JP2007039277A - Hollow spherical particle formed from gallium nitride and its production method - Google Patents

Hollow spherical particle formed from gallium nitride and its production method Download PDF

Info

Publication number
JP2007039277A
JP2007039277A JP2005225075A JP2005225075A JP2007039277A JP 2007039277 A JP2007039277 A JP 2007039277A JP 2005225075 A JP2005225075 A JP 2005225075A JP 2005225075 A JP2005225075 A JP 2005225075A JP 2007039277 A JP2007039277 A JP 2007039277A
Authority
JP
Japan
Prior art keywords
gallium nitride
hollow spherical
spherical particles
gas
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005225075A
Other languages
Japanese (ja)
Other versions
JP4756239B2 (en
Inventor
Yoshio Bando
義雄 板東
Ronwei Win
ウィン・ロンウェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005225075A priority Critical patent/JP4756239B2/en
Publication of JP2007039277A publication Critical patent/JP2007039277A/en
Application granted granted Critical
Publication of JP4756239B2 publication Critical patent/JP4756239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide hollow spherical particles formed from gallium nitride which are useful as a light emitting material in a region from blue to ultraviolet and a material for a high temperature-high power electronic device; and a method for producing the same. <P>SOLUTION: The method for producing the hollow spherical particles comprises heating a powder 4 of gallium chloride at 1,000-1,200°C in a mixed gas stream of ammonia gas and argon gas for 1.0-1.5 h. By this method, the hollow spherical particles formed from gallium nitride and having particle diameters of 15-20 nm and film thicknesses of 3.5-4.5 nm can be manufactured. In this case, it is preferable that the flow rate ratio of the ammonia gas and the inert gas is within a range of from 40:60 to 60:40 and the total flow rate of the ammonia gas and the inert gas is within a range of 400-500 sccm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、青色から紫外領域の発光材料や高温高電力の電子デバイス用材料として有用な窒化ガリウムからなる中空の球状粒子及びその製造方法に関する。   The present invention relates to hollow spherical particles made of gallium nitride that are useful as light emitting materials in the blue to ultraviolet region and materials for electronic devices with high temperature and high power, and a method for producing the same.

中空粒子を有する半導体のうち、硫化亜鉛の中空粒子はシリカを鋳型として用いることにより製造されている(例えば、非特許文献1参照)。また、硫化カドミウムの中空粒子は酢酸カドミウムとチオアセトアミドから製造されている(例えば、非特許文献2参照)。さらに、セレン化カドミウムの中空粒子は、水酸化カドミウムとセレノ硫酸ナトリウムから製造されている(例えば、非特許文献3参照)。
一方、窒化ガリウムのナノワイヤー、ナノベルト、ナノチューブなどの一次元ナノ構造物については、既によく知られている(例えば、非特許文献4〜9参照)。
Among semiconductors having hollow particles, zinc sulfide hollow particles are manufactured by using silica as a template (see, for example, Non-Patent Document 1). Moreover, the hollow particle | grains of cadmium sulfide are manufactured from cadmium acetate and thioacetamide (for example, refer nonpatent literature 2). Furthermore, hollow particles of cadmium selenide are produced from cadmium hydroxide and sodium selenosulfate (see, for example, Non-Patent Document 3).
On the other hand, one-dimensional nanostructures such as gallium nitride nanowires, nanobelts, and nanotubes are already well known (see, for example, Non-Patent Documents 4 to 9).

K.P.Velikov,他、Langmuir, 17巻、4779頁、2001年K.P.Velikov, et al., Langmuir, 17, 4779, 2001 Y.Ma, 他、Langmuir, 19巻、9079頁、2003年Y.Ma, et al., Langmuir, 19, 9079, 2003 J.J.Zhu,他、Adv.Mater.15巻、 156頁、2003年J.J.Zhu, et al., Adv.Mater.15, 156, 2003 W.Q.Han,他、Appl.Phys.Lett. 80巻、 303頁、2002年W.Q.Han, et al., Appl.Phys.Lett. 80, 303, 2002 C.C.Tang, 他、Appl.Phys.Lett. 83巻、3177頁、2003年C.C.Tang, et al., Appl.Phys.Lett. 83, 3177, 2003 C.C.Chen, 他、Adv.Mater.12巻、 738頁、2000年C.C.Chen, et al., Adv. Mater. 12, 738, 2000 C.C.Chen, 他、J.Am.Chem.Soc. 123巻、2791頁、2001年C.C.Chen, et al., J.Am.Chem.Soc. 123, 2791, 2001 J.Goldberger, 他、Nature,422巻、 599頁、2003年J. Goldberger, et al., Nature, 422, 599, 2003 L.W.Yin,他、Appl.Phys.Lett. 84巻、3912頁,2004年L.W.Yin, et al., Appl.Phys.Lett. 84, 3912, 2004

しかしながら、窒化ガリウムの中空球状粒子は、未だに知られていない。   However, the hollow spherical particles of gallium nitride are not yet known.

本発明は、上記課題に鑑み、新規な、窒化ガリウムの中空球状粒子及びその製造方法を提供することを目的としている。   In view of the above problems, an object of the present invention is to provide a novel hollow spherical particle of gallium nitride and a method for producing the same.

上記目的を達成するため、本発明の窒化ガリウムからなる中空の球状粒子は、直径が15〜20nmであり、肉厚が3.5〜4.5nmであることを特徴とする。
本発明の窒化ガリウムからなる中空の球状粒子によれば、窒化ガリウムからなるナノメートルサイズの中空の球状粒子を得ることができる。このナノ構造物は、青色〜紫外領域の発光材料、高温高電力の電子デバイス用材料として用いることができる。
In order to achieve the above object, the hollow spherical particles made of gallium nitride of the present invention have a diameter of 15 to 20 nm and a wall thickness of 3.5 to 4.5 nm.
According to the hollow spherical particles made of gallium nitride of the present invention, nanometer-sized hollow spherical particles made of gallium nitride can be obtained. This nanostructure can be used as a light emitting material in the blue to ultraviolet region and a material for electronic devices with high temperature and high power.

本発明の窒化ガリウムからなる中空の球状粒子の製造方法によれば、アンモニアガスと不活性ガスとの混合気流中で、塩化ガリウム粉末を1000〜1200℃で1〜1.5時間加熱し、窒化ガリウムからなる中空の球状粒子を合成することを特徴とする。
上記構成において、好ましくはアンモニアガスと不活性ガスとの流量比は、40:60〜60:40の範囲である。
また、アンモニアガスと不活性ガスとの流量の和は、好ましくは、400〜500sccmの範囲である。
上記構成によれば、塩化ガリウム粉末を、アンモニアガスと不活性ガスとの混合気流中で加熱することにより、ナノメートルサイズの寸法を有する窒化ガリウムからなるナノメートルサイズの中空の球状粒子を製造することができる。
According to the method for producing hollow spherical particles comprising gallium nitride of the present invention, gallium chloride powder is heated at 1000 to 1200 ° C. for 1 to 1.5 hours in a mixed gas stream of ammonia gas and inert gas, and then nitrided. It is characterized by synthesizing hollow spherical particles made of gallium.
In the above configuration, the flow rate ratio of ammonia gas to inert gas is preferably in the range of 40:60 to 60:40.
The sum of the flow rates of ammonia gas and inert gas is preferably in the range of 400 to 500 sccm.
According to the above configuration, nanometer-sized hollow spherical particles made of gallium nitride having nanometer-size dimensions are manufactured by heating gallium chloride powder in a mixed gas stream of ammonia gas and inert gas. be able to.

本発明により、直径が15〜20nmであり、肉厚が3.5〜4.5nmである窒化ガリウムからなる中空の球状粒子が得られると共に、その製造が可能となる。   According to the present invention, hollow spherical particles made of gallium nitride having a diameter of 15 to 20 nm and a thickness of 3.5 to 4.5 nm are obtained, and the production thereof is possible.

以下、図面を参照して本発明を実施するための最良の形態を説明する。
図1は、本発明の窒化ガリウムからなる中空の球状粒子を製造する装置の一例を示す模式図である。この装置を例に製造方法を説明する。
図において、縦型高周波誘導加熱装置1は、反応管2の周囲に誘導加熱コイル3を有している。そして、塩化ガリウム粉末4を入れた坩堝5を反応管2の中央部に配置し、さらに、坩堝5の上方には基板6を配設している。矢印7は、反応管2に供給される、アルゴンなどの不活性ガス又はアルゴンと反応ガスとの混合ガスを表わしている。ここで、加熱装置には、高周波誘導加熱法を利用した高周波誘導加熱炉を用いることが好ましいが、この場合、縦型に限らず横型でもよい。また、加熱装置は高周波誘導加熱に限らず、ランプ加熱や抵抗加熱による加熱装置でもよい。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic view showing an example of an apparatus for producing hollow spherical particles made of gallium nitride of the present invention. A manufacturing method will be described using this apparatus as an example.
In the figure, a vertical high frequency induction heating apparatus 1 has an induction heating coil 3 around a reaction tube 2. A crucible 5 containing gallium chloride powder 4 is disposed in the center of the reaction tube 2, and a substrate 6 is disposed above the crucible 5. An arrow 7 represents an inert gas such as argon or a mixed gas of argon and a reaction gas supplied to the reaction tube 2. Here, it is preferable to use a high-frequency induction heating furnace using a high-frequency induction heating method as the heating device, but in this case, not only a vertical type but also a horizontal type may be used. The heating device is not limited to high frequency induction heating, and may be a heating device using lamp heating or resistance heating.

図1の装置を用い、窒化ガリウムからなる中空の球状粒子を製造する方法を説明する。図において、塩化ガリウムの粉末4を窒化ホウ素製の坩堝5に入れ、この坩堝5を縦型高周波誘導加熱炉1の中央部に配置する。さらに、坩堝5の上方にシリコンやサファイアなどの基板6を設置する。
反応管2内を減圧した後、アルゴンガス7を流しながら、坩堝5及び塩化ガリウム粉末4を予備加熱する。このとき、坩堝5は、塩化ガリウム粉末4が1000〜1200℃の範囲で加熱される。
A method for producing hollow spherical particles made of gallium nitride using the apparatus of FIG. 1 will be described. In the figure, gallium chloride powder 4 is put in a crucible 5 made of boron nitride, and this crucible 5 is placed in the center of a vertical high frequency induction heating furnace 1. Further, a substrate 6 such as silicon or sapphire is installed above the crucible 5.
After reducing the pressure in the reaction tube 2, the crucible 5 and the gallium chloride powder 4 are preheated while flowing an argon gas 7. At this time, the crucible 5 is heated in the range of 1000 to 1200 ° C. of the gallium chloride powder 4.

次に、アンモニアガスと不活性ガスとしてのアルゴンガスとの混合ガスを流しながら、上記温度で加熱する。この坩堝5および塩化ガリウム粉末4の加熱温度は1000〜1200℃の範囲が好ましい。加熱温度が1000℃よりも低いと、基板6上に生成物が堆積しないので好ましくない。逆に、加熱温度が1200℃よりも高いと、中空の窒化ガリウム球状粒子が得られず、ナノワイヤーやナノ結晶体になってしまうので好ましくない。   Next, heating is performed at the above temperature while flowing a mixed gas of ammonia gas and argon gas as an inert gas. The heating temperature of the crucible 5 and the gallium chloride powder 4 is preferably in the range of 1000 to 1200 ° C. When the heating temperature is lower than 1000 ° C., the product is not deposited on the substrate 6, which is not preferable. On the other hand, when the heating temperature is higher than 1200 ° C., hollow gallium nitride spherical particles cannot be obtained, resulting in nanowires or nanocrystals.

このときの加熱時間は、1〜1.5時間の範囲が好ましい。1.5時間で球状粒子の成長が終了するので、これ以上の時間をかける必要はない。逆に、1時間未満の加熱時間では球状粒子の成長が終了しないので、好ましくない。   The heating time at this time is preferably in the range of 1 to 1.5 hours. Since the growth of spherical particles is completed in 1.5 hours, it is not necessary to spend more time. Conversely, a heating time of less than 1 hour is not preferable because the growth of spherical particles does not end.

アンモニアガスとアルゴンガスとの流量の比は40:60〜60:40の範囲が好ましい。アンモニアガスの流量がこの範囲よりも多いと、結晶成長の速度が早すぎて生成物中に結晶欠陥を含むので好ましくない。逆に、アンモニアガスの流量が上記の好ましい範囲よりも少ないと、ガリウムと反応するアンモニアの量が十分でないので窒化ガリウムの生成量が減少し好ましくない。   The flow ratio of ammonia gas to argon gas is preferably in the range of 40:60 to 60:40. If the flow rate of ammonia gas is higher than this range, the crystal growth rate is too fast and the product contains crystal defects, which is not preferable. Conversely, if the flow rate of the ammonia gas is less than the above preferred range, the amount of ammonia that reacts with gallium is not sufficient, so the amount of gallium nitride produced decreases, which is not preferred.

アンモニアガスとアルゴンガスとの混合ガスの流量の和は、400〜500sccmの範囲が好ましい。sccm(standard cubic cm per minute )は、cm3 /分で、0℃において、1013hPaに換算した場合の流量を表す単位である。上記流量和が500sccmよりも多いと生成物が反応系から散逸するので好ましくない。逆に、流量和が400sccmよりも少ないと中空球状粒子の収量が低下するので好ましくない。 The sum of the flow rates of the mixed gas of ammonia gas and argon gas is preferably in the range of 400 to 500 sccm. sccm (standard cubic cm per minute) is a unit representing a flow rate when converted to 1013 hPa at 0 ° C. in cm 3 / min. If the sum of the flow rates is more than 500 sccm, the product is dissipated from the reaction system, which is not preferable. On the contrary, if the sum of flow rates is less than 400 sccm, the yield of hollow spherical particles decreases, which is not preferable.

このような操作を施すことにより、基板6上に黄色の粉末が堆積する。この堆積物は、後述するように、直径が15〜20nmであり、壁の厚さが3.5〜4.5nmである、窒化ガリウム中空球状粒子である。   By performing such an operation, yellow powder is deposited on the substrate 6. As will be described later, this deposit is a gallium nitride hollow spherical particle having a diameter of 15 to 20 nm and a wall thickness of 3.5 to 4.5 nm.

次に実施例を示して、さらに本発明を詳細に説明する。
塩化ガリウム粉末4(和光純薬工業(株)製、純度99.9%)3.0gを窒化ホウ素製の坩堝5に入れ、この坩堝5を縦型高周波誘導加熱炉1の中央部に設置した。さらに、坩堝5の上方20cmの位置にシリコン基板6を配置した。反応管2内を266〜399Pa(2〜3Torr)に減圧にした後、アルゴンガス7を250sccmの流量で流しながら、1100℃で30分間加熱した。
その後、アンモニアガス50%及びアルゴンガス50%の混合ガス7を、450sccmの流量で流しながら、引き続き、1100℃で1.5時間加熱した。加熱後、縦型高周波誘導加熱装置1を室温に冷却すると、加熱中に約650℃に保持されていたシリコン基板6上に黄色の粉末が0.6g堆積した。
EXAMPLES Next, an Example is shown and this invention is demonstrated further in detail.
3.0 g of gallium chloride powder 4 (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9%) was placed in a boron nitride crucible 5, and this crucible 5 was placed in the center of the vertical high frequency induction heating furnace 1. . Further, a silicon substrate 6 was disposed at a position 20 cm above the crucible 5. After reducing the pressure in the reaction tube 2 to 266 to 399 Pa (2 to 3 Torr), the reaction tube 2 was heated at 1100 ° C. for 30 minutes while flowing an argon gas 7 at a flow rate of 250 sccm.
Thereafter, the mixed gas 7 of 50% ammonia gas and 50% argon gas was continuously heated at 1100 ° C. for 1.5 hours while flowing at a flow rate of 450 sccm. After the heating, when the vertical high frequency induction heating apparatus 1 was cooled to room temperature, 0.6 g of yellow powder was deposited on the silicon substrate 6 which was kept at about 650 ° C. during the heating.

(比較例)
次に、比較例について説明する。
実施例で得た黄色粉末試料の一部を、アンモニアとアルゴンとの気流中で、さらに1150℃まで温度を上昇し、1時間の加熱処理を施した。
(Comparative example)
Next, a comparative example will be described.
A part of the yellow powder sample obtained in the examples was further heated to 1150 ° C. in a stream of ammonia and argon and subjected to heat treatment for 1 hour.

図2は、実施例で合成した黄色粉末のX線回折パターンを示す図である。図の縦軸は回折X線強度(任意目盛り)であり、横軸は角度(°)、即ち、X線の原子面への入射角θの2倍に相当する角度である。図2から、黄色粉末が、格子定数a=3.186Å、c=5. 178Åを有する六方晶系の窒化ガリウムであることが分かった。   FIG. 2 is a diagram showing an X-ray diffraction pattern of the yellow powder synthesized in the example. The vertical axis in the figure is the diffracted X-ray intensity (arbitrary scale), and the horizontal axis is the angle (°), that is, an angle corresponding to twice the incident angle θ of the X-rays on the atomic plane. From FIG. 2, it was found that the yellow powder was hexagonal gallium nitride having lattice constants a = 3.18617 and c = 5.178.

図3は、実施例で合成した黄色粉末の低倍率透過型電子顕微鏡像を示す図である。この場合、黄色粉末をエタノール中で超音波処理を行って分散液を試料とし、その分散液を非晶質炭素膜でコートされた銅グリッドに滴下して透過電子顕微鏡像を観察した。図3から、黄色粉末が中空の球状粒子の集合であることが分かった。   FIG. 3 is a view showing a low-magnification transmission electron microscope image of the yellow powder synthesized in the example. In this case, the yellow powder was subjected to ultrasonic treatment in ethanol to use the dispersion as a sample, and the dispersion was dropped onto a copper grid coated with an amorphous carbon film, and a transmission electron microscope image was observed. From FIG. 3, it was found that the yellow powder was a collection of hollow spherical particles.

図4は、実施例で合成した黄色粉末の高倍率透過電子顕微鏡像を示す図である。図4から、実施例で合成した黄色粉末一個の粒子の直径が15〜20nmであり、その壁の厚さが3.5〜4.5nmであることが分かった。   FIG. 4 is a diagram showing a high-magnification transmission electron microscope image of the yellow powder synthesized in the example. From FIG. 4, it was found that the diameter of one yellow powder synthesized in the example was 15 to 20 nm and the wall thickness was 3.5 to 4.5 nm.

図5は、実施例で合成した黄色粉末のエネルギー分散型X線分析(EDX:Energy-Dispersive X-ray Analysis)による測定結果を示す図である。図の縦軸は、X線強度(任意目盛り)を示し、横軸はX線のエネルギーを示している。
図5から、黄色粉末は、ガリウム(Ga)と窒素(N)とからなり、その原子比が1:0.99であり、化学量論的組成を有する窒化ガリウムであることが分かった。なお、銅の信号が観察されるが、これは試料を取り付ける治具として用いた銅グリッドに由来している。
FIG. 5 is a diagram showing a measurement result of energy-dispersive X-ray analysis (EDX) of the yellow powder synthesized in the example. The vertical axis in the figure represents the X-ray intensity (arbitrary scale), and the horizontal axis represents the X-ray energy.
From FIG. 5, it was found that the yellow powder is gallium nitride composed of gallium (Ga) and nitrogen (N), having an atomic ratio of 1: 0.99, and having a stoichiometric composition. In addition, although the signal of copper is observed, this originates in the copper grid used as a jig | tool which attaches a sample.

図6は、実施例で得られた黄色粉末試料をアンモニアとアルゴンとの気流中で、さらに、1150℃に温度を上昇させて加熱処理した比較例試料の低倍率透過型電子顕微鏡像を示す図である。図6から、比較例では、加熱処理によって球状粒子が合着して、球状粒子からナノチューブに変化することが分かった。また、このナノチューブの外径は20nmで、壁の厚さは3.5〜5.0nmであることが分かった。   FIG. 6 is a diagram showing a low-magnification transmission electron microscope image of a comparative sample obtained by heating the yellow powder sample obtained in the example in an air stream of ammonia and argon and further increasing the temperature to 1150 ° C. It is. From FIG. 6, it was found that in the comparative example, the spherical particles were coalesced by heat treatment and changed from spherical particles to nanotubes. Moreover, it turned out that the outer diameter of this nanotube is 20 nm, and the wall thickness is 3.5-5.0 nm.

図7は、実施例で合成した黄色粉末のフォトルミネッセンスのスペクトルを示す図である。フォトルミネッセンスは、励起光として325nmのHe−Cdレーザー光を用い、室温で測定した。図において、実線が実施例で合成した窒化ガリウムからなる中空の球状粒子のフォトルミネッセンススペクトルを示し、点線がバルクの窒化ガリウムのフォトル
ミネッセンススペクトルを示している。
図7から明らかなように、実施例で合成した窒化ガリウムからなる中空の球状粒子のフォトルミネッセンススペクトルは、バルクの窒化ガリウム結晶のフォトルミネッセンスと比較すると、0.12eV(13nm)だけ短波長側、即ちブルーシフトしていることが分かった。これは、本発明の球状粒子の直径、壁の厚さなどのサイズが小さくなったために、量子閉じ込め効果が発現したことに起因すると考えられる。
FIG. 7 is a diagram showing a photoluminescence spectrum of the yellow powder synthesized in the example. Photoluminescence was measured at room temperature using 325 nm He-Cd laser light as excitation light. In the figure, the solid line shows the photoluminescence spectrum of hollow spherical particles made of gallium nitride synthesized in the example, and the dotted line shows the photoluminescence spectrum of bulk gallium nitride.
As is clear from FIG. 7, the photoluminescence spectrum of the hollow spherical particles made of gallium nitride synthesized in the example is 0.12 eV (13 nm) shorter than the photoluminescence of the bulk gallium nitride crystal, That is, it turned out that it was blue-shifting. This is thought to be due to the fact that the quantum confinement effect was exhibited because the size of the spherical particles of the present invention, such as the diameter and wall thickness, became smaller.

本発明によれば、窒化ガリウムからなるナノメートルサイズの中空の球状粒子を得ることができるので、青色領域から紫外領域の発光材料、高温高電力電子デバイス用材料への応用が期待される。   According to the present invention, nanometer-sized hollow spherical particles made of gallium nitride can be obtained. Therefore, application to light emitting materials from blue to ultraviolet and materials for high-temperature high-power electronic devices is expected.

本発明の窒化ガリウムからなる中空の球状粒子を製造する装置の一例を示す模式図である。It is a schematic diagram which shows an example of the apparatus which manufactures the hollow spherical particle which consists of gallium nitride of this invention. 実施例で合成した黄色粉末のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the yellow powder synthesize | combined in the Example. 実施例で合成した黄色粉末の低倍率透過型電子顕微鏡像を示す図である。It is a figure which shows the low magnification transmission electron microscope image of the yellow powder synthesize | combined in the Example. 実施例で合成した黄色粉末の高倍率透過型電子顕微鏡像を示す図である。It is a figure which shows the high magnification transmission electron microscope image of the yellow powder synthesize | combined in the Example. 実施例で合成した黄色粉末のエネルギー分散型X線分析(EDX:Energy-Dispersive X-ray Analysis)による測定結果を示す図である。It is a figure which shows the measurement result by the energy dispersive X ray analysis (EDX: Energy-Dispersive X-ray Analysis) of the yellow powder synthesize | combined in the Example. 実施例で得られた黄色粉末試料をアンモニアとアルゴンとの気流中で、さらに、1150℃に温度を上昇させて加熱処理した比較例試料の低倍率透過型電子顕微鏡像を示す図である。It is a figure which shows the low magnification transmission electron microscope image of the comparative example sample which heat-processed the yellow powder sample obtained in the Example by raising temperature to 1150 degreeC in the airflow of ammonia and argon. 実施例で合成した黄色粉末のフォトルミネッセンスのスペクトルを示す図である。It is a figure which shows the spectrum of the photoluminescence of the yellow powder synthesize | combined in the Example.

符号の説明Explanation of symbols

1:縦型高周波誘導加熱装置
2:反応管
3:誘導加熱コイル
4:塩化ガリウム粉末
5: 坩堝
6:基板
7:不活性ガス又は混合ガス
1: Vertical high frequency induction heating device 2: Reaction tube 3: Induction heating coil 4: Gallium chloride powder 5: Crucible 6: Substrate 7: Inert gas or mixed gas

Claims (4)

直径が15〜20nmであり、肉厚が3.5〜4.5nmであることを特徴とする、窒化ガリウムからなる中空の球状粒子。   A hollow spherical particle made of gallium nitride, characterized by having a diameter of 15 to 20 nm and a thickness of 3.5 to 4.5 nm. アンモニアガスと不活性ガスとの混合気流中で、塩化ガリウム粉末を1000〜1200℃で1〜1.5時間加熱し、窒化ガリウムからなる中空の球状粒子を合成することを特徴とする、窒化ガリウムからなる中空の球状粒子の製造方法。   Gallium nitride powder is synthesized by heating gallium chloride powder at 1000 to 1200 ° C. for 1 to 1.5 hours in a mixed gas stream of ammonia gas and inert gas to synthesize hollow spherical particles made of gallium nitride. A method for producing hollow spherical particles comprising: 前記アンモニアガスと前記不活性ガスとの流量比が、40:60〜60:40の範囲であることを特徴とする、請求項2に記載の窒化ガリウムからなる中空の球状粒子の製造方法。   The method for producing hollow spherical particles made of gallium nitride according to claim 2, wherein a flow ratio of the ammonia gas to the inert gas is in a range of 40:60 to 60:40. 前記アンモニアガスと前記不活性ガスとの流量の和が、400〜500sccmの範囲であることを特徴とする、請求項2に記載の窒化ガリウムからなる中空の球状粒子の製造方法。   The method for producing hollow spherical particles made of gallium nitride according to claim 2, wherein the sum of the flow rates of the ammonia gas and the inert gas is in the range of 400 to 500 sccm.
JP2005225075A 2005-08-03 2005-08-03 Hollow spherical particles made of gallium nitride and method for producing the same Expired - Fee Related JP4756239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225075A JP4756239B2 (en) 2005-08-03 2005-08-03 Hollow spherical particles made of gallium nitride and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225075A JP4756239B2 (en) 2005-08-03 2005-08-03 Hollow spherical particles made of gallium nitride and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007039277A true JP2007039277A (en) 2007-02-15
JP4756239B2 JP4756239B2 (en) 2011-08-24

Family

ID=37797604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225075A Expired - Fee Related JP4756239B2 (en) 2005-08-03 2005-08-03 Hollow spherical particles made of gallium nitride and method for producing the same

Country Status (1)

Country Link
JP (1) JP4756239B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967602A2 (en) 2007-02-20 2008-09-10 Kabushiki Kaisha Toshiba Ceramic-coated member and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247106A (en) * 1993-11-02 1995-09-26 Hc Starck Gmbh & Co Kg Fine powder of metal, alloy and metallic compound
JP2001206708A (en) * 2000-01-25 2001-07-31 Toyota Central Res & Dev Lab Inc Manufacturing method of metallic nitride powder at least partially nitrided
JP2004224674A (en) * 2003-01-27 2004-08-12 Fuji Photo Film Co Ltd Group 13 nitride semiconductor nanoparticle
JP2004339020A (en) * 2003-05-16 2004-12-02 National Institute For Materials Science Method for manufacturing gallium nitride nanotube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07247106A (en) * 1993-11-02 1995-09-26 Hc Starck Gmbh & Co Kg Fine powder of metal, alloy and metallic compound
JP2001206708A (en) * 2000-01-25 2001-07-31 Toyota Central Res & Dev Lab Inc Manufacturing method of metallic nitride powder at least partially nitrided
JP2004224674A (en) * 2003-01-27 2004-08-12 Fuji Photo Film Co Ltd Group 13 nitride semiconductor nanoparticle
JP2004339020A (en) * 2003-05-16 2004-12-02 National Institute For Materials Science Method for manufacturing gallium nitride nanotube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967602A2 (en) 2007-02-20 2008-09-10 Kabushiki Kaisha Toshiba Ceramic-coated member and production method thereof

Also Published As

Publication number Publication date
JP4756239B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
Rao et al. Carbon-assisted synthesis of inorganic nanowires
Liu et al. Synthesis of doped ZnS one-dimensional nanostructures via chemical vapor deposition
Hadia et al. Effect of the temperature on structural and optical properties of zinc oxide nanoparticles
Cai et al. Straight and helical InGaN core–shell nanowires with a high In core content
Xu et al. Low-temperature growth and optical properties of radial ZnO nanowires
JP4756239B2 (en) Hollow spherical particles made of gallium nitride and method for producing the same
JP3571287B2 (en) Method for producing silicon oxide nanowires
Wang et al. Synthesis of tapered CdS nanobelts and CdSe nanowires with good optical property by hydrogen-assisted thermal evaporation
Zhong et al. Temperature-controlled growth and optical properties of ZnO nanorods with quadrangular and hexagonal cross sections
JP2008100863A (en) Silicon carbide nanostructure and its producing method
JP2004283961A (en) Zinc sulfide nano belt and its manufacturing method
JP3987932B2 (en) Method for producing indium nitride nanowires coated with indium phosphide
Wu et al. Doped spiral alumina nanowires
JP4576607B2 (en) Single crystal zinc sulfide nanotube and method for producing the same
Hu et al. The First Template‐Free Growth of Crystalline Silicon Microtubes
JP2005350298A (en) Manufacturing method of aluminum nitride nano-ribbon
Kim et al. Characteristics of SiOx nanowires synthesized via the thermal heating of Cu-coated Si substrates
JP2004339020A (en) Method for manufacturing gallium nitride nanotube
Bao et al. Synthesis of GaN nanorods by a solid-state reaction
JP2005349515A (en) Aluminum nitride nano tube whose outer wall and inner wall are covered with carbon film and manufacturing method thereof
JP4441617B2 (en) Aluminum nitride nanotube and method for producing the same
Chen et al. Improved physical properties of ZnO nanostructures by In inclusion
JP4581121B2 (en) Silicon nitride nanowire coated with boron nitride nanosheet and method for producing the same
JP4997622B2 (en) Hexagonal single crystal nanotube and method for producing the same
JP4538620B2 (en) Method for producing zinc sulfide nanocable containing zinc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees