JP2007052911A - 自己整列されたメタルシールドを備えた抵抗性探針の製造方法 - Google Patents

自己整列されたメタルシールドを備えた抵抗性探針の製造方法 Download PDF

Info

Publication number
JP2007052911A
JP2007052911A JP2006222691A JP2006222691A JP2007052911A JP 2007052911 A JP2007052911 A JP 2007052911A JP 2006222691 A JP2006222691 A JP 2006222691A JP 2006222691 A JP2006222691 A JP 2006222691A JP 2007052911 A JP2007052911 A JP 2007052911A
Authority
JP
Japan
Prior art keywords
resistive
impurity
metal shield
insulating layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006222691A
Other languages
English (en)
Other versions
JP4101848B2 (ja
Inventor
Hong-Sik Park
弘植 朴
Ju-Hwan Jung
柱煥 丁
Hyoung-Soo Ko
亨守 高
Seung-Bum Hong
承範 洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2007052911A publication Critical patent/JP2007052911A/ja
Application granted granted Critical
Publication of JP4101848B2 publication Critical patent/JP4101848B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1418Disposition or mounting of heads or record carriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/16Probe manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/14Particular materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q80/00Applications, other than SPM, of scanning-probe techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Micromachines (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】自己整列されたメタルシールドを備えた抵抗性探針の製造方法を提供する。
【解決手段】基板上で抵抗性チップ上に第1絶縁層、メタルシールド及び第2絶縁層を順次に形成する工程と、第2絶縁層をエッチングして抵抗領域上のメタルシールドを露出する工程と、露出されたメタルシールドをエッチングする工程と、第1絶縁層をエッチングして抵抗領域を露出する工程とを含むことを特徴とする自己整列されたメタルシールドを備えた抵抗性探針の製造方法である。
【選択図】図2

Description

本発明は、自己整列されたメタルシールドを備えた抵抗性探針の製造方法に係り、特にメタルシールドのアパーチャが抵抗性探針の抵抗領域に自己整列させる方法に関する。
最近、携帯用通信端末器、電子手帳など小型製品に対する需要が高まるにつれて、超小型の高集積の不揮発性記録媒体の必要性が増大している。既存のハードディスクは、小型化が容易でなく、フラッシュメモリは、高集積度を達成し難いので、これについての代案として走査探針を利用した情報保存装置が研究されている。
探針は、色々なSPM(Scanning Probe Microscopy)技術に利用される。例えば、探針と試料との間に印加される電圧差によって流れる電流を検出して情報を再生する走査貫通顕微鏡(Scanning Tunneling Microscope:STM)、探針と試料との間の原子的力を利用する原子間力顕微鏡(Atomic Force Microscope:AFM)、試料の磁場と磁化された探針との間の力を利用する磁気力顕微鏡(Magnetic Force Microscope:MFM)、可視光線の波長による解像度限界を改善した近接場走査光学顕微鏡(Scanning Near−Field Optical Microscope:SNOM)、試料と探針との間の静電力を利用した静電力顕微鏡(Electrostatic Force Microscope:EFM)などに利用される。
かかるSPM技術を利用して情報を高速かつ高密度で記録及び再生するためには、数十ナノメートル直径の小さい領域に存在する表面電荷を検出できなければならず、記録及び再生速度を速めるために、カンチレバーをアレイ形態に製作できなければならない。
図1は、特許文献1に開示された抵抗性チップ50が形成されたカンチレバー70の断面図である。抵抗性チップ50は、カンチレバー70上に垂直に位置し、カンチレバー70は、アレイ形態の製作が可能であり、また、数十ナノメートルの直径の抵抗領域56を有するように製造できる。
図1に示すように、抵抗性チップ50は、第1不純物がドーピングされたボディ部58と、抵抗性チップ50の尖頭部に位置して、第2不純物が低濃度にドーピングされて形成された抵抗領域56と、抵抗領域56を挟んで抵抗性チップ50の傾斜面に位置し、前記第2不純物が高濃度にドーピングされた第1及び第2半導体電極領域52,54とを備える。
しかし、従来の抵抗性チップを備えた半導体探針は、抵抗性チップ50を形成する過程で、チップ50の傾斜面に形成された半導体電極領域52,54が過度にエッチングされつつ、高濃度にドーピングされた傾斜面の領域が減少する。したがって、傾斜面での導電性領域が減少し、これは、抵抗領域56の空間分解能を低下させる。
一方、抵抗領域を除いた領域にメタルシールドを形成して抵抗領域による探針の空間分解能を向上させることができる。しかし、前記抵抗領域を露出するための100nmサイズのアパーチャを有するメタルシールドを前記抵抗領域に整列し難い。
国際公開第03/096409号パンフレット
本発明が解決しようとする課題は、前述した従来の技術の問題点を改善するためのものであって、メタルシールドのアパーチャを抵抗領域に容易に整列する方法を提供するところにある。
前記課題を解決するために、本発明による自己整列されたメタルシールドを備えた抵抗性探針の製造方法は、第1不純物をドーピングした基板の上面に尖頭部を備え、その尖頭部には、前記第1不純物と極性が異なる第2不純物が低濃度にドーピングされた抵抗領域が形成され、その傾斜面には、前記第2不純物が高濃度にドーピングされた第1及び第2電極領域が形成された抵抗性チップを形成する第1工程と、前記基板上で前記抵抗性チップ上に第1絶縁層及びメタルシールドを順次に形成する第2工程と、前記メタルシールドを覆う第2絶縁層を均一な厚さに形成する第3工程と、前記第2絶縁層をエッチングして、前記抵抗領域上の前記メタルシールドを露出する第4工程と、前記露出されたメタルシールドをエッチングする第5工程と、前記第1絶縁層をエッチングして前記抵抗領域を露出する第6工程とを含むことを特徴とする自己整列されたメタルシールドを備えた抵抗性探針の製造方法である。
前記第3工程は、前記第2絶縁層をプラズマ強化化学気相蒸着(Plasma Enhanced Chemical Vaporised Deposition:PE−CVD)方法で蒸着することが望ましい。
また、前記第3工程は、前記第2絶縁層を200℃以上かつ400℃以下で蒸着することが望ましい。
前記第1工程は、第1不純物をドーピングした基板の上面にストライプ状のマスク膜を形成し、前記マスク膜を除いた基板の領域に前記第1不純物と異なる極性の第2不純物を高濃度にドーピングして第1及び第2電極領域を形成する工程と、前記基板を熱処理して前記第1電極領域と第2電極領域との距離を狭め、前記第1及び第2電極領域の外郭に前記第2不純物が低濃度にドーピングされた抵抗領域を形成する工程と、所定の形状に前記マスク膜をパターニングして、前記パターニングされたマスク膜を除いた前記基板の上面をエッチングして抵抗性チップを形成する工程とを含みうる。
本発明の一局面によれば、前記抵抗領域を形成する工程は、前記第1及び第2電極領域から拡散された抵抗領域が互いに接触されて、尖頭部形成部を形成する。
前記抵抗性チップを形成する工程は、前記マスク膜と直交する方向にストライプ状の感光剤を形成した後、エッチング工程を行って前記マスク膜を四角形状に形成する工程を含むことが望ましい。
前記抵抗性チップを形成する工程は、前記パターニングされたマスク膜を除去した基板を酸素雰囲気で熱処理して、表面に所定厚さの酸化膜を形成する工程と、前記酸化膜を除去して前記抵抗性領域の端を尖らせる工程とをさらに含むことが望ましい。
本発明の他の局面によれば、前記酸化膜を形成する工程は、前記第1及び第2電極領域から拡散された抵抗領域が前記基板の上部で互いに接触されて、尖頭部形成部を形成する工程を含む。
前記第1不純物はp型不純物であり、前記第2不純物はn型不純物であることが望ましい。
本発明の自己整列されたメタルシールドを備えた抵抗性探針の製造方法によれば、抵抗領域を露出するメタルシールドのアパーチャが自己整列されるので、高分解能の抵抗性探針を容易に製作できる。
また、このように製作された探針を大容量、かつ超小型の情報保存装置に利用する場合、小さい領域に存在する電荷を検出するか、または形成して情報を記録及び再生できる装置を具現できる。
以下、添付された図面を参照して、本発明の望ましい実施形態による自己整列されたメタルシールドを備えた抵抗性探針の製造方法を詳細に説明する。この過程で、図面に示した層や領域の厚さは、明細書の明確性のために誇張されて示したものである。
図2は、本発明の望ましい実施形態による自己整列されたメタルシールドを備えた抵抗性探針のチップ部分のみを示す簡略図面である。
図2に示すように、半導体探針のチップ150は、カンチレバー170の一端上に垂直に形成されている。チップ150は、第1不純物がドーピングされたボディ部158と、チップ150の尖頭部に位置し、第2不純物が低濃度にドーピングされて形成された抵抗領域156と、抵抗領域156を挟んでチップ150の傾斜面に位置し、前記第2不純物が高濃度にドーピングされた第1及び第2半導体電極領域152,154とを備える。第1不純物はp型不純物であり、第2不純物はn型不純物であることが望ましい。半導体電極領域152,154及びカンチレバー170上には、第1絶縁層160が形成されており、チップ150の傾斜面で第1絶縁層160上にメタルシールド162が形成されている。前記第1絶縁層160は、SiOまたはSiで形成されうる。前記メタルシールド162は、例えばAlまたはAuで形成されうる。
前記メタルシールド162上には、第2絶縁層164が形成されうる。前記第2絶縁層164は、後述するエッチング過程でメタルシールド162上に残るものであり、エッチング過程でいずれも除去されることもある。
前記第1絶縁層160、メタルシールド162及び第2絶縁層164には、前記抵抗領域156を露出させるアパーチャ166が形成されている。前記メタルシールド162は、記録媒体の表面電荷が抵抗領域156以外の領域、すなわち第1及び第2半導体電極領域152,154に電界を及ぼすことを遮断する。したがって、表面電荷により発生する電界は、抵抗領域156の抵抗値差を誘発するが、この抵抗値の変化から表面電荷の極性とサイズとが精密に検出されうる。
図3は、図2の半導体探針のチップ150の末端部を拡大した図面である。
図3を参照して、本発明による自己整列されたメタルシールドを備えた抵抗性探針の作用を説明する。
本発明による抵抗性チップ150は、記録媒体153の表面電荷157を検出するとき、空乏領域168が半導体電極領域152,154まで拡張されなくても、不導体である空乏領域168により抵抗領域156の面積が狭まることによって、抵抗領域156の抵抗値の変化が発生し、したがって、抵抗値の変化から記録媒体153の表面電荷157の極性とサイズとを検出できる。抵抗領域156の内部に形成される空乏領域168が、表面の負電荷157が発生させる電界により次第に第1及び第2半導体電極領域152,154側に拡張しているということが分かる。特に、本発明による抵抗性チップ150は、抵抗領域156を除いた領域がメタルシールド162でカバーされているので、抵抗性チップ150の空間分解能が向上する。
図4Aないし図4Cは、メタルシールドのアパーチャが抵抗領域に自己整列される原理を説明する図面である。
図4Aに示すように、抵抗性チップ250は、第1不純物がドーピングされたボディ部258と、チップ250の尖頭部に位置し、第2不純物が低濃度にドーピングされて形成された抵抗領域256と、抵抗領域256を挟んでチップ250の傾斜面に位置し、前記第2不純物が高濃度にドーピングされた第1及び第2半導体電極領域252,254とを備える。基板231上の抵抗性チップ250を覆う第1絶縁層260を蒸着する。第1絶縁層260は、SiOまたはSiで形成されうる。次いで、第1絶縁層260上にメタル、例えばAlを蒸着またはスパッタリングしてメタルシールド262を形成する。メタルシールド262は、約10nmないし200nmの厚さに形成する。次いで、基板231上に前記メタルシールド262を覆う第2絶縁層264を形成する。このとき、第2絶縁層264は、メタルシールド262上にPE−CVD方法でSiOまたはSiで蒸着されうる。図4Aにおいて、d2とd1とはほぼ同一であるか、またはd2がd1より厚いこともある。d3は、チップの鋭角が2αである場合、数式1で表現されうる。d3は、傾斜面での垂直長である。
[数1]
d3=d2/cosα …(1)
図4Bに示すように、前記第2絶縁層264をその上方で異方性エッチングして、抵抗領域256付近の第2絶縁層264を完全に除去する。エッチング厚さをd1より大きくてd3より小さく調節すれば、傾斜面には第2絶縁層264が残る。
図4Cに示すように、第2絶縁層264をマスクとして露出されたメタルシールド262をエッチングすれば、抵抗領域256がメタルシールド262のアパーチャ266内に位置する。かかる工程は、フォトリソグラフィ工程を使用せずに、メタルシールド262のアパーチャ266と抵抗領域256とを自己整列させる。また、アパーチャ266のサイズも、第2絶縁層262をエッチングする時間により調節できる。次いで、アパーチャ266に露出された第1絶縁層260をエッチングして抵抗領域256を露出させる。
図5Aないし図5Kは、本発明による自己整列されたメタルシールドを備えた抵抗性探針の製造過程を順次に示す図面である。
図5Aに示すように、第1不純物でドーピングされたシリコン基板331またはSOI(Silicon On Insulator)基板の表面に、シリコン酸化膜またはシリコン窒化膜などのマスク膜333を形成し、感光剤335をその上面に塗布した後、ストライプ状のマスク338をその上方に配置させる。
図5Bに示すように、露光、現像及びエッチング工程を行って、ストライプ状のマスク膜333aを基板331上に形成する。次いで、マスク膜333aを除いた領域を第2不純物で高濃度にドーピングして、第1及び第2半導体電極領域332,334を形成する。第1及び第2半導体電極領域332,334は、比抵抗値が非常に低く形成されて導電体として作用する。
図5Cに示すように、基板331に熱処理工程を行って、第1半導体電極領域332と第2半導体電極領域334との幅をマスク膜333aの幅より狭める。第2不純物の高濃度領域332,334が拡大すれば、高濃度領域と隣接した領域に第2不純物が拡散されて、第2不純物の低濃度領域である抵抗領域336を形成する。マスク膜333aの下部の抵抗領域336は、互いに接触されて後述する抵抗性チップの尖頭部形成部を形成する。この抵抗領域336の接触は、後述する熱酸化工程で行われてもよい。
図5D及び図5Eに示すように、基板331の上面にマスク膜333aを覆うように感光剤層339を塗布した後、その上方にマスク膜333aと直交するようにストライプ状のフォトマスク340を配置させる。次いで、露光、現像及びエッチング工程を実施すれば、フォトマスク340と同じ形態の感光剤層339aが形成される。
図5Fに示すように、ストライプ状の感光剤層339aにより覆われていないマスク膜333aをドライエッチングして、四角形状のマスク膜333bを形成する。
図5Gに示すように、感光剤層339aを除去した後、四角形状のマスク膜333bをマスクとして基板331をウェットまたはドライエッチングする。
図5Hに示すように、チップ350の傾斜面に第1及び第2半導体電極領域332,334が形成され、抵抗領域336がチップ350の尖頭部に整列される。
次いで、マスク膜333bを除去した後、基板331を酸素雰囲気で加熱すれば、基板331の上面に所定厚さのシリコン酸化膜(図示せず)が形成され、この酸化膜を除去すれば、抵抗領域336の端が尖る。かかる熱酸化工程を行えば、チップのシャープニングと共に隔離された抵抗領域336を重ねることもできる。
図5Iに示すように、基板331上に抵抗性チップ350を覆う第1絶縁層360を蒸着する。第1絶縁層360は、SiOまたはSiで形成されうる。次いで、第1絶縁層360上にメタル、例えばAlを蒸着またはスパッタリングしてメタルシールド362を形成する。メタルシールド362は、約10ないし200nmの厚さに形成する。次いで、基板331上に前記メタルシールド362を覆う第2絶縁層364を形成する。このとき、第2絶縁層364は、メタルシールド362上にPE−CVD方法でSiOまたはSiで蒸着されうる。望ましくは、前記第2絶縁層364を200℃以上かつ400℃以下で蒸着して、前記メタルシールド362を変形させないことが望ましい。
図5Jに示すように、前記第2絶縁層364をその上方で異方性エッチングして、第2絶縁層364の厚さが最も薄い抵抗領域356付近の第2絶縁層364を完全に除去する。チップ端の抵抗領域356以外の領域には、第2絶縁層364が残る。
図5Kに示すように、第2絶縁層264をマスクとして露出されたメタルシールド362をエッチングすれば、抵抗領域356がメタルシールド362のアパーチャ366内に位置する。かかる工程は、フォトリソグラフィ工程を使用せずに、メタルシールド362のアパーチャ366と抵抗領域356とを自己整列させる。また、アパーチャ366のサイズも、第2絶縁層362をエッチングする時間により調節できる。次いで、アパーチャ366に露出された第1絶縁層360をエッチングして抵抗領域356を露出させる。
次いで、基板331の下面をエッチングして、抵抗性チップ350が末端部に位置するようにカンチレバー(図示せず)を形成し、第1及び第2半導体電極領域332,334に電極パッド(図示せず)を連結する工程を行う。かかるカンチレバーの形成工程は周知されているので、詳細な説明は省略する。
図6は、本発明による自己整列されたメタルシールドを備えた抵抗性探針と、従来の抵抗性探針の分解能を比較するためにシミュレーションに使用した探針の断面図であり、図7は、図6の探針での電荷変化によるドレイン電流値の変化を示すグラフである。
図6及び図7に示すように、抵抗性チップ430の両側にソース及びドレイン電極432,434を形成し、チップ430の尖頭部に抵抗領域436を形成した。抵抗領域436の前には、アパーチャ463が形成されたメタルシールド462を形成した。抵抗領域436から離隔された位置に、フローティング電圧を形成するメタル440を配置した。メタル440の開口442の直径は10nmとし、メタル440と抵抗領域436とのギャップは10nmとした。メタル440に印加されたフローティング電圧は、それぞれ+1V、−1Vとし、フローティング電圧を矢印A方向に移動させつつ探針430のドレイン電流を計算した。測定結果、本発明による抵抗性チップの+電荷と−電荷との転移幅が、従来の抵抗性チップの転移幅より非常にシャープに表れた。
メタルシールドのない抵抗性チップの場合、+電荷と−電荷との転移幅が112nmであるのに比べて、メタルシールドのある抵抗性チップの場合、+電荷と−電荷との転移幅が23nmと非常にシャープに表れた。これは、メタルシールドにより抵抗性チップの分解能が向上したことを表す。
前記した説明で多くの事項が具体的に記載されているが、それらは、発明の範囲を限定するというより、望ましい実施形態の例示として解釈されねばならない。例えば、当業者であれば、本発明の技術的思想により多様な形態の探針を製造できるであろう。したがって、本発明の範囲は、説明された実施形態により決まるものではなく、特許請求の範囲に記載された技術的思想により決まらねばならない。
本発明は、情報保存装置関連の技術分野に適用可能である。
国際公開第03/096409号パンフレットに開示された抵抗性チップが形成されたカンチレバーの一部断面図である。 本発明の望ましい実施形態による自己整列されたメタルシールドを備えた抵抗性探針のチップ部分のみを示す簡略図面である。 図2の半導体探針のチップの末端部を拡大した図面である。 メタルシールドのアパーチャが抵抗領域に自己整列される原理を説明する図面である。 メタルシールドのアパーチャが抵抗領域に自己整列される原理を説明する図面である。 メタルシールドのアパーチャが抵抗領域に自己整列される原理を説明する図面である。 本発明による自己整列されたメタルシールドを備えた抵抗性探針の製造過程を順次に示す図面である。 本発明による自己整列されたメタルシールドを備えた抵抗性探針の製造過程を順次に示す図面である。 本発明による自己整列されたメタルシールドを備えた抵抗性探針の製造過程を順次に示す図面である。 本発明による自己整列されたメタルシールドを備えた抵抗性探針の製造過程を順次に示す図面である。 本発明による自己整列されたメタルシールドを備えた抵抗性探針の製造過程を順次に示す図面である。 本発明による自己整列されたメタルシールドを備えた抵抗性探針の製造過程を順次に示す図面である。 本発明による自己整列されたメタルシールドを備えた抵抗性探針の製造過程を順次に示す図面である。 本発明による自己整列されたメタルシールドを備えた抵抗性探針の製造過程を順次に示す図面である。 本発明による自己整列されたメタルシールドを備えた抵抗性探針の製造過程を順次に示す図面である。 本発明による自己整列されたメタルシールドを備えた抵抗性探針の製造過程を順次に示す図面である。 本発明による自己整列されたメタルシールドを備えた抵抗性探針の製造過程を順次に示す図面である。 本発明による自己整列されたメタルシールドを備えた抵抗性探針と、従来の抵抗性探針の分解能を比較するためにシミュレーションに使用した探針の断面図である。 図6の探針で電荷の変化によるドレイン電流値の変化を示すグラフである。
符号の説明
150 チップ
152 第1半導体電極領域
154 第2半導体電極領域
156 抵抗領域
158 ボディ部
160 第1絶縁層
162 メタルシールド
164 第2絶縁層
166 アパーチャ
170 カンチレバー

Claims (10)

  1. 第1不純物をドーピングした基板の上面に尖頭部を備え、その尖頭部には、前記第1不純物と極性が異なる第2不純物が低濃度にドーピングされた抵抗領域が形成され、その傾斜面には、前記第2不純物が高濃度にドーピングされた第1及び第2電極領域が形成された抵抗性チップを形成する第1工程と、
    前記基板上で前記抵抗性チップ上に第1絶縁層及びメタルシールドを順次に形成する第2工程と、
    前記メタルシールドを覆う第2絶縁層を均一な厚さに形成する第3工程と、
    前記第2絶縁層をエッチングして、前記抵抗領域上の前記メタルシールドを露出する第4工程と、
    前記露出されたメタルシールドをエッチングする第5工程と、
    前記第1絶縁層をエッチングして前記抵抗領域を露出する第6工程と、を含むことを特徴とする自己整列されたメタルシールドを備えた抵抗性探針の製造方法。
  2. 前記第3工程は、
    前記第2絶縁層をプラズマ強化化学気相蒸着方法で蒸着することを特徴とする請求項1に記載の抵抗性探針の製造方法。
  3. 前記第3工程は、
    前記第2絶縁層を200℃以上かつ400℃以下で蒸着することを特徴とする請求項1または2に記載の抵抗性探針の製造方法。
  4. 前記第4工程は、
    前記第2絶縁層を異方性エッチングして、前記傾斜面に第2絶縁層を残すことを特徴とする請求項1に記載の抵抗性探針の製造方法。
  5. 前記第1工程は、
    第1不純物をドーピングした基板の上面にストライプ状のマスク膜を形成し、前記マスク膜を除いた基板の領域に前記第1不純物と異なる極性の第2不純物を高濃度にドーピングして第1及び第2電極領域を形成する工程と、
    前記基板を熱処理して前記第1電極領域と第2電極領域との間の距離を狭め、前記第1及び第2電極領域の外郭に前記第2不純物が低濃度にドーピングされた抵抗領域を形成する工程と、
    所定の形状に前記マスク膜をパターニングして、前記パターニングされたマスク膜を除いた前記基板の上面をエッチングして抵抗性チップを形成する工程と、を含むことを特徴とする請求項1に記載の抵抗性探針の製造方法。
  6. 前記抵抗領域を形成する工程は、
    前記第1及び第2電極領域から拡散された抵抗領域が互いに接触されて、尖頭部形成部を形成することを特徴とする請求項5に記載の抵抗性探針の製造方法。
  7. 前記抵抗性チップを形成する工程は、
    前記マスク膜と直交する方向にストライプ状の感光剤を形成した後、エッチング工程を行って前記マスク膜を四角形状に形成する工程を含むことを特徴とする請求項5に記載の抵抗性探針の製造方法。
  8. 前記抵抗性チップを形成する工程は、
    前記パターニングされたマスク膜を除去した基板を酸素雰囲気で熱処理して、表面に所定厚さの酸化膜を形成する工程と、
    前記酸化膜を除去して前記抵抗性領域の端を尖らす工程と、をさらに含むことを特徴とする請求項5に記載の抵抗性探針の製造方法。
  9. 前記酸化膜を形成する工程は、
    前記第1及び第2電極領域から拡散された抵抗領域が前記基板の上部で互いに接触されて、尖頭部形成部を形成する工程を含むことを特徴とする請求項8に記載の抵抗性探針の製造方法。
  10. 前記第1不純物はp型不純物であり、前記第2不純物はn型不純物であることを特徴とする請求項1に記載の抵抗性探針の製造方法。

JP2006222691A 2005-08-17 2006-08-17 自己整列されたメタルシールドを備えた抵抗性探針の製造方法 Expired - Fee Related JP4101848B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050075250A KR100723410B1 (ko) 2005-08-17 2005-08-17 자기정렬된 메탈쉴드를 구비한 저항성 탐침의 제조방법

Publications (2)

Publication Number Publication Date
JP2007052911A true JP2007052911A (ja) 2007-03-01
JP4101848B2 JP4101848B2 (ja) 2008-06-18

Family

ID=37767798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222691A Expired - Fee Related JP4101848B2 (ja) 2005-08-17 2006-08-17 自己整列されたメタルシールドを備えた抵抗性探針の製造方法

Country Status (3)

Country Link
US (1) US7605014B2 (ja)
JP (1) JP4101848B2 (ja)
KR (1) KR100723410B1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790895B1 (ko) * 2006-11-16 2008-01-03 삼성전자주식회사 저항성 팁을 구비한 반도체 탐침 및 그 제조방법
CN114236364B (zh) * 2022-02-24 2022-05-31 上海聚跃检测技术有限公司 一种集成电路芯片的失效分析方法及***

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3295968B2 (ja) 1992-06-10 2002-06-24 株式会社豊田中央研究所 硬質低摩擦層を表面に有する材料の製造方法
JP3618896B2 (ja) * 1996-03-29 2005-02-09 キヤノン株式会社 微小開口を有するプローブの作製法とそれによるプローブ、並びに該プローブを用いた走査型近接場光顕微鏡と走査型トンネル顕微鏡との複合装置、および該プローブを用いた記録再生装置
JPH10300762A (ja) 1997-04-30 1998-11-13 Hitachi Constr Mach Co Ltd カンチレバーの製造方法
JPH10332714A (ja) 1997-05-29 1998-12-18 Canon Inc 微小ティップの製造方法、及びシールド電極付きプローブの製造方法、または電界放出型電子放出素子の製造方法と描画装置の製造方法
JPH1194863A (ja) 1997-09-12 1999-04-09 Nikon Corp カンチレバー及びその製造方法
JP3194185B2 (ja) 1997-10-13 2001-07-30 株式会社エツミ光学 電磁波シールド成形品
JP2002072897A (ja) 2000-08-25 2002-03-12 Fuji Photo Film Co Ltd 電磁波遮断性透明フィルム
US6479892B1 (en) * 2000-10-31 2002-11-12 Motorola, Inc. Enhanced probe for gathering data from semiconductor devices
JP2003034828A (ja) 2001-02-15 2003-02-07 Kobe Steel Ltd 電磁波シールド用のAg合金膜、電磁波シールド用Ag合金膜形成体及び電磁波シールド用Ag合金スパッタリングターゲット
US6653653B2 (en) * 2001-07-13 2003-11-25 Quantum Logic Devices, Inc. Single-electron transistors and fabrication methods in which a projecting feature defines spacing between electrodes
KR100468850B1 (ko) 2002-05-08 2005-01-29 삼성전자주식회사 저항성 팁을 구비하는 반도체 탐침 및 그 제조방법 및 이를 구비하는 정보 기록장치, 정보재생장치 및 정보측정장치
KR100499029B1 (ko) * 2002-10-22 2005-07-01 한국전자통신연구원 광 정보 저장장치의 헤드에 적용 가능한 캔티레버형근접장 탐침 구조 및 그 제작 방법

Also Published As

Publication number Publication date
US7605014B2 (en) 2009-10-20
KR100723410B1 (ko) 2007-05-30
KR20070020889A (ko) 2007-02-22
JP4101848B2 (ja) 2008-06-18
US20070042522A1 (en) 2007-02-22

Similar Documents

Publication Publication Date Title
JP4216836B2 (ja) 抵抗性チップを備える半導体探針及びその製造方法
JP4369430B2 (ja) 抵抗性チップを備えた半導体プローブ及びその製造方法
JP4217218B2 (ja) 抵抗性チップを備えた半導体探針の製造方法
JP4050291B2 (ja) 抵抗性チップを備える半導体探針の製造方法
KR100829565B1 (ko) 웨지 형상의 저항성 팁을 구비한 반도체 탐침 및 그제조방법
JP3856395B2 (ja) 自己整列工程を利用した電界効果トランジスタチャンネル構造を持つスキャニングプローブマイクロスコープの探針製造方法
KR100790895B1 (ko) 저항성 팁을 구비한 반도체 탐침 및 그 제조방법
JP4101848B2 (ja) 自己整列されたメタルシールドを備えた抵抗性探針の製造方法
KR100785036B1 (ko) 전기장 쉴드를 구비한 전기장 센서의 제조방법
JP4990728B2 (ja) 凸状の抵抗性チップを備えた半導体探針およびその製造方法
JP4101847B2 (ja) 低断面比の抵抗性チップを備えた半導体探針及びその製造方法
JP4101851B2 (ja) ドーピング制御層が形成された高分解能抵抗性チップを備えた半導体探針及びその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees