JP4538620B2 - Method for producing zinc sulfide nanocable containing zinc - Google Patents

Method for producing zinc sulfide nanocable containing zinc Download PDF

Info

Publication number
JP4538620B2
JP4538620B2 JP2003157225A JP2003157225A JP4538620B2 JP 4538620 B2 JP4538620 B2 JP 4538620B2 JP 2003157225 A JP2003157225 A JP 2003157225A JP 2003157225 A JP2003157225 A JP 2003157225A JP 4538620 B2 JP4538620 B2 JP 4538620B2
Authority
JP
Japan
Prior art keywords
zinc sulfide
zinc
powder
nanocable
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003157225A
Other languages
Japanese (ja)
Other versions
JP2004362841A (en
Inventor
義雄 板東
ズウ・ウィンチェン
揚一郎 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003157225A priority Critical patent/JP4538620B2/en
Publication of JP2004362841A publication Critical patent/JP2004362841A/en
Application granted granted Critical
Publication of JP4538620B2 publication Critical patent/JP4538620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この出願の発明は、亜鉛を内包した硫化亜鉛ナノケーブルの製造方法に関するものである。さらに詳しくは、この出願の発明は、ディスプレイ、センサー、レーザー、光触媒等に応用されている硫化亜鉛の新しいナノ構造物の製造方法に関するものである。
【0002】
【従来の技術】
硫化亜鉛は3.6eVのバンドギャップエネルギーを有するII-VI族の半導体であり、マンガン等をドーピングすることにより高い発光量子効率が得られることから、ディスプレイ、センサー、レーザー、光触媒等として広く応用されている。
【0003】
このような硫化亜鉛のナノ構造物として、一次元の硫化亜鉛ナノワイヤーが知られており、鋳型を用いる方法(たとえば、非特許文献1参照)や金触媒を用いる加熱蒸発法(たとえば、非特許文献2参照)等によって合成されている。最近、酸化亜鉛を内含した硫化亜鉛ナノケーブルが酸化亜鉛と硫化水素との反応によって合成されている(たとえば、非特許文献3参照)。
【0004】
【非特許文献1】
X.Jiang外,ケミカル・マテリアルズ(Chem.Mater.),2001年,第13巻,p.1213
【非特許文献2】
Y.Wang外,ケミカル・フィジックス・レターズ(Chem.Phys.Lett.),2002年,第357巻,p.314
【非特許文献3】
X.Wang外,アドバンスト・マテリアルズ(Adv.Mater.),2002年,第14巻,p.1732
【0005】
【発明が解決しようとする課題】
この出願の発明は、ナノスケールの半導体として新しい展開を図るため、簡便な手法により硫化亜鉛の新しいナノ構造物を得ることのできる製造方法を提供することを解決すべき課題としている。
【0006】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、窒素と水蒸気の気流下で、炭素粉末と炭素繊維を1500〜1600℃に、硫化亜鉛粉末を1250℃にそれぞれ加熱し、400〜600℃に保持された基板に生成物を堆積させることを特徴とする亜鉛を内含した硫化亜鉛ナノケーブルの製造方法を提供する。
【0007】
【発明の実施の形態】
この出願の発明の亜鉛を内包した硫化亜鉛ナノケーブルの製造方法では、窒素と水蒸気の気流下で、炭素粉末と炭素繊維を1500〜1600℃に、硫化亜鉛粉末を1250℃にそれぞれ加熱する。具体的には、たとえば、蒸留水に窒素ガスを吹き込んで窒素ガスと水蒸気との混合気流中を生じさせることができる。加熱時の窒素ガス及び水蒸気の流量は、たとえば窒素ガスを1.5L/min程度、水蒸気を0.3L/min程度とすることができる。一方、炭素粉末、炭素繊維、硫化亜鉛の各加熱温度は、上記の温度に限定される。その理由は、温度を上昇させても反応効率は向上しなく、上記温度未満では反応が不完全になるからである。反応時間は0.5〜3時間が好ましく例示される。この範囲を超えて時間をかけて反応させても収率の変化はほとんどみられず、その範囲未満では反応が完結しにくくなる。なお、炭素粉末、炭素繊維、硫化亜鉛の重量比については、1:1:2が好ましく例示される。生成物の収量は重量比を上記値から変化させてもあまり変化しない。
【0008】
そして、この出願の発明の亜鉛を内包した硫化亜鉛ナノケーブルの製造方法では、400〜600℃に保持された基板に生成物を堆積させる。
【0009】
このように、この出願の発明の亜鉛を内包した硫化亜鉛ナノケーブルの製造方法は、加熱蒸発法に分類され、新しいナノ構造物である亜鉛を内包した硫化亜鉛ナノケーブルを簡便に製造することができる。
【0010】
以下、実施例を示し、この出願の発明の亜鉛を内包した硫化亜鉛ナノケーブルの製造方法について説明する。
【0011】
【実施例】
シグマ・アルドリッチ社製の炭素粉末0.5gと炭素繊維0.5gをグラファイト製るつぼに入れ、石英管の中に配置した。また、シグマ・アルドリッチ社製の硫化亜鉛粉末1.0gをグラファイト製るつぼに入れ、このるつぼを炭素粉末及び炭素繊維の入ったるつぼの上方に離して配置した。蒸留水に窒素ガスを吹き込むことにより水蒸気を含んだ窒素ガスを1.5L/minの流速で石英管の中に移送した。そして、縦型高周波誘導加熱炉を用い、炭素粉末と炭素繊維を1500〜1600℃に加熱し、一方、硫化亜鉛粉末を1250℃に加熱した。0.5時間加熱を続けた後、炉を室温に冷却した。加熱時に石英管の温度が400〜600℃に保持されていた部分に灰色の粉末が堆積した。
【0012】
得られた灰色の粉末生成物を透過型電子顕微鏡及びX線エネルギー拡散スペクトロメーターを備えた高分解能透過型電子顕微鏡を用いて観察し、分析した。
【0013】
図1(a)は、透過型電子顕微鏡により観察された生成物の像を示した写真である。
【0014】
芯の直径がおよそ25nm、外壁の厚さが8nmのナノケーブルが得られている。
【0015】
図1(b)は、図1(a)に示した写真中にmの矢印をつけた部分の高分解能透過型電子顕微鏡像の写真とX線エネルギー拡散スペクトルの回折パターンを示した図である。
【0016】
X線回折のドットから、格子定数a=0.26nm、c=0.49nmである単結晶の六方晶系亜鉛であると確認される。X線回折のリングは、中心から外側に向かって(100)、(110)、(103)面に起因する回折であり、このことから、外壁は、ウルツ鉱型の硫化亜鉛の多結晶であると確認される。このことから、得られたナノケーブルは、芯が亜鉛の単結晶で、外壁が硫化亜鉛の多結晶から形成された、亜鉛を内包した硫化亜鉛ナノケーブルであると判明された。
【0017】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、簡便な方法により新規な亜鉛を内含した硫化亜鉛ナノケーブルが製造される。
【図面の簡単な説明】
【図1】 (a)は、実施例で得られた灰色の生成物の透過型電子顕微鏡像の写真である。 (b)は、 (a)の写真中に矢印mで示した部分の高分解能透過型電子顕微鏡像の写真とX線エネルギー拡散スペクトルの回折パターンを示した図である。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method for producing a zinc sulfide nanocable encapsulating zinc. More specifically, the invention of this application relates to a method for producing a new nanostructure of zinc sulfide applied to displays, sensors, lasers, photocatalysts and the like.
[0002]
[Prior art]
Zinc sulfide is a II-VI group semiconductor with a band gap energy of 3.6 eV, and it can be widely applied as a display, sensor, laser, photocatalyst, etc. because it can obtain high emission quantum efficiency by doping with manganese. Yes.
[0003]
As such zinc sulfide nanostructures, one-dimensional zinc sulfide nanowires are known, such as a method using a template (for example, see Non-Patent Document 1) and a heat evaporation method using a gold catalyst (for example, non-patent). Reference 2)) and the like. Recently, zinc sulfide nanocables containing zinc oxide have been synthesized by reaction of zinc oxide and hydrogen sulfide (see, for example, Non-Patent Document 3).
[0004]
[Non-Patent Document 1]
X. Jiang et al., Chemical Materials (Chem. Mater.), 2001, Vol. 13, p. 1213
[Non-Patent Document 2]
Y. Wang et al., Chemical Physics Letters (2002), Vol. 357, p. 314
[Non-Patent Document 3]
X. Wang et al., Advanced Materials (Adv. Mater.), 2002, Vol. 14, p. 1732
[0005]
[Problems to be solved by the invention]
The invention of this application has an object to be solved to provide a manufacturing method capable of obtaining a new nanostructure of zinc sulfide by a simple technique in order to achieve a new development as a nanoscale semiconductor.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the invention of this application is to heat carbon powder and carbon fiber to 1500 to 1600 ° C. and zinc sulfide powder to 1250 ° C. under a stream of nitrogen and water vapor, respectively, to 400 to 600 ° C. A method for producing a zinc sulfide nanocable containing zinc, characterized in that a product is deposited on a substrate held in a metal.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing a zinc sulfide nanocable encapsulating zinc according to the invention of this application, the carbon powder and the carbon fiber are heated to 1500 to 1600 ° C. and the zinc sulfide powder is heated to 1250 ° C. under a stream of nitrogen and water vapor, respectively. Specifically, for example, nitrogen gas can be blown into distilled water to generate a mixed gas stream of nitrogen gas and water vapor. The flow rates of nitrogen gas and water vapor during heating can be, for example, about 1.5 L / min for nitrogen gas and about 0.3 L / min for water vapor. On the other hand, each heating temperature of carbon powder, carbon fiber, and zinc sulfide is limited to the above temperature. The reason is that the reaction efficiency does not improve even when the temperature is raised, and the reaction becomes incomplete below the above temperature. The reaction time is preferably exemplified by 0.5 to 3 hours. Even if the reaction is carried out over a time exceeding this range, there is hardly any change in the yield, and if it is less than this range, the reaction is difficult to complete. The weight ratio of carbon powder, carbon fiber, and zinc sulfide is preferably 1: 1: 2. The yield of the product does not change much even if the weight ratio is changed from the above value.
[0008]
And in the manufacturing method of the zinc sulfide nano cable which included zinc of the invention of this application, a product is deposited on the board | substrate hold | maintained at 400-600 degreeC.
[0009]
As described above, the method for manufacturing zinc sulfide nanocables encapsulating zinc according to the invention of this application is classified as a heating evaporation method, and a zinc sulfide nanocable encapsulating zinc, which is a new nanostructure, can be easily produced. it can.
[0010]
Hereinafter, an example is shown and the manufacturing method of the zinc sulfide nano cable which included zinc of the invention of this application is explained.
[0011]
【Example】
Carbon powder 0.5g and carbon fiber 0.5g manufactured by Sigma-Aldrich were placed in a graphite crucible and placed in a quartz tube. In addition, 1.0 g of zinc sulfide powder manufactured by Sigma-Aldrich was placed in a graphite crucible, and the crucible was placed above the crucible containing carbon powder and carbon fiber. Nitrogen gas containing water vapor was transferred into the quartz tube at a flow rate of 1.5 L / min by blowing nitrogen gas into distilled water. Then, using a vertical high-frequency induction heating furnace, the carbon powder and the carbon fiber were heated to 1500 to 1600 ° C., while the zinc sulfide powder was heated to 1250 ° C. After continuing heating for 0.5 hour, the furnace was cooled to room temperature. Gray powder was deposited on the portion where the temperature of the quartz tube was maintained at 400 to 600 ° C. during heating.
[0012]
The resulting gray powder product was observed and analyzed using a transmission electron microscope and a high resolution transmission electron microscope equipped with an X-ray energy diffusion spectrometer.
[0013]
FIG. 1 (a) is a photograph showing an image of the product observed with a transmission electron microscope.
[0014]
A nanocable having a core diameter of approximately 25 nm and an outer wall thickness of 8 nm is obtained.
[0015]
FIG. 1 (b) is a diagram showing a high-resolution transmission electron microscope image of the portion marked with an arrow m in the photograph shown in FIG. 1 (a) and a diffraction pattern of an X-ray energy diffusion spectrum. .
[0016]
From the X-ray diffraction dots, it is confirmed to be single crystal hexagonal zinc having lattice constants a = 0.26 nm and c = 0.49 nm. The ring of X-ray diffraction is diffraction caused by the (100), (110), and (103) planes from the center to the outside. Therefore, the outer wall is a polycrystal of wurtzite type zinc sulfide. It is confirmed. From this, it was found that the obtained nanocable was a zinc sulfide nanocable encapsulating zinc in which the core was a single crystal of zinc and the outer wall was formed of a polycrystal of zinc sulfide.
[0017]
【The invention's effect】
As described in detail above, according to the invention of this application, zinc sulfide nanocables containing novel zinc are produced by a simple method.
[Brief description of the drawings]
FIG. 1 (a) is a transmission electron micrograph of a gray product obtained in an example. (b) is a photograph of a high-resolution transmission electron microscope image of the portion indicated by arrow m in the photograph of (a) and a diffraction pattern of an X-ray energy diffusion spectrum.

Claims (1)

炭素粉末と炭素繊維をるつぼに入れ、硫化亜鉛粉末を別のるつぼに入れ、前記炭素粉末と炭素繊維の入ったるつぼの上方に前記硫化亜鉛粉末の入ったるつぼが位置するように縦型高周波誘導加熱炉内に配置し、蒸留水に窒素ガスを吹き込むことにより生じる水蒸気を含んだ窒素ガスを前記縦型高周波誘導加熱炉の下部から流しながら、前記炭素粉末と炭素繊維の入ったるつぼを1500〜1600℃に、前記硫化亜鉛粉末の入ったるつぼを1250℃に、それぞれ加熱し、前記硫化亜鉛粉末の入ったるつぼよりも下流側の400〜600℃に保持された基板上に生成物を堆積させることを特徴とする亜鉛を内含した硫化亜鉛ナノケーブルの製造方法 Vertical high frequency induction so that carbon powder and carbon fiber are put in a crucible, zinc sulfide powder is put in another crucible, and the crucible containing zinc sulfide powder is located above the crucible containing carbon powder and carbon fiber. A crucible containing the carbon powder and carbon fiber is placed in a heating furnace while flowing nitrogen gas containing water vapor generated by blowing nitrogen gas into distilled water from the lower part of the vertical high frequency induction heating furnace. The crucible containing the zinc sulfide powder is heated to 1250 ° C. at 1600 ° C., and the product is deposited on the substrate held at 400 to 600 ° C. downstream of the crucible containing the zinc sulfide powder. A method for producing a zinc sulfide nanocable containing zinc .
JP2003157225A 2003-06-02 2003-06-02 Method for producing zinc sulfide nanocable containing zinc Expired - Lifetime JP4538620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003157225A JP4538620B2 (en) 2003-06-02 2003-06-02 Method for producing zinc sulfide nanocable containing zinc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157225A JP4538620B2 (en) 2003-06-02 2003-06-02 Method for producing zinc sulfide nanocable containing zinc

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007271145A Division JP2008120674A (en) 2007-10-18 2007-10-18 Zinc sulfide nano-cable

Publications (2)

Publication Number Publication Date
JP2004362841A JP2004362841A (en) 2004-12-24
JP4538620B2 true JP4538620B2 (en) 2010-09-08

Family

ID=34051057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157225A Expired - Lifetime JP4538620B2 (en) 2003-06-02 2003-06-02 Method for producing zinc sulfide nanocable containing zinc

Country Status (1)

Country Link
JP (1) JP4538620B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414050B2 (en) * 2009-12-09 2014-02-12 独立行政法人物質・材料研究機構 Microscale ultraviolet sensor and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000207953A (en) * 1999-01-19 2000-07-28 Nec Corp Nanocable and its manufacture
JP2004283961A (en) * 2003-03-20 2004-10-14 National Institute For Materials Science Zinc sulfide nano belt and its manufacturing method
JP2004299920A (en) * 2003-03-28 2004-10-28 National Institute For Materials Science Method for manufacturing tubular single crystal zinc oxide whisker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000207953A (en) * 1999-01-19 2000-07-28 Nec Corp Nanocable and its manufacture
JP2004283961A (en) * 2003-03-20 2004-10-14 National Institute For Materials Science Zinc sulfide nano belt and its manufacturing method
JP2004299920A (en) * 2003-03-28 2004-10-28 National Institute For Materials Science Method for manufacturing tubular single crystal zinc oxide whisker

Also Published As

Publication number Publication date
JP2004362841A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
Shen et al. Morphology-controlled synthesis, growth mechanism and optical properties of ZnO nanonails
Wang et al. Large-scale preparation of chestnut-like ZnO and Zn–ZnO hollow nanostructures by chemical vapor deposition
Abdulgafour et al. Growth of zinc oxide nanoflowers by thermal evaporation method
Wang et al. Direct synthesis and characterization of CdS nanobelts
Xu et al. Synthesis and characterization of high purity GaN nanowires
Chandrasekar et al. Role of SiOx on the photoluminescence properties of β-SiC
Khan et al. From Zn microspheres to hollow ZnO microspheres: A simple route to the growth of large scale metallic Zn microspheres and hollow ZnO microspheres
Park et al. Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst
Liang et al. Synthesis and photoluminescence properties of ZnO nanowires and nanorods by thermal oxidation of Zn precursors
Lee et al. Amorphous silica nanowires grown by the vapor–solid mechanism
He et al. Polymer-assisted complexing controlled orientation growth of ZnO nanorods
JP4556015B2 (en) Zinc sulfide / silicon core / shell nanowire and method for producing the same
JP4538620B2 (en) Method for producing zinc sulfide nanocable containing zinc
Yang et al. Growth of amorphous SiO2 nano-wires on pre-oxidized silicon substrate via chemical vapor deposition
JP2005139044A (en) Single crystal silicon nanotube and its manufacturing method
JP4431745B2 (en) Method for producing aluminum nitride nanoribbon
Kim et al. Simply heating to remove the sacrificial core TeO2 nanowires and to generate tubular nanostructures of metal oxides
Thandavan et al. Synthesis of ZnO nanowires via hotwire thermal evaporation of brass (CuZn) assisted by vapor phase transport of methanol
Umar et al. Formation of hierarchical ZnO nanostructures “nanocombs”: Growth mechanism, structural and optical properties
JP3987932B2 (en) Method for producing indium nitride nanowires coated with indium phosphide
JP2004283961A (en) Zinc sulfide nano belt and its manufacturing method
Bao et al. Shape-controlled synthesis of GaN microrods by ammonolysis route
JP4576607B2 (en) Single crystal zinc sulfide nanotube and method for producing the same
JP2008120674A (en) Zinc sulfide nano-cable
Yue et al. One-step synthesis of single-crystal Si3N4 nanowires-amorphous SiO2 beads nanochains by chemical vapor deposition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4538620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term