6.7(m,3H), 5.85(d,1H,J=17.8Hz), 5.67(dd,1H,J=8.9,2.4Hz), 5.45(dd,1H,J=8.9,2.4Hz), 5.29(s,2H), 5.27(d,1H,J=11.1Hz). Anal. Found: C 53.71, H 2.90, N 5.03. Calcd: C 53.75, H 2.93, N 5.08.
Figure 2007059939

Next, Ir (2,4-F-ppy) 2 (3-ST-pic) was synthesized as shown in Scheme (19). That is, Ir (2,4-F-ppy) 2 (3-OH-pic) 106.5 mg (0.15 mmol), potassium carbonate 207.3 mg (1.5 mmol), 2,6-di-t-butylhydroxy Under an argon stream, 15 ml of dehydrated N, N-dimethylformamide was added to 0.3 mg of toluene, 91.5 mg (0.6 mmol) of 4-vinylbenzyl chloride was further added, and the mixture was stirred at 80 ° C. for 4 hours. 100 ml of water was added to the reaction solution to precipitate the product, which was collected by filtration and purified by column chromatography (silica gel, methanol: chloroform = 3: 97 (volume ratio)). Further, it was recrystallized from hexane / chloroform to obtain 72.0 mg of Ir (2,4-F-ppy) 2 (3-ST-pic) as yellow crystals. Yield 58%. Identification was performed by 1 H-NMR and CHN elemental analysis. 1 H-NMR (270 MHz, DMSO-d 6 ), ppm: 8.59 (d, 1H, J = 5.1 Hz), 8.3-8.2 (m, 2H), 8.1-8.0 (M, 2H), 7.9 (d, 1H, J = 8.6 Hz), 7.67 (d, 1H, J = 5.1 Hz), 7.6-7.3 (m, 7H), 6 .9-6.7 (m, 3H), 5.85 (d, 1H, J = 17.8 Hz), 5.67 (dd, 1H, J = 8.9, 2.4 Hz), 5.45 ( dd, 1H, J = 8.9, 2.4 Hz), 5.29 (s, 2H), 5.27 (d, 1H, J = 11.1 Hz). Anal. Found: C 53.71, H 2.90, N 5.03. Calcd: C 53.75, H 2.93, N 5.08.

Figure 2007059939

(実施例7−2)青色燐光発光部位を有するIr(2,4−F−ppy)(3−ST−pic)とホール輸送性機能を有するビニルカルバゾールの共重合体(以下、Ir(2,4−F−ppy)(3−ST−pic)/VCz共重合体と略す。)の合成
N−ビニルカルバゾール 966mg(5.0mmol)および実施例7−1で合成したIr(2,4−F−ppy)(3−ST−pic)41.3mg(0.05mmol)、AIBN 8.2mg(0.05mmol)を脱水トルエン25mlに溶解させ、さらに1時間アルゴンを吹き込んだ。この溶液を80℃まで昇温し、重合反応を開始させ、そのまま8時間攪拌した。冷却後、反応液をメタノール250ml中に滴下して重合物を沈殿させ、濾過により回収した。さらに、回収した重合物をクロロホルム25mlに溶解させ、この溶液をメタノール250ml中に滴下して再沈殿させることにより精製した後、60℃で12時間真空乾燥させることにより目的物であるIr(2,4−F−ppy)(3−ST−pic)/VCz共重合体722mgを得た。
Figure 2007059939

(Example 7-2) A copolymer of Ir (2,4-F-ppy) 2 (3-ST-pic) having a blue phosphorescent site and vinylcarbazole having a hole transporting function (hereinafter referred to as Ir (2)) , 4-F-ppy) 2 (abbreviated as 3-ST-pic) / VCz copolymer)) 966 mg (5.0 mmol) of N-vinylcarbazole and Ir (2,4) synthesized in Example 7-1 -F-ppy) 2 (3-ST-pic) 41.3 mg (0.05 mmol) and AIBN 8.2 mg (0.05 mmol) were dissolved in 25 ml of dehydrated toluene, and argon was blown for another hour. This solution was heated to 80 ° C. to initiate the polymerization reaction and stirred as it was for 8 hours. After cooling, the reaction solution was dropped into 250 ml of methanol to precipitate a polymer, and recovered by filtration. Further, the recovered polymer was dissolved in 25 ml of chloroform, and this solution was added dropwise to 250 ml of methanol and purified by reprecipitation, followed by vacuum drying at 60 ° C. for 12 hours to obtain the target product Ir (2, 722 mg of 4-F-ppy) 2 (3-ST-pic) / VCz copolymer was obtained.

得られた共重合体(燐光発光性化合物)のIrの元素分析結果から、Ir錯体(燐光発光性単位)の含有量は1.04mol%であった。また、共重合体のクロロホルム中のGPCから、重量平均分子量はポリスチレン換算で11400であった。   From the result of Ir elemental analysis of the obtained copolymer (phosphorescent compound), the content of Ir complex (phosphorescent unit) was 1.04 mol%. Moreover, the weight average molecular weight was 11400 in polystyrene conversion from GPC in chloroform of a copolymer.

(実施例7−3)赤色燐光発光部位を有する[6−(4−ビニルフェニル)−2,4−ヘキサンジオナート]ビス[2−(2−ピリジル)ベンゾチエニル]イリジウム(III)とホール輸送性機能を有するビニルカルバゾールの共重合体(以下、Ir(btp)[1−(StMe)−acac]/VCz共重合体と略す。)の合成
N−ビニルカルバゾール 1.55g(8.0mmol)、実施例6−3で合成したIr(btp)[1−(StMe)−acac] 33.1mg(0.04mmol)、AIBN 13mg(0.08mmol)を脱水トルエン40mlに溶解させ、さらに1時間アルゴンを吹き込んだ。この溶液を80℃まで昇温し、重合反応を開始させ、そのまま8時間攪拌した。冷却後、反応液をメタノール 250ml中に滴下して重合物を沈殿させ、濾過により回収した。さらに、回収した重合物をクロロホルム25mlに溶解させ、この溶液をメタノール 250ml中に滴下して再沈殿させることにより精製した後、60℃で12時間真空乾燥させることにより目的物であるIr(btp)[1−(StMe)−acac]/VCz共重合体 1.12gを得た。
得られた共重合体(燐光発光性化合物)のIrの元素分析結果から、Ir錯体(燐光発光性単位)の含有量は0.59mol%であった。また、共重合体のクロロホルム中のGPCから、重量平均分子量はポリスチレン換算で10800であった。
Example 7-3 [6- (4-Vinylphenyl) -2,4-hexanedionate] bis [2- (2-pyridyl) benzothienyl] iridium (III) having a red phosphorescent site and hole transport Of vinyl carbazole copolymer having sexual function (hereinafter abbreviated as Ir (btp) 2 [1- (StMe) -acac] / VCz copolymer) 1.55 g (8.0 mmol) of N-vinyl carbazole Ir (btp) 2 [1- (StMe) -acac] synthesized in Example 6-3, 33.1 mg (0.04 mmol), and AIBN 13 mg (0.08 mmol) were dissolved in 40 ml of dehydrated toluene, and further for 1 hour. Argon was blown in. This solution was heated to 80 ° C. to initiate the polymerization reaction and stirred as it was for 8 hours. After cooling, the reaction solution was dropped into 250 ml of methanol to precipitate a polymer, and recovered by filtration. Further, the recovered polymer was dissolved in 25 ml of chloroform, and this solution was added dropwise to 250 ml of methanol for reprecipitation, followed by purification, followed by vacuum drying at 60 ° C. for 12 hours to obtain the target Ir (btp) 2 [1- (StMe) -acac] / VCz copolymer 1.12 g was obtained.
From the result of Ir elemental analysis of the obtained copolymer (phosphorescent compound), the content of Ir complex (phosphorescent unit) was 0.59 mol%. Moreover, the weight average molecular weight was 10800 in polystyrene conversion from GPC in chloroform of a copolymer.

(実施例7−4)有機発光素子の試作
実施例7−2で合成したIr(2,4−F−ppy)(3−ST−pic)/VCz共重合体、実施例7−3で合成したIr(btp)[1−(StMe)−acac]/VCz共重合体並びにtBu―PBDのクロロホルム溶液を調製した。比率は、Ir(2,4−F−ppy)(3−ST−pic)/VCz共重合体が66.85質量%、Ir(btp)[1−(StMe)−acac]/VCz共重合体が3.15質量%、tBu―PBDが30.00質量%とした。
(Example 7-4) Trial Production of Organic Light-Emitting Element Ir (2,4-F-ppy) 2 (3-ST-pic) / VCz Copolymer Synthesized in Example 7-2, in Example 7-3 A synthesized Ir (btp) 2 [1- (StMe) -acac] / VCz copolymer and a chloroform solution of tBu-PBD were prepared. The ratio is 66.85% by mass of Ir (2,4-F-ppy) 2 (3-ST-pic) / VCz copolymer, Ir (btp) 2 [1- (StMe) -acac] / VCz The polymer was 3.15% by mass, and tBu-PBD was 30.00% by mass.

この溶液をITOが付いたガラス基板上にスピンコートして厚さ100nmの膜を形成し、その上に真空蒸着法でCaを10nm、Alを100nm蒸着し陰極とした。   This solution was spin-coated on a glass substrate with ITO to form a film having a thickness of 100 nm, on which Ca was deposited by 10 nm and Al was deposited by 100 nm to form a cathode.

得られた有機発光素子のITO側に正の、Al側に負の電圧を印加したところ、肉眼で白色の発光が観察された。   When a positive voltage was applied to the ITO side of the obtained organic light emitting device and a negative voltage was applied to the Al side, white light emission was observed with the naked eye.

有機発光素子の発光スペクトルを図4に示す。Ir(2,4−F−ppy)(3−ST−pic)/VCz共重合体及びIr(btp)[1−(StMe)−acac]/VCz共重合体に対応する発光ピークがそれぞれ、480nm付近と620nm付近に観測された。色度座標は(0.30、0.35)であった。 The emission spectrum of the organic light emitting device is shown in FIG. The emission peaks corresponding to Ir (2,4-F-ppy) 2 (3-ST-pic) / VCz copolymer and Ir (btp) 2 [1- (StMe) -acac] / VCz copolymer are respectively shown. Observed around 480 nm and 620 nm. The chromaticity coordinates were (0.30, 0.35).

以上、本発明の実施の形態及び実施例を具体的に説明してきたが、本発明は、これらの実施の形態及び実施例に限定されるものではなく、これら本発明の実施の形態及び実施例を、本発明の主旨及び範囲を逸脱することなく、変更又は変形することができる。   Although the embodiments and examples of the present invention have been specifically described above, the present invention is not limited to these embodiments and examples, and these embodiments and examples of the present invention are not limited thereto. Can be changed or modified without departing from the spirit and scope of the present invention.

本発明は、有機発光素子の材料として使用する有機高分子の燐光発光性化合物、燐光発光性組成物、有機発光素子及び表示装置に適用することができる。   The present invention can be applied to organic polymer phosphorescent compounds, phosphorescent compositions, organic light-emitting elements, and display devices used as materials for organic light-emitting elements.

本発明の有機高分子の燐光発光性化合物の典型的な構造を説明する図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a typical structure of an organic polymer phosphorescent compound according to the present invention. 本発明の有機発光素子の積層構造を説明する図である。It is a figure explaining the laminated structure of the organic light emitting element of this invention. 実施例6−3で作製した有機発光素子の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the organic light emitting element produced in Example 6-3. 実施例7−2で作製した有機発光素子の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the organic light emitting element produced in Example 7-2.

Claims (30)

陽極と陰極に挟まれた一又は複数の有機高分子層を含む有機発光素子において、
前記有機高分子層の少なくとも一層は、燐光を発光する中性の有機高分子の燐光発光性化合物を含み、
該燐光発光性化合物は、燐光を発光する繰り返し単位である燐光発光性単位及びキャリアを輸送する繰り返し単位であるキャリア輸送性単位を含む
ことを特徴とする有機発光素子。
In an organic light emitting device comprising one or more organic polymer layers sandwiched between an anode and a cathode,
At least one of the organic polymer layers contains a phosphorescent compound of a neutral organic polymer that emits phosphorescence,
The phosphorescent compound comprises a phosphorescent unit that is a repeating unit that emits phosphorescence and a carrier transporting unit that is a repeating unit that transports carriers.
前記燐光発光性単位の繰り返し数m及び前記キャリア輸送性単位の繰り返し数nは、
m<n
の関係を満たすことを特徴とする請求項1に記載の有機発光素子。
The number m of repeating phosphorescent units and the number n of repeating carrier transporting units are:
m <n
The organic light emitting device according to claim 1, wherein the relationship is satisfied.
前記燐光発光性単位の繰り返し数m及び前記キャリア輸送性単位の繰り返し数nは、
0.0001≦m/(m+n)≦0.2
の関係を満たすことを特徴とする請求項2に記載の有機発光素子。
The number m of repeating phosphorescent units and the number n of repeating carrier transporting units are:
0.0001 ≦ m / (m + n) ≦ 0.2
The organic light emitting device according to claim 2, wherein the relationship is satisfied.
前記燐光発光性化合物は、有機溶剤又は水に可溶であることを特徴とする請求項1乃至3のいずれか一項に記載の有機発光素子。   The organic light emitting device according to any one of claims 1 to 3, wherein the phosphorescent compound is soluble in an organic solvent or water. 前記燐光発光性化合物の重合度は、5乃至5000であることを特徴とする請求項1乃至4のいずれか一項に記載の有機発光素子。   5. The organic light emitting device according to claim 1, wherein the phosphorescence emitting compound has a polymerization degree of 5 to 5000. 6. 前記燐光発光性単位の燐光発光性部位及び/又は前記キャリア輸送性単位のキャリア輸送性部位は、前記有機高分子の側鎖を構成していることを特徴とする請求項1乃至5のいずれか一項に記載の有機発光素子。   The phosphorescent site of the phosphorescent unit and / or the carrier transport site of the carrier transport unit constitutes a side chain of the organic polymer. The organic light emitting device according to one item. 前記燐光発光性単位の燐光発光性部位及び/又は前記キャリア輸送性単位のキャリア輸送性部位は、前記有機高分子の主鎖を構成していることを特徴とする請求項1乃至5のいずれか一項に記載の有機発光素子。   6. The phosphorescent light emitting portion of the phosphorescent light emitting unit and / or the carrier transporting portion of the carrier transportable unit constitutes a main chain of the organic polymer. The organic light emitting device according to one item. 前記キャリア輸送性単位のキャリア輸送性部位は、ホール輸送性部位であることを特徴とする請求項1乃至7のいずれか一項に記載の有機発光素子。   The organic light-emitting device according to claim 1, wherein the carrier transporting part of the carrier transporting unit is a hole transporting part. 前記キャリア輸送性単位のキャリア輸送性部位は、電子輸送性部位であることを特徴とする請求項1乃至7のいずれか一項に記載の有機発光素子。   The organic light-emitting device according to claim 1, wherein the carrier transporting part of the carrier transporting unit is an electron transporting part. 前記キャリア輸送性単位のキャリア輸送性部位は、ホール輸送性部位及び電子輸送性部位からなることを特徴とする請求項1乃至7のいずれか一項に記載の有機発光素子。   The organic light emitting device according to any one of claims 1 to 7, wherein the carrier transporting portion of the carrier transporting unit comprises a hole transporting portion and an electron transporting portion. 前記燐光発光性単位の燐光発光性部位は、遷移金属又は希土類金属の錯体の一価基又は二価基であることを特徴とする請求項1乃至10のいずれか一項に記載の有機発光素子。   11. The organic light-emitting device according to claim 1, wherein the phosphorescent site of the phosphorescent unit is a monovalent group or a divalent group of a transition metal or rare earth metal complex. . 前記遷移金属又は希土類金属の錯体の一価基は、前記有機高分子の主鎖に対してスペーサー部分を介して前記有機高分子の側鎖として結合し、
該スペーサー部分は、ヘテロ原子を有していてもよい炭素数1乃至30の有機基又は炭素原子を有しないヘテロ原子数1乃至10の無機基を含むことを特徴とする請求項11に記載の有機発光素子。
The monovalent group of the transition metal or rare earth metal complex binds to the main chain of the organic polymer as a side chain of the organic polymer via a spacer portion;
The spacer part includes an organic group having 1 to 30 carbon atoms which may have a hetero atom or an inorganic group having 1 to 10 hetero atoms which does not have a carbon atom. Organic light emitting device.
前記キャリア輸送性単位のキャリア輸送性部位は、カルバゾールの一価基、第3級アミンの一価基、イミダゾール誘導体の一価基、トリアゾール誘導体の一価基、オキサジアゾール誘導体の一価基、チオフェンの二価基、ベンゼンの二価基、スチレンの二価基、及びフルオレンの二価基からなる基の群、並びに該基を置換基で置換した基の群より、少なくとも1種類以上選択される基を含むことを特徴とする請求項1乃至12のいずれか一項に記載の有機発光素子。   The carrier transporting part of the carrier transporting unit includes a monovalent group of carbazole, a monovalent group of a tertiary amine, a monovalent group of an imidazole derivative, a monovalent group of a triazole derivative, a monovalent group of an oxadiazole derivative, At least one selected from the group consisting of a divalent group of thiophene, a divalent group of benzene, a divalent group of styrene, and a divalent group of fluorene, and a group of groups in which the group is substituted with a substituent. The organic light-emitting device according to claim 1, wherein the organic light-emitting device includes a group. 前記燐光発光性化合物は、所定の1色に発光する1種類又は所定の相互に異なる2色以上に発光する2種類以上の燐光発光性単位を有することを特徴とする請求項1乃至13のいずれか一項に記載の有機発光素子。   14. The phosphorescent compound according to claim 1, wherein the phosphorescent compound has one kind that emits light of a predetermined color or two or more kinds of phosphorescent units that emit light of two or more different colors. The organic light emitting element as described in any one. 前記燐光発光性単位は、青色若しくは緑色及び黄色若しくは赤色に発光する2種類の燐光発光性単位からなり、前記燐光発光性化合物は、全体として白色に発光することを特徴とする請求項14に記載の有機発光素子。   The phosphorescent unit is composed of two types of phosphorescent units that emit blue or green and yellow or red, and the phosphorescent compound emits white as a whole. Organic light emitting device. 前記燐光発光性単位は、青色、緑色及び赤色に発光する3種類の燐光発光性単位からなり、前記燐光発光性化合物は、全体として白色に発光することを特徴とする請求項14に記載の有機発光素子。   The organic phosphor according to claim 14, wherein the phosphorescent unit comprises three types of phosphorescent units emitting blue, green and red, and the phosphorescent compound emits white as a whole. Light emitting element. 前記有機高分子層の少なくとも一層は、相互に異なる色に発光する1又は2種類以上の燐光発光性単位を有する複数の前記燐光発光性化合物を含むことを特徴とする請求項1乃至16のいずれか一項に記載の有機発光素子。   The at least one layer of the organic polymer layer includes a plurality of the phosphorescent compounds having one or two or more kinds of phosphorescent units that emit light of different colors. The organic light emitting element as described in any one. 前記有機高分子層の少なくとも一層は、全体として白色に発光することを特徴とする請求項17に記載の有機発光素子。   The organic light emitting device according to claim 17, wherein at least one of the organic polymer layers emits white light as a whole. 前記有機高分子層の少なくとも一層は、青色若しくは緑色に発光する燐光発光性単位を有する前記燐光発光性化合物及び黄色若しくは赤色に発光する燐光発光性単位を有する前記燐光発光性化合物を含み、且つ、全体として白色に発光することを特徴とする請求項17に記載の有機発光素子。   At least one layer of the organic polymer layer includes the phosphorescent compound having a phosphorescent unit emitting blue or green and the phosphorescent compound having a phosphorescent unit emitting yellow or red, and The organic light emitting device according to claim 17, which emits white light as a whole. 前記有機高分子層の少なくとも一層は、キャリア輸送性化合物をさらに含むことを特徴とする請求項1乃至16のいずれか一項に記載の有機発光素子。   The organic light-emitting device according to claim 1, wherein at least one of the organic polymer layers further includes a carrier transporting compound. 前記キャリア輸送性化合物は、キャリア輸送性高分子化合物であることを特徴とする請求項20に記載の有機発光素子。   The organic light-emitting device according to claim 20, wherein the carrier transporting compound is a carrier transporting polymer compound. 前記キャリア輸送性高分子化合物は、ホール輸送性高分子化合物であることを特徴とする請求項21に記載の有機発光素子。   The organic light emitting device according to claim 21, wherein the carrier transporting polymer compound is a hole transporting polymer compound. 前記キャリア輸送性高分子化合物は、電子輸送性高分子化合物であることを特徴とする請求項21に記載の有機発光素子。   The organic light-emitting device according to claim 21, wherein the carrier transporting polymer compound is an electron transporting polymer compound. 前記キャリア輸送性化合物は、キャリア輸送性低分子化合物であることを特徴とする請求項20に記載の有機発光素子。   The organic light emitting device according to claim 20, wherein the carrier transporting compound is a carrier transporting low molecular weight compound. 前記キャリア輸送性低分子化合物は、ホール輸送性低分子化合物であることを特徴とする請求項24に記載の有機発光素子。   The organic light emitting device according to claim 24, wherein the carrier transporting low molecular weight compound is a hole transporting low molecular weight compound. 前記キャリア輸送性低分子化合物は、電子輸送性低分子化合物であることを特徴とする請求項24に記載の有機発光素子。   The organic light emitting device according to claim 24, wherein the carrier transporting low molecular weight compound is an electron transporting low molecular weight compound. 前記陽極と前記陽極が設けられる透明基板との間にカラーフィルターを含むことを特徴とする請求項1乃至26のいずれか一項に記載の有機発光素子。   27. The organic light-emitting device according to claim 1, further comprising a color filter between the anode and the transparent substrate on which the anode is provided. 前記陽極は、プラスチック基板上に形成されることを特徴とする請求項1乃至27のいずれか一項に記載の有機発光素子。   The organic light emitting device according to any one of claims 1 to 27, wherein the anode is formed on a plastic substrate. 前記有機高分子層は、インクジェット法又は印刷法により形成されることを特徴とする請求項1乃至28のいずれか一項に記載の有機発光素子。   The organic light emitting device according to any one of claims 1 to 28, wherein the organic polymer layer is formed by an inkjet method or a printing method. 表示画面を有する表示装置において、
該表示画面の各画素は、請求項1乃至29のいずれか一項に記載の有機発光素子からなり、
該各画素は、複数のトランジスタを有することを特徴とする表示装置。
In a display device having a display screen,
Each pixel of the display screen is composed of the organic light emitting device according to any one of claims 1 to 29,
Each pixel includes a plurality of transistors.
JP2006295017A 2001-08-31 2006-10-30 Organic light emitting device and display device Expired - Fee Related JP4629643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295017A JP4629643B2 (en) 2001-08-31 2006-10-30 Organic light emitting device and display device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001265033 2001-08-31
JP2002079129 2002-03-20
JP2006295017A JP4629643B2 (en) 2001-08-31 2006-10-30 Organic light emitting device and display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002112352A Division JP4574936B2 (en) 2001-08-31 2002-04-15 Phosphorescent compound and phosphorescent composition

Publications (2)

Publication Number Publication Date
JP2007059939A true JP2007059939A (en) 2007-03-08
JP4629643B2 JP4629643B2 (en) 2011-02-09

Family

ID=37923083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295017A Expired - Fee Related JP4629643B2 (en) 2001-08-31 2006-10-30 Organic light emitting device and display device

Country Status (1)

Country Link
JP (1) JP4629643B2 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524725A (en) * 2002-04-26 2005-08-18 ケンブリッジ ユニバーシティ テクニカル サービシズ リミティド Solution-processable phosphor
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
WO2011076323A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Formulations comprising phase-separated functional materials
WO2011103953A1 (en) 2010-02-24 2011-09-01 Merck Patent Gmbh Fluorine-fluorine associates
WO2011110277A1 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Fibers in therapy and cosmetics
WO2011110275A2 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Radiative fibers
WO2011147521A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Down conversion
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
DE102010055901A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
WO2012163464A1 (en) 2011-06-01 2012-12-06 Merck Patent Gmbh Hybrid ambipolar tfts
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
KR20130129950A (en) * 2010-10-19 2013-11-29 캠브리지 디스플레이 테크놀로지 리미티드 Organic light-emitting device and method
WO2015014427A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electro-optical device and the use thereof
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
WO2016107663A1 (en) 2014-12-30 2016-07-07 Merck Patent Gmbh Formulations and electronic devices
WO2016155866A1 (en) 2015-03-30 2016-10-06 Merck Patent Gmbh Formulation of an organic functional material comprising a siloxane solvent
WO2016198141A1 (en) 2015-06-12 2016-12-15 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for oled formulations
WO2017036572A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
WO2017097391A1 (en) 2015-12-10 2017-06-15 Merck Patent Gmbh Formulations containing ketones comprising non-aromatic cycles
WO2017102048A1 (en) 2015-12-15 2017-06-22 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
WO2017102052A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a solid solvent
WO2017102049A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
WO2017140404A1 (en) 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018001928A1 (en) 2016-06-28 2018-01-04 Merck Patent Gmbh Formulation of an organic functional material
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
WO2018077660A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018095381A1 (en) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 Printing ink composition, preparation method therefor, and uses thereof
WO2018104202A1 (en) 2016-12-06 2018-06-14 Merck Patent Gmbh Preparation process for an electronic device
WO2018108760A1 (en) 2016-12-13 2018-06-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018138318A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2018138319A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic electroluminescence (el) element
WO2018178136A1 (en) 2017-03-31 2018-10-04 Merck Patent Gmbh Printing method for an organic light emitting diode (oled)
WO2018189050A1 (en) 2017-04-10 2018-10-18 Merck Patent Gmbh Formulation of an organic functional material
WO2018202603A1 (en) 2017-05-03 2018-11-08 Merck Patent Gmbh Formulation of an organic functional material
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
US10323180B2 (en) 2014-12-04 2019-06-18 Guangzhou Chinaray Optoelectronic Materials Ltd. Deuterated organic compound, mixture and composition containing said compound, and organic electronic device
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
US10364316B2 (en) 2015-01-13 2019-07-30 Guangzhou Chinaray Optoelectronics Materials Ltd. Conjugated polymer containing ethynyl crosslinking group, mixture, formulation, organic electronic device containing the same and application therof
WO2019162483A1 (en) 2018-02-26 2019-08-29 Merck Patent Gmbh Formulation of an organic functional material
WO2019238782A1 (en) 2018-06-15 2019-12-19 Merck Patent Gmbh Formulation of an organic functional material
US10573827B2 (en) 2014-12-11 2020-02-25 Guangzhou Chinaray Optoelectronics Materials Ltd. Organic metal complex, and polymer, mixture, composition and organic electronic device containing same and use thereof
WO2020094538A1 (en) 2018-11-06 2020-05-14 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2021213918A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Formulation of an organic functional material
WO2021213917A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Emulsions comprising organic functional materials
WO2022122607A1 (en) 2020-12-08 2022-06-16 Merck Patent Gmbh An ink system and a method for inkjet printing
WO2022223675A1 (en) 2021-04-23 2022-10-27 Merck Patent Gmbh Formulation of an organic functional material
US11555128B2 (en) 2015-11-12 2023-01-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing composition, electronic device comprising same and preparation method for functional material thin film
WO2023057327A1 (en) 2021-10-05 2023-04-13 Merck Patent Gmbh Method for forming an organic element of an electronic device

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820614A (en) * 1994-07-07 1996-01-23 Chisso Corp Copolymer, its production and luminous element using the same
JPH08157815A (en) * 1994-12-01 1996-06-18 Chisso Corp White luminous element
JPH08269138A (en) * 1995-03-29 1996-10-15 Bayer Ag (co)polymer based on vinyl unit and its use in electroluminescent device
JPH10101738A (en) * 1996-08-16 1998-04-21 Bayer Ag Copolymers based on vinyl units and their use in electroluminescent device
JPH1174077A (en) * 1997-08-28 1999-03-16 Junji Kido Multilayered electroluminescent element using vinyl polymer
JP2000239318A (en) * 1999-02-19 2000-09-05 Sharp Corp Styrene derivative compound, polystyrene derivative compound and organic electroluminescent element using the same
JP2001151868A (en) * 1999-11-24 2001-06-05 Toyota Central Res & Dev Lab Inc Functional copolymer and organic electroluminescence element, photo-memory and positive hole transporting element by using the same polymer
JP2001342459A (en) * 2000-03-31 2001-12-14 Sumitomo Chem Co Ltd Polymeric fluorescent substance, method of producing the same and polymeric light emission element using the same
JP2002056975A (en) * 2000-08-09 2002-02-22 Konica Corp Organic electroluminescent element, compound with polymerizable structure or polymer of the same, and fluorescent film
JP2002293930A (en) * 2001-03-29 2002-10-09 Mitsui Chemicals Inc Method for producing thermoplastic polyimide
JP2003113246A (en) * 2001-10-02 2003-04-18 Showa Denko Kk Polymerizable compound and method for producing the same
JP2003119179A (en) * 2001-08-09 2003-04-23 Showa Denko Kk Polymerizable iridium complex, its polymer and method for producing the same
JP2003147021A (en) * 2001-11-15 2003-05-21 Showa Denko Kk Polymerizable compound and method for producing the same
JP2003171391A (en) * 2001-12-04 2003-06-20 Showa Denko Kk Polymerizable compound and method for producing the same
JP2003206320A (en) * 2001-11-09 2003-07-22 Showa Denko Kk Polymerizable compound and its manufacturing method
JP2003277444A (en) * 2002-03-26 2003-10-02 Canon Inc Polymer and electroluminescent element
JP2003342325A (en) * 2001-08-31 2003-12-03 Nippon Hoso Kyokai <Nhk> Phosphorescent compound, phosphorescent composition and organic light-emitting element

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820614A (en) * 1994-07-07 1996-01-23 Chisso Corp Copolymer, its production and luminous element using the same
JPH08157815A (en) * 1994-12-01 1996-06-18 Chisso Corp White luminous element
JPH08269138A (en) * 1995-03-29 1996-10-15 Bayer Ag (co)polymer based on vinyl unit and its use in electroluminescent device
JPH10101738A (en) * 1996-08-16 1998-04-21 Bayer Ag Copolymers based on vinyl units and their use in electroluminescent device
JPH1174077A (en) * 1997-08-28 1999-03-16 Junji Kido Multilayered electroluminescent element using vinyl polymer
JP2000239318A (en) * 1999-02-19 2000-09-05 Sharp Corp Styrene derivative compound, polystyrene derivative compound and organic electroluminescent element using the same
JP2001151868A (en) * 1999-11-24 2001-06-05 Toyota Central Res & Dev Lab Inc Functional copolymer and organic electroluminescence element, photo-memory and positive hole transporting element by using the same polymer
JP2001342459A (en) * 2000-03-31 2001-12-14 Sumitomo Chem Co Ltd Polymeric fluorescent substance, method of producing the same and polymeric light emission element using the same
JP2002056975A (en) * 2000-08-09 2002-02-22 Konica Corp Organic electroluminescent element, compound with polymerizable structure or polymer of the same, and fluorescent film
JP2002293930A (en) * 2001-03-29 2002-10-09 Mitsui Chemicals Inc Method for producing thermoplastic polyimide
JP2003119179A (en) * 2001-08-09 2003-04-23 Showa Denko Kk Polymerizable iridium complex, its polymer and method for producing the same
JP2003342325A (en) * 2001-08-31 2003-12-03 Nippon Hoso Kyokai <Nhk> Phosphorescent compound, phosphorescent composition and organic light-emitting element
JP2003113246A (en) * 2001-10-02 2003-04-18 Showa Denko Kk Polymerizable compound and method for producing the same
JP2003206320A (en) * 2001-11-09 2003-07-22 Showa Denko Kk Polymerizable compound and its manufacturing method
JP2003147021A (en) * 2001-11-15 2003-05-21 Showa Denko Kk Polymerizable compound and method for producing the same
JP2003171391A (en) * 2001-12-04 2003-06-20 Showa Denko Kk Polymerizable compound and method for producing the same
JP2003277444A (en) * 2002-03-26 2003-10-02 Canon Inc Polymer and electroluminescent element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. LAMANSKY ET AL.: ""Highly Phosphorescent Bis-Cyclometalated Iridium Complexes:Synthesis, Photophysical Characterizatio", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, JPN6010064838, 13 April 2001 (2001-04-13), pages 4304 - 4312, ISSN: 0001773875 *

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524725A (en) * 2002-04-26 2005-08-18 ケンブリッジ ユニバーシティ テクニカル サービシズ リミティド Solution-processable phosphor
US9023978B2 (en) 2002-04-26 2015-05-05 Cambridge Enterprise Ltd. Solution-processable phosphorescent materials
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
WO2011076323A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Formulations comprising phase-separated functional materials
WO2011103953A1 (en) 2010-02-24 2011-09-01 Merck Patent Gmbh Fluorine-fluorine associates
DE102010009193B4 (en) 2010-02-24 2022-05-19 MERCK Patent Gesellschaft mit beschränkter Haftung Composition containing fluorine-fluorine associates, processes for their production, their use and organic electronic devices containing them
WO2011110277A1 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Fibers in therapy and cosmetics
WO2011110275A2 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Radiative fibers
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
EP3309236A1 (en) 2010-05-27 2018-04-18 Merck Patent GmbH Compositions comprising quantum dots
WO2011147521A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Down conversion
KR20130129950A (en) * 2010-10-19 2013-11-29 캠브리지 디스플레이 테크놀로지 리미티드 Organic light-emitting device and method
JP2014508394A (en) * 2010-10-19 2014-04-03 ケンブリッジ ディスプレイ テクノロジー リミテッド Organic light emitting device and method
WO2012084114A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
JP2014506003A (en) * 2010-12-23 2014-03-06 メルク パテント ゲーエムベーハー Organic electroluminescence device
DE102010055901A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
US9478762B2 (en) 2010-12-23 2016-10-25 Merck Patent Gmbh Organic electroluminescent device
WO2012163464A1 (en) 2011-06-01 2012-12-06 Merck Patent Gmbh Hybrid ambipolar tfts
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
WO2015014427A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electro-optical device and the use thereof
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
US10323180B2 (en) 2014-12-04 2019-06-18 Guangzhou Chinaray Optoelectronic Materials Ltd. Deuterated organic compound, mixture and composition containing said compound, and organic electronic device
US10573827B2 (en) 2014-12-11 2020-02-25 Guangzhou Chinaray Optoelectronics Materials Ltd. Organic metal complex, and polymer, mixture, composition and organic electronic device containing same and use thereof
WO2016107663A1 (en) 2014-12-30 2016-07-07 Merck Patent Gmbh Formulations and electronic devices
US10364316B2 (en) 2015-01-13 2019-07-30 Guangzhou Chinaray Optoelectronics Materials Ltd. Conjugated polymer containing ethynyl crosslinking group, mixture, formulation, organic electronic device containing the same and application therof
WO2016155866A1 (en) 2015-03-30 2016-10-06 Merck Patent Gmbh Formulation of an organic functional material comprising a siloxane solvent
WO2016198141A1 (en) 2015-06-12 2016-12-15 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for oled formulations
EP3581633A1 (en) 2015-06-12 2019-12-18 Merck Patent GmbH Esters containing non-aromatic cycles as solvents for oled formulations
WO2017036572A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
US11555128B2 (en) 2015-11-12 2023-01-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing composition, electronic device comprising same and preparation method for functional material thin film
WO2017097391A1 (en) 2015-12-10 2017-06-15 Merck Patent Gmbh Formulations containing ketones comprising non-aromatic cycles
WO2017102048A1 (en) 2015-12-15 2017-06-22 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
EP4084109A1 (en) 2015-12-15 2022-11-02 Merck Patent GmbH Esters containing aromatic groups as solvents for organic electronic formulations
WO2017102052A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a solid solvent
WO2017102049A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
WO2017140404A1 (en) 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
WO2017157783A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Receptacle comprising a formulation containing at least one organic semiconductor
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018001928A1 (en) 2016-06-28 2018-01-04 Merck Patent Gmbh Formulation of an organic functional material
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
WO2018077660A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
US11248138B2 (en) 2016-11-23 2022-02-15 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing ink formulations, preparation methods and uses thereof
WO2018095381A1 (en) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 Printing ink composition, preparation method therefor, and uses thereof
WO2018104202A1 (en) 2016-12-06 2018-06-14 Merck Patent Gmbh Preparation process for an electronic device
WO2018108760A1 (en) 2016-12-13 2018-06-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018138318A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2018138319A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic electroluminescence (el) element
WO2018178136A1 (en) 2017-03-31 2018-10-04 Merck Patent Gmbh Printing method for an organic light emitting diode (oled)
WO2018189050A1 (en) 2017-04-10 2018-10-18 Merck Patent Gmbh Formulation of an organic functional material
WO2018202603A1 (en) 2017-05-03 2018-11-08 Merck Patent Gmbh Formulation of an organic functional material
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
WO2019162483A1 (en) 2018-02-26 2019-08-29 Merck Patent Gmbh Formulation of an organic functional material
WO2019238782A1 (en) 2018-06-15 2019-12-19 Merck Patent Gmbh Formulation of an organic functional material
WO2020094538A1 (en) 2018-11-06 2020-05-14 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2021213917A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Emulsions comprising organic functional materials
WO2021213918A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Formulation of an organic functional material
WO2022122607A1 (en) 2020-12-08 2022-06-16 Merck Patent Gmbh An ink system and a method for inkjet printing
WO2022223675A1 (en) 2021-04-23 2022-10-27 Merck Patent Gmbh Formulation of an organic functional material
WO2023057327A1 (en) 2021-10-05 2023-04-13 Merck Patent Gmbh Method for forming an organic element of an electronic device

Also Published As

Publication number Publication date
JP4629643B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4629643B2 (en) Organic light emitting device and display device
JP4574936B2 (en) Phosphorescent compound and phosphorescent composition
US7250226B2 (en) Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
JP5008835B2 (en) Polymer light emitting material and organic light emitting device
KR100543837B1 (en) High-Molecular Compounds and Organic Luminescent Devices
KR101119982B1 (en) Phosphorescent polymer compound and organic light emitting device using the same
JP5496084B2 (en) Charge transporting polymer compound and organic electroluminescence device using the same
JP3546645B2 (en) Polymer fluorescent substance and organic electroluminescent device
KR101187949B1 (en) Triazine ring-containing polymer compound and organic light-emitting device using the polymer compound
JP4780696B2 (en) Phosphorescent polymer compound and organic light emitting device using the same
TW201431853A (en) Electron transmission material and organic light-emitting element
JP2003321546A (en) Phosphorescent polymer compound and light-emitting material and organic el element using the same
JP2004292423A (en) Iridium (iii) complex and organic electroluminescent element including the same
KR20060113881A (en) Material for organic electroluminescent element and organic electroluminescent element employing the same
JP2011001553A (en) Phosphorescent compound, phosphorescent composition, organic light-emitting element and display
TW200916474A (en) Phosphorescent polymer compounds and organic electroluminescent devices manufactured therewith
JP3817957B2 (en) Organic fluorescent material and organic electroluminescence device
JP2005029785A (en) High-molecular copolymer containing metal coordination compound and organic electroluminescent element using the same
JP2005029782A (en) High-molecular copolymer containing metal coordination compound and organic electroluminescent element using the same
JP4380431B2 (en) Polymer copolymer containing metal coordination compound and organic electroluminescence device using the same
JP4924784B2 (en) Electron transport material and organic light emitting device using the electron transport material
JP3951316B2 (en) Polymer phosphor thin film, method for producing the same, and organic electroluminescence device
JP2004339432A (en) N-phenyl carbazole derivative polymer, organic light emitting device and organic light emitting unit
JP2006249229A (en) Polymer having luminous unit emitting light after change in chemical structure and organic electroluminescent element using the same
JP7102299B2 (en) Organic electroluminescence elements, display devices, and lighting devices

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees