JP2004292423A - Iridium (iii) complex and organic electroluminescent element including the same - Google Patents

Iridium (iii) complex and organic electroluminescent element including the same Download PDF

Info

Publication number
JP2004292423A
JP2004292423A JP2003304413A JP2003304413A JP2004292423A JP 2004292423 A JP2004292423 A JP 2004292423A JP 2003304413 A JP2003304413 A JP 2003304413A JP 2003304413 A JP2003304413 A JP 2003304413A JP 2004292423 A JP2004292423 A JP 2004292423A
Authority
JP
Japan
Prior art keywords
iridium
organic
iii
complex
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003304413A
Other languages
Japanese (ja)
Inventor
Miya Sakurai
美弥 桜井
Yoshitomo Yonehara
祥友 米原
Tomoaki Hara
智章 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2003304413A priority Critical patent/JP2004292423A/en
Publication of JP2004292423A publication Critical patent/JP2004292423A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new iridium (III) complex that has high luminous efficiency and gives a luminous layer through the wet film formation method resistant to concentration quenching, and to provide a phosphorescent organic EL element having the luminous layer. <P>SOLUTION: The iridium (III) complex is represented by the formula (wherein Y is a bidentate; R is H or a 1-10C alkoxy where at least one of R is an alkoxy; (n) is an integer of 3-8). The organic EL element includes the iridium (III) complex in the luminous layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は新規なイリジウム(III)錯体に関し、更に、該イリジウム(III)錯体の燐光を利用した有機エレクトロルミネッセンス素子に関するものである。   The present invention relates to a novel iridium (III) complex, and further relates to an organic electroluminescence device utilizing the phosphorescence of the iridium (III) complex.

近年、モバイルコンピュータ、携帯電話、PDA等の携帯情報端末用表示素子の需要が増し、表示素子の軽量化、低消費電力化が望まれている。
自己発光型の有機エレクトロルミネッセンス素子(以下、「有機EL素子」と略す。)は、バックライトを必要とせず、素子の薄型化や軽量化が可能であることや、低駆動電圧で高輝度の発光が得られることから、ブラウン管型表示装置や液晶表示素子等の既存の表示素子に代わる次世代表示メディアとして、研究が進められている。特に最近では、赤色、青色、緑色の有機EL素子を、フルカラーディスプレイへ適用することが検討されている。
In recent years, the demand for display elements for portable information terminals such as mobile computers, mobile phones, PDAs and the like has been increasing, and there is a demand for lighter and lower power consumption display elements.
A self-luminous organic electroluminescent element (hereinafter, abbreviated as “organic EL element”) does not require a backlight, can be made thinner and lighter, and has a low driving voltage and high luminance. Since light emission can be obtained, research is being conducted as a next-generation display medium that replaces existing display elements such as a cathode ray tube display device and a liquid crystal display element. Particularly recently, application of red, blue, and green organic EL elements to a full-color display has been studied.

有機EL素子は、一般に、正電極層、発光物質を含有する発光層、および負電極層が、順に積層した構造からなる。正、負両電極層間に電圧を印加すると、前記発光層に、負電極層から電子が、正電極層から正孔が注入される。注入された電子と正孔は、発光物質中において再結合し、発光物質は励起子を生成する。この励起子が基底状態に失活する際に発光がおこる。   The organic EL element generally has a structure in which a positive electrode layer, a light emitting layer containing a light emitting substance, and a negative electrode layer are sequentially stacked. When a voltage is applied between the positive and negative electrode layers, electrons are injected from the negative electrode layer and holes are injected from the positive electrode layer into the light emitting layer. The injected electrons and holes recombine in the luminescent material, and the luminescent material generates excitons. Light emission occurs when the exciton is deactivated to the ground state.

発光物質としては一重項励起子が発光する蛍光性化合物と、三重項励起子が発光する燐光性化合物が知られている。現在、有機EL素子用の発光物質として最もよく使用されているのは、熱に安定な蛍光性化合物である。しかし、蛍光性化合物を利用した有機EL素子の理論上の発光効率は最大5%と非常に低い。これに対し、燐光性化合物を利用した有機EL素子の理論上の発光効率は最大20%である。このことから、燐光性化合物を利用した有機EL素子は、蛍光性化合物を利用した有機EL素子の4倍の発光効率を示すことが期待できる。
しかし、従来知られている燐光性化合物は、三重項励起子が熱的に不安定であり、室温で発光させることが困難であった。従って、室温で発光させることのできる燐光性化合物を使用した有機EL素子が望まれている。
As the light-emitting substance, a fluorescent compound emitting singlet excitons and a phosphorescent compound emitting triplet excitons are known. At present, a fluorescent compound that is stable to heat is most frequently used as a luminescent material for an organic EL device. However, the theoretical luminous efficiency of an organic EL device using a fluorescent compound is extremely low at a maximum of 5%. On the other hand, the theoretical luminous efficiency of an organic EL device using a phosphorescent compound is up to 20%. From this, it can be expected that an organic EL device using a phosphorescent compound exhibits luminous efficiency four times that of an organic EL device using a fluorescent compound.
However, in the conventionally known phosphorescent compounds, triplet excitons are thermally unstable, and it is difficult to emit light at room temperature. Therefore, an organic EL device using a phosphorescent compound that can emit light at room temperature is desired.

室温で発光する燐光性化合物として、イリジウム(III)トリス(2−フェニルピリジン)錯体(以下、「Ir(ppy)」と略す。)が知られており、Ir(ppy)と、正孔輸送材料である4,4'−N,N'−ジカルバゾール−ビフェニルとの混合物を、電極層上に共蒸着させて得た発光層を有する有機EL素子が知られている(例えば、特許文献1参照。)。これは、発光効率が8%と、蛍光性化合物を発光物質として使用した有機EL素子と比べ、高い発光効率を示す。しかし、該有機EL素子は、発光層を共蒸着法で作製しているので、製造効率が低いといった問題があった。また発光層中のIr(ppy)濃度を高くすると多量体を形成し、三重項励起子が発光せずに失活するため、発光効率が低下する(以下、これを「濃度消光」と略す。)問題があった。 As a phosphorescent compound that emits light at room temperature, an iridium (III) tris (2-phenylpyridine) complex (hereinafter abbreviated as “Ir (ppy) 3 ”) is known, and Ir (ppy) 3 and a hole 2. Description of the Related Art An organic EL device having a light-emitting layer obtained by co-evaporating a mixture with 4,4′-N, N′-dicarbazole-biphenyl as a transport material on an electrode layer is known (for example, Patent Document 1). 1). This has a luminous efficiency of 8%, which is higher than that of an organic EL device using a fluorescent compound as a luminescent substance. However, the organic EL device has a problem that the manufacturing efficiency is low because the light emitting layer is manufactured by a co-evaporation method. When the concentration of Ir (ppy) 3 in the light emitting layer is increased, a multimer is formed, and the triplet exciton is deactivated without emitting light, so that the luminous efficiency is reduced (hereinafter, this is abbreviated as “concentration quenching”). .) There was a problem.

一方、置換基として芳香族基を有するIr(ppy)は、多量体形成による濃度消光がある程度抑制でき高い発光効率を示すが(例えば、特許文献2参照。)、該化合物もIr(ppy)同様に、蒸着により成膜する必要があるため、製造効率が低いという問題を有する。 On the other hand, Ir (ppy) 3 having an aromatic group as a substituent exhibits high luminous efficiency because concentration quenching due to formation of a multimer can be suppressed to some extent (for example, see Patent Document 2), but the compound is also Ir (ppy). 3 Similarly, it is necessary to be formed by vapor deposition, has a problem of low manufacturing efficiency.

これに対し、Ir(ppy)を、正孔輸送材料であるポリパラフェニレンに、該錯体が多量体を形成しない、即ち濃度消光が起こらない濃度以下となるようにドーピングし、これを正電極層上に印刷法等の湿式製膜法で発光層を得る方法が知られている(例えば、非特許文献1参照。)。高分子の正孔輸送材料にIr(ppy)をドーピングすることで、製造効率の高い湿式製膜法で発光層を作製することを可能とした。しかしこの方法で得られた有機EL素子は、正電極層からポリパラフェニレンに注入される正孔の、Ir(ppy)に輸送される確率、即ち正孔輸送効率が低いといった問題があった。また、Ir(ppy)の結晶性が高いため、Ir(ppy)を高濃度にドーピングできず、得られる有機EL素子の発光効率に限界があった。 On the other hand, Ir (ppy) 3 is doped into polyparaphenylene, which is a hole transporting material, so that the complex does not form a multimer, that is, the concentration does not cause concentration quenching. A method for obtaining a light emitting layer on a layer by a wet film forming method such as a printing method is known (for example, see Non-Patent Document 1). By doping Ir (ppy) 3 into a polymer hole transporting material, a light emitting layer can be manufactured by a wet film forming method with high manufacturing efficiency. However, the organic EL device obtained by this method has a problem that the probability of holes injected from the positive electrode layer into polyparaphenylene being transported to Ir (ppy) 3 , that is, the hole transport efficiency is low. . In addition, since Ir (ppy) 3 has high crystallinity, Ir (ppy) 3 cannot be doped at a high concentration, and the luminous efficiency of the obtained organic EL device is limited.

一方、湿式製膜が可能な燐光性化合物として、主鎖または側鎖に3重項励起状態からの発光を示す金属錯体構造を有する、ポリスチレン換算の数平均分子量が10〜10の高分子発光体が知られている(例えば、特許文献3参照。)。該高分子発光体は、1〜5個のハロゲン原子等を有する金属錯体と、2個のハロゲン原子等を有するモノマーとを共重合することにより製造される。該高分子発光体は、モノマーとして芳香族化合物を使用することにより正孔輸送性を示すため、分子内で金属錯体への正孔輸送が可能となり高い発光効率を示しうる。更に、製膜性を有する高分子中に燐光発光性の金属錯体ユニットを導入しているため、結晶性が低下し湿式製膜が可能となる。
しかし、該高分子発光体は、金属錯体由来の燐光を発光させるために1分子中に導入する金属錯体濃度を高くする必要があるが、金属錯体濃度を高くすると、金属錯体ユニットが高分子中の分岐点となるために結晶性が増し、溶剤への溶解性が低下することになる。更に、金属錯体ユニット同士が重合し隣接するため、分子内での濃度消光が起こりうる。
一方、溶解性の低下および結晶化を抑制するために金属錯体濃度を低くすると、該高分子発光体の主鎖を形成する正孔輸送性ユニットの蛍光が主発光となるため、高発光効率の高分子発光体を得ることができない。
On the other hand, as a phosphorescent compound capable of wet film formation, a polymer having a metal complex structure exhibiting light emission from a triplet excited state in a main chain or a side chain and having a polystyrene equivalent number average molecular weight of 10 3 to 10 8 . A luminous body is known (for example, see Patent Document 3). The polymer luminous body is manufactured by copolymerizing a metal complex having 1 to 5 halogen atoms or the like and a monomer having 2 halogen atoms or the like. The polymer light-emitting material exhibits a hole-transporting property by using an aromatic compound as a monomer, and thus can transport holes in a molecule to a metal complex, thereby exhibiting high luminous efficiency. Furthermore, since a phosphorescent metal complex unit is introduced into a polymer having film forming properties, crystallinity is reduced and wet film forming is possible.
However, in the polymer luminescent material, it is necessary to increase the concentration of the metal complex introduced into one molecule in order to emit phosphorescence derived from the metal complex. , The crystallinity increases, and the solubility in a solvent decreases. Further, since the metal complex units are polymerized and adjacent to each other, concentration quenching in the molecule may occur.
On the other hand, when the concentration of the metal complex is reduced to suppress the decrease in solubility and crystallization, the fluorescence of the hole transporting unit forming the main chain of the polymer light-emitting material becomes the main light emission, so that the high luminous efficiency is reduced. A high molecular light emitter cannot be obtained.

国際公開第00/70655号パンフレットInternational Publication No. 00/70655 pamphlet 特開2002−332291号公報JP-A-2002-332291 特開2003−171659号公報JP 2003-171659 A 「アプライド・フィジックス・レター」,2002年3月,第80号(2002年)2045−2047Applied Physics Letter, March 2002, No. 80 (2002) 2045-2047.

本発明が解決しようとする課題は、湿式製膜法で製膜が可能で、発光効率が高く、且つ、濃度消光が起きにくい発光層を与える新規イリジウム(III)錯体、該発光層を有する燐光性有機EL素子を提供することにある。   The problem to be solved by the present invention is to provide a novel iridium (III) complex which can form a film by a wet film forming method, has high luminous efficiency, and provides a light emitting layer in which concentration quenching hardly occurs, and phosphorescence having the light emitting layer To provide a transparent organic EL element.

本発明者らは、上記の課題を解決する手段として、以下の2つの手段を用いることで、課題を解決した。即ち、ポリパラフェニレン基をIr(ppy)のフェニル基に導入することで、分子内及び分子間での正孔輸送を効率化し、正電極層から注入された正孔をイリジウム(III)錯体へ効率良く輸送させ、電子と正孔がイリジウム(III)錯体中で再結合する確率を上げ、イリジウム(III)錯体の発光効率を高めた。更に、ポリパラフェニレン基をIr(ppy)のフェニル基に導入し、イリジウム(III)錯体間の相互作用を抑えることで、濃度消光を低減させ、発光層中のイリジウム(III)錯体の濃度を上げることができるようにした。 The present inventors have solved the problem by using the following two means as means for solving the above problem. That is, by introducing a polyparaphenylene group into the phenyl group of Ir (ppy) 3 , the efficiency of hole transport between molecules and between molecules is increased, and holes injected from the positive electrode layer are converted into iridium (III) complex. The efficiency of the iridium (III) complex was increased by increasing the probability that electrons and holes would recombine in the iridium (III) complex. Furthermore, by introducing a polyparaphenylene group into the phenyl group of Ir (ppy) 3 to suppress the interaction between the iridium (III) complexes, the concentration quenching is reduced, and the concentration of the iridium (III) complex in the light emitting layer is reduced. Can be raised.

また、前記ポリパラフェニレン基に置換基としてアルコキシ基を導入し、かつ、フェニレン基の数を3〜8とし、より溶媒へ溶けやすくすることで、湿式製膜を可能とした。   In addition, an alkoxy group was introduced as a substituent into the polyparaphenylene group, and the number of phenylene groups was set to 3 to 8 to make the polyparaphenylene group more soluble in a solvent, thereby enabling a wet film formation.

すなわち本発明は、一般式(1)で表されるイリジウム(III)錯体を提供する。   That is, the present invention provides an iridium (III) complex represented by the general formula (1).

Figure 2004292423
(1)
Figure 2004292423
(1)

(式中、Yは二座配位子を表し、Rは水素原子又は炭素原子数1〜10のアルコキシ基を表し、少なくとも一方はアルコキシ基を表す。nは3〜8の整数を表す。) (In the formula, Y represents a bidentate ligand, R represents a hydrogen atom or an alkoxy group having 1 to 10 carbon atoms, at least one of which represents an alkoxy group, and n represents an integer of 3 to 8.)

また、本発明は、発光層が前記記載のイリジウム(III)錯体を含有する燐光性の有機EL素子を提供する。   The present invention also provides a phosphorescent organic EL device in which the light-emitting layer contains the iridium (III) complex described above.

本発明の有機EL素子は、正孔輸送材料であるポリパラフェニレン基を導入した本発明のイリジウム(III)錯体を使用しているので、正電極層から注入された正孔を、イリジウム(III)錯体へ効率良く輸送させることができる。電子と正孔とがイリジウム(III)錯体中で再結合する確率が上がるので、高い発光効率が得られる。   Since the organic EL device of the present invention uses the iridium (III) complex of the present invention into which a polyparaphenylene group, which is a hole transport material, is introduced, the holes injected from the positive electrode layer are converted to iridium (III). ) It can be efficiently transported to the complex. Since the probability that electrons and holes recombine in the iridium (III) complex increases, high luminous efficiency can be obtained.

また、本発明のイリジウム(III)錯体は、アルコキシ基で置換されたポリパラフェニレン基を導入しているため、溶剤に対する溶解性が高く、製膜時に結晶化が起こらない。従って、発光層を湿式製膜法で容易に形成することができる。また、アルコキシ基で置換されたかさ高いポリパラフェニレン基を導入し、イリジウム(III)錯体間の相互作用を低下させているため、多量体が生成しにくい。その結果、発光層中の本発明のイリジウム(III)錯体濃度を高くしても濃度消光が起きにくいため、発光層中の本発明のイリジウム(III)錯体の濃度を高くすることができ、高い輝度の有機EL素子が得られる。   Further, the iridium (III) complex of the present invention has a high solubility in a solvent because a polyparaphenylene group substituted with an alkoxy group is introduced, and does not crystallize during film formation. Therefore, the light emitting layer can be easily formed by a wet film forming method. In addition, since a bulky polyparaphenylene group substituted with an alkoxy group is introduced to reduce the interaction between the iridium (III) complexes, a polymer is not easily generated. As a result, even when the concentration of the iridium (III) complex of the present invention in the light emitting layer is increased, concentration quenching does not easily occur, so that the concentration of the iridium (III) complex of the present invention in the light emitting layer can be increased. An organic EL device having luminance can be obtained.

本発明においてイリジウム(III)錯体とは、配位数が6のイリジウムの錯体を表す。
一般式(1)において、ポリパラフェニレン基の置換位置としては、2−フェニルピリジンのフェニル基の2位、3位または4位が好ましく、4位が最も好ましい。またポリパラフェニレン基の置換フェニレン基の数nは3〜8が好ましい。nが3より少ないと、ポリパラフェニレン基の正孔輸送性が十分発現せず、nが8より多いと、ポリパラフェニレン基自身も蛍光を発するため、燐光発光効率が低下する問題や、有機EL素子の発光が混色するため、色純度が低下する問題が生じる。そのため、溶媒に対する溶解性と燐光の発光効率のバランスから、nは3〜4であることがさらに好ましく、3であることが最も好ましい。
In the present invention, the iridium (III) complex refers to an iridium complex having a coordination number of 6.
In the general formula (1), the substitution position of the polyparaphenylene group is preferably the 2-, 3- or 4-position of the phenyl group of 2-phenylpyridine, and most preferably the 4-position. The number n of the substituted phenylene groups in the polyparaphenylene group is preferably 3 to 8. When n is less than 3, the hole transport property of the polyparaphenylene group is not sufficiently exhibited, and when n is more than 8, the polyparaphenylene group itself also emits fluorescence, so that the phosphorescent light emitting efficiency is reduced. Since the light emission of the EL element is mixed, there is a problem that the color purity is reduced. Therefore, n is more preferably 3 to 4, and most preferably 3, from the balance between the solubility in a solvent and the efficiency of phosphorescence emission.

また、ポリパラフェニレン基は、置換基としてRで表される炭素数1〜10のアルコキシ基を有する。ポリパラフェニレン基の置換基としてはアルキル基やシアノ基も知られているが、置換基Rがアルキル基やシアノ基の場合、アルコキシ基に比べイリジウム(III)錯体の溶解性を高める効果が低く、このため置換数を増やす必要がある。その結果、ポリパラフェニレン基の正孔輸送性が低下し、得られるイリジウム(III)錯体の発光効率が低下してしまう。従って、置換基Rはアルコキシ基が最も好ましい。アルコキシ基の中でもエトキシ基、プロポキシ基、ブトキシ基、ペンチロキシ基、ヘキシロキシ基が好ましい。アルコキシ基の炭素数が多すぎると、ポリパラフェニレン基の正孔輸送性が低下するため、得られるイリジウム(III)錯体の発光効率が低下する傾向にある。上記のアルコキシ基の中でも、溶解性と発光効率とのバランスから、ブトキシ基が最も好ましい。   Further, the polyparaphenylene group has a C1 to C10 alkoxy group represented by R as a substituent. As a substituent of the polyparaphenylene group, an alkyl group or a cyano group is also known. However, when the substituent R is an alkyl group or a cyano group, the effect of enhancing the solubility of the iridium (III) complex is lower than that of the alkoxy group. Therefore, it is necessary to increase the number of replacements. As a result, the hole transporting property of the polyparaphenylene group decreases, and the luminous efficiency of the obtained iridium (III) complex decreases. Therefore, the substituent R is most preferably an alkoxy group. Among the alkoxy groups, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group and a hexyloxy group are preferred. If the carbon number of the alkoxy group is too large, the hole transporting property of the polyparaphenylene group is reduced, so that the luminous efficiency of the obtained iridium (III) complex tends to decrease. Among the above-mentioned alkoxy groups, a butoxy group is most preferable from the balance between solubility and luminous efficiency.

上記のアルコキシ基は、フェニレン基1分子あたり2置換されていることが好ましい。アルコキシ基の置換位置に特に制限はないが、製造の容易さから1,4−フェニレン基の2位および5位が置換されていることが好ましい。   It is preferable that the above-mentioned alkoxy group is substituted by two per molecule of the phenylene group. The substitution position of the alkoxy group is not particularly limited, but it is preferable that the 2-position and the 5-position of the 1,4-phenylene group are substituted for ease of production.

一般式(1)においてYは二座配位子を表す。二座配位子としては、例えば、2−フェニルピリジン、一般式(2)で表される配位子、   In the general formula (1), Y represents a bidentate ligand. Examples of the bidentate ligand include 2-phenylpyridine, a ligand represented by the general formula (2),

Figure 2004292423
(2)
Figure 2004292423
(2)

(式中、Rは水素原子又は炭素原子数1〜10のアルコキシ基を表し、少なくとも一方はアルコキシ基を表す、nは3〜8の整数を表す。) (In the formula, R represents a hydrogen atom or an alkoxy group having 1 to 10 carbon atoms, at least one of which represents an alkoxy group, and n represents an integer of 3 to 8.)

化学式(3)で表される2−(2−ベンゾチエニル)ピリジン、 2- (2-benzothienyl) pyridine represented by the chemical formula (3),

Figure 2004292423
(3)
Figure 2004292423
(3)

2−フェニルキノリン、2−チエニルキノリン、ピコリン酸、アセチルアセトン等があげられる。中でも、Yが前記一般式(2)で表される配位子であるイリジウム(III)錯体、即ち一般式(2)で表される配位子をすべての配位子に有するイリジウム(III)錯体は、発光色が緑色であり、また、Yが一般式(3)で表される2−(2−ベンゾチエニル)ピリジンであるイリジウム(III)錯体は、発光色が赤色となり、好ましい。   2-phenylquinoline, 2-thienylquinoline, picolinic acid, acetylacetone and the like. Among them, iridium (III) complex in which Y is a ligand represented by the general formula (2), that is, iridium (III) having a ligand represented by the general formula (2) in all ligands The complex emits green light, and the iridium (III) complex in which Y is 2- (2-benzothienyl) pyridine represented by the general formula (3) emits red light, which is preferable.

本発明において、前記ポリパラフェニレン基は正孔を輸送させる役割を有する。該ポリパラフェニレン基はイリジウム(III)錯体に結合しているので、該ポリパラフェニレン基は、正電極層から受け取った正孔を発光物質であるイリジウム(III)錯体に分子内でも輸送することができる。分子内及び分子間で正孔を輸送することができるので、輸送効率が高く、そのため、得られる有機EL素子は高い発光効率を示す。   In the present invention, the polyparaphenylene group has a role of transporting holes. Since the polyparaphenylene group is bonded to the iridium (III) complex, the polyparaphenylene group transports holes received from the positive electrode layer to the iridium (III) complex, which is a luminescent substance, even in the molecule. Can be. Since holes can be transported within and between molecules, the transport efficiency is high, and thus the obtained organic EL device exhibits high luminous efficiency.

また、ポリパラフェニレン基が置換基としてアルコキシ基を有するので、本発明のイリジウム(III)錯体は、溶剤に対する溶解性が高く、製膜時の結晶性が低い。従って、湿式製膜法による発光層の形成により適し、得られる発光層の結晶化を抑制することができる。
更に、ポリパラフェニレン基が置換基としてアルコキシ基を有し、かさ高さが増しているため、本発明のイリジウム(III)錯体は分子間での多量体を形成しにくく、濃度消光が起きにくい。
Further, since the polyparaphenylene group has an alkoxy group as a substituent, the iridium (III) complex of the present invention has high solubility in a solvent and low crystallinity during film formation. Therefore, it is more suitable for forming a light emitting layer by a wet film forming method, and crystallization of the obtained light emitting layer can be suppressed.
Furthermore, since the polyparaphenylene group has an alkoxy group as a substituent and is bulky, the iridium (III) complex of the present invention hardly forms a multimer between molecules, and concentration quenching hardly occurs. .

本発明のイリジウム(III)錯体としては、例えば、式(4)または式(5)の化合物が挙げられる。   Examples of the iridium (III) complex of the present invention include a compound of the formula (4) or the formula (5).

Figure 2004292423

(4)
(式中、nは3〜8の整数を表す。)
Figure 2004292423

(4)
(In the formula, n represents an integer of 3 to 8.)

Figure 2004292423

(5)
(式中、nは3〜8の整数を表す。)
Figure 2004292423

(5)
(In the formula, n represents an integer of 3 to 8.)

式(4)で表されるイリジウム(III)錯体は、例えば、イノーガニック・ケミストリー、第30巻、第1685頁(1991年)等に記載の公知慣用の方法で合成することができる。具体的には、ポリパラフェニレン基を有する2−フェニルピリジンとイリジウム(III)化合物とを、不活性ガス気流下で加熱攪拌するだけで、容易に得られる。   The iridium (III) complex represented by the formula (4) can be synthesized by a known and commonly used method described in, for example, Inoganic Chemistry, Vol. 30, p. 1685 (1991). Specifically, 2-phenylpyridine having a polyparaphenylene group and an iridium (III) compound can be easily obtained by simply heating and stirring under an inert gas stream.

ポリパラフェニレン基を有する2−フェニルピリジンとイリジウム(III)化合物との反応には、溶媒を使用してもよい。溶媒としては、例えば、水、グリセリン、エトキシエタノール等が挙げられる。また必要に応じて、トリフルオロ酢酸銀、トリフルオロメタンスルホン酸銀等の触媒を使用しても良い。反応温度は、室温〜250℃の範囲であれば差し支えない。
ポリパラフェニレン基を有する2−フェニルピリジンは、イリジウム(III)化合物1molに対し、3〜10mol反応させることが好ましい。
A solvent may be used for the reaction between 2-phenylpyridine having a polyparaphenylene group and the iridium (III) compound. Examples of the solvent include water, glycerin, ethoxyethanol and the like. If necessary, a catalyst such as silver trifluoroacetate or silver trifluoromethanesulfonate may be used. The reaction temperature may be within the range of room temperature to 250 ° C.
It is preferable to react 3 to 10 mol of 2-phenylpyridine having a polyparaphenylene group with respect to 1 mol of the iridium (III) compound.

式(5)で表されるイリジウム(III)錯体は、例えば、国際公開第01/41512号パンフレットや、「ジャーナル・オブ・アメリカン・ケミカル・ソサイアティ (Journal of American Chemical Society)」,2001年,第123号,p.4304等に記載の方法により、下記反応式で合成することができる。   The iridium (III) complex represented by the formula (5) is described in, for example, WO 01/41512 pamphlet or "Journal of American Chemical Society", 2001, No. 123, p. The compound can be synthesized by the following reaction formula by the method described in 4304 and the like.

Figure 2004292423
Figure 2004292423

(式中、Rは水素原子又は炭素原子数1〜10のアルコキシ基を表し、少なくとも一方はアルコキシ基を表す、nは3〜8の整数を表す。) (In the formula, R represents a hydrogen atom or an alkoxy group having 1 to 10 carbon atoms, at least one of which represents an alkoxy group, and n represents an integer of 3 to 8.)

具体的には、ポリパラフェニレン基を有する2−フェニルピリジンとイリジウム(III)化合物とを、水、2−エトキシエタノール、あるいはグリセリン等の溶剤中で、窒素、アルゴン等の不活性ガス気流下50〜230℃の範囲内で攪拌し、橋かけ構造のイリジウムダイマーを得る。次に、該イリジウムダイマーと、2−(2−ベンゾチエニル)ピリジンと、炭酸ナトリウム、ナトリウムメトキシド等のアルカリとを、1,2−ジクロロエタン、エタノール、あるいは2−エトキシエタノール等の溶剤中で、窒素、アルゴン等の不活性ガス気流下50℃〜還流温度の範囲内で反応させて得られる。   Specifically, 2-phenylpyridine having a polyparaphenylene group and an iridium (III) compound are mixed in a solvent such as water, 2-ethoxyethanol or glycerin under an inert gas stream such as nitrogen or argon. Stirring is performed within the range of 230230 ° C. to obtain a bridged iridium dimer. Next, the iridium dimer, 2- (2-benzothienyl) pyridine, and an alkali such as sodium carbonate and sodium methoxide are mixed in a solvent such as 1,2-dichloroethane, ethanol, or 2-ethoxyethanol. It is obtained by reacting under a flow of an inert gas such as nitrogen or argon within a range of 50 ° C. to a reflux temperature.

ポリパラフェニレン基を有する2−フェニルピリジンは、2−(ハロゲン化フェニル)ピリジンと、ポリパラフェニレン誘導体のホウ酸化合物とを、テトラヒドロフラン、トルエン、アセトン等の溶剤中で、テトラキス(トリフェニルホスフィン)パラジウム(0)やトリス(ジベンジリデンアセトン)ジパラジウム(0)等の金属触媒下、室温から還流温度の範囲内でカップリング反応させて得られる。   2-Phenylpyridine having a polyparaphenylene group is obtained by converting 2- (halogenated phenyl) pyridine and a boric acid compound of a polyparaphenylene derivative into tetrakis (triphenylphosphine) in a solvent such as tetrahydrofuran, toluene, or acetone. It is obtained by performing a coupling reaction in the range of room temperature to reflux temperature under a metal catalyst such as palladium (0) or tris (dibenzylideneacetone) dipalladium (0).

2−(ハロゲン化フェニル)ピリジンの例としては、2−(4−ブロモフェニル)ピリジン、2−(4−クロロフェニル)ピリジン、2−(3−ブロモフェニル)ピリジン、2−(3−クロロフェニル)ピリジン、2−(2−ブロモフェニル)ピリジン、2−(2−クロロフェニル)ピリジン等が挙げられる。
中でも、2−(4−ブロモフェニル)ピリジン、又は2−(4−クロロフェニル)ピリジンから得られる配位子からなるイリジウム(III)錯体が好ましい。
Examples of 2- (halogenated phenyl) pyridine include 2- (4-bromophenyl) pyridine, 2- (4-chlorophenyl) pyridine, 2- (3-bromophenyl) pyridine, and 2- (3-chlorophenyl) pyridine. , 2- (2-bromophenyl) pyridine, 2- (2-chlorophenyl) pyridine and the like.
Among them, 2- (4-bromophenyl) pyridine or an iridium (III) complex comprising a ligand obtained from 2- (4-chlorophenyl) pyridine is preferable.

ポリパラフェニレン誘導体のホウ酸化合物は、例えば、2,5−ジブトキシ−4−ブロモフェニルホウ酸をカップリング反応させて得られたブトキシ基を置換基に有するポリパラフェニレン基を有するホウ酸化合物が挙げられる。   The boric acid compound of the polyparaphenylene derivative is, for example, a boric acid compound having a polyparaphenylene group having a butoxy group as a substituent obtained by coupling reaction of 2,5-dibutoxy-4-bromophenylboric acid. No.

前記イリジウム(III)化合物としては、例えば、イリジウム(III)トリクロリドおよびその水和物、イリジウム(III)トリアセチルアセトナート、カリウムヘキサクロロイリデート(III)等が使用できる。   As the iridium (III) compound, for example, iridium (III) trichloride and its hydrate, iridium (III) triacetylacetonate, potassium hexachloroiridate (III) and the like can be used.

次に、本発明の有機EL素子およびその製造方法の一例について説明する。
本発明のイリジウム(III)錯体を含有する発光層は、透明基板上に形成された正電極層上に形成される。該基板は、電極層や発光層を形成する際に変質しない透明材料であればよく、例えば、ガラスや高分子フィルム等が挙げられる。高分子フィルムとしては、ポリエチレンテレフタレート、ポリカーボネート、ポリシクロオレフィン、ポリエーテルスルホン等の透明材料を、酸化珪素や窒化珪素等でガスバリアコートしたフィルムを使用することができる。
Next, an example of the organic EL device of the present invention and a method of manufacturing the same will be described.
The light emitting layer containing the iridium (III) complex of the present invention is formed on a positive electrode layer formed on a transparent substrate. The substrate may be a transparent material that does not deteriorate when the electrode layer or the light emitting layer is formed, and examples thereof include glass and a polymer film. As the polymer film, a film in which a transparent material such as polyethylene terephthalate, polycarbonate, polycycloolefin, polyether sulfone, or the like is gas-barrier-coated with silicon oxide, silicon nitride, or the like can be used.

前記透明な正電極層は、インジウムスズオキシド(以下、「ITO」と略す。)等を基板上にスパッタリングや真空蒸着したり、あるいは、ITO微粒子の懸濁液を塗布し、該微粒子を焼結させて得られる。また、電極表面に、紫外線−オゾン処理、酸素雰囲気下のプラズマ処理等の表面処理を施すと、得られる有機EL素子の駆動電圧の低下を防ぎ、発光効率が向上する効果が得られる。
正電極層の膜厚は、10nm〜5μmの範囲であると、光が透過しやすい。中でも、膜厚が20nm〜1μmの範囲が好ましい。
The transparent positive electrode layer is formed by sputtering or vacuum depositing indium tin oxide (hereinafter abbreviated as “ITO”) on a substrate or applying a suspension of ITO fine particles and sintering the fine particles. It is obtained. Further, when the surface of the electrode is subjected to a surface treatment such as an ultraviolet-ozone treatment and a plasma treatment in an oxygen atmosphere, the driving voltage of the obtained organic EL element is prevented from lowering, and the effect of improving the luminous efficiency is obtained.
When the thickness of the positive electrode layer is in the range of 10 nm to 5 μm, light is easily transmitted. Among them, the thickness is preferably in the range of 20 nm to 1 μm.

前記基板に設けた正電極層上に、本発明のイリジウム(III)錯体を含有する発光層を形成する。該発光層は、本発明のイリジウム(III)錯体の有機溶剤溶液を、スプレイコーティング、スピンコーティング、ディップコーティングなどのコーティング法、グラビア印刷、フレキソ印刷、スクリーン印刷などの印刷法、又はインクジェット法等によってコーティング又は印刷後、乾燥して得られる。乾燥方法に特に制限はない。また、本発明のイリジウム(III)錯体の有機溶剤溶液の粘度を調整するため、高分子材料を含有させても良い。このとき混合する高分子材料は、素子の性能を落とさないように、電荷輸送能を有するものが好ましい。高分子材料としては、例えば、溶剤可溶としたポリフェニレン、ポリフルオレン、ポリチオフェン、ポリフェニレンビニレン、ポリビニルカルバゾール、ポリピロール、ポリアセチレン、ポリアニリン、ポリオキサジアゾール等があげられる。特に溶剤可溶としたポリパラフェニレン、ポリビニルカルバゾールが好ましい。
本発明のイリジウム(III)錯体と前記高分子材料との混合比は、発光層中のイリジウム(III)原子濃度が、少なくとも0.2%以上となるようにする。具体的には、2:98〜99:1の範囲が好ましく、更に好ましくは4:96〜90:10の範囲である。
発光層の膜厚は特に限定はないが、乾燥後1nm〜1μmとした場合に、高い発光効率が得られる。中でも、膜厚が10nm〜500nmとなるように作製することが好ましい。
A light emitting layer containing the iridium (III) complex of the present invention is formed on the positive electrode layer provided on the substrate. The light-emitting layer is formed by applying an organic solvent solution of the iridium (III) complex of the present invention to a coating method such as spray coating, spin coating, or dip coating, a printing method such as gravure printing, flexographic printing, or screen printing, or an inkjet method. It is obtained by drying after coating or printing. There is no particular limitation on the drying method. Further, in order to adjust the viscosity of the organic solvent solution of the iridium (III) complex of the present invention, a polymer material may be contained. The polymer material to be mixed at this time preferably has a charge transporting property so as not to deteriorate the performance of the device. Examples of the polymer material include solvent-soluble polyphenylene, polyfluorene, polythiophene, polyphenylenevinylene, polyvinylcarbazole, polypyrrole, polyacetylene, polyaniline, and polyoxadiazole. Particularly, polyparaphenylene and polyvinyl carbazole which are made soluble in a solvent are preferable.
The mixing ratio between the iridium (III) complex of the present invention and the polymer material is such that the iridium (III) atom concentration in the light emitting layer is at least 0.2% or more. Specifically, it is preferably in the range of 2:98 to 99: 1, and more preferably in the range of 4:96 to 90:10.
The thickness of the light emitting layer is not particularly limited, but high luminous efficiency is obtained when the thickness is 1 nm to 1 μm after drying. In particular, it is preferable to manufacture the film so that the film thickness is 10 nm to 500 nm.

前記有機溶剤としては、本発明のイリジウム(III)錯体を溶解することができれば、いずれの有機溶剤でも使用できるが、有機溶剤の揮発速度が速いと本発明のイリジウム(III)錯体の有機溶剤溶液の粘度上昇が起こることや、使用する印刷版に本発明のイリジウム(III)錯体が固着しやすくなることから、25℃における蒸気圧が0.01〜3.0kPa(0.1〜22.5mmHg)の範囲内であって、沸点が100〜300℃の範囲内にある有機溶剤であることが好ましい。このような有機溶剤の例として、トルエン、キシレン、シクロヘキサノン、クロロベンゼン、o−ジクロロベンゼン、テトラリン、1,1,2−トリクロロエタン、1,1,2,2−テトラクロロエタン、ブチルカルビトール等があげられる。これらの有機溶剤は、単独で使用しても混合して使用しても差し支えない。   As the organic solvent, any organic solvent can be used as long as it can dissolve the iridium (III) complex of the present invention. However, if the volatilization rate of the organic solvent is high, an organic solvent solution of the iridium (III) complex of the present invention can be used. Of the iridium (III) complex of the present invention tends to adhere to the printing plate to be used, so that the vapor pressure at 25 ° C is 0.01 to 3.0 kPa (0.1 to 22.5 mmHg). ), And is preferably an organic solvent having a boiling point in the range of 100 to 300 ° C. Examples of such organic solvents include toluene, xylene, cyclohexanone, chlorobenzene, o-dichlorobenzene, tetralin, 1,1,2-trichloroethane, 1,1,2,2-tetrachloroethane, butyl carbitol, and the like. . These organic solvents may be used alone or as a mixture.

本発明のイリジウム(III)錯体の有機溶剤溶液の濃度は、印刷方法やコーティング方法により異なるが、0.1質量%〜15質量%の範囲であることが好ましい。本発明のイリジウム(III)錯体の濃度が0.1質量%未満であると、印刷またはコーティングした乾燥後の膜厚が薄くなりすぎるため有機EL素子のショートを引き起こすおそれがある。一方、本発明のイリジウム(III)錯体の濃度が15質量%を越えると、印刷またはコーティングした乾燥後の膜厚が厚くなるため、発光させるために必要な電圧が高くなる、あるいは発光輝度が低くなることになる。得られる有機EL素子の性能から、本発明のイリジウム(III)錯体の有機溶剤溶液中での濃度は0.5質量%〜10質量%の範囲にあることが特に好ましい。   The concentration of the organic solvent solution of the iridium (III) complex of the present invention varies depending on the printing method and the coating method, but is preferably in the range of 0.1% by mass to 15% by mass. When the concentration of the iridium (III) complex of the present invention is less than 0.1% by mass, the printed or coated film after drying becomes too thin, which may cause a short circuit of the organic EL device. On the other hand, when the concentration of the iridium (III) complex of the present invention exceeds 15% by mass, the thickness of the printed or coated film after drying becomes large, so that the voltage required for light emission becomes high or the light emission luminance becomes low. Will be. From the performance of the obtained organic EL device, the concentration of the iridium (III) complex of the present invention in the organic solvent solution is particularly preferably in the range of 0.5% by mass to 10% by mass.

前記発光層上に負電極層を設ける。負電極層は、例えば、前記発光層上に、リチウムやカリウム等のアルカリ金属、カルシウムやマグネシウム等のアルカリ土類金属、金、銀、アルミニウム、又はリチウム−アルミニウム合金やマグネシウム−銀合金等の合金を、真空蒸着、スパッタリングするか、これらの粉体を含有する塗料を塗布することによって得られる。該負電極層の膜厚は50〜200nmの範囲が好ましい。
また、前記負電極層上に、酸化珪素、窒化珪素、二酸化珪素酸化ゲルマニウム、又は二酸化ゲルマニウム等の保護層を、スパッタリング、真空蒸着、あるいはコーティング法で設けると、本発明の有機EL素子を劣化させる因子である水分や酸素を遮断することができる。
A negative electrode layer is provided on the light emitting layer. The negative electrode layer, for example, on the light emitting layer, an alkali metal such as lithium or potassium, an alkaline earth metal such as calcium or magnesium, gold, silver, aluminum, or an alloy such as a lithium-aluminum alloy or a magnesium-silver alloy Can be obtained by vacuum evaporation, sputtering, or applying a paint containing these powders. The thickness of the negative electrode layer is preferably in the range of 50 to 200 nm.
Further, when a protective layer such as silicon oxide, silicon nitride, silicon dioxide germanium oxide, or germanium dioxide is provided on the negative electrode layer by sputtering, vacuum deposition, or a coating method, the organic EL element of the present invention is deteriorated. It can block factors such as water and oxygen.

本発明の有機EL素子は、本発明のイリジウム(III)錯体が、効率的な正孔輸送を行うポリパラフェニレン基を有しており、正孔輸送機能が高められるので、高い発光効率が得られる。更に、正電極層と本発明のイリジウム(III)錯体を含有する発光層との間に正孔輸送層を、あるいは、本発明のイリジウム(III)錯体を含有する発光層と負電極層との間に電子輸送層を設けると、電荷輸送性をより向上させることができる。また、本発明のイリジウム(III)錯体に正孔輸送材料または電子輸送材料を混合し、発光層を形成してもよい。
その他、電子輸送層と負電極層との間に、あるいは電子輸送層を持たない場合は負電極層と発光層の間に、負電極バッファー層や電子注入層を設けたり、正電極層上に緩衝層や正孔注入層を設けることもできる。
In the organic EL device of the present invention, since the iridium (III) complex of the present invention has a polyparaphenylene group for performing efficient hole transport and the hole transport function is enhanced, high luminous efficiency is obtained. Can be Further, a hole transport layer may be provided between the positive electrode layer and the light emitting layer containing the iridium (III) complex of the present invention, or a light emitting layer containing the iridium (III) complex of the present invention may be used for the negative electrode layer. When an electron transport layer is provided therebetween, charge transport properties can be further improved. Further, a light emitting layer may be formed by mixing a hole transporting material or an electron transporting material with the iridium (III) complex of the present invention.
In addition, between the electron transporting layer and the negative electrode layer, or, if there is no electron transporting layer, between the negative electrode layer and the light emitting layer, a negative electrode buffer layer or an electron injection layer is provided, or on the positive electrode layer. A buffer layer and a hole injection layer can be provided.

正孔輸送層は、正電極層から注入された正孔を移動させるために設けられる層である。正孔輸送層に使用する正孔輸送材料としては、例えば、トリフェニルアミン誘導体、ポリビニルカルバゾール誘導体、ポリアニリン誘導体、ポリチオフェン誘導体等が挙げられる。
正孔輸送層は、正電極層上に作製する。正孔輸送材料が、トリフェニルアミン誘導体等の低分子化合物である場合は、正電極層上に真空蒸着させたり、又は、正孔輸送材料を有機溶媒に溶かしてから、正電極層上に、各種コーティング法、インクジェット法、印刷法などで作製する。また、正孔輸送材料が、ポリビニルカルバゾール誘導体やポリチオフェン誘導体等の高分子化合物である場合は、必要に応じて有機溶媒に溶かした後、正電極層上に、各種コーティング法、インクジェット法、印刷法などで作製する。正孔輸送層の膜厚は、一般に、5nm〜500nmとなるように作製する。
The hole transport layer is a layer provided for moving holes injected from the positive electrode layer. Examples of the hole transport material used for the hole transport layer include a triphenylamine derivative, a polyvinyl carbazole derivative, a polyaniline derivative, and a polythiophene derivative.
The hole transport layer is formed on the positive electrode layer. When the hole transporting material is a low molecular compound such as a triphenylamine derivative, or by vacuum deposition on the positive electrode layer, or after dissolving the hole transporting material in an organic solvent, on the positive electrode layer, It is produced by various coating methods, inkjet methods, printing methods, and the like. When the hole transporting material is a polymer compound such as a polyvinyl carbazole derivative or a polythiophene derivative, it may be dissolved in an organic solvent as needed, and then coated on the positive electrode layer by various coating methods, inkjet methods, printing methods. It is produced by, for example. The hole transport layer is generally formed to have a thickness of 5 nm to 500 nm.

一方、電子輸送層は、負電極層から注入された電子を移動させるために設けられる層である。電子輸送層に使用する電子輸送材料としては、例えば、オキサジアゾール誘導体、ナフトキノン誘導体、ポリキノキサリン等が挙げられる。電子輸送層は、前記本発明のイリジウム(III)錯体を含有する発光層上に作製する。
電子輸送材料が、オキサジアゾール誘導体やナフトキノン誘導体等である場合は、前記発光層上に真空蒸着させたり、又は、正孔輸送材料を有機溶媒に溶かしてから、前記発光層上に、各種コーティング法、インクジェット法、印刷法などで作製できる。また、電子輸送材料が、ポリキノキサリン誘導体等の高分子化合物である場合は、必要に応じて有機溶媒に溶かした後、前記発光層上に、各種コーティング法、インクジェット法、印刷法などで作製できる。電子輸送層の膜厚は、一般に、5nm〜500nmとなるように作製する。
On the other hand, the electron transport layer is a layer provided for moving electrons injected from the negative electrode layer. Examples of the electron transporting material used for the electron transporting layer include an oxadiazole derivative, a naphthoquinone derivative, and a polyquinoxaline. The electron transport layer is formed on the light emitting layer containing the iridium (III) complex of the present invention.
When the electron transporting material is an oxadiazole derivative, a naphthoquinone derivative, or the like, a vacuum deposition is performed on the light emitting layer, or a hole transporting material is dissolved in an organic solvent, and then, various coatings are formed on the light emitting layer. It can be produced by a method, an ink jet method, a printing method, or the like. Further, when the electron transporting material is a polymer compound such as a polyquinoxaline derivative, it can be prepared by dissolving it in an organic solvent as necessary, and then, on the light emitting layer, various coating methods, an inkjet method, a printing method, or the like. . The electron transport layer is generally formed to have a thickness of 5 nm to 500 nm.

また、本発明のイリジウム(III)錯体に正孔輸送材料または電子輸送材料を混合し発光層を形成する場合は、前記記載の正孔輸送材料または電子輸送材料と本発明のイリジウム(III)錯体とを予めシクロヘキサノン、トルエン、キシレン、クロロホルム、1,1,2−トリクロロエタン等の有機溶媒に溶かしてから、その溶液を各種コーティング法、インクジェット法、印刷法等で正電極上に塗布後、乾燥することで得られる。乾燥方法に特に制限はない。
正孔輸送材料または電子輸送材料が少なすぎると、十分な電荷輸送性能が得られず、一方、正孔輸送材料または電子輸送材料が多すぎると、前記イリジウム(III)錯体の濃度が低くなりすぎて十分な発光輝度を得ることができないので、前記イリジウム(III)錯体と正孔輸送材料または電子輸送材料との混合比は、2:98〜99:1の範囲が好ましく、発光層中のイリジウム(III)原子濃度が、少なくとも0.2%以上となるようにするのが好ましい。
In the case where a hole transporting material or an electron transporting material is mixed with the iridium (III) complex of the present invention to form a light emitting layer, the above-described hole transporting material or electron transporting material and the iridium (III) complex of the present invention are used. Is previously dissolved in an organic solvent such as cyclohexanone, toluene, xylene, chloroform, 1,1,2-trichloroethane, and the solution is applied to the positive electrode by various coating methods, ink jet methods, printing methods, and then dried. It can be obtained by: There is no particular limitation on the drying method.
When the amount of the hole transporting material or the electron transporting material is too small, sufficient charge transporting performance cannot be obtained. On the other hand, when the amount of the hole transporting material or the electron transporting material is too large, the concentration of the iridium (III) complex becomes too low. Therefore, the mixing ratio of the iridium (III) complex to the hole transporting material or the electron transporting material is preferably in the range of 2:98 to 99: 1, and iridium in the light emitting layer can be obtained. (III) Preferably, the atomic concentration is at least 0.2% or more.

前記発光層の膜厚には特に限定はないが、乾燥後1nm〜1μmとなるように作製すると、発光効率をより高めることができる。中でも、膜厚が10nm〜500nmとなるように作製することが好ましい。   The thickness of the light emitting layer is not particularly limited. However, when the light emitting layer is formed to have a thickness of 1 nm to 1 μm after drying, the luminous efficiency can be further increased. In particular, it is preferable to manufacture the film so that the film thickness is 10 nm to 500 nm.

負電極バッファー層は、例えば電子輸送層上に、リチウムやカリウム等アルカリ金属のフッ化物、カルシウムやマグネシウム等アルカリ土類金属のフッ化物を、膜厚が0.1nm〜10nmの範囲となる様に真空蒸着又はスパッタリングするか、これらの粉体を含有する塗料を塗布して得られる。負電極バッファー層を設けることで、より発光効率を上げることができる。   The negative electrode buffer layer is, for example, on an electron transport layer, fluoride of an alkali metal such as lithium or potassium, or fluoride of an alkaline earth metal such as calcium or magnesium so that the film thickness is in the range of 0.1 nm to 10 nm. It is obtained by vacuum evaporation or sputtering, or by applying a paint containing these powders. By providing the negative electrode buffer layer, the luminous efficiency can be further increased.

緩衝層は、例えば正電極層上に、フタロシアニン誘導体を膜厚が50nm以下となるように真空蒸着して得られる。緩衝層を設けることで、正電極層表面の凹凸の影響を軽減することができる。   The buffer layer is obtained by, for example, vacuum-depositing a phthalocyanine derivative on the positive electrode layer so that the film thickness becomes 50 nm or less. By providing the buffer layer, the influence of unevenness on the surface of the positive electrode layer can be reduced.

正電極層からの正孔の注入を容易にするために、正電極層と正孔輸送層との間に正孔注入層を設けてもよい。正孔注入層は、例えば、正電極層上に、フタロシアニン誘導体を、膜厚が10nm以下となるように真空蒸着することや、ポリエチレンジオキシ−チオフェン−スルホネート(PEDOT−PSS)を有機溶媒に溶かした後、各種コーティング法、インクジェット法、印刷法等で膜厚が10nm以下となるよう塗布することにより得ることができる。
また、負電極層からの電子の注入を容易にするために、負電極層と電子輸送層との間に電子注入層を設けてもよい。電子注入層は、例えば負電極層上でトラシアノキノジメタンやオキサジアゾール誘導体を、膜厚が10nm以下となるように真空蒸着して得られる。
In order to facilitate injection of holes from the positive electrode layer, a hole injection layer may be provided between the positive electrode layer and the hole transport layer. The hole injection layer is formed, for example, by vacuum-depositing a phthalocyanine derivative on the positive electrode layer so that the film thickness becomes 10 nm or less, or dissolving polyethylene dioxy-thiophene-sulfonate (PEDOT-PSS) in an organic solvent. After that, it can be obtained by applying such that the film thickness becomes 10 nm or less by various coating methods, ink jet method, printing method and the like.
Further, in order to facilitate injection of electrons from the negative electrode layer, an electron injection layer may be provided between the negative electrode layer and the electron transport layer. The electron injection layer is obtained by, for example, vacuum-depositing tracyanoquinodimethane or an oxadiazole derivative on a negative electrode layer so that the film thickness is 10 nm or less.

以下、実施例により本発明をさらに具体的に説明する。なお、以下の例において、「%」は、特に断りのない限りは質量基準とする。   Hereinafter, the present invention will be described more specifically with reference to examples. In the following examples, “%” is based on mass unless otherwise specified.

<合成参考例1> 2−(4−ブロモフェニル)ピリジンの合成
反応容器中に、2−ブロモピリジン11gとテトラヒドロフラン(以下、「THF」と略す。)200mlとを仕込み、アルゴン気流下アセトン−ドライアイスバスで冷却しながら、ターシャリー・ブチルリチウムの1.5mol/lのペンタン溶液92mlを滴下した。滴下終了後直ちに塩化亜鉛1.0mol/lのジエチルエーテル溶液70mlを滴下した。アセトン−ドライアイスバス中で1時間、0℃で2時間、室温で3時間反応させた後、テトラキス(トリフェニルホスフィン)パラジウム(0)800mgを加え、1−ブロモ−4−ヨードベンゼン19.6gのTHF溶液100mlを滴下した。室温で約68時間反応させた後、反応液に酢酸エチル200mlを加え、10%アンモニア水100mlで1回、蒸留水100mlで2回洗浄し、有機層を濃縮した。残査をシリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン)で分離し、溶剤を留去して2−(4−ブロモフェニル)ピリジン9.6gを得た。
<Synthesis Reference Example 1> Synthesis of 2- (4-bromophenyl) pyridine In a reaction vessel, 11 g of 2-bromopyridine and 200 ml of tetrahydrofuran (hereinafter abbreviated as "THF") were charged, and acetone-dry was performed under a stream of argon. While cooling in an ice bath, 92 ml of a 1.5 mol / l pentane solution of tertiary butyllithium was added dropwise. Immediately after completion of the dropwise addition, 70 ml of a 1.0 mol / l zinc chloride diethyl ether solution was added dropwise. After reacting in an acetone-dry ice bath for 1 hour, at 0 ° C. for 2 hours, and at room temperature for 3 hours, 800 mg of tetrakis (triphenylphosphine) palladium (0) was added, and 19.6 g of 1-bromo-4-iodobenzene was added. Of THF solution was added dropwise. After reacting at room temperature for about 68 hours, 200 ml of ethyl acetate was added to the reaction solution, and the mixture was washed once with 100 ml of 10% aqueous ammonia and twice with 100 ml of distilled water, and the organic layer was concentrated. The residue was separated by silica gel column chromatography (developing solvent: ethyl acetate / hexane), and the solvent was distilled off to obtain 9.6 g of 2- (4-bromophenyl) pyridine.

<合成参考例2> Mwが1300のポリ(2,5−ジブトキシ−1,4−フェニレン)基を有するホウ酸化合物の合成
反応容器中に、2,5−ジブトキシ−1−ブロモ−4−フェニルホウ酸13.8g、1mol/lの炭酸カリウム水溶液80ml、THF200ml、テトラキス(トリフェニルホスフィン)パラジウム(0)400mgを仕込み、アルゴン気流下、60℃で撹拌し、7分後にフェニルホウ酸4.88gを加え、さらに同温で8時間撹拌して反応を終了した。反応液を1mol/lの塩酸400mlに滴下し、生成した沈殿物を濾集して蒸留水400mlで洗浄した。この沈殿物をジクロロメタン30mlに溶解し無水硫酸マグネシウムで乾燥後、0.5μmフィルターで濾過した。ジクロロメタンを濃縮し、ポリ(2,5−ジブトキシ−1,4−フェニレン)を有するホウ酸化合物(以下、「ホウ酸化合物(A)」と略す。)3.3gを得た。ホウ酸化合物(A)について、ゲルパーミエーションクロマトグラフィー(以下、「GPC」と略す。)を用いてポリスチレン換算の分子量分布を測定したところ、重量平均分子量(以下、「Mw」と略す。)が1300、数平均分子量(以下、「Mn」と略す。)が900、Mw/Mnが1.44、Mwから算出した2,5−ジブトキシ−1,4−フェニレンユニットの繰り返し数nは5.6であり、繰り返し数nの平均は5〜6であると推定される。
<Synthesis Reference Example 2> Synthesis of boric acid compound having poly (2,5-dibutoxy-1,4-phenylene) group having Mw of 1300 In a reaction vessel, 2,5-dibutoxy-1-bromo-4-phenylborane was added. 13.8 g of an acid, 80 ml of a 1 mol / l potassium carbonate aqueous solution, 200 ml of THF, and 400 mg of tetrakis (triphenylphosphine) palladium (0) were charged, and the mixture was stirred at 60 ° C. in an argon stream, and after 7 minutes, 4.88 g of phenylboric acid was added. The mixture was further stirred at the same temperature for 8 hours to complete the reaction. The reaction solution was added dropwise to 400 ml of 1 mol / l hydrochloric acid, and the formed precipitate was collected by filtration and washed with 400 ml of distilled water. This precipitate was dissolved in 30 ml of dichloromethane, dried over anhydrous magnesium sulfate, and filtered with a 0.5 μm filter. The dichloromethane was concentrated to obtain 3.3 g of a boric acid compound having poly (2,5-dibutoxy-1,4-phenylene) (hereinafter abbreviated as “boric acid compound (A)”). The boric acid compound (A) was measured for molecular weight distribution in terms of polystyrene using gel permeation chromatography (hereinafter abbreviated as “GPC”), and found to have a weight average molecular weight (hereinafter abbreviated as “Mw”). 1300, the number average molecular weight (hereinafter abbreviated as “Mn”) is 900, Mw / Mn is 1.44, and the number of repetitions n of 2,5-dibutoxy-1,4-phenylene unit calculated from Mw is 5.6. And the average of the number of repetitions n is estimated to be 5-6.

<合成参考例3> Mwが1600のポリ(2,5−ジブトキシ−1,4−フェニレン)基を有するホウ酸化合物の合成
反応容器中に、2,5−ジブトキシ−1−ブロモ−4−フェニルホウ酸13.8g、1mol/lの炭酸カリウム水溶液80ml、トルエン200ml、テトラキス(トリフェニルホスフィン)パラジウム(0)400mgを仕込み、アルゴン気流下、95℃で撹拌し、42時間後にフェニルホウ酸4.88gを加え、さらに同温で8時間撹拌して反応を終了した。これ以降は合成参考例2と同様の後処理工程を行い、Mwが1600、Mnが1400、Mw/Mnが1.14のポリ(2,5−ジブトキシ−1,4−フェニレン)を有するホウ酸化合物(以下、「ホウ酸化合物(B)」と略す。)3.3gを得た。Mwから算出した2,5−ジブトキシ−1,4−フェニレンユニットの繰り返し数nは6.9であり、繰り返し数nの平均は6〜7であると推定される。
<Synthesis Reference Example 3> Synthesis of boric acid compound having a poly (2,5-dibutoxy-1,4-phenylene) group having Mw of 1600 In a reaction vessel, 2,5-dibutoxy-1-bromo-4-phenylborane was added. 13.8 g of an acid, 80 ml of a 1 mol / l potassium carbonate aqueous solution, 200 ml of toluene and 400 mg of tetrakis (triphenylphosphine) palladium (0) were charged, and the mixture was stirred at 95 ° C. under an argon stream, and after 42 hours, 4.88 g of phenylboric acid was added. In addition, the mixture was further stirred at the same temperature for 8 hours to complete the reaction. Thereafter, the same post-treatment process as in Synthesis Reference Example 2 was performed, and boric acid containing poly (2,5-dibutoxy-1,4-phenylene) having Mw of 1600, Mn of 1400, and Mw / Mn of 1.14 was obtained. 3.3 g of a compound (hereinafter abbreviated as "boric acid compound (B)") was obtained. The number of repetitions n of the 2,5-dibutoxy-1,4-phenylene unit calculated from Mw is 6.9, and the average of the number of repetitions n is estimated to be 6 to 7.

<合成参考例4>ポリパラフェニレン基を有する2−フェニルピリジンの合成
反応容器中に、合成参考例1で得た2−(4−ブロモフェニル)ピリジン0.7g、合成参考例2で得たホウ酸化合物(A)を1.6g、THF200ml、1mol/lの炭酸カリウム水溶液40ml、テトラキス(トリフェニルホスフィン)パラジウム(0)35mgを仕込み、アルゴン気流下、60〜65℃で24時間撹拌した。反応溶液の有機層と水層とを分離し、有機層を乾燥、濃縮後、シリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン/ヘキサン)で精製し、ポリパラフェニレン基を有する2−フェニルピリジン誘導体(以下、「ピリジン誘導体(C)」と略す。)3.5gを得た。この化合物について、GPCを用いてポリスチレン換算の分子量分布を測定したところ、Mwが1400、Mnが1000であった。
<Synthesis Reference Example 4> Synthesis of 2-phenylpyridine having a polyparaphenylene group In a reaction vessel, 0.7 g of 2- (4-bromophenyl) pyridine obtained in Synthesis Reference Example 1 was obtained in Synthesis Reference Example 2. 1.6 g of the boric acid compound (A), 200 ml of THF, 40 ml of a 1 mol / l potassium carbonate aqueous solution, and 35 mg of tetrakis (triphenylphosphine) palladium (0) were charged, and the mixture was stirred at 60 to 65 ° C. for 24 hours under an argon stream. The organic layer and the aqueous layer of the reaction solution are separated, the organic layer is dried and concentrated, and then purified by silica gel column chromatography (developing solvent: dichloromethane / hexane) to obtain a 2-phenylpyridine derivative having a polyparaphenylene group (hereinafter, referred to as a “polyphenylene derivative”). , Abbreviated as “pyridine derivative (C)”). When the molecular weight distribution of this compound in terms of polystyrene was measured using GPC, Mw was 1,400 and Mn was 1,000.

H−NMRスペクトルデータ:CDCl、300MHz)
8.7ppm(d,1H,N−CH=)、8.1ppm(d,2H)、
7.8ppm(m,4H、)、7.6ppm(d,2H)、
7.4ppm(m,2H)、7.3ppm(d,1H)、
7.2ppm(m,1H)、7.0−7.1ppm(m,8H)、
3.9ppm(t,12H,O−CH −)、
1.6−1.7ppm(m、12H,−CH −)、
1.4−1.5ppm(m、12H,−CH −)、
0.9−1.0ppm(t,18H,−CH
( 1 H-NMR spectrum data: CDCl 3 , 300 MHz)
8.7 ppm (d, 1H, N- CH =), 8.1 ppm (d, 2H),
7.8 ppm (m, 4H), 7.6 ppm (d, 2H),
7.4 ppm (m, 2H), 7.3 ppm (d, 1H),
7.2 ppm (m, 1H), 7.0-7.1 ppm (m, 8H),
3.9ppm (t, 12H, O- CH 2 -),
1.6-1.7ppm (m, 12H, - CH 2 -),
1.4-1.5ppm (m, 12H, - CH 2 -),
0.9-1.0ppm (t, 18H, - CH 3)

<合成参考例5>ポリパラフェニレン基を有する2−フェニルピリジンの合成
合成参考例4における、ホウ酸化合物(A)1.6gに代えて、ホウ酸化合物(B)1.9gを用いた以外は合成参考例4と同様の操作を行い、Mwが1900、Mnが1600、Mw/Mnが1.18の、ポリパラフェニレン基を有する2−フェニルピリジン誘導体(以下、「ピリジン誘導体(D)」と略す。)1.4gを得た。
<Synthesis Reference Example 5> Synthesis of 2-phenylpyridine having a polyparaphenylene group Except that 1.9 g of boric acid compound (B) was used instead of 1.6 g of boric acid compound (A) in Synthesis Reference Example 4. Is a 2-phenylpyridine derivative having a polyparaphenylene group (hereinafter, referred to as "pyridine derivative (D)") having an Mw of 1,900, an Mn of 1600, and an Mw / Mn of 1.18. 1.4 g was obtained.

(1H−NMRスペクトルデータ:CDCl、300MHz)
8.7ppm(d,1H,N−CH=)、8.1ppm(d,2H)、
7.8ppm(m,4H、)、7.6ppm(d,2H)、
7.4ppm(m,2H)、
7.3ppm(d,1H)、7.2ppm(m,1H)、
7.0−7.1ppm(m,6H)、
3.9ppm(t,16H,O−CH −)、
6−1.7ppm(m、16H,−CH −)、
−1.5ppm(m、16H,−CH −)、
0.9−1.0ppm(t,24H,−CH
(1H-NMR spectrum data: CDCl 3 , 300 MHz)
8.7 ppm (d, 1H, N- CH =), 8.1 ppm (d, 2H),
7.8 ppm (m, 4H), 7.6 ppm (d, 2H),
7.4 ppm (m, 2H),
7.3 ppm (d, 1H), 7.2 ppm (m, 1H),
7.0-7.1 ppm (m, 6H),
3.9ppm (t, 16H, O- CH 2 -),
6-1.7ppm (m, 16H, - CH 2 -),
-1.5ppm (m, 16H, - CH 2 -),
0.9-1.0ppm (t, 24H, - CH 3)

<合成参考例6> 2,5−ジブトキシフェニルホウ酸の合成
反応容器中にヒドロキノン110g、水酸化カリウム140g、エタノール800mlを仕込み、窒素気流下、還流しながら1−ブロモブタン412gを滴下した。5時間後反応を終了し、反応液にヘキサン800mlを加え、蒸留水100mlで3回洗浄した。有機層を濃縮後、水/メタノールにて再結晶し、1,4−ジブトキシベンゼン136gを得た。
<Synthesis Reference Example 6> Synthesis of 2,5-dibutoxyphenylboric acid Into a reaction vessel, 110 g of hydroquinone, 140 g of potassium hydroxide, and 800 ml of ethanol were charged, and 412 g of 1-bromobutane was added dropwise while refluxing under a nitrogen stream. After 5 hours, the reaction was terminated, 800 ml of hexane was added to the reaction solution, and the mixture was washed three times with 100 ml of distilled water. The organic layer was concentrated and then recrystallized from water / methanol to obtain 136 g of 1,4-dibutoxybenzene.

得られた1,4−ジブトキシベンゼン136g、N−ブロモこはく酸イミド109g、ジクロロメタン600ml、酢酸300mlを35℃にて撹拌した。7時間後反応を終了し、反応液から大部分のジクロロメタンを留去した後、ヘキサン800mlを加え、蒸留水300ml、3%炭酸水素ナトリウム溶液250ml、10%水酸化ナトリウム溶液100ml、蒸留水300mlで2回の順に洗浄し、最後にヘキサンを留去した。残査をカラムクロマトグラフィー(酢酸エチル/ヘキサン)にて精製し、2−ブロモ−1,4−ジブトキシベンゼン155gを得た。   136 g of the obtained 1,4-dibutoxybenzene, 109 g of N-bromosuccinimide, 600 ml of dichloromethane and 300 ml of acetic acid were stirred at 35 ° C. After 7 hours, the reaction was terminated. Most of dichloromethane was distilled off from the reaction solution, 800 ml of hexane was added, 300 ml of distilled water, 250 ml of 3% sodium hydrogen carbonate solution, 100 ml of 10% sodium hydroxide solution and 300 ml of distilled water were added. Washing was performed twice in order, and hexane was finally distilled off. The residue was purified by column chromatography (ethyl acetate / hexane) to obtain 155 g of 2-bromo-1,4-dibutoxybenzene.

次に、2−ブロモ−1,4−ジブトキシベンゼン155g、ジエチルエーテル700mlをアセトン/ドライアイスバス中、アルゴン気流下で撹拌しながら、2.6mol/L N−ブチルリチウム ヘキサン溶液200mlを滴下した。反応液を同バス内で2時間、室温で2時間撹拌した後、再びアセトン/ドライアイスバスにて冷却し、トリメトキシボラン78gのジエチルエーテル溶液200mlを滴下した。反応液を室温で10時間撹拌後、反応液に2mol/L塩酸500mlを加え3時間撹拌した。エーテル層を濃縮し、残査にヘキサン700mlを加えた。生成した沈殿物を濾集し、アセトン500mlに溶解、不溶物を濾過後、アセトンを留去して2,5−ジブトキシフェニルホウ酸58gを得た。   Next, while stirring 155 g of 2-bromo-1,4-dibutoxybenzene and 700 ml of diethyl ether in an acetone / dry ice bath under an argon stream, 200 ml of a 2.6 mol / L hexane solution of N-butyllithium was added dropwise. . After the reaction solution was stirred in the same bath for 2 hours and at room temperature for 2 hours, it was cooled again in an acetone / dry ice bath, and a 200 ml solution of 78 g of trimethoxyborane in diethyl ether was added dropwise. After stirring the reaction solution at room temperature for 10 hours, 500 ml of 2 mol / L hydrochloric acid was added to the reaction solution, and the mixture was stirred for 3 hours. The ether layer was concentrated, and 700 ml of hexane was added to the residue. The resulting precipitate was collected by filtration, dissolved in 500 ml of acetone, and the insoluble material was filtered. Then, acetone was distilled off to obtain 58 g of 2,5-dibutoxyphenylboric acid.

<合成参考例7> 4−ブロモ−2,5−ジブトキシビフェニルの合成
反応容器中にフェニルヒドロキノン55.8g、水酸化カリウム44.8g、エタノール500mlを仕込み、窒素気流下、還流しながら1−ブロモブタン164gを滴下した。6時間後反応を終了し、反応液にヘキサン300mlを加え、蒸留水100mlで3回洗浄した。有機層を濃縮後、残査をカラムクロマトグラフィー(酢酸エチル/ヘキサン)にて精製し、2,5−ジブトキシビフェニル73.6gを得た。
<Synthesis Reference Example 7> Synthesis of 4-bromo-2,5-dibutoxybiphenyl A reaction vessel was charged with 55.8 g of phenylhydroquinone, 44.8 g of potassium hydroxide, and 500 ml of ethanol, and refluxed under a stream of nitrogen under a nitrogen atmosphere. 164 g of bromobutane were added dropwise. After 6 hours, the reaction was completed, 300 ml of hexane was added to the reaction solution, and the mixture was washed three times with 100 ml of distilled water. After concentrating the organic layer, the residue was purified by column chromatography (ethyl acetate / hexane) to obtain 7,3.6 g of 2,5-dibutoxybiphenyl.

得られた2,5−ジブトキシビフェニル71.2gを酢酸150mlに溶解し、室温で撹拌しながら臭素25gと酢酸35mlの混合溶液を滴下した。攪拌を続け、3時間後に臭素8gを追加し、更に4時間撹拌した。反応後の溶液にヘキサン300mlを加え、蒸留水100ml、2%炭酸水素ナトリウム水溶液100ml、蒸留水100mlで2回の順に洗浄し、最後にヘキサンを留去した。残査をカラムクロマトグラフィー(酢酸エチル/ヘキサン)にてカラム精製し、4−ブロモ−2,5−ジブトキシビフェニル60.6gを得た。   71.2 g of the obtained 2,5-dibutoxybiphenyl was dissolved in 150 ml of acetic acid, and a mixed solution of 25 g of bromine and 35 ml of acetic acid was added dropwise with stirring at room temperature. Stirring was continued, and after 3 hours, 8 g of bromine was added, and the mixture was further stirred for 4 hours. 300 ml of hexane was added to the solution after the reaction, and the mixture was washed twice with 100 ml of distilled water, 100 ml of a 2% aqueous solution of sodium hydrogen carbonate and 100 ml of distilled water, and finally hexane was distilled off. The residue was purified by column chromatography using column chromatography (ethyl acetate / hexane) to obtain 60.6 g of 4-bromo-2,5-dibutoxybiphenyl.

<合成参考例8> 2,5,2',5',2'',5''−ヘキサブトキシ〔1,1',4',1'',4'',1'''〕クオーターフェニルホウ酸の合成
反応容器中に合成参考例6で得た2,5−ジブトキシフェニルホウ酸18.4g、合成参考例7で得た4−ブロモ−2,5−ジブトキシビフェニル20.7g、THF250ml、2mol/L炭酸カリウム水溶液50ml、テトラキス(トリフェニルホスフィン)パラジウム(0)600mgを仕込み、アルゴン気流下、還流しながら24時間反応した。反応液にヘキサン300mlを加え、水層を分離後、有機層を濃縮した。残査をカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、2,5,2',5'−テトラブトキシ〔1,1',4',1''〕ターフェニル25.3gを得た。
<Synthesis Reference Example 8> 2,5,2 ', 5', 2 '', 5 ''-hexabutoxy [1,1 ', 4', 1 ", 4", 1 '"] quarterphenyl Synthesis of boric acid In a reaction vessel, 18.4 g of 2,5-dibutoxyphenylboric acid obtained in Synthesis Reference Example 6, 20.7 g of 4-bromo-2,5-dibutoxybiphenyl obtained in Synthesis Reference Example 7, 250 ml of THF, 50 ml of a 2 mol / L aqueous potassium carbonate solution, and 600 mg of tetrakis (triphenylphosphine) palladium (0) were charged, and reacted under reflux in an argon stream for 24 hours. 300 ml of hexane was added to the reaction solution, the aqueous layer was separated, and the organic layer was concentrated. The residue was purified by column chromatography (hexane / ethyl acetate) to obtain 25.3 g of 2,5,2 ′, 5′-tetrabutoxy [1,1 ′, 4 ′, 1 ″] terphenyl. .

得られた2,5,2',5'−テトラブトキシ〔1,1',4',1''〕ターフェニル25.3gを酢酸200mlに溶解し、室温で撹拌しながら、臭素9gと酢酸10mlの混合溶液を滴下した。3時間後反応を終了し、反応液にヘキサン250mlを加え、蒸留水100ml、2%炭酸水素ナトリウム水溶液100ml、蒸留水100mlで2回の順に有機層を洗浄した。有機層を濃縮後、カラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、4−ブロモ−2,5,2',5'−テトラブトキシ〔1,1',4',1''〕ターフェニルを得た。   25.3 g of the obtained 2,5,2 ', 5'-tetrabutoxy [1,1', 4 ', 1 "] terphenyl was dissolved in 200 ml of acetic acid, and 9 g of bromine and acetic acid were stirred at room temperature. 10 ml of the mixed solution was added dropwise. After 3 hours, the reaction was terminated, 250 ml of hexane was added to the reaction solution, and the organic layer was washed twice with 100 ml of distilled water, 100 ml of a 2% aqueous sodium hydrogen carbonate solution, and 100 ml of distilled water in this order. After concentrating the organic layer, it was purified by column chromatography (hexane / ethyl acetate), and 4-bromo-2,5,2 ', 5'-tetrabutoxy [1,1', 4 ', 1 "] Phenyl was obtained.

得られた4−ブロモ−2,5,2',5'−テトラブトキシ〔1,1',4',1''〕ターフェニル20.8g、参考例6で得た2,5−ジブトキシフェニルホウ酸13g、THF150ml、2mol/L炭酸カリウム水溶液30ml、テトラキス(トリフェニルホスフィン)パラジウム380mgを還流しながらアルゴン気流下で24時間反応した。反応液にヘキサン300mlを加え、水層を分離後、有機層を濃縮した。残査をカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、2,5,2',5',2'',5''−ヘキサブトキシ〔1,1',4',1'',4'',1'''〕クオーターフェニル22.5gを得た。   20.8 g of the obtained 4-bromo-2,5,2 ′, 5′-tetrabutoxy [1,1 ′, 4 ′, 1 ″] terphenyl, 2,5-dibutoxy obtained in Reference Example 6 13 g of phenylboric acid, 150 ml of THF, 30 ml of a 2 mol / L aqueous potassium carbonate solution, and 380 mg of tetrakis (triphenylphosphine) palladium were reacted under an argon stream while refluxing for 24 hours. 300 ml of hexane was added to the reaction solution, the aqueous layer was separated, and the organic layer was concentrated. The residue was purified by column chromatography (hexane / ethyl acetate) to give 2,5,2 ′, 5 ′, 2 ″, 5 ″ -hexabutoxy [1,1 ′, 4 ′, 1 ″, 4 ″, 1 ′ ″] quarter phenyl was obtained in an amount of 22.5 g.

得られた2,5,2',5',2'',5''−ヘキサブトキシ〔1,1',4',1'',4'',1'''〕クオーターフェニル22.5gを、酢酸100mlとヘキサン50mlの混合溶剤に溶解し、室温で撹拌しながら、臭素5.0gと酢酸10mlの混合溶液を滴下した。3時間後反応を終了し、反応液に酢酸エチル300mlを加え、蒸留水100ml、2%炭酸水素ナトリウム水溶液100ml、蒸留水100mlで2回の順で有機層を洗浄した。有機層を濃縮後、カラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、4−ブロモ−2,5,2',5',2'',5''−ヘキサブトキシ〔1,1',4',1'',4'',1'''〕クオーターフェニル18.8gを得た。   22.5 g of the obtained 2,5,2 ′, 5 ′, 2 ″, 5 ″ -hexabutoxy [1,1 ′, 4 ′, 1 ″, 4 ″, 1 ′ ″] quarterphenyl Was dissolved in a mixed solvent of 100 ml of acetic acid and 50 ml of hexane, and a mixed solution of 5.0 g of bromine and 10 ml of acetic acid was added dropwise with stirring at room temperature. After 3 hours, the reaction was terminated, 300 ml of ethyl acetate was added to the reaction solution, and the organic layer was washed twice with 100 ml of distilled water, 100 ml of a 2% aqueous sodium hydrogen carbonate solution, and 100 ml of distilled water in this order. After concentrating the organic layer, it was purified by column chromatography (hexane / ethyl acetate), and 4-bromo-2,5,2 ′, 5 ′, 2 ″, 5 ″ -hexabutoxy [1,1 ′, [4 ', 1 ", 4", 1' "] quarterphenyl 18.8 g was obtained.

次に、4−ブロモ−2,5,2',5',2'',5''−ヘキサブトキシ〔1,1',4',1'',4'',1'''〕クオーターフェニル18.8g、ジエチルエーテル200mlを、アセトン/ドライアイスバス中、アルゴン気流下で撹拌しながら、1.56mol/L n−ブチルリチウム ヘキサン溶液18mlを滴下した。反応液を同バス内で2時間、室温で2時間撹拌した後、再びアセトン/ドライアイスバスで冷却し、トリメトキシボラン5gのジエチルエーテル溶液10mlを滴下した。反応液を室温で10時間撹拌後、反応液に2mol/L塩酸50mlを加え3時間撹拌した。反応液から有機層を分離し溶剤留去後、カラムクロマトグラフィー(酢酸エチル/ヘキサン)にて精製し、2,5,2',5',2'',5''−ヘキサブトキシ〔4,1',4',1'',4'',1'''〕クオーターフェニルホウ酸10.4gを得た。   Next, 4-bromo-2,5,2 ′, 5 ′, 2 ″, 5 ″ -hexabutoxy [1,1 ′, 4 ′, 1 ″, 4 ″, 1 ′ ″] quarter While stirring 18.8 g of phenyl and 200 ml of diethyl ether in an acetone / dry ice bath under an argon stream, 18 ml of a 1.56 mol / L hexane solution of n-butyllithium was added dropwise. After the reaction solution was stirred in the same bath for 2 hours and at room temperature for 2 hours, it was cooled again in an acetone / dry ice bath, and a solution of 5 g of trimethoxyborane in 10 ml of diethyl ether was added dropwise. After stirring the reaction solution at room temperature for 10 hours, 50 ml of 2 mol / L hydrochloric acid was added to the reaction solution, and the mixture was stirred for 3 hours. The organic layer was separated from the reaction solution, the solvent was distilled off, and the residue was purified by column chromatography (ethyl acetate / hexane) to give 2,5,2 ′, 5 ′, 2 ″, 5 ″ -hexabutoxy [4, 1 ′, 4 ′, 1 ″, 4 ″, 1 ′ ″] quarterphenylboric acid 10.4 g was obtained.

<合成参考例9> 2−(2',5',2'',5'',2''',5'''−ヘキサブトキシクインケフェニル−4−イル)ピリジンの合成
合成参考例8で得た2,5,2',5',2'',5''−ヘキサブトキシ〔4,1',4',1'',4'',1'''〕クオーターフェニルホウ酸10.4g、2−(4−ブロモフェニル)ピリジン2.5g、THF200ml、2mol/L炭酸カリウム水溶液15ml、テトラキス(トリフェニルホスフィン)パラジウム220mgを還流しながらアルゴン気流下で24時間反応した。反応液に酢酸エチル200mlを加え、水層を分離後、有機層を濃縮した。残査をカラムクロマトグラフィー(ヘキサン/酢酸エチル)にて精製し、2−(2',5',2'',5'',2''',5'''−ヘキサブトキシクインケフェニル−4−イル)ピリジン(以下「ピリジン誘導体(E)」と略す。)13.9gを得た。
<Synthesis Reference Example 9> Synthesis of 2- (2 ′, 5 ′, 2 ″, 5 ″, 2 ′ ″, 5 ′ ″-hexabutoxyquinkephenyl-4-yl) pyridine 9. The obtained 2,5,2 ', 5', 2 '', 5 ''-hexabutoxy [4,1 ', 4', 1 ", 4", 1 '"] quarterphenylboric acid. 4 g, 2.5 g of 2- (4-bromophenyl) pyridine, 200 ml of THF, 15 ml of a 2 mol / L aqueous potassium carbonate solution and 220 mg of tetrakis (triphenylphosphine) palladium were reacted under an argon stream while refluxing for 24 hours. 200 ml of ethyl acetate was added to the reaction solution, the aqueous layer was separated, and the organic layer was concentrated. The residue was purified by column chromatography (hexane / ethyl acetate) to give 2- (2 ', 5', 2 ", 5", 2 '", 5'"-hexabutoxyquinkephenyl-4. -Yl) pyridine (hereinafter abbreviated as "pyridine derivative (E)") 13.9 g was obtained.

<合成参考例10> 2−(2−ベンゾチエニル)ピリジンの合成
反応容器にチアナフテン−2−ホウ酸を1.78g、2−ブロモピリジンを1.55g、THF50ml、1mol/lの炭酸カリウム水溶液10ml、テトラキス(トリフェニルホスフィン)パラジウム(0)12mgを仕込み、アルゴン気流下、60〜65℃で24時間撹拌した。反応溶液の有機層と水層とを分離し、有機層を乾燥、濃縮後、シリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン)で精製し、2−(2−ベンゾチエニル)ピリジン1.92gを得た。
<Synthesis Reference Example 10> Synthesis of 2- (2-benzothienyl) pyridine 1.78 g of tianaphthene-2-boric acid, 1.55 g of 2-bromopyridine, 50 ml of THF, 10 ml of 1 mol / l potassium carbonate aqueous solution in a reaction vessel. And 12 mg of tetrakis (triphenylphosphine) palladium (0), and stirred at 60 to 65 ° C. for 24 hours under an argon stream. The organic layer and the aqueous layer of the reaction solution are separated, and the organic layer is dried and concentrated, and then purified by silica gel column chromatography (developing solvent: ethyl acetate / hexane) to obtain 1.92 g of 2- (2-benzothienyl) pyridine. Got.

(1H−NMRスペクトルデータ:CDCl、300MHz)
8.6ppm(d,1H,N−CH=)、
7.8−7.9ppm(m,4H、)、
7.7ppm(t,1H,−CH=)、7.3−7.4ppm(m,2H)、
7.2ppm(t,1H,−CH=)
(1H-NMR spectrum data: CDCl 3 , 300 MHz)
8.6 ppm (d, 1H, N- CH =),
7.8-7.9 ppm (m, 4H,),
7.7 ppm (t, 1H, -CH =), 7.3-7.4 ppm (m, 2H),
7.2 ppm (t, 1H, -CH =)

<実施例1> ポリパラフェニレン基を有する2−フェニルピリジン誘導体を配位子とするイリジウム(III)錯体(A−1)の合成
反応容器中に、合成参考例4で得たMw1400、Mn1000、n数が5.6のピリジン誘導体(C)を1.2g、イリジウムトリス(アセチルアセトナート)440mg、グリセリン20mlを仕込み、窒素気流下、220℃で還流しながら8時間撹拌した。反応液にジクロロメタン200mlを加え、蒸留水50mlで3回洗浄した。ジクロロメタンを濃縮後、シリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン/ヘキサン)で精製し、式(7)で表されるポリパラフェニレン基を有する2−フェニルピリジン誘導体を配位子とするイリジウム(III)錯体(A−1)320mgを得た。この化合物について、GPCを用いてポリスチレン換算の分子量分布を測定したところ、Mwが4500、Mnが3100であった。
<Example 1> Synthesis of iridium (III) complex (A-1) having a 2-phenylpyridine derivative having a polyparaphenylene group as a ligand In a reaction vessel, Mw1400, Mn1000 obtained in Synthesis Reference Example 4 were added. 1.2 g of a pyridine derivative (C) having an n number of 5.6, 440 mg of iridium tris (acetylacetonate), and 20 ml of glycerin were charged, and the mixture was stirred under a nitrogen stream at 220 ° C. for 8 hours while refluxing. The reaction solution was added with 200 ml of dichloromethane, and washed three times with 50 ml of distilled water. After concentrating the dichloromethane, it is purified by silica gel column chromatography (developing solvent: dichloromethane / hexane), and iridium (III) having a 2-phenylpyridine derivative having a polyparaphenylene group represented by the formula (7) as a ligand 320 mg of complex (A-1) was obtained. When the molecular weight distribution of this compound in terms of polystyrene was measured using GPC, Mw was 4,500 and Mn was 3,100.

H−NMRスペクトルデータ:CDCl、300MHz)
7.9ppm(d,3H,N−CH=)、
7.6−7,8ppm(m,15H)、
7.4−7.5ppm(m,9H、)、7.3ppm(d,3H)、
6.9−7.1ppm(m,40H)、
3.9ppm(m,60H,O−CH −)、
1.6−1.7ppm(m、60H,−CH −)、
1.4−1.5ppm(m、60H,−CH −)、
0.9−1.0ppm(m,90H,−CH
( 1 H-NMR spectrum data: CDCl 3 , 300 MHz)
7.9 ppm (d, 3H, N- CH =),
7.6-7,8 ppm (m, 15H),
7.4-7.5 ppm (m, 9H,), 7.3 ppm (d, 3H),
6.9-7.1 ppm (m, 40H),
3.9ppm (m, 60H, O- CH 2 -),
1.6-1.7ppm (m, 60H, - CH 2 -),
1.4-1.5ppm (m, 60H, - CH 2 -),
0.9-1.0ppm (m, 90H, - CH 3)

Figure 2004292423
(7)
(式(7)中、nは5〜6を表す。)
Figure 2004292423
(7)
(In the formula (7), n represents 5 to 6.)

<実施例2> 2−(2',5',2'',5'',2''',5'''−ヘキサブトキシクインケフェニル−4−イル)ピリジンを配位子とするイリジウム(III)錯体(A−2)の合成
反応容器中に、合成参考例9で得たピリジン誘導体(E)を8g、トリフルオロ酢酸銀を1.57g、イリジウムトリス(アセチルアセトナート)1.13g、グリセリン30mlを仕込み、アルゴン気流下、220℃で還流しながら8時間撹拌した。反応液を冷却後、反応液にジクロロメタン200mlを加え、蒸留水50mlで3回洗浄した。ジクロロメタンを濃縮後、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン)で精製し、式(8)で表される2−(2',5',2'',5'',2''',5'''−ヘキサブトキシクインケフェニル−4−イル)ピリジンを配位子とするイリジウム(III)錯体(A−2)3.98gを得た。
Example 2 Iridium having 2- (2 ′, 5 ′, 2 ″, 5 ″, 2 ′ ″, 5 ′ ″-hexabutoxyquinkephenyl-4-yl) pyridine as a ligand III) Synthesis of complex (A-2) In a reaction vessel, 8 g of the pyridine derivative (E) obtained in Synthesis Reference Example 9, 1.57 g of silver trifluoroacetate, 1.13 g of iridium tris (acetylacetonate), Glycerin (30 ml) was charged, and the mixture was stirred for 8 hours while being refluxed at 220 ° C. under an argon stream. After cooling the reaction solution, 200 ml of dichloromethane was added to the reaction solution, and the mixture was washed three times with 50 ml of distilled water. After concentrating the dichloromethane, it is purified by silica gel column chromatography (ethyl acetate / hexane) to give 2- (2 ′, 5 ′, 2 ″, 5 ″, 2 ′ ″, 5) represented by the formula (8). 3.98 g of an iridium (III) complex (A-2) having '''-hexabutoxyquinkephenyl-4-yl) pyridine as a ligand was obtained.

(1H−NMRスペクトルデータ:CDCl3、300MHz)
7.9ppm(d,3H)、7.7ppm(d,3H)、
7.7ppm(d,3H)、7.6ppm(d,9H)、
7.4ppm(t,9H)、7.3ppm(t,3H)、
7.0ppm(s,3H)、7.0ppm(s,s,12H)、
6.9ppm(s,3H)、3.9ppm(m,36H)、
1.6−1.7ppm(m、36H)、1.4−1.5ppm(m、36H)、
8−0.9ppm(m,54H)
(1H-NMR spectrum data: CDCl3, 300 MHz)
7.9 ppm (d, 3H), 7.7 ppm (d, 3H),
7.7 ppm (d, 3H), 7.6 ppm (d, 9H),
7.4 ppm (t, 9H), 7.3 ppm (t, 3H),
7.0 ppm (s, 3H), 7.0 ppm (s, s, 12H),
6.9 ppm (s, 3H), 3.9 ppm (m, 36H),
1.6-1.7 ppm (m, 36H), 1.4-1.5 ppm (m, 36H),
8-0.9 ppm (m, 54H)

Figure 2004292423
(8)
Figure 2004292423
(8)

<実施例3> ポリパラフェニレン基を有する2−フェニルピリジン誘導体および2−(2−ベンゾチエニル)ピリジンを配位子とするイリジウム(III)錯体(A−3)の合成
合成参考例5で得たMw1900、Mn1600、n数が6.9のピリジン誘導体(D)を0.7g、イリジウムトリクロリド3水和物を71mg、2−エトキシエタノールを20ml、水5mlを仕込み、窒素気流下、120℃で6時間攪拌した。室温に冷却後、1mol/l塩酸50mlを加え、析出した固体を濾別した。シリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン)で精製し、テトラキス(2−フェニルピリジン−C,N’)(μ−ジクロロ)ジイリジウム(III)誘導体の黄色固体を得た。
<Example 3> Synthesis of iridium (III) complex (A-3) having 2-phenylpyridine derivative having a polyparaphenylene group and 2- (2-benzothienyl) pyridine as a ligand Obtained in Synthesis Reference Example 5 0.7 g of pyridine derivative (D) having Mw of 1900, Mn of 1600, and n number of 6.9, 71 mg of iridium trichloride trihydrate, 20 ml of 2-ethoxyethanol, and 5 ml of water, and 120 ° C. under a nitrogen stream. For 6 hours. After cooling to room temperature, 50 ml of 1 mol / l hydrochloric acid was added, and the precipitated solid was separated by filtration. Purification by silica gel column chromatography (developing solvent: dichloromethane) gave a yellow solid of a tetrakis (2-phenylpyridine-C 2 , N ′) (μ-dichloro) diiridium (III) derivative.

次に、得られた黄色固体500mg、合成参考例10で得た2−(2−ベンゾチエニル)ピリジン55mg、ナトリウムメトキシドメタノール溶液(28wt%)0.05ml、クロロホルム20mlを混合し、3時間加熱還流した。室温に冷却後、反応溶液をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン/ヘキサン)で精製し、式(9)で表されるピリジン誘導体(D)および2−(2−ベンゾチエニル)ピリジンを配位子とするイリジウム(III)錯体(A−3)140mgを得た。この化合物について、GPCを用いてポリスチレン換算の分子量分布を測定したところ、Mwが2800、Mnが2300であった。   Next, 500 mg of the obtained yellow solid, 55 mg of 2- (2-benzothienyl) pyridine obtained in Synthesis Reference Example 10, 0.05 ml of a sodium methoxide methanol solution (28 wt%), and 20 ml of chloroform were mixed and heated for 3 hours. Refluxed. After cooling to room temperature, the reaction solution was purified by silica gel column chromatography (developing solvent: dichloromethane / hexane), and the pyridine derivative (D) represented by the formula (9) and 2- (2-benzothienyl) pyridine were coordinated. 140 mg of iridium (III) complex (A-3) as a child was obtained. When the molecular weight distribution of this compound in terms of polystyrene was measured using GPC, Mw was 2,800 and Mn was 2,300.

H−NMRスペクトルデータ:CDCl、300MHz)
8.1ppm(d,1H,N−CH=)、
7.9ppm(d,1H,N−CH=)、
7.6−7,8ppm(m,13H)、
7.3−7.5ppm(m,11H、)、
6.9−7.1ppm(m,30H)、
6.6−6.9ppm(m,7H)
3.9ppm(m,60H,O−CH −)、
1.6−1.7ppm(m、60H,−CH −)、
1.4−1.5ppm(m、60H,−CH −)、
0.9−1.0ppm(m,90H,−CH
( 1 H-NMR spectrum data: CDCl 3 , 300 MHz)
8.1 ppm (d, 1H, N- CH =),
7.9 ppm (d, 1H, N- CH =),
7.6-7,8 ppm (m, 13H),
7.3-7.5 ppm (m, 11H),
6.9-7.1 ppm (m, 30H),
6.6-6.9 ppm (m, 7H)
3.9ppm (m, 60H, O- CH 2 -),
1.6-1.7ppm (m, 60H, - CH 2 -),
1.4-1.5ppm (m, 60H, - CH 2 -),
0.9-1.0ppm (m, 90H, - CH 3)

Figure 2004292423

(9)
(式(9)中、nは6〜7を表す。)
Figure 2004292423

(9)
(In the formula (9), n represents 6 to 7.)

<実施例4> 2−(2',5',2'',5'',2''',5'''−ヘキサブトキシクインケフェニル−4−イル)ピリジンおよび2−(2−ベンゾチエニル)ピリジンを配位子とするイリジウム(III)錯体(A−4)の合成
合成例3において、合成参考例5で得たピリジン誘導体(D)0.7gに代えて合成参考例9で得たピリジン誘導体(E)、イリジウムトリクロリド3水和物71mgに代えて同化合物142mgを使用した以外は合成例3と同様の操作を行い、式(10)で表されるピリジン誘導体(E)および2−(2−ベンゾチエニル)ピリジンを配位子とするイリジウム(III)錯体(A−4)160mgを得た。この化合物について、GPCを用いてポリスチレン換算の分子量分布を測定したところ、Mwが2200、Mnが2000であった。
Example 4 2- (2 ′, 5 ′, 2 ″, 5 ″, 2 ′ ″, 5 ′ ″-hexabutoxyquinkephenyl-4-yl) pyridine and 2- (2-benzothienyl) ) Synthesis of iridium (III) complex (A-4) having pyridine as ligand Ligand obtained in Synthesis Reference Example 9 in Synthesis Example 3 instead of 0.7 g of pyridine derivative (D) obtained in Synthesis Reference Example 5. The same operation as in Synthesis Example 3 was performed except that 142 mg of the same compound was used instead of 71 mg of pyridine derivative (E) and iridium trichloride trihydrate, and pyridine derivatives (E) and 2 represented by formula (10) were used. 160 mg of an iridium (III) complex (A-4) having-(2-benzothienyl) pyridine as a ligand was obtained. When the molecular weight distribution of this compound in terms of polystyrene was measured using GPC, Mw was 2,200 and Mn was 2,000.

H−NMRスペクトルデータ:CDCl、300MHz)
8.1ppm(d,1H,N−CH=)、
7.9ppm(d,1H,N−CH=)、
7.6−7,8ppm(m,13H)、
7.3−7.5ppm(m,11H、)、
6.9−7.1ppm(m,13H)、
6.6−6.9ppm(m,7H)
3.9ppm(m,24H,O−CH −)、
1.6−1.7ppm(m、24H,−CH −)、
1.4−1.5ppm(m、24H,−CH −)、
0.9−1.0ppm(m,36H,−CH
( 1 H-NMR spectrum data: CDCl 3 , 300 MHz)
8.1 ppm (d, 1H, N- CH =),
7.9 ppm (d, 1H, N- CH =),
7.6-7,8 ppm (m, 13H),
7.3-7.5 ppm (m, 11H),
6.9-7.1 ppm (m, 13H),
6.6-6.9 ppm (m, 7H)
3.9ppm (m, 24H, O- CH 2 -),
1.6-1.7ppm (m, 24H, - CH 2 -),
1.4-1.5ppm (m, 24H, - CH 2 -),
0.9-1.0ppm (m, 36H, - CH 3)

Figure 2004292423

(10)
Figure 2004292423

(10)

<比較合成例1>主鎖にイリジウム(III)錯体ユニットを持つポリパラフェニレン誘導体(B−1)の合成
特開2003−171659号公報に基づき、イリジウムトリスアセチルアセトナート0.642g、2−(4−ブロモフェニル)ピリジン0.41g、2−(フェニル)ピリジン0.54gおよびグリセリン30mlを仕込み、220℃のオイルバスで10時間還流しながら撹拌した。反応液を冷却後、反応液にジクロロメタン200mlを加え、蒸留水50mlで3回洗浄した。ジクロロメタンを濃縮後、シリカゲルカラムクロマトグラフィー(ジクロロメタン)で精製し、得られた画分を約3mlに濃縮した。この濃縮液にメタノール100mlを加えて析出した黄色固体0.3gを濾集した。この黄色固体は、トリス(2−(フェニル)ピリジン)イリジウム(III)錯体(錯体1)、ビス(2−(フェニル)ピリジン)モノ(2−(4−ブロモフェニル)ピリジン)イリジウム(III)錯体(錯体2)、モノ(2−(フェニル)ピリジン)ビス(2−(4−ブロモフェニル)ピリジン)イリジウム(III)錯体(錯体3)、トリス(2−(4−ブロモフェニル)ピリジン)イリジウム(III)錯体(錯体4)の混合物(以下、錯体混合物Aと略す)であった。GPCより、それぞれの比率を求めると、以下の通りであった。
<Comparative Synthesis Example 1> Synthesis of polyparaphenylene derivative (B-1) having an iridium (III) complex unit in the main chain 0.642 g of iridium trisacetylacetonate, 2- ( 0.41 g of 4-bromophenyl) pyridine, 0.54 g of 2- (phenyl) pyridine and 30 ml of glycerin were charged, and the mixture was stirred while being refluxed for 10 hours in a 220 ° C. oil bath. After cooling the reaction solution, 200 ml of dichloromethane was added to the reaction solution, and the mixture was washed three times with 50 ml of distilled water. After concentration of the dichloromethane, purification was carried out by silica gel column chromatography (dichloromethane), and the obtained fraction was concentrated to about 3 ml. 100 ml of methanol was added to this concentrated liquid, and 0.3 g of a yellow solid precipitated was collected by filtration. The yellow solid is a tris (2- (phenyl) pyridine) iridium (III) complex (complex 1), a bis (2- (phenyl) pyridine) mono (2- (4-bromophenyl) pyridine) iridium (III) complex (Complex 2), mono (2- (phenyl) pyridine) bis (2- (4-bromophenyl) pyridine) iridium (III) complex (complex 3), tris (2- (4-bromophenyl) pyridine) iridium ( III) A mixture of complexes (complex 4) (hereinafter abbreviated as complex mixture A). The respective ratios obtained from GPC were as follows.

Figure 2004292423
Figure 2004292423

反応生成物のイリジウム濃度が4.3%になるように、1,4−ジブロモ−2,5−ジブトキシベンゼン182mg、2,5−ジブトキシ−1,4−フェニルジボロニックアシッド186mg、錯体混合物A44mg(仕込みに際しては、ビス(2−(フェニル)ピリジン)モノ(2−(4−ブロモフェニル)ピリジン)イリジウム(III)の分子量733を用いた。)、テトラキス(トリフェニルホスフィン)パラジウム(0)10mg、THF10ml、2mol/L炭酸カリウム水溶液2mlを仕込み、アルゴン気流下、60〜65℃で24時間撹拌した。反応溶液の有機層と水層とを分離し、有機層を濃縮後、シリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン)で精製した。目的物の画分を約1mlに濃縮後、残査にメタノール30mlを加え、生成した黄色沈殿を濾集し、主鎖にイリジウム(III)錯体ユニットを持つポリパラフェニレン誘導体(B−1)130mgを得た。この化合物は、イリジウム(III)錯体ユニットとフェニレンユニットがランダム共重合した構造を有する。この化合物について、GPCを用いてポリスチレン換算の分子量分布を測定したところ、Mwが4200、Mnが2900であった。 182 mg of 1,4-dibromo-2,5-dibutoxybenzene, 186 mg of 2,5-dibutoxy-1,4-phenyldiboronic acid, and a complex mixture so that the iridium concentration of the reaction product becomes 4.3%. A44 mg (at the time of preparation, the molecular weight of bis (2- (phenyl) pyridine) mono (2- (4-bromophenyl) pyridine) iridium (III) was 733), tetrakis (triphenylphosphine) palladium (0) 10 mg, 10 ml of THF, and 2 ml of a 2 mol / L aqueous potassium carbonate solution were charged, and the mixture was stirred at 60 to 65 ° C. for 24 hours under an argon stream. The organic layer and the aqueous layer of the reaction solution were separated, and the organic layer was concentrated and purified by silica gel column chromatography (developing solvent: ethyl acetate / hexane). After concentrating the fraction of the target substance to about 1 ml, 30 ml of methanol was added to the residue, and the resulting yellow precipitate was collected by filtration, and 130 mg of a polyparaphenylene derivative (B-1) having an iridium (III) complex unit in the main chain. Got. This compound has a structure in which an iridium (III) complex unit and a phenylene unit are randomly copolymerized. When the molecular weight distribution of this compound in terms of polystyrene was measured using GPC, Mw was 4,200 and Mn was 2,900.

<実施例5>コーティング法によって得た有機EL素子
片面に面積20mm×20mmで厚さ100nmのITO電極層を有する、厚さが1.1mmのコーニング社製のガラス板「1737」のITO電極層上に、高砂香料株式会社製のポリ(N−ビニルカルバゾール)(Mw:700,000)の20g/Lトルエン溶液を、スピンコーターを使用し、1700回転/分で10秒間回転させて塗布した後、減圧下110℃で2時間乾燥させ、厚さ100nmの正孔輸送層を設けた。
前記正孔輸送層上に、実施例1で得たイリジウム(III)錯体(A−1)5.6mgと、電荷輸送材料であるMwが100000のポリ(2−(6−シアノ−6−メチルヘプチルオキシ)−1,4−フェニレン(以下、「CN−PPP」と略す。)34.4mgとを、1,1,2−トリクロロエタン2mlに溶解した溶液を、スピンコーターを使用し、2000回転/分で10秒間回転で塗布した後、真空下110℃で2時間乾燥させ、厚さ100nmの発光層を作製した。得られた発光層中のイリジウム原子の濃度は0.59%であった。
このようにして得られたITO、正孔輸送層、発光層が順に積層されたガラス板を、発光面積が2mm×2mmとなるようにマスクした後、カルシウムを1.0nm/秒の速度で厚さ10nmとなるように、アルミニウムを0.5nm/秒の速度で厚さ150nmとなるように負電極をこの順に真空蒸着し、有機EL素子(1)を得た。
<Example 5> Organic EL element obtained by coating method ITO electrode layer of Corning Corporation glass plate "1737" having a thickness of 1.1 mm and having an ITO electrode layer having an area of 20 mm x 20 mm and a thickness of 100 nm on one side. After applying a 20 g / L toluene solution of poly (N-vinylcarbazole) (Mw: 700,000) manufactured by Takasago International Corporation by spinning at 1700 rpm for 10 seconds using a spin coater, After drying under reduced pressure at 110 ° C. for 2 hours, a hole transport layer having a thickness of 100 nm was provided.
On the hole transport layer, 5.6 mg of the iridium (III) complex (A-1) obtained in Example 1 and poly (2- (6-cyano-6-methyl) having a charge transport material Mw of 100,000 were used. A solution obtained by dissolving 34.4 mg of heptyloxy) -1,4-phenylene (hereinafter abbreviated as “CN-PPP”) in 2 ml of 1,1,2-trichloroethane was subjected to 2,000 rpm using a spin coater. After spin-coating for 10 seconds per minute, the coating was dried under vacuum at 110 ° C. for 2 hours to form a light-emitting layer having a thickness of 100 nm, and the concentration of iridium atoms in the obtained light-emitting layer was 0.59%.
After masking the thus obtained glass plate on which the ITO, the hole transport layer, and the light emitting layer are laminated in order so that the light emitting area becomes 2 mm × 2 mm, the calcium is thickened at a speed of 1.0 nm / sec. A negative electrode was vacuum-deposited on the negative electrode in this order so as to have a thickness of 150 nm so as to have a thickness of 10 nm and a thickness of 10 nm, thereby obtaining an organic EL device (1).

有機EL素子(1)の負電極と正電極よりリード線を出した後、窒素ガスで置換したグローブボックス内に入れた。このリード線をケースレー社製の「237ハイ・ボルテージ・ソース・メジャー・ユニット」に接続し、電圧を印加して電流密度・電圧特性を測定した。さらに、トプコン社製色彩輝度計「BM−7」を使用して有機EL素子(1)の輝度を、日立社製蛍光光度計「F−4500」を使用して有機EL素子(1)の発光スペクトルをそれぞれ測定した。電流密度・電圧・輝度特性および発光スペクトルから、発光波長λmax、最高輝度、発光効率を算出した。なお、発光効率(%)は、有機EL素子から放出された光子数を、有機EL素子に注入された電荷数で除して、百分率で表した。
その結果、有機EL素子(1)は、発光波長λmaxが540nm、最高輝度は4500cd/m、発光効率が2.20%であった。
After leading wires from the negative electrode and the positive electrode of the organic EL device (1), the device was placed in a glove box replaced with nitrogen gas. The lead wire was connected to Keithley's “237 High Voltage Source Measure Unit”, and a voltage was applied to measure the current density / voltage characteristics. Further, the luminance of the organic EL element (1) was measured using a color luminance meter “BM-7” manufactured by Topcon Corporation, and the light emission of the organic EL element (1) was measured using a fluorometer “F-4500” manufactured by Hitachi. Each spectrum was measured. The emission wavelength λmax, the maximum brightness, and the emission efficiency were calculated from the current density / voltage / luminance characteristics and the emission spectrum. The luminous efficiency (%) was expressed as a percentage by dividing the number of photons emitted from the organic EL element by the number of charges injected into the organic EL element.
As a result, the organic EL element (1) had an emission wavelength λmax of 540 nm, a maximum luminance of 4500 cd / m 2 , and an emission efficiency of 2.20%.

<実施例6>コーティング法によって得た有機EL素子
実施例5における発光層の代わりに、実施例1で得たイリジウム(III)錯体(A−1)14mgと、CN−PPP26mgを1,1,2−トリクロロエタン2mlに溶解した溶液を使用したことと、スピンコーターの回転数を1500回転として発光層を設けた以外は、実施例5と同様の操作を行い、有機EL素子(2)を得た。発光層中のイリジウム原子の濃度は1.5%であった。有機EL素子(2)を実施例5と同様に評価した結果、有機EL素子(2)は、発光波長λmaxが540nm、最高輝度は7600cd/m、発光効率が2.14%であった。
<Example 6> Organic EL device obtained by coating method In place of the light emitting layer in Example 5, 14 mg of the iridium (III) complex (A-1) obtained in Example 1 and 26 mg of CN-PPP were added to 1,1, An organic EL device (2) was obtained in the same manner as in Example 5, except that the solution dissolved in 2 ml of 2-trichloroethane was used, and the light emitting layer was provided at a spin coater rotation speed of 1500. . The concentration of iridium atoms in the light emitting layer was 1.5%. As a result of evaluating the organic EL element (2) in the same manner as in Example 5, the organic EL element (2) had an emission wavelength λmax of 540 nm, a maximum luminance of 7600 cd / m 2 , and an emission efficiency of 2.14%.

<実施例7>コーティング法によって得た有機EL素子
実施例5における発光層の代わりに、実施例1で得たイリジウム(III)錯体(A−1)40mgを1,1,2−トリクロロエタン2mlに溶解した溶液を使用したことと、スピンコーターの回転数を1100回転として発光層を設けた以外は実施例5と同様の操作を行い、有機EL素子(3)を得た。発光層中のイリジウム原子の濃度は4.3%であった。有機EL素子(3)を実施例5と同様に評価した結果、有機EL素子(3)は、発光波長λmaxが540nm、最高輝度は9400cd/m、発光効率が1.98%であった。
<Example 7> Organic EL device obtained by coating method In place of the light emitting layer in Example 5, 40 mg of the iridium (III) complex (A-1) obtained in Example 1 was added to 2 mL of 1,1,2-trichloroethane. An organic EL device (3) was obtained in the same manner as in Example 5, except that the dissolved solution was used and the light emitting layer was provided at a spin coater rotation speed of 1100. The concentration of iridium atoms in the light emitting layer was 4.3%. As a result of evaluating the organic EL element (3) in the same manner as in Example 5, the organic EL element (3) had an emission wavelength λmax of 540 nm, a maximum luminance of 9,400 cd / m 2 , and an emission efficiency of 1.98%.

<実施例8>コーティング法によって得た有機EL素子
実施例5における発光層の代わりに、実施例2で得たイリジウム(III)錯体(A−2)40mgを1,1,2−トリクロロエタン2mlに溶解した溶液を使用したことと、スピンコーターの回転数を1000回転として発光層を設けた以外は実施例5と同様の操作を行い、有機EL素子(4)を得た。発光層中のイリジウム原子の濃度は6.62%であった。有機EL素子(4)を実施例5と同様に評価した結果、有機EL素子(4)は、発光波長λmaxが540nm、最高輝度は11400cd/m、発光効率が2.52%であった。
<Example 8> Organic EL device obtained by coating method In place of the light emitting layer in Example 5, 40 mg of the iridium (III) complex (A-2) obtained in Example 2 was added to 2 mL of 1,1,2-trichloroethane. An organic EL device (4) was obtained in the same manner as in Example 5, except that the dissolved solution was used, and the light emitting layer was provided at a spin coater rotation speed of 1000. The concentration of iridium atoms in the light emitting layer was 6.62%. As a result of evaluating the organic EL element (4) in the same manner as in Example 5, the organic EL element (4) had an emission wavelength λmax of 540 nm, a maximum luminance of 11,400 cd / m 2 , and an emission efficiency of 2.52%.

<実施例9>印刷法によって得た有機EL素子
片面に面積45mm×45mmで厚さ100nmのITO電極層を有する、厚さが1.1mmのコーニング社製のガラス板「1737」のITO電極層をウシオ電機(株)製エキシマ光照射装置UES20−172にて10分間オゾンエキシマ処理した。該ITO電極層上に、実施例2で得たイリジウム(III)錯体(A−2)の8%の1,1,2−トリクロロエタン溶液を、アニロックスロール360−18Pと40mmX40mmの凸版を備えた日本写真印刷(株)製のフレキソ印刷機オングストローマーS15型を用いて、ニップ圧0.13mm、印刷圧0.15mmの条件で印刷後、真空乾燥機を用いて100℃で1時間乾燥させて発光層を得た。発光層の膜厚は100nm、発光層中のイリジウム原子濃度は6.7%であった。
<Example 9> Organic EL element obtained by printing method ITO electrode layer of glass plate "1737" manufactured by Corning and having a thickness of 1.1 mm, having an ITO electrode layer having an area of 45 mm x 45 mm and a thickness of 100 nm on one surface. Was subjected to an ozone excimer treatment for 10 minutes using an excimer light irradiation device UES20-172 manufactured by Ushio Inc. On this ITO electrode layer, an 8% 1,1,2-trichloroethane solution of the iridium (III) complex (A-2) obtained in Example 2 was provided with anilox roll 360-18P and a relief plate of 40 mm × 40 mm. After printing using a flexographic printing machine Angstromer Model S15 manufactured by Photo Printing Co., Ltd. under the conditions of a nip pressure of 0.13 mm and a printing pressure of 0.15 mm, the resultant was dried at 100 ° C. for 1 hour using a vacuum dryer. A light emitting layer was obtained. The thickness of the light emitting layer was 100 nm, and the iridium atom concentration in the light emitting layer was 6.7%.

このようにして得られたITO、発光層が順に積層されたガラス板を、発光面積が35mm×35mmとなるようにシャドウマスクした後、真空蒸着機に入れ、マグネシウム9、銀1の割合となるよう共蒸着し膜厚200nmの負電極層を形成させた。さらに負電極層保護の目的で負電極層上に銀を厚さ100nmとなるように真空蒸着し、有機EL素子(5)を得た。有機EL素子(5)を実施例5と同様に評価した結果、発光波長λmaxが540nm、最高輝度が7000cd/m、発光効率が1.07%であった。 The thus obtained glass plate on which the ITO and the light emitting layer are sequentially laminated is shadow-masked so that the light-emitting area becomes 35 mm × 35 mm, and then put into a vacuum evaporation machine to have a ratio of magnesium 9 and silver 1. A negative electrode layer having a thickness of 200 nm was formed by co-evaporation. Further, for the purpose of protecting the negative electrode layer, silver was vacuum-deposited on the negative electrode layer to a thickness of 100 nm to obtain an organic EL device (5). As a result of evaluating the organic EL device (5) in the same manner as in Example 5, the emission wavelength λmax was 540 nm, the maximum luminance was 7000 cd / m 2 , and the luminous efficiency was 1.07%.

<実施例10>印刷法によって得た有機EL素子
実施例9における発光層の代わりに、実施例1で得たイリジウム(III)錯体(A−1)40mgを1,1,2−トリクロロエタン2mlに溶解した溶液を使用したことと、スピンコーターの回転数を1100回転として発光層を設けた以外は実施例9と同様の操作を行い、有機EL素子(6)を得た。発光層中のイリジウム原子の濃度は4.3%であった。有機EL素子(6)を実施例5と同様に評価した結果、有機EL素子(6)は、発光波長λmaxが540nm、最高輝度は5500cd/m、発光効率が0.95%であった。
Example 10 Organic EL Device Obtained by Printing Method In place of the light emitting layer in Example 9, 40 mg of the iridium (III) complex (A-1) obtained in Example 1 was added to 2 ml of 1,1,2-trichloroethane. An organic EL device (6) was obtained in the same manner as in Example 9, except that the dissolved solution was used and the light emitting layer was provided at a spin coater rotation of 1100. The concentration of iridium atoms in the light emitting layer was 4.3%. As a result of evaluating the organic EL element (6) in the same manner as in Example 5, the organic EL element (6) had an emission wavelength λmax of 540 nm, a maximum luminance of 5500 cd / m 2 , and an emission efficiency of 0.95%.

<比較例1>コーティング法によって得た有機EL素子の比較例
実施例5における発光層の代わりに、Ir(ppy)0.8mgと、CN−PPP39.2mgを1,1,2−トリクロロエタン2mlに溶解した溶液を使用したことと、スピンコーターの回転数を2100回転として発光層を設けた以外は実施例5と同様の操作を行い、有機EL素子(7)を得た。発光層中のイリジウム原子の濃度は0.59%であった。有機EL素子(7)を実施例5と同様に評価した結果、有機EL素子(7)は、発光波長λmaxが513nm、最高輝度は750cd/m、発光効率が1.65%であり、最高輝度および発光効率は実施例5〜9で得られた有機EL素子(1)〜(4)よりも低い値となった。
Comparative Example 1 Comparative Example of Organic EL Device Obtained by Coating Method In place of the light emitting layer in Example 5, 0.8 mg of Ir (ppy) 3 and 39.2 mg of CN-PPP were added to 2 ml of 1,1,2-trichloroethane. The organic EL device (7) was obtained in the same manner as in Example 5, except that the solution dissolved in was used and the light emitting layer was provided at a spin coater rotation speed of 2100. The concentration of iridium atoms in the light emitting layer was 0.59%. As a result of evaluating the organic EL element (7) in the same manner as in Example 5, the organic EL element (7) had an emission wavelength λmax of 513 nm, a maximum luminance of 750 cd / m 2 , and a luminous efficiency of 1.65%. The luminance and the luminous efficiency were lower than those of the organic EL devices (1) to (4) obtained in Examples 5 to 9.

<比較例2>コーティング法によって得た有機EL素子の比較例
実施例5における発光層の代わりに、Ir(ppy)2.0mgとCN−PPP38mgとを1,1,2−トリクロロエタン2mlに溶解した溶液を使用したことと、スピンコーターの回転数を2100回転として発光層を設けた以外は実施例5と同様の操作を行い、有機EL素子(8)を得た。発光層中のイリジウム原子の濃度は1.5%であった。有機EL素子(8)を実施例5と同様に評価した結果、有機EL素子(8)は、発光波長λmaxが513nm、最高輝度は1,180cd/m、発光効率が1.24%であり、最高輝度および発光効率は実施例5〜9で得られた有機EL素子(1)〜(4)よりも低い値となった。さらに、有機EL素子(8)の発光効率は、比較例1の有機EL素子(7)よりも低い値となり、濃度消光の顕著な影響が認められた。
Comparative Example 2 Comparative Example of Organic EL Device Obtained by Coating Method In place of the light emitting layer in Example 5, 2.0 mg of Ir (ppy) 3 and 38 mg of CN-PPP were dissolved in 2 ml of 1,1,2-trichloroethane. An organic EL device (8) was obtained in the same manner as in Example 5, except that the solution was used and the light emitting layer was provided at a spin coater rotation speed of 2100. The concentration of iridium atoms in the light emitting layer was 1.5%. As a result of evaluating the organic EL element (8) in the same manner as in Example 5, the organic EL element (8) had an emission wavelength λmax of 513 nm, a maximum luminance of 1,180 cd / m 2 , and an emission efficiency of 1.24%. , The highest luminance and the luminous efficiency were lower than those of the organic EL devices (1) to (4) obtained in Examples 5 to 9. Further, the luminous efficiency of the organic EL element (8) was lower than that of the organic EL element (7) of Comparative Example 1, and a remarkable influence of concentration quenching was recognized.

<比較例3>コーティング法によって得た有機EL素子の比較例
実施例5における発光層の代わりに、Ir(ppy)5.9mgとCN−PPP34.1mgとを1,1,2−トリクロロエタン2mlに溶解した溶液を使用したことと、スピンコーターの回転数を2100回転として発光層を設けた以外は実施例5と同様の操作を行い、有機EL素子(9)を得た。発光層中のイリジウム原子の濃度は4.3%であった。有機EL素子(9)を目視観察した結果、Ir(ppy)の結晶が析出し均一な発光層が形成されていなかった。この有機EL素子(9)を実施例5と同様に評価したが、電圧を印加すると素子がショートし、最高輝度および発光効率を測定することができなかった。
Comparative Example 3 Comparative Example of Organic EL Device Obtained by Coating Method In place of the light emitting layer in Example 5, 5.9 mg of Ir (ppy) 3 and 34.1 mg of CN-PPP were mixed with 2 ml of 1,1,2-trichloroethane. The organic EL device (9) was obtained by performing the same operation as in Example 5 except that the solution dissolved in was used and the light emitting layer was provided at a spin coater rotation speed of 2100. The concentration of iridium atoms in the light emitting layer was 4.3%. As a result of visual observation of the organic EL device (9), crystals of Ir (ppy) 3 were precipitated and a uniform light emitting layer was not formed. The organic EL device (9) was evaluated in the same manner as in Example 5. However, when a voltage was applied, the device was short-circuited, and the maximum luminance and the luminous efficiency could not be measured.

<比較例4>印刷法によって得た有機EL素子の比較例
実施例9における発光層の代わりに、Ir(ppy)9.2mgとCN−PPP30.8mgとを1,1,2−トリクロロエタン2mlに溶解した溶液を使用し、発光層を設けた以外は実施例9と同様の操作を行い、有機EL素子(10)を得た。発光層中のイリジウム原子の濃度は6.7%であった。有機EL素子(10)を目視観察した結果、Ir(ppy)の結晶が析出し均一な発光層が形成されていなかった。この有機EL素子(10)を実施例9と同様に評価したが、電圧を印加すると素子がショートし、最高輝度および発光効率を測定することができなかった。
<Comparative Example 4> Comparative Example of Organic EL Device Obtained by Printing Method Instead of the light emitting layer in Example 9, 9.2 mg of Ir (ppy) 3 and 30.8 mg of CN-PPP were mixed with 2 ml of 1,1,2-trichloroethane. The organic EL device (10) was obtained in the same manner as in Example 9, except that the solution dissolved in was used and the light emitting layer was provided. The concentration of iridium atoms in the light emitting layer was 6.7%. As a result of visually observing the organic EL device (10), crystals of Ir (ppy) 3 were precipitated and a uniform light emitting layer was not formed. This organic EL device (10) was evaluated in the same manner as in Example 9. However, when a voltage was applied, the device was short-circuited, and the maximum luminance and luminous efficiency could not be measured.

<比較例5>印刷法によって得た有機EL素子の比較例
実施例9における発光層の代わりに、比較合成例1で得たイリジウム(III)錯体ユニットを持つポリパラフェニレン誘導体(B−1)40mgを1,1,2−トリクロロエタン2mlに溶解した溶液を使用し、発光層を設けた以外は実施例9と同様の操作を行い、有機EL素子(11)を得た。この有機EL素子(11)を実施例9と同様に評価した結果、有機EL素子(11)は、発光波長λmaxが535nm、最高輝度は80cd/m2、発光効率が0.6%であり、最高輝度および発光効率は、実施例9〜10で得られた有機EL素子(5)〜(6)よりも低い値となった。
<Comparative Example 5> Comparative Example of Organic EL Device Obtained by Printing Method Polyparaphenylene derivative (B-1) having an iridium (III) complex unit obtained in Comparative Synthesis Example 1 instead of the light emitting layer in Example 9 An organic EL device (11) was obtained in the same manner as in Example 9, except that a solution in which 40 mg was dissolved in 2 ml of 1,1,2-trichloroethane was used and a light emitting layer was provided. As a result of evaluating the organic EL device (11) in the same manner as in Example 9, the organic EL device (11) had an emission wavelength λmax of 535 nm, a maximum luminance of 80 cd / m2, a luminous efficiency of 0.6%, and a maximum. The luminance and the luminous efficiency were lower than those of the organic EL devices (5) and (6) obtained in Examples 9 to 10.

<実施例11>コーティング法によって得た有機EL素子
実施例5における発光層の代わりに、実施例3で得たイリジウム(III)錯体(A−3)7.9mgとポリ(N−ビニルカルバゾール)(Mw:20000)32.1mgとを、トルエン2mlに溶解した溶液を使用して発光層を設けた以外は、実施例5と同様の操作を行い、有機EL素子(12)を得た。発光層中のイリジウム原子の濃度は1.35%であった。有機EL素子(12)を実施例5と同様に評価した結果、発光波長λmaxが587nmの赤色発光を示し、最高輝度が1800cd/m、発光効率が2.48%であった。
<Example 11> Organic EL device obtained by coating method Instead of the light emitting layer in Example 5, 7.9 mg of iridium (III) complex (A-3) obtained in Example 3 and poly (N-vinylcarbazole) An organic EL device (12) was obtained in the same manner as in Example 5, except that a light-emitting layer was provided using a solution of 32.1 mg (Mw: 20,000) in 2 ml of toluene. The concentration of iridium atoms in the light emitting layer was 1.35%. As a result of evaluating the organic EL element (12) in the same manner as in Example 5, the organic EL element (12) emitted red light with an emission wavelength λmax of 587 nm, the highest luminance was 1800 cd / m 2 , and the luminous efficiency was 2.48%.

<実施例12>コーティング法によって得た有機EL素子
実施例5における発光層の代わりに、実施例3で得たイリジウム(III)錯体(A−3)12.9mgとポリ(N−ビニルカルバゾール)(Mw:20000)27.1mgとを、トルエン2mlに溶解した溶液を使用し、スピンコーターの回転数を1000回転として発光層を設けた以外は実施例5と同様の操作を行い、有機EL素子(13)を得た。発光層中のイリジウム原子の濃度は2.8%であった。有機EL素子(13)を実施例5と同様に評価した結果、発光波長λmaxが587nmの赤色発光を示し、最高輝度が2200cd/m、発光効率が2.30%であった。
<Example 12> Organic EL device obtained by coating method In place of the light emitting layer in Example 5, 12.9 mg of iridium (III) complex (A-3) obtained in Example 3 and poly (N-vinylcarbazole) (Mw: 20000) An organic EL device was prepared in the same manner as in Example 5, except that a light-emitting layer was provided using a solution obtained by dissolving 27.1 mg of toluene in 2 ml of toluene and setting the number of rotations of a spin coater to 1,000. (13) was obtained. The concentration of iridium atoms in the light emitting layer was 2.8%. As a result of evaluating the organic EL device (13) in the same manner as in Example 5, the organic EL device (13) emitted red light with an emission wavelength λmax of 587 nm, the highest luminance was 2200 cd / m 2 , and the light emission efficiency was 2.30%.

<実施例13>コーティング法によって得た有機EL素子
実施例5における発光層の代わりに、実施例3で得たイリジウム(III)錯体(A−3)40mgをトルエン2mlに溶解した溶液を使用し、スピンコーターの回転数を1000回転として発光層を設けた以外は実施例5と同様の操作を行い、有機EL素子(14)を得た。発光層中のイリジウム原子の濃度は6.9%であった。有機EL素子(14)を実施例5と同様に評価した結果、発光波長λmaxが587nmの赤色発光を示し、最高輝度が2700cd/m、発光効率が2.03%であった。
Example 13 Organic EL Device Obtained by Coating Method Instead of the light emitting layer in Example 5, a solution obtained by dissolving 40 mg of the iridium (III) complex (A-3) obtained in Example 3 in 2 ml of toluene was used. An organic EL device (14) was obtained in the same manner as in Example 5, except that the light emitting layer was provided at a spin coater rotation speed of 1000. The concentration of iridium atoms in the light emitting layer was 6.9%. As a result of evaluating the organic EL device (14) in the same manner as in Example 5, the organic EL device (14) emitted red light with an emission wavelength λmax of 587 nm, the highest luminance was 2700 cd / m 2 , and the luminous efficiency was 2.03%.

<実施例14>コーティング法によって得た有機EL素子
実施例5における発光層の代わりに、実施例4で得たイリジウム(III)錯体(A−4)6.2mgとポリ(N−ビニルカルバゾール)(Mw:20000)33.8mgとを、トルエン2mlに溶解した溶液を使用して発光層を設けた以外は、実施例5と同様の操作を行い、有機EL素子(15)を得た。発光層中のイリジウム原子の濃度は1.35%であった。有機EL素子(15)を実施例5と同様に評価した結果、発光波長λmaxが587nmの赤色発光を示し、最高輝度が2100cd/m、発光効率が2.62%であった。
<Example 14> Organic EL device obtained by coating method 6.2 mg of iridium (III) complex (A-4) obtained in Example 4 and poly (N-vinylcarbazole) instead of the light emitting layer in Example 5 An organic EL device (15) was obtained in the same manner as in Example 5, except that a light-emitting layer was provided using a solution of 33.8 mg (Mw: 20,000) in 2 ml of toluene. The concentration of iridium atoms in the light emitting layer was 1.35%. The organic EL element (15) was evaluated in the same manner as in Example 5, and as a result, emitted red light with an emission wavelength λmax of 587 nm, the highest luminance was 2100 cd / m 2 , and the luminous efficiency was 2.62%.

<比較例6>
実施例5における発光層の代わりに、ビス(2−(2−ベンゾチエニル)ピリジナート−N,C3’)イリジウム(III)アセチルアセトナート(以下BtpIrと略記する)2mgと、ポリ(N−ビニルカルバゾール)(Mw:20000)38mgをTHF2mlに溶解した溶液を使用し、スピンコーターの回転数を1000回転として発光層を設けた以外は実施例5と同様の操作を行い、有機EL素子(16)を得た。発光層中のイリジウム原子の濃度は1.35%であった。有機EL素子(16)を実施例5と同様に評価した結果、発光波長λmaxが614nmの赤色発光を示し、最高輝度が560cd/m、発光効率が1.45%であり、最高輝度および発光効率は実施例11〜14で得られた有機EL素子(12)〜(15)よりも低い値となった。
<Comparative Example 6>
Instead of the light emitting layer in Example 5, 2 mg of bis (2- (2-benzothienyl) pyridinate-N, C 3 ′ ) iridium (III) acetylacetonate (hereinafter abbreviated as BtpIr) and poly (N-vinyl) An organic EL device (16) was prepared in the same manner as in Example 5 except that a solution prepared by dissolving 38 mg of carbazole (Mw: 20,000) in 2 ml of THF was used, and the light-emitting layer was provided at a spin coater rotation speed of 1000. Got. The concentration of iridium atoms in the light emitting layer was 1.35%. As a result of evaluating the organic EL device (16) in the same manner as in Example 5, the organic EL device (16) emitted red light with an emission wavelength λmax of 614 nm, the highest luminance was 560 cd / m 2 , the luminous efficiency was 1.45%, and the highest luminance and light emission were obtained. The efficiency was lower than those of the organic EL devices (12) to (15) obtained in Examples 11 to 14.

<比較例7>
実施例5における発光層の代わりに、BtpIrを4.1mgとポリ(N−ビニルカルバゾール)(Mw:20000)35.9mgとをTHF2mlに溶解した溶液を使用し、スピンコーターの回転数を1000回転として発光層を設けた以外は実施例5と同様の操作を行い、有機EL素子(17)を得た。発光層中のイリジウム原子の濃度は2.8%であった。有機EL素子(17)を実施例5と同様に評価した結果、発光波長λmaxが614nmの赤色発光を示し、最高輝度が740cd/m、発光効率が1.18%であり、最高輝度および発光効率は実施例11〜14で得られた有機EL素子(12)〜(15)よりも低い値となった。さらに、有機EL素子(17)の発光効率は、比較例6の有機EL素子(16)よりも低い値となり、濃度消光の影響が認められた。
<Comparative Example 7>
Instead of the light emitting layer in Example 5, a solution in which 4.1 mg of BtpIr and 35.9 mg of poly (N-vinylcarbazole) (Mw: 20,000) were dissolved in 2 ml of THF was used, and the number of rotations of the spin coater was 1,000 times. An organic EL device (17) was obtained in the same manner as in Example 5, except that a light-emitting layer was provided. The concentration of iridium atoms in the light emitting layer was 2.8%. As a result of evaluating the organic EL device (17) in the same manner as in Example 5, the organic EL device (17) showed red light emission having an emission wavelength λmax of 614 nm, a maximum luminance of 740 cd / m 2 , a luminous efficiency of 1.18%, and a maximum luminance and light emission. The efficiency was lower than those of the organic EL devices (12) to (15) obtained in Examples 11 to 14. Further, the luminous efficiency of the organic EL element (17) was lower than that of the organic EL element (16) of Comparative Example 6, and the effect of concentration quenching was recognized.

<比較例8>
実施例5における発光層の代わりに、BtpIrを10.2mgとポリ(N−ビニルカルバゾール)(Mw:20000)29.8mgとをTHF2mlに溶解した溶液を使用し、スピンコーターの回転数を1000回転として発光層を設けた以外は実施例5と同様の操作を行い、有機EL素子(18)を得た。発光層中のイリジウム原子の濃度は6.9%であった。有機EL素子(18)を目視観察した結果、BtpIrの結晶が析出し均一な発光層が形成されていなかった。この有機EL素子(18)を実施例5と同様に評価したが、電圧を印可すると素子がショートし、最高輝度および発光効率を測定することができなかった。
<Comparative Example 8>
Instead of the light-emitting layer in Example 5, a solution obtained by dissolving 10.2 mg of BtpIr and 29.8 mg of poly (N-vinylcarbazole) (Mw: 20,000) in 2 ml of THF was used, and the number of rotations of the spin coater was set to 1,000. An organic EL device (18) was obtained in the same manner as in Example 5, except that a light-emitting layer was provided. The concentration of iridium atoms in the light emitting layer was 6.9%. As a result of visual observation of the organic EL device (18), crystals of BtpIr were precipitated and a uniform light emitting layer was not formed. This organic EL device (18) was evaluated in the same manner as in Example 5. However, when a voltage was applied, the device was short-circuited, and the maximum luminance and the luminous efficiency could not be measured.

実施例5〜8及び比較例1〜3の、コーティング法によって得た有機EL素子の結果を表2に示す。実施例5〜8で得られた有機EL素子は、比較例1〜3で得られた有機EL素子に比べ、最高輝度、発光効率共に高かった。
また、発光層中のイリジウム原子の濃度が発光効率に与える影響(濃度消光の影響)について、実施例5〜8については実施例1の発光効率を100とし、比較例1〜3については比較例1の発光効率を100として発光効率の相対比を計算し、比較した。その結果、実施例5〜8で得られた有機EL素子は、濃度消光の影響は認められなかった。しかし比較例1〜2で得られた有機EL素子は、濃度が高くなると発光効率が低下し、濃度消光の影響が認められた。
Table 2 shows the results of the organic EL devices obtained by the coating method in Examples 5 to 8 and Comparative Examples 1 to 3. The organic EL devices obtained in Examples 5 to 8 had higher maximum luminance and higher luminous efficiency than the organic EL devices obtained in Comparative Examples 1 to 3.
In addition, regarding the influence of the concentration of iridium atoms in the light emitting layer on the luminous efficiency (the effect of concentration quenching), the luminous efficiency of Example 1 was set to 100 for Examples 5 to 8, and Comparative Example for Comparative Examples 1 to 3. The relative ratio of the luminous efficiencies was calculated and compared with the luminous efficiency of 1 as 100. As a result, the organic EL devices obtained in Examples 5 to 8 were not affected by the concentration quenching. However, in the organic EL devices obtained in Comparative Examples 1 and 2, the luminous efficiency decreased as the concentration increased, and the effect of concentration quenching was observed.

Figure 2004292423
Figure 2004292423

表中、Irはイリジウムを表す。Ir(ppy)はイリジウム(III)トリス(2−フェニルピリジン)を表す。 In the table, Ir represents iridium. Ir (ppy) 3 represents iridium (III) tris (2-phenylpyridine).

実施例9、10及び比較例4、5の、印刷法によって得た有機EL素子の結果を表3に示す。実施例9、10で得られた有機EL素子は、比較例4〜5で得られた有機EL素子に比べ、最高輝度、発光効率ともに高かった。特に、比較例5のイリジウム錯体ユニットとフェニレンユニットのランダム共重合体は、構造の不規則性に起因する輝度の著しい低下が認められた。   Table 3 shows the results of the organic EL devices obtained by the printing method in Examples 9 and 10 and Comparative Examples 4 and 5. The organic EL devices obtained in Examples 9 and 10 had higher maximum luminance and higher luminous efficiency than the organic EL devices obtained in Comparative Examples 4 and 5. In particular, in the random copolymer of the iridium complex unit and the phenylene unit of Comparative Example 5, a remarkable decrease in luminance due to structural irregularity was observed.

Figure 2004292423
Figure 2004292423

表中、Irはイリジウムを表す。Ir(ppy)はイリジウム(III)トリス(2−フェニルピリジン)を表す。 In the table, Ir represents iridium. Ir (ppy) 3 represents iridium (III) tris (2-phenylpyridine).

実施例11〜14及び比較例6〜8の、コーティング法によって得た有機EL素子の結果を表4に示す。実施例11〜14で得られた有機EL素子は、比較例1〜3で得られた有機EL素子に比べ、最高輝度、発光効率共に高かった。
また、発光層中のイリジウム原子の濃度が発光効率に与える影響(濃度消光の影響)について、実施例11〜14については実施例11の発光効率を100とし、比較例6〜8については比較例6の発光効率を100として発光効率の相対比を計算し、比較した。その結果、実施例11〜14で得られた有機EL素子は濃度消光の影響が低かったのに対し、比較例6〜8で得られた有機EL素子は、濃度が高くなると劇的に発光効率が低下し、濃度消光の影響が認められた。
Table 4 shows the results of the organic EL devices obtained by the coating method in Examples 11 to 14 and Comparative Examples 6 to 8. The organic EL devices obtained in Examples 11 to 14 had higher maximum luminance and higher luminous efficiency than the organic EL devices obtained in Comparative Examples 1 to 3.
Further, regarding the influence of the concentration of iridium atoms in the light emitting layer on the luminous efficiency (the effect of concentration quenching), the luminous efficiency of Example 11 was set to 100 for Examples 11 to 14, and the comparative example was set for Comparative Examples 6 to 8. The relative ratio of the luminous efficiencies was calculated with the luminous efficiency of No. 6 as 100, and compared. As a result, the organic EL devices obtained in Examples 11 to 14 were less affected by concentration quenching, whereas the organic EL devices obtained in Comparative Examples 6 to 8 dramatically increased the luminous efficiency when the concentration was increased. And the effect of concentration quenching was observed.

Figure 2004292423
Figure 2004292423

表中、BtpIrは、ビス(2−(2−ベンゾチエニル)ピリジナート−N,C’)イリジウム(III)アセチルアセトナートを表す。 In the table, BtpIr represents bis (2- (2-benzothienyl) pyridinate-N, C 3 ′) iridium (III) acetylacetonate.

本発明の有機EL素子は、表示素子、ディスプレイ、バックライト、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信等の用途に、好適に使用することができる。


The organic EL device of the present invention can be suitably used for applications such as display devices, displays, backlights, illumination light sources, recording light sources, exposure light sources, reading light sources, signs, signboards, interiors, and optical communications.


Claims (7)

一般式(1)で表されることを特徴とするイリジウム(III)錯体。
Figure 2004292423
(1)
(式中、Yは二座配位子を表し、Rは水素原子又は炭素原子数1〜10のアルコキシ基を表し、少なくとも一方はアルコキシ基を表す。nは3〜8の整数を表す。)
An iridium (III) complex represented by the general formula (1).
Figure 2004292423
(1)
(In the formula, Y represents a bidentate ligand, R represents a hydrogen atom or an alkoxy group having 1 to 10 carbon atoms, at least one of which represents an alkoxy group, and n represents an integer of 3 to 8.)
前記一般式(1)においてRがブトキシ基である、請求項1に記載のイリジウム(III)錯体。 The iridium (III) complex according to claim 1, wherein R in the general formula (1) is a butoxy group. 前記一般式(1)において、nが3又は4である請求項1又は2に記載のイリジウム(III)錯体。 The iridium (III) complex according to claim 1, wherein n is 3 or 4 in the general formula (1). 前記一般式(1)において、Yが一般式(2)で表される配位子、又は一般式(3)で表される配位子である、請求項1〜3のいずれかに記載のイリジウム(III)錯体。
Figure 2004292423
(2)
(式(2)中、Rは水素原子又は炭素原子数1〜10のアルコキシ基を表し、少なくとも一方はアルコキシ基を表す、nは3〜8の整数を表す。)
Figure 2004292423

(3)
4. The method according to claim 1, wherein, in the general formula (1), Y is a ligand represented by the general formula (2) or a ligand represented by the general formula (3). 5. Iridium (III) complex.
Figure 2004292423
(2)
(In the formula (2), R represents a hydrogen atom or an alkoxy group having 1 to 10 carbon atoms, at least one of which represents an alkoxy group, and n represents an integer of 3 to 8.)
Figure 2004292423

(3)
式(4)で表される請求項1記載のイリジウム(III)錯体。
Figure 2004292423

(4)
The iridium (III) complex according to claim 1, represented by formula (4).
Figure 2004292423

(4)
式(5)で表される請求項1記載のイリジウム(III)錯体。
Figure 2004292423

(5)
The iridium (III) complex according to claim 1, represented by formula (5).
Figure 2004292423

(5)
発光層が請求項1〜6のいずれかに記載のイリジウム(III)錯体を含有することを特徴とする有機エレクトロルミネッセンス素子。

An organic electroluminescent device, wherein the light emitting layer contains the iridium (III) complex according to any one of claims 1 to 6.

JP2003304413A 2002-08-30 2003-08-28 Iridium (iii) complex and organic electroluminescent element including the same Pending JP2004292423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304413A JP2004292423A (en) 2002-08-30 2003-08-28 Iridium (iii) complex and organic electroluminescent element including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002253602 2002-08-30
JP2002369719 2002-12-20
JP2003061478 2003-03-07
JP2003304413A JP2004292423A (en) 2002-08-30 2003-08-28 Iridium (iii) complex and organic electroluminescent element including the same

Publications (1)

Publication Number Publication Date
JP2004292423A true JP2004292423A (en) 2004-10-21

Family

ID=33425393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304413A Pending JP2004292423A (en) 2002-08-30 2003-08-28 Iridium (iii) complex and organic electroluminescent element including the same

Country Status (1)

Country Link
JP (1) JP2004292423A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075905A1 (en) * 2005-01-17 2006-07-20 Gracel Display Inc. Phosphors with high luminous efficiency and display device containing them
WO2006080785A1 (en) * 2005-01-31 2006-08-03 Gracel Display Inc. Red phosphors with high luminus efficiency and display device containing them
JP2007095572A (en) * 2005-09-29 2007-04-12 Dainippon Printing Co Ltd Barrier substrate for organic electroluminescent element
JPWO2005083033A1 (en) * 2004-02-26 2007-11-22 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP2008505239A (en) * 2004-07-06 2008-02-21 メルク パテント ゲーエムベーハー Electroluminescent polymer
JP2010102967A (en) * 2008-10-23 2010-05-06 Sumitomo Chemical Co Ltd Transmission device for illumination light communication system
JP2010102969A (en) * 2008-10-23 2010-05-06 Sumitomo Chemical Co Ltd Transmission device for illumination light communication system
JP2010102966A (en) * 2008-10-23 2010-05-06 Sumitomo Chemical Co Ltd Transmission device for illumination light communication system
JP2010103317A (en) * 2008-10-23 2010-05-06 Sumitomo Chemical Co Ltd Transmitter for illuminating light communication system
JP2010102968A (en) * 2008-10-23 2010-05-06 Sumitomo Chemical Co Ltd Transmitter for illumination light communication systems
JP2012110045A (en) * 2012-02-22 2012-06-07 Sumitomo Chemical Co Ltd Illumination light communication system and transmitter for illumination light communication
JP2012227524A (en) * 2011-04-07 2012-11-15 Semiconductor Energy Lab Co Ltd Light-emitting element
US9078330B2 (en) 2005-03-15 2015-07-07 Isis Innovation Limited Highly branched dendrimers
WO2016194784A1 (en) * 2015-05-29 2016-12-08 三菱化学株式会社 Iridium complex compound, organic electroluminescent element containing said compound, display device and lighting device
CN107709515A (en) * 2015-06-26 2018-02-16 剑桥显示技术有限公司 Metal complex and organic luminescent device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005083033A1 (en) * 2004-02-26 2007-11-22 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP4952247B2 (en) * 2004-02-26 2012-06-13 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP2008505239A (en) * 2004-07-06 2008-02-21 メルク パテント ゲーエムベーハー Electroluminescent polymer
WO2006075905A1 (en) * 2005-01-17 2006-07-20 Gracel Display Inc. Phosphors with high luminous efficiency and display device containing them
WO2006080785A1 (en) * 2005-01-31 2006-08-03 Gracel Display Inc. Red phosphors with high luminus efficiency and display device containing them
US9078330B2 (en) 2005-03-15 2015-07-07 Isis Innovation Limited Highly branched dendrimers
JP2007095572A (en) * 2005-09-29 2007-04-12 Dainippon Printing Co Ltd Barrier substrate for organic electroluminescent element
JP2010103317A (en) * 2008-10-23 2010-05-06 Sumitomo Chemical Co Ltd Transmitter for illuminating light communication system
JP2010102966A (en) * 2008-10-23 2010-05-06 Sumitomo Chemical Co Ltd Transmission device for illumination light communication system
JP2010102968A (en) * 2008-10-23 2010-05-06 Sumitomo Chemical Co Ltd Transmitter for illumination light communication systems
JP2010102969A (en) * 2008-10-23 2010-05-06 Sumitomo Chemical Co Ltd Transmission device for illumination light communication system
JP2010102967A (en) * 2008-10-23 2010-05-06 Sumitomo Chemical Co Ltd Transmission device for illumination light communication system
JP2012227524A (en) * 2011-04-07 2012-11-15 Semiconductor Energy Lab Co Ltd Light-emitting element
JP2012110045A (en) * 2012-02-22 2012-06-07 Sumitomo Chemical Co Ltd Illumination light communication system and transmitter for illumination light communication
WO2016194784A1 (en) * 2015-05-29 2016-12-08 三菱化学株式会社 Iridium complex compound, organic electroluminescent element containing said compound, display device and lighting device
JPWO2016194784A1 (en) * 2015-05-29 2018-03-15 三菱ケミカル株式会社 Iridium complex compound, organic electroluminescence device containing the compound, display device and lighting device
CN107709515A (en) * 2015-06-26 2018-02-16 剑桥显示技术有限公司 Metal complex and organic luminescent device
CN109836461A (en) * 2015-06-26 2019-06-04 剑桥显示技术有限公司 Metal complex and organic luminescent device
US20200055885A1 (en) * 2015-06-26 2020-02-20 Cambridge Display Techology Limited Metal complex and organic light-emitting device

Similar Documents

Publication Publication Date Title
JP4629643B2 (en) Organic light emitting device and display device
JP4325197B2 (en) Organic electroluminescence device
JP4220767B2 (en) Organic compounds, organic EL devices and displays
JP3328731B2 (en) Organic electroluminescence device
JP3546645B2 (en) Polymer fluorescent substance and organic electroluminescent device
JP2018527300A (en) Metal complex and organic light emitting device
JPWO2004020549A1 (en) Organic metal complex, organic EL element, and organic EL display
JP2003213002A (en) Aromatic diamine-containing polymer compound and organic electroluminescent element using the same
JP2018508626A (en) Organic light-emitting polymer containing light-emitting repeating unit in polymer main chain and device using the same
WO2004096945A1 (en) 1,3,6,8-tetrasubstituted pyrene compounds, organic el device and organic el display
JP5410758B2 (en) Cyclic siloxane compound, organic electroluminescence device and use thereof
WO2009131165A1 (en) Charge-transporting polymer compound and organic electroluminescent device using the same
JP2004292423A (en) Iridium (iii) complex and organic electroluminescent element including the same
JP4082297B2 (en) Organic compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element
EP1902076A1 (en) Light emitting polymer material, organic electroluminescence device and display device comprising light emitting polymer material
JP2003321546A (en) Phosphorescent polymer compound and light-emitting material and organic el element using the same
JP5461793B2 (en) Phosphorescent polymer compound and organic electroluminescence device using the same
JP5342103B2 (en) Organic light emitting device
JP3817957B2 (en) Organic fluorescent material and organic electroluminescence device
WO2007052444A1 (en) Organic electroluminescent device
JP5247024B2 (en) Organic light emitting device
JP2011001553A (en) Phosphorescent compound, phosphorescent composition, organic light-emitting element and display
JP5649029B2 (en) Luminescent composition, organic electroluminescent device, and benzodifuran derivative
JP2004359671A (en) Aluminum-mixed ligand complex compound, charge transport material, material for organic electroluminescent element, and organic electroluminescent element
JP4271489B2 (en) N-phenylcarbazole derivative polymer, organic light emitting device, and organic light emitting device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050905