JP2007042291A - Insulating paste - Google Patents

Insulating paste Download PDF

Info

Publication number
JP2007042291A
JP2007042291A JP2005221715A JP2005221715A JP2007042291A JP 2007042291 A JP2007042291 A JP 2007042291A JP 2005221715 A JP2005221715 A JP 2005221715A JP 2005221715 A JP2005221715 A JP 2005221715A JP 2007042291 A JP2007042291 A JP 2007042291A
Authority
JP
Japan
Prior art keywords
insulating
component
weight
insulating paste
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005221715A
Other languages
Japanese (ja)
Other versions
JP4843823B2 (en
Inventor
Takuji Iwano
野 卓 司 岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2005221715A priority Critical patent/JP4843823B2/en
Publication of JP2007042291A publication Critical patent/JP2007042291A/en
Application granted granted Critical
Publication of JP4843823B2 publication Critical patent/JP4843823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Force In General (AREA)
  • Resistance Heating (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulating paste that has adhesion properties withstanding a temperature change to a metal surface and has an insulating layer with a small change in the value of resistance by a heat history. <P>SOLUTION: The insulating paste forms an insulating layer on metal having a thermal coefficient of expansion of 10×10<SP>-6</SP>/°C to 12×10<SP>-6</SP>/°C at 30 to 100°C, especially ferrite-based stainless steel, and comprises a first constituent and a second one while they are mixed at a weight ratio of (50:50) to (90:10). The first constituent contains a metal oxide in the 2A family in the periodic table by 10-50 wt.% as an insulating material, allows the remainder to be composed of B<SB>2</SB>O<SB>3</SB>and SiO<SB>2</SB>essentially, and is made of glass that has a thermal coefficient of expansion of 5×10<SP>-6</SP>/°C to 12×10<SP>-6</SP>/°C at 30 to 100°C and a softening point of 700 to 850°C. The second constituent is composed of at least one type of oxide selected from a group comprising Al<SB>2</SB>O<SB>3</SB>, CaZrO<SB>3</SB>, BaZrO<SB>3</SB>, MgZrO<SB>3</SB>, and SrZrO<SB>3</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属上に絶縁層を形成するための絶縁ペースト、さらに詳細にはヒーター、感歪抵抗体を用いた荷重センサーなどに使用される金属上に絶縁層、導体、抵抗体、保護層を含む回路素子における絶縁層形成用の絶縁ペーストに関するものである。   The present invention relates to an insulating paste for forming an insulating layer on a metal, more specifically, an insulating layer, a conductor, a resistor, a protective layer on a metal used for a load sensor using a heater, a strain sensitive resistor, etc. The present invention relates to an insulating paste for forming an insulating layer in a circuit element including

ヒーター、感歪抵抗体では、ステンレス鋼などの金属基板上に導体、抵抗体を設けているが、そのために金属基板と導体、抵抗体の間に絶縁層を置くことが必要であり、絶縁層は、所定の絶縁性を有することはもちろん、これらの基板と充分な密着性が要求される。   In heaters and strain sensitive resistors, conductors and resistors are provided on a metal substrate such as stainless steel. For this purpose, it is necessary to place an insulating layer between the metal substrate, the conductor, and the resistor. In addition to having a predetermined insulating property, sufficient adhesion to these substrates is required.

絶縁層を形成する組成物はこれまでにも多くの提案があるが、ステンレス基板上に用いられるガラス質絶縁層は熱衝撃、機械的衝撃に弱い欠点が指摘され、ガラスを用いた絶縁層は一部に限られていた〔非特許文献1参照〕。密着性に関しても、鉄表面では酸化鉄があるためにガラス組成との密着性がある程度よくなるが、ステンレスでは表面に酸化鉄が実質できないためにガラス組成からなる絶縁層との密着性が劣っている。   There have been many proposals for a composition for forming an insulating layer, but it has been pointed out that a glassy insulating layer used on a stainless steel substrate is weak against thermal shock and mechanical shock. It was limited to a part [refer nonpatent literature 1]. As for adhesion, iron oxide on the iron surface improves adhesion to the glass composition to some extent, but stainless steel has poor adhesion to the insulating layer made of glass composition because iron oxide cannot be substantially formed on the surface. .

ステンレス鋼、鉄などの金属表面に対する絶縁性組成物として、例えば、絶縁材を金属基板に接合するにあたり、接合面にモリブデン又はアルミニウムをスパッタリング蒸着するとともに、絶縁材表面に1価のアルカリイオンを注入して、600℃に加熱し、絶縁材側に負電圧を印加するとともに加圧して絶縁材を金属基板に接合する方法〔特許文献1参照〕、ポリカルボシランを主剤とし、粒度が10μm〜20μmの絶縁性の粉末を加えて溶剤に均質に分散させ、ステンレス鋼、鉄などの金属に対して濡れ性が良く、空気中700℃の高温下でも安定した絶縁性を示す絶縁インキ状組成物〔特許文献2参照〕、ステンレス板の表面に鉄またはクロム原子の拡散防止層を介してガラス、金属酸化物、金属窒化物の混合物、焼結体からなる絶縁層を形成させる高温焼成用金属絶縁基板〔特許文献3参照〕、金属基板上に、水溶性樹脂を含む絶縁ペーストと非水溶性樹脂を含む絶縁ペーストを互いに重なり合うように印刷して酸化雰囲気内で焼成して多層配線基板を形成させ、複数層を一括焼成して多層印刷時における下地にペースト中の溶剤成分が浸透してレベリングするのを抑える方法〔特許文献4参照〕などの提案がある。   As an insulating composition for metal surfaces such as stainless steel and iron, for example, when bonding an insulating material to a metal substrate, molybdenum or aluminum is sputter deposited on the bonding surface, and monovalent alkali ions are implanted on the surface of the insulating material. Then, heating to 600 ° C., applying a negative voltage to the insulating material side and applying pressure to bond the insulating material to the metal substrate (see Patent Document 1), using polycarbosilane as the main agent, and a particle size of 10 μm to 20 μm Insulating ink-like composition that is uniformly dispersed in a solvent by adding an insulating powder of the above, has good wettability to metals such as stainless steel and iron, and exhibits stable insulation even at a high temperature of 700 ° C. in air [ [Patent Document 2] Insulation made of glass, metal oxide, metal nitride mixture, sintered body on the surface of a stainless steel plate with a diffusion prevention layer of iron or chromium atoms A metal insulating substrate for high-temperature firing to form a layer (see Patent Document 3), and an insulating paste containing a water-soluble resin and an insulating paste containing a water-insoluble resin are printed on the metal substrate so as to overlap each other in an oxidizing atmosphere. There are proposals such as a method in which a multilayer wiring board is formed by firing, and a plurality of layers are collectively fired to prevent the solvent component in the paste from penetrating and leveling at the base during multilayer printing (see Patent Document 4).

社団法人ハイブリッドマイクロエレクトロニックス協会編、エレクトロニクス実装技術基礎高座、第2巻実装技術、217頁、工業調査会Edited by Hybrid Microelectronics Association, Electronics Packaging Technology Basic Takaza, Volume 2, Packaging Technology, 217 pages, Industrial Research Committee 特開平07−118075号公報Japanese Patent Application Laid-Open No. 07-118075 特開平07−304958号公報Japanese Patent Application Laid-Open No. 07-304958 特開平8−293651号公報JP-A-8-293651 特開2004−069599号公報JP 2004-069599 A

しかし、シートセンサーでは、絶縁層が発熱抵抗体に隣接するために激しい温度変化の繰り返し履歴を受け、荷重センサーなど感歪抵抗体では金属基板上に絶縁層と配線を多層に形成するために各層の印刷毎に焼成することが行なわれ、その製造時に激しい温度変化の履歴を受けることになる。従って、金属基板と絶縁層との間には、高い温度を繰り返し受ける温度履歴に耐える密着性が望まれている。   However, in the sheet sensor, the insulating layer is adjacent to the heat generating resistor, so it undergoes a repeated history of temperature changes.In the case of a strain sensitive resistor such as a load sensor, each layer is formed to form multiple layers of insulating layers and wiring on a metal substrate. Firing is performed every time printing is performed, and a severe temperature change history is received during the production. Therefore, the adhesiveness which bears the temperature history which repeatedly receives high temperature between a metal substrate and an insulating layer is desired.

かかる観点から本発明の目的は、金属面に対して強い密着性を有し、かつ温度変化に耐え、かつ熱履歴による抵抗値の変化が少ない絶縁層を形成する絶縁ペーストを提供することにある。   From such a viewpoint, an object of the present invention is to provide an insulating paste that forms an insulating layer that has strong adhesion to a metal surface, can withstand temperature changes, and has little change in resistance due to thermal history. .

係る目的を達成すべく本発明請求項1に係る絶縁ペーストは、30〜100℃における熱膨張係数が10×10−6/℃〜12×10−6/℃である金属上に絶縁層を形成するための絶縁ペーストであり、絶縁材料として(a)周期律表2A元素金属酸化物を10〜50重量%含み、残部が実質的にBとSiOで構成され、かつ30〜100℃における熱膨張係数が5×10−6/℃〜12×10−6/℃、軟化点が700〜850℃であるガラスからなる第1成分と、(b)Al、CaZrO、BaZrO、MgZrO、SrZrOの群から選ばれる1種以上の酸化物からで構成される第2成分を、(50:50)〜(90:10)〔重量比〕の割合で混合されて含んでいる。 In order to achieve the object, the insulating paste according to claim 1 of the present invention forms an insulating layer on a metal having a thermal expansion coefficient at 30 to 100 ° C. of 10 × 10 −6 / ° C. to 12 × 10 −6 / ° C. An insulating material containing 10 to 50% by weight of (A) periodic table 2A element metal oxide, the balance being substantially composed of B 2 O 3 and SiO 2 , and 30 to 100 A first component made of glass having a thermal expansion coefficient at 5 ° C. of 5 × 10 −6 / ° C. to 12 × 10 −6 / ° C. and a softening point of 700 to 850 ° C., and (b) Al 2 O 3 , CaZrO 3 , A second component composed of one or more oxides selected from the group of BaZrO 3 , MgZrO 3 , SrZrO 3 is mixed in a ratio of (50:50) to (90:10) [weight ratio]. Contains.

請求項2に係る絶縁ペーストは、請求項1の第1成分における周期律表2A元素金属酸化物が、BaOである。   In the insulating paste according to claim 2, the periodic table 2A element metal oxide in the first component of claim 1 is BaO.

請求項3に係る絶縁ペーストは、請求項1の第1成分におけるBとSiOが、(10:90)〜(30:70)〔重量比〕の割合でなっている。 In the insulating paste according to claim 3, B 2 O 3 and SiO 2 in the first component of claim 1 are in a ratio of (10:90) to (30:70) [weight ratio].

請求項4に係る絶縁ペーストは、請求項1の第2成分における酸化物が、CaZrOである。 In the insulating paste according to claim 4, the oxide in the second component of claim 1 is CaZrO 3 .

請求項5に係る絶縁ペーストは、請求項1の絶縁材料が、第1成分と第2成分を(60:40)〜(70:30)(〔重量比〕の割合で混合されている。   In the insulating paste according to claim 5, the insulating material according to claim 1 is a mixture of the first component and the second component in a ratio of (60:40) to (70:30) ([weight ratio]).

請求項6に係る絶縁ペーストは、請求項1の絶縁層が形成される金属が、フェライト系ステンレス鋼である。   In the insulating paste according to claim 6, the metal on which the insulating layer according to claim 1 is formed is ferritic stainless steel.

請求項7に係る絶縁ペーストは、請求項6のフェライト系ステンレス鋼が、SUS444である。   In the insulating paste according to claim 7, the ferritic stainless steel of claim 6 is SUS444.

本発明の効果として、金属面に対して温度変化に耐える密着性を有し、かつ熱履歴により抵抗値の変化が少ない絶縁層が得られ、ヒーター、感歪抵抗体に使用するに適したものとなる。   As an effect of the present invention, it is possible to obtain an insulating layer having adhesiveness that can withstand temperature changes with respect to a metal surface and having little change in resistance value due to thermal history, and suitable for use in heaters and strain sensitive resistors. It becomes.

本発明が対象として絶縁層が形成される金属は、30〜100℃における熱膨張係数が10×10−6/℃〜12×10−6/℃である金属であり、特にフェライト系ステンレス、とりわけSUS444として市場に提供されているフェライト系ステンレスである。その他この範疇に入る金属は、フェライト系ステンレスであるSUS405(30〜100℃における熱膨張係数が10.8×10−6/℃)、SUS410L(同じく11.0×10−6/℃)SUS430(同じく10.5×10−6/℃)、SUS444(同じく11.6×10−6/℃)、マルテンサイト系ステンレスであるSUS410(同じく11.0×10−6/℃)などがある。 The metal on which the insulating layer is formed for the present invention is a metal having a coefficient of thermal expansion of 10 × 10 −6 / ° C. to 12 × 10 −6 / ° C. at 30 to 100 ° C., particularly ferritic stainless steel, It is a ferritic stainless steel offered to the market as SUS444. Other metals that fall into this category are ferritic stainless steel SUS405 (coefficient of thermal expansion at 30 to 100 ° C. is 10.8 × 10 −6 / ° C.), SUS410L (also 11.0 × 10 −6 / ° C.) SUS430 ( Also 10.5 × 10 −6 / ° C.), SUS444 (also 11.6 × 10 −6 / ° C.), SUS410 (also 11.0 × 10 −6 / ° C.) which is martensitic stainless steel.

本発明の絶縁ペーストは、(a)特定成分、特定性状のガラス(以下、断わりのない限り「第1成分」と記す)と、(b)特定の酸化物(以下、断わりのない限り「第2成分」と記す)を絶縁材料として含んで構成されている。   The insulating paste of the present invention comprises (a) a glass having a specific component and specific properties (hereinafter referred to as “first component” unless otherwise specified), and (b) a specific oxide (hereinafter referred to as “first” unless otherwise specified). 2) ”as an insulating material.

第1成分は、さらに周期律表2A元素金属(以下、断わりのない限り単に「2A金属」と記す)酸化物と、残部が実質的にBとSiOからなる硼珪酸系ガラスである。2A金属の酸化物は、具体的にはCaO、BaO、MgO、SrOであり、これらの1種あるいは2種以上の組合せであり、硼珪酸系ガラス中に10〜50重量%、好ましくは10〜40重量%含んでいる。BとSiOは、ガラスの骨格を形成する成分であり、BとSiOの構成比が好ましくは(10:90)〜(30:70)〔重量比〕、さらに好ましくは(20:80)〜(25:75)〔重量比〕である。 The first component is a borosilicate glass composed of 2A elemental metal (hereinafter simply referred to as “2A metal” unless otherwise specified) oxide, and the balance substantially consisting of B 2 O 3 and SiO 2. is there. The 2A metal oxide is specifically CaO, BaO, MgO, SrO, and one or a combination of two or more thereof, and is 10 to 50% by weight, preferably 10 to 10% by weight in the borosilicate glass. Contains 40% by weight. B 2 O 3 and SiO 2 are components that form a glass skeleton, and the composition ratio of B 2 O 3 and SiO 2 is preferably (10:90) to (30:70) [weight ratio], more preferably. Is (20:80) to (25:75) [weight ratio].

また、第1成分のガラスは、上記のように2A金属酸化物、B、SiOからなる硼珪酸系ガラスであると同時に、30〜100℃における熱膨張係数が5×10−6/℃〜12×10−6/℃であり、好ましくは基板となる対象金属の熱膨張係数の値に対して90〜100%の値で、かつ軟化点が700〜850℃、好ましくは750〜850℃のものから選ばれる。 The glass of the first component is a borosilicate glass composed of 2A metal oxide, B 2 O 3 and SiO 2 as described above, and at the same time has a thermal expansion coefficient of 5 × 10 −6 at 30 to 100 ° C. / ° C. to 12 × 10 −6 / ° C., preferably 90 to 100% of the value of the coefficient of thermal expansion of the target metal to be the substrate, and the softening point is 700 to 850 ° C., preferably 750 to Selected from those at 850 ° C.

ガラスは、通常の方法で製造することができ、代表的には、B、SiO、CaO、BaO、MgO、SrO、あるいはこれらを生成する炭酸塩、硝酸塩などを原料とし、目標組成となるように調合して溶融させ、攪拌して均一化し、成形する。絶縁ペーストとして配合するには、ガラスは粉砕して用いるが、その粒径は、好ましくは1〜5μm、さらに好ましくは2〜3μmとする。この範囲より小さい粒子では、塗布したとき粒子が互いに密に重なり合い、焼成してバインダーが分解したとき発生するガスの放出が不均一となり、結果として絶縁層の均質性に劣ることがあり、一方、この範囲より大きい粒子では、絶縁ペーストとして不均一になることがある。 Glass can be produced by an ordinary method. Typically, B 2 O 3 , SiO 2 , CaO, BaO, MgO, SrO, or carbonates and nitrates that produce these are used as raw materials, and the target composition Prepare and melt so as to be uniform, stir and homogenize and shape. In order to mix | blend as an insulating paste, although glass is grind | pulverized and used, the particle size becomes like this. Preferably it is 1-5 micrometers, More preferably, you may be 2-3 micrometers. With particles smaller than this range, when coated, the particles overlap closely with each other, and the release of gas generated when the binder is decomposed by firing may become non-uniform, resulting in poor uniformity of the insulating layer, Particles larger than this range may be non-uniform as an insulating paste.

第2成分は、Al、CaZrO、BaZrO、MgZrO、SrZrOの群から選ばれる1種以上の酸化物である。第2成分の酸化物も、微細に粉砕しておき、その粒径は、好ましくは0.5〜3.0μm、さらに好ましくは0.5〜1.5μmとする。この範囲の外では、上記と同じ不利益を招くことがある。 The second component is at least one oxide selected from the group consisting of Al 2 O 3 , CaZrO 3 , BaZrO 3 , MgZrO 3 , and SrZrO 3 . The oxide of the second component is also finely pulverized, and the particle size is preferably 0.5 to 3.0 μm, more preferably 0.5 to 1.5 μm. Outside this range, the same disadvantages as described above may be incurred.

本発明の絶縁ペーストは、第1成分と第2成分を(60:40)〜(90:10)〔重量比〕、好ましくは(70:30)〜(80:20)〔重量比〕の割合で混合してこれを絶縁材料とし、その他樹脂成分、溶剤、必要により界面活性剤、分散剤などの添加剤を加えて混練して製造される。   In the insulating paste of the present invention, the ratio of the first component and the second component is (60:40) to (90:10) [weight ratio], preferably (70:30) to (80:20) [weight ratio]. This is mixed to obtain an insulating material, and other resin components, a solvent, and optionally additives such as a surfactant and a dispersant are added and kneaded.

樹脂成分は、絶縁ペーストに適度の粘性を与えて塗膜、印刷パターンを安定化させる働きがあり、本発明でその種類を限定するものではないが、例えばセルロース類、アクリル類、ポリビニルアルコール類などが使用される。   The resin component has a function of stabilizing the coating film and the printing pattern by imparting an appropriate viscosity to the insulating paste, and the type of the resin component is not limited in the present invention. For example, celluloses, acrylics, polyvinyl alcohols, etc. Is used.

溶剤は、絶縁ペーストを用いる絶縁材料と樹脂成分との関連で決められるもので、本発明でその種類を限定するものではないが、アルコール系溶剤、エステル系溶剤、ケトン系溶剤、エーテル系溶剤、炭化水素系溶剤などが選ばれる。   The solvent is determined in relation to the insulating material using the insulating paste and the resin component, and is not limited to the type in the present invention, but the alcohol solvent, the ester solvent, the ketone solvent, the ether solvent, A hydrocarbon solvent or the like is selected.

絶縁ペーストにおける各成分の構成比は任意に決められるが、代表的には絶縁材料が60〜90重量%、好ましくは60〜75重量%であり、樹脂成分は1〜5重量%、好ましくは3〜5重量%であり、溶剤は5〜30重量%、好ましくは10〜15重量%であり、その他界面活性剤、分散剤が1重量%以下を含んで全体を100重量%とするものである。これらの成分は、ロールミルなど公知の方法によりよく混練されて、絶縁ペーストとなる。   The composition ratio of each component in the insulating paste is arbitrarily determined, but typically the insulating material is 60 to 90% by weight, preferably 60 to 75% by weight, and the resin component is 1 to 5% by weight, preferably 3%. -5% by weight, solvent is 5-30% by weight, preferably 10-15% by weight, and other surfactants and dispersants contain 1% by weight or less to make the whole 100% by weight. . These components are well kneaded by a known method such as a roll mill to form an insulating paste.

絶縁ペーストを金属上に塗布する方法は、特に限定されるものではないが、代表的には、一般的なスクリーン印刷、ロールコーティング法、スプレーなどがある。   The method of applying the insulating paste onto the metal is not particularly limited, but typically includes general screen printing, roll coating, spraying, and the like.

絶縁ペーストによる塗膜の厚さは、絶縁ペースト中の絶縁材料の割合、目的により異なるのはいうまでもないが、代表的には焼成後の塗膜、すなわち絶縁材料の層の厚さが20〜40μm程度である。   Needless to say, the thickness of the coating film made of the insulating paste varies depending on the ratio and the purpose of the insulating material in the insulating paste. Typically, the thickness of the coating film after firing, that is, the thickness of the insulating material layer is 20 ˜40 μm.

金属上に塗布した後、焼成する。焼成により樹脂成分、溶剤その他有機成分は、蒸発し、あるいは分解して塗膜の外に放散する。焼成は、大気雰囲気で850〜900℃で5〜30分、好ましくは10〜20分である。5分未満ではガラスと酸化物成分の融着が不充分で塗膜の物性が劣ることがある。30分を超えて焼成することは差し支えないが、これ以上長時間実施することの意義がない。   After coating on the metal, it is fired. Resin components, solvents and other organic components evaporate or decompose and dissipate out of the coating film. Firing is performed in an air atmosphere at 850 to 900 ° C. for 5 to 30 minutes, preferably 10 to 20 minutes. If it is less than 5 minutes, the glass and the oxide component are not sufficiently fused, and the physical properties of the coating film may be inferior. Although it does not interfere with baking for more than 30 minutes, there is no significance in carrying out for a longer time.

本発明の絶縁ペーストから形成した絶縁層は、金属面に密着し、絶縁破壊電圧など絶縁性能は良好であり、また成分中のガラス成分の熱膨張係数を塗布される金属の熱膨張係数との関連から特定範囲に限定することで、絶縁層と金属の熱膨張と同じ、または僅かに低くして熱履歴により該金属からの絶縁層の剥離が抑えられる。また、ガラス成分の軟化点を特定範囲に限定することで、ガラスが充分に軟化することにより絶縁性が確保され、一定以上の軟化点に制御することで密着性が確保される。   The insulating layer formed from the insulating paste of the present invention is in close contact with the metal surface, has good insulation performance such as dielectric breakdown voltage, and the coefficient of thermal expansion of the glass component in the component and the coefficient of thermal expansion of the applied metal. By limiting to a specific range from the relation, peeling of the insulating layer from the metal can be suppressed by the thermal history by the same or slightly lower than the thermal expansion of the insulating layer and the metal. Further, by limiting the softening point of the glass component to a specific range, the glass is sufficiently softened to ensure insulation, and by controlling the softening point above a certain level, adhesion is ensured.

〔密着性の評価〕
BaO;40重量部/Bと;12重量部/SiO;48重量部からなる硼珪酸ガラス粉末(30〜100℃における熱膨張係数;5.6×10−6/℃、軟化点;770℃、平均粒径;3.0μm)の第1成分と、Al(平均粒度;0.7μm);10重量部/CaZrO(平均粒度;1.0μm);20重量部の第2成分を、70:30〔重量比〕の割合で混合して絶縁材料とした。この絶縁材料70重量部を、エチルセルロース(樹脂成分)4重量部、ターピネオール(溶剤)12重量部と混練して絶縁ペーストとした。また、比較1として既存の代表的な絶縁ペーストであるB;5重量部/SiO;55重量部/PbO;18重量部より構成されるガラス粉末(30〜100℃における熱膨張係数;12×10−6/℃、軟化点;750℃、平均粒径;2.5μm)を絶縁材料とし、その他は上記と同様にした絶縁ペースト、比較2としてB;3重量部/SiO;34重量部/ZnO;15重量部/TiO2;13重量部/SrO;21重量部より構成されるガラス粉末(30〜100℃における熱膨張係数;11×10−6/℃、軟化点;790℃、平均粒径;3.0μm)を絶縁材料とし、その他は上記と同様にした絶縁ペーストを調製した。それぞれの絶縁ペーストを、SUS444(厚さ;1.0mm)の板にスクリーン印刷し、850℃で10分間焼成して絶縁層(塗膜の大きさ;25mm×25mm、厚さ;30μm)を形成した。
[Evaluation of adhesion]
BaO; 40 parts by weight / B 2 O 3 ; 12 parts by weight / SiO 2 ; 48 parts by weight borosilicate glass powder (thermal expansion coefficient at 30 to 100 ° C .; 5.6 × 10 −6 / ° C., softening point 770 ° C., average particle size; 3.0 μm) and a first component of Al 2 O 3 (average particle size; 0.7 μm); 10 parts by weight / CaZrO 3 (average particle size; 1.0 μm); The second component was mixed at a ratio of 70:30 [weight ratio] to obtain an insulating material. 70 parts by weight of this insulating material was kneaded with 4 parts by weight of ethyl cellulose (resin component) and 12 parts by weight of terpineol (solvent) to obtain an insulating paste. Further, as comparison 1, glass powder composed of B 2 O 3 ; 5 parts by weight / SiO 2 ; 55 parts by weight / PbO; 18 parts by weight, which is an existing representative insulating paste (thermal expansion coefficient at 30 to 100 ° C. 12 × 10 −6 / ° C., softening point: 750 ° C., average particle size: 2.5 μm) as the insulating material, and the others as above, B 2 O 3 as comparison 2; 3 parts by weight / Glass powder composed of SiO 2 ; 34 parts by weight / ZnO; 15 parts by weight / TiO 2; 13 parts by weight / SrO; 21 parts by weight (thermal expansion coefficient at 30 to 100 ° C .; 11 × 10 −6 / ° C., softening point 790 ° C., average particle size; 3.0 μm) was used as an insulating material, and the others were prepared in the same manner as described above. Each insulating paste is screen-printed on a SUS444 (thickness: 1.0 mm) plate and baked at 850 ° C. for 10 minutes to form an insulating layer (coating film size: 25 mm × 25 mm, thickness: 30 μm). did.

評価は、図1に示したように、塩化ビニル樹脂で製作した中央部に空間のある四角形枠の上に試料板を塗膜面を下にして載せ、750mm離れた上部より500gの鉄球〔直径16mmの球で、重量を増すために上部に鉄パイプを接続した〕を自然落下させ、試料板上の絶縁層の破壊状態を観察した。その結果、本発明の絶縁ペーストによる絶縁層は、絶縁層に割れが見られたがSUS444の板に密着していた。一方、比較1、比較2の絶縁ペーストによる絶縁層は、いずれも絶縁層が割れ、その破片がSUS444の板から離脱して周囲に散乱した。これから本発明の絶縁ペーストによる絶縁層は、密着性が優れていることがわかった。   As shown in FIG. 1, the sample plate was placed on a rectangular frame having a space in the center made of vinyl chloride resin with the coating surface facing downward, and a 500 g iron ball [750 mm away from the upper part [ A sphere with a diameter of 16 mm and an iron pipe connected to the top in order to increase the weight] was naturally dropped, and the state of destruction of the insulating layer on the sample plate was observed. As a result, the insulating layer made of the insulating paste of the present invention was in close contact with the SUS444 plate although cracking was observed in the insulating layer. On the other hand, both of the insulating layers made of the insulating pastes of Comparative Examples 1 and 2 were broken, and the fragments were separated from the SUS444 plate and scattered around. From this, it was found that the insulating layer made of the insulating paste of the present invention has excellent adhesion.

〔CaZrOの添加効果〕
第1成分としてBaO;40重量部/Bと;30重量部/SiO;30重量部からなる硼珪酸ガラス粉末(30〜100℃における熱膨張係数;5.6×10−6/℃、軟化点;770℃、平均粒径;3.0μm)、第2成分としてCaZrO(平均粒度;1.0μm)を用いて絶縁ペーストを調製した。この評価では、全絶縁材料中のCaZrOを0〜30重量%に変えて7種の絶縁材料を用い、絶縁材料70重量部、樹脂成分としてエチルセルロース4重量部、溶剤としてターピネオール12重量部を混練して絶縁ペーストを調製した。
[Additional effect of CaZrO 3 ]
Borosilicate glass powder consisting of BaO; 40 parts by weight / B 2 O 3 ; 30 parts by weight / SiO 2 ; 30 parts by weight (thermal expansion coefficient at 30 to 100 ° C .; 5.6 × 10 −6 / Insulating paste was prepared using CZrO 3 (average particle size: 1.0 μm) as the second component and ℃, softening point: 770 ° C., average particle size: 3.0 μm). In this evaluation, seven kinds of insulating materials were used by changing CaZrO 3 in all insulating materials to 0 to 30% by weight, 70 parts by weight of insulating material, 4 parts by weight of ethyl cellulose as a resin component, and 12 parts by weight of terpineol as a solvent were kneaded. Thus, an insulating paste was prepared.

それぞれの絶縁ペーストをスクリーン印刷の方法でSUS444の板(厚さ;1.0mm)に塗布し、850℃で10分焼成して厚さ30μmの絶縁層を形成し、その上に図2
のようにAg導体、Ag−Pd抵抗体(1mm幅で長さ108mm)を印刷し、さらにその上にオーバーコートガラスによる保護層を作った。SUS基板とAg導体間に電圧をかけて絶縁層の抵抗値を測定した。ここでは、850℃で10分間焼成を行った後室温に戻し、さらに“850℃に10分間加熱/室温に戻す”の操作を繰り返し行いそれぞれの抵抗値を求め、1回目焼成後の抵抗値からの変化率(ΔR%)を求めた。尚、測定は、(株)アドバンテスト製、「DIGITAL MULTIMETER TR6871」(商品名)を用いた。
Each insulating paste was applied to a SUS444 plate (thickness: 1.0 mm) by screen printing and baked at 850 ° C. for 10 minutes to form an insulating layer having a thickness of 30 μm.
In this way, an Ag conductor and an Ag-Pd resistor (1 mm width and 108 mm length) were printed, and a protective layer made of overcoat glass was formed thereon. A voltage was applied between the SUS substrate and the Ag conductor to measure the resistance value of the insulating layer. Here, after baking at 850 ° C. for 10 minutes, the temperature is returned to room temperature, and further, the operation of “heating to 850 ° C. for 10 minutes / returning to room temperature” is repeated to obtain each resistance value, and from the resistance value after the first firing. The rate of change (ΔR%) was determined. For the measurement, “DIGITAL MULTITIMER TR6871” (trade name) manufactured by Advantest Co., Ltd. was used.

結果を図3に示した。この結果から、CaZrOが10%以上、特に20〜30%では加熱/冷却の繰り返しで抵抗値の変化が少なく、繰り返しの温度履歴に対して安定であることが認められた。 The results are shown in FIG. From this result, it was confirmed that when CaZrO 3 is 10% or more, particularly 20 to 30%, the resistance value hardly changes with repeated heating / cooling and is stable against repeated temperature history.

〔Alの添加効果〕
第1成分は実施例2と同じとし、第2成分としてAlを全絶縁材料中0、20、30、40重量%のそれぞれとして絶縁材料とし、絶縁材料70重量部、樹脂成分としてエチルセルロース4重量部、溶剤としてターピネオール12重量部を混練して4種の絶縁ペーストを調製した。それぞれの絶縁ペーストをSUS444上にスクリーン印刷の方法で塗布し、850℃で10分間焼成して厚さ30μmの絶縁層を形成した。絶縁層それぞれの上に図4のようにAg−Pd抵抗体(78mm)を印刷して850℃で焼成した。SUS基板とAgPd間に徐々に電圧を上げてかけ、電流が0.1mA流れたときの電圧を求めた。尚、絶縁破壊電圧の測定は、菊水電子(株)製、「TOS5101」(型番)を用いた。結果を図5に示した。Alが10〜40重量%では、絶縁破壊電圧が高いことがわかる。
[Additional effect of Al 2 O 3 ]
The first component is the same as that of Example 2, Al 2 O 3 is used as the second component as an insulating material as 0, 20, 30, and 40% by weight of the total insulating material, 70 parts by weight of the insulating material, and ethyl cellulose as the resin component. Four types of insulating pastes were prepared by kneading 4 parts by weight and 12 parts by weight of terpineol as a solvent. Each insulating paste was applied onto SUS444 by screen printing and baked at 850 ° C. for 10 minutes to form an insulating layer having a thickness of 30 μm. An Ag—Pd resistor (78 mm 2 ) was printed on each insulating layer as shown in FIG. 4 and baked at 850 ° C. The voltage was gradually increased between the SUS substrate and AgPd, and the voltage when the current flowed 0.1 mA was determined. The dielectric breakdown voltage was measured using “TOS5101” (model number) manufactured by Kikusui Electronics Co., Ltd. The results are shown in FIG. It can be seen that when Al 2 O 3 is 10 to 40 wt%, the dielectric breakdown voltage is high.

本発明の絶縁ペーストは、金属面に対して温度変化に耐える優れた密着性を有し、かつ熱履歴により抵抗値の変化が少ない絶縁層を形成するので、ヒーター、感歪抵抗体などへの使用に適したものとなる。   The insulating paste of the present invention forms an insulating layer that has excellent adhesion to a metal surface to withstand temperature changes and has little change in resistance value due to thermal history, so it can be applied to heaters, strain sensitive resistors, etc. It will be suitable for use.

実施例1における密着性の評価方法の説明図である。It is explanatory drawing of the adhesive evaluation method in Example 1. FIG. 実施例2における絶縁ペースト中CaZrOの添加効果の測定に用いた絶縁層の説明図である。It is an explanatory view of an insulating layer used in the measurement of the effect of the addition of the insulating paste in CaZrO 3 in Example 2. 実施例2における絶縁ペースト中CaZrOの添加効果を示す結果である。6 is a result showing the effect of adding CaZrO 3 in the insulating paste in Example 2. 実施例3における絶縁ペースト中Alの添加効果の測定に用いた絶縁層の説明図である。It is an explanatory view of an insulating layer used in the measurement of the effect of the addition of the insulating paste in Al 2 O 3 in Example 3. 実施例3における絶縁ペースト中Alの添加効果を示す結果である。The results showing the effect of the addition of the insulating paste in Al 2 O 3 in Example 3.

Claims (7)

30〜100℃における熱膨張係数が10×10−6/℃〜12×10−6/℃である金属上に絶縁層を形成するための絶縁ペーストであり、絶縁材料として(a)周期律表2A元素金属酸化物を10〜50重量%含み、残部が実質的にBとSiOで構成され、かつ30〜100℃における熱膨張係数が5×10−6/℃〜12×10−6/℃、軟化点が700〜850℃であるガラスからなる第1成分と、(b)Al、CaZrO、BaZrO、MgZrO、SrZrOの群から選ばれる1種以上の酸化物から構成される第2成分を、(50:50)〜(90:10)〔重量比〕の割合で混合されて含むことを特徴とする絶縁ペースト。 An insulating paste for forming an insulating layer on a metal having a thermal expansion coefficient of 10 × 10 −6 / ° C. to 12 × 10 −6 / ° C. at 30 to 100 ° C., and (a) Periodic Table as an insulating material 10% to 50% by weight of 2A element metal oxide, the balance being substantially composed of B 2 O 3 and SiO 2 , and a thermal expansion coefficient at 30 to 100 ° C. of 5 × 10 −6 / ° C. to 12 × 10 A first component made of glass having a −6 / ° C. and a softening point of 700 to 850 ° C., and (b) one or more selected from the group consisting of Al 2 O 3 , CaZrO 3 , BaZrO 3 , MgZrO 3 and SrZrO 3 An insulating paste comprising a second component composed of an oxide mixed at a ratio of (50:50) to (90:10) [weight ratio]. 前記第1成分における周期律表2A元素金属酸化物が、BaOであることを特徴とする請求項1記載の絶縁ペースト。   2. The insulating paste according to claim 1, wherein the 2A element metal oxide of the periodic table in the first component is BaO. 前記第1成分におけるBとSiOが、(10:90)〜(30:70)〔重量比〕の割合でなることを特徴とする請求項1記載の絶縁ペースト。 2. The insulating paste according to claim 1, wherein B 2 O 3 and SiO 2 in the first component have a ratio of (10:90) to (30:70) [weight ratio]. 前記第2成分における酸化物が、CaZrOであることを特徴とする請求項1記載の絶縁ペースト。 The insulating paste according to claim 1, wherein the oxide in the second component is CaZrO 3 . 前記絶縁材料が、前記第1成分と前記第2成分を(60:40)〜(70:30)(〔重量比〕の割合で混合されてなることを特徴とする請求項1記載の絶縁ペースト。   The insulating paste according to claim 1, wherein the insulating material is a mixture of the first component and the second component in a ratio of (60:40) to (70:30) ([weight ratio]). . 前記絶縁層が形成される金属が、フェライト系ステンレス鋼であることを特徴とする請求項1記載の絶縁ペースト。   The insulating paste according to claim 1, wherein the metal on which the insulating layer is formed is ferritic stainless steel. 前記フェライト系ステンレス鋼が、SUS444であることを特徴とする請求項6記載の絶縁ペースト。   The insulating paste according to claim 6, wherein the ferritic stainless steel is SUS444.
JP2005221715A 2005-07-29 2005-07-29 Insulation paste Active JP4843823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221715A JP4843823B2 (en) 2005-07-29 2005-07-29 Insulation paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005221715A JP4843823B2 (en) 2005-07-29 2005-07-29 Insulation paste

Publications (2)

Publication Number Publication Date
JP2007042291A true JP2007042291A (en) 2007-02-15
JP4843823B2 JP4843823B2 (en) 2011-12-21

Family

ID=37800102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221715A Active JP4843823B2 (en) 2005-07-29 2005-07-29 Insulation paste

Country Status (1)

Country Link
JP (1) JP4843823B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412408B1 (en) * 2021-11-10 2022-06-23 (주)에타 Method for manufacturing ceramic heater

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379739A (en) * 1986-09-19 1988-04-09 Matsushita Electric Works Ltd Sintered glass ceramic body
JPH0745120A (en) * 1993-07-29 1995-02-14 Toray Ind Inc Photosensitive insulating paste
JPH1022162A (en) * 1996-07-04 1998-01-23 Matsushita Electric Ind Co Ltd Composite laminated ceramic component
JP2000185978A (en) * 1998-12-24 2000-07-04 Murata Mfg Co Ltd Glass ceramic substrate
JP2001072473A (en) * 1999-08-31 2001-03-21 Sumitomo Metal Electronics Devices Inc Production of ceramic substrate
JP2004026529A (en) * 2002-06-21 2004-01-29 Ferro Enamels Japan Ltd Glass composition for low-temperature fired substrate and glass ceramics using the same
JP2004256347A (en) * 2003-02-25 2004-09-16 Kyocera Corp Glass-ceramic composition, glass-ceramic sintered compact, its producing method, wiring board using the sintered compact, and its mounting structure
JP2005041755A (en) * 2003-07-25 2005-02-17 Asahi Glass Co Ltd Nonlead glass, glass ceramic composition, and electronic circuit board
JP2005050881A (en) * 2003-07-29 2005-02-24 Kyocera Corp Laminated wiring board, its manufacturing method, electric apparatus, and its mounting structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379739A (en) * 1986-09-19 1988-04-09 Matsushita Electric Works Ltd Sintered glass ceramic body
JPH0745120A (en) * 1993-07-29 1995-02-14 Toray Ind Inc Photosensitive insulating paste
JPH1022162A (en) * 1996-07-04 1998-01-23 Matsushita Electric Ind Co Ltd Composite laminated ceramic component
JP2000185978A (en) * 1998-12-24 2000-07-04 Murata Mfg Co Ltd Glass ceramic substrate
JP2001072473A (en) * 1999-08-31 2001-03-21 Sumitomo Metal Electronics Devices Inc Production of ceramic substrate
JP2004026529A (en) * 2002-06-21 2004-01-29 Ferro Enamels Japan Ltd Glass composition for low-temperature fired substrate and glass ceramics using the same
JP2004256347A (en) * 2003-02-25 2004-09-16 Kyocera Corp Glass-ceramic composition, glass-ceramic sintered compact, its producing method, wiring board using the sintered compact, and its mounting structure
JP2005041755A (en) * 2003-07-25 2005-02-17 Asahi Glass Co Ltd Nonlead glass, glass ceramic composition, and electronic circuit board
JP2005050881A (en) * 2003-07-29 2005-02-24 Kyocera Corp Laminated wiring board, its manufacturing method, electric apparatus, and its mounting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412408B1 (en) * 2021-11-10 2022-06-23 (주)에타 Method for manufacturing ceramic heater

Also Published As

Publication number Publication date
JP4843823B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
KR100369565B1 (en) Resistive paste composition for the formation of electrically heat-generating layer
US9431148B2 (en) Thick film resistive heater compositions comprising Ag and RuO2, and methods of making same
JP5988124B2 (en) Thick film resistor and manufacturing method thereof
JP2007103594A (en) Resistor composition and thick film resistor
JP5988123B2 (en) Resistance composition
GB2107301A (en) Improved low value resistor inks
JPH107435A (en) Glass ceramic wiring substrate and its production
JP4843823B2 (en) Insulation paste
KR880002063B1 (en) Air-fireable thick film inks
JP2019537838A (en) Method for producing layered structure using paste based on resistance alloy
EP3751958B1 (en) Surface type heating element and manufacturing method thereof
KR100201160B1 (en) Resistance material composition, resistive paste, and resistor
JP4974268B2 (en) Resistance paste and thick film resistor manufacturing method
JP2644017B2 (en) Resistance paste
JP2007189040A (en) Resistive paste, resistance object, and circuit board using the same
CN106782763A (en) A kind of Alumina-Based Media slurry containing tabular alumina and preparation method thereof
KR20230004486A (en) Thick Film Resistor Pastes, Thick Film Resistors, and Electronic Components
JP2017126709A (en) Thick film resistor composition and resistor paste
JP2002231049A (en) Conductive paste
JP2023135971A (en) Thick film resistor paste, thick film resistor, and electronic component
JPS58173882A (en) Substrate for circuit and printed circuit unit
CN115516579A (en) Thick film resistor paste, thick film resistor, and electronic component
JP2006202579A (en) Conductor composition and conductive paste
JP2005072485A (en) Resistor paste and resistor and method for manufacturing resistor
JP2008144150A (en) Printing ink, electrode for plasma display panel obtained by using the same, and manufacturing method of electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100318

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4843823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250