JP2007017921A - Printed circuit board and method for producing the same - Google Patents

Printed circuit board and method for producing the same Download PDF

Info

Publication number
JP2007017921A
JP2007017921A JP2005227209A JP2005227209A JP2007017921A JP 2007017921 A JP2007017921 A JP 2007017921A JP 2005227209 A JP2005227209 A JP 2005227209A JP 2005227209 A JP2005227209 A JP 2005227209A JP 2007017921 A JP2007017921 A JP 2007017921A
Authority
JP
Japan
Prior art keywords
resin
group
molecular resist
wiring board
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005227209A
Other languages
Japanese (ja)
Other versions
JP4660761B2 (en
Inventor
Kunio Mori
邦夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Original Assignee
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University filed Critical Iwate University
Priority to JP2005227209A priority Critical patent/JP4660761B2/en
Publication of JP2007017921A publication Critical patent/JP2007017921A/en
Application granted granted Critical
Publication of JP4660761B2 publication Critical patent/JP4660761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To produce a printed circuit board with a selectively fine metal wiring image capable of transmitting electric signals at a clock frequency of ≥1 GHz by a simple means, and to facilitate multilayering. <P>SOLUTION: A flat surface or a three-dimensional surface of a resin substrate is dipped in an aqueous solution of a thiol reactive alkoxysilane compound represented by formula to form a monomolecular layer of a multifunctional molecular resist. Using the monomolecular layer, a printed board on which a conductive metal wiring image has been formed and the resin substrate are stuck together in multiple layers to obtain a multilayer printed board. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は各種用途に使用される電子機器及びコンピューター制御製品に使用され、クロック高周波に優れた単層又は多層プリント配線基盤とその製造方法並びにこれらを使用した製品に関するものである。  The present invention relates to a single-layer or multi-layer printed wiring board excellent in clock high frequency, a manufacturing method thereof, and a product using them, which are used in electronic devices and computer control products used in various applications.

図1に示されるように、従来のプリント配線基盤は先ずガラスエポキシ基板と表面粗化電解銅箔(銅の成長面、電極面は平滑)を合わせて大型のプレス機で90分以上の時間をかけてプレス加熱して接着し、銅箔貼合せエポキシ基板を調製する。このため、従来では、予め銅箔を製造する技術、銅箔とエポキシ板を接着する技術を必要とし、これらを製造するのに莫大の設備と人手が必要であった。  As shown in FIG. 1, the conventional printed wiring board first combines a glass epoxy board and a surface-roughened electrolytic copper foil (copper growth surface, smooth electrode surface) with a large press machine for 90 minutes or more. Then, it is press-heated and bonded to prepare a copper foil-bonded epoxy substrate. For this reason, conventionally, a technique for manufacturing a copper foil in advance and a technique for bonding a copper foil and an epoxy plate are required, and enormous facilities and manpower are required to manufacture them.

次に得られた銅箔貼合せエポキシ基板の平滑銅箔面にホトレジストを塗布し、マスク上から露光後、アルカリ溶液で現像して配線模様を描く。露光した銅貼エポキシ基板は現像によってレジストが溶解した部分に銅がむき出して現れ、不溶のレジストが残渣として残っている部分が配線模様となる。  Next, a photoresist is applied to the smooth copper foil surface of the obtained copper foil-bonded epoxy substrate, exposed from the mask, and then developed with an alkaline solution to draw a wiring pattern. In the exposed copper-clad epoxy substrate, copper is exposed and appears in the portion where the resist is dissolved by development, and the portion where the insoluble resist remains as a residue becomes a wiring pattern.

ただ、ホトレジストの塗布厚みは配線の形状に影響するため、できるだけ薄く塗布することが望ましいが、スピンコート法などでは限界があり、また例えナノレベルの超薄膜レジストが可能となっても、エッチング液によるレジスト薄膜の劣化の問題がある。また、一枚一枚露光するためホトレジストの感度が問題となり、ホトレジスト感度向上の研究が続けられているが、画期的に露光時間を短縮する方法はないのも現状である。  However, since the photoresist coating thickness affects the shape of the wiring, it is desirable to apply it as thin as possible. However, there is a limit in the spin coating method, etc., and even if nano-level ultra-thin resist is possible, the etching solution There is a problem of deterioration of the resist thin film due to. Further, since the sensitivity of the photoresist becomes a problem because it is exposed one by one, and research on improving the sensitivity of the photoresist has been continued. However, there is no way to dramatically shorten the exposure time.

現像処理した銅貼エポキシ基板は酸化性の酸溶液からなるエッチング液に浸漬すると、むき出しの銅は溶解する。現像時に溶解しないで残った不溶性レジスト残渣は粘着シートを使用して剥ぎ取られ、エポキシ基板上に配線模様が描かれる。  When the developed copper-clad epoxy substrate is immersed in an etching solution made of an oxidizing acid solution, the exposed copper is dissolved. The insoluble resist residue that remains without being dissolved during development is peeled off using an adhesive sheet, and a wiring pattern is drawn on the epoxy substrate.

実際に使用される多層プリント配線基盤は上記のような作業をエポキシ基板の両面で行い、両面に配線模様のエポキシ配線基盤を得る。  The multilayer printed wiring board actually used performs the above-described operation on both sides of the epoxy substrate, and obtains an epoxy wiring board having a wiring pattern on both sides.

以上の手順を基本単位として、中にエポキシフィルムシートを挟んで多層に積み上げて、多層基盤を造るのがビルドアップ法と言われる多層プリント配線基板の製造方法である。また、この時、平滑銅配線面とエポキシ樹脂の接着が十分でないため、実際には、平滑銅配線面を酸化して表面を粗化する方法が行われている。  Based on the above procedure as a basic unit, a multilayer printed wiring board manufacturing method called a build-up method is to build up a multilayer substrate by stacking multilayered epoxy film sheets inside. At this time, since the adhesion between the smooth copper wiring surface and the epoxy resin is not sufficient, in practice, a method of oxidizing the smooth copper wiring surface to roughen the surface is performed.

従来のプリント基板の製造においては、銅箔とエポキシ板を接着させるとき、接着強度を高めるため、銅箔の接着面を粗化する必要があった。しかし、粗化銅箔は周波数の高い電気信号を減衰させる欠点があることから、1GHzレベルの周波数信号の伝達には使用できないなどの大きな課題がある。  In manufacturing a conventional printed circuit board, when bonding a copper foil and an epoxy plate, it is necessary to roughen the bonding surface of the copper foil in order to increase the bonding strength. However, since the roughened copper foil has a drawback of attenuating an electric signal having a high frequency, there is a big problem that it cannot be used for transmission of a frequency signal of 1 GHz level.

以上のように従来法は工程数が多く、人手と大型の設備を使用するため日本では競争力の低い産業とされ、特殊で高級品以外は中国をはじめとするアジア諸国に産業移転が行われ、日本にはほとんど残っていない。  As described above, the conventional method has many processes, and it is considered to be a low competitive industry in Japan due to the use of manpower and large equipment, and industrial transfers have been made to Asian countries including China, except for special and high-end products. , Japan is hardly left.

さらに、最近はシステム イン パッケイジ(SIP)のように、電子部品のハウジングなどへの立体的な配線技術が要求されているが、上記のような銅箔を接着する製造方法では対応できないのが大きな課題となっており、従来とは異なる全く新しい配線技術の出現が望まれている。  Furthermore, recently, a three-dimensional wiring technique to a housing of an electronic component, such as a system in package (SIP), has been required. However, the manufacturing method for adhering the copper foil as described above cannot cope with it. There is a problem, and the appearance of a completely new wiring technology different from the conventional one is desired.

本発明は、以上のような背景から、日本の物造り産業の基盤となる配線技術の復興をかけて、賃金の安い諸外国とも十分競争できる省力化された新規な平面及び立体面プリント配線基盤の技術を提供することと、同時に高周波数電流でも電気信号が伝播される平滑表面の金属配線を高い接着力で樹脂表面に形成する化学接着技術を提供すること、及びこれらの多層プリント配線基板を用いて高周波数対応の電子機器製品を提供することを課題としている。  From the above background, the present invention is a labor-saving new planar and three-dimensional printed wiring board that can sufficiently compete with other countries with low wages by reconstructing the wiring technology that forms the foundation of the Japanese manufacturing industry. And providing a chemical bonding technology for forming a smooth surface metal wiring on a resin surface with high adhesive force, which can propagate an electric signal even at a high frequency current, and these multilayer printed wiring boards. It is an object to provide a high frequency compatible electronic device product.

このような課題を解決するためには樹脂表面と結合して樹脂表面に反応性を賦与し、その反応面を紫外線照射及び未照射により活性部分と非活性部分に分別後、金属イオンと反応させて触媒活性部分と非活性部分に変化させて金属原子の析出を分別化すると同時に、金属と樹脂間を化学接着する多機能性分子レジストが必要不可欠である。  In order to solve such problems, the resin surface is bonded to impart reactivity to the resin surface, and the reaction surface is separated into an active part and an inactive part by ultraviolet irradiation and non-irradiation, and then reacted with metal ions. Thus, a multifunctional molecular resist that chemically changes the metal atom and the resin at the same time as separation of the metal atom by changing the catalytically active part to the inactive part is indispensable.

そこで本発明は、このことを可能とする、新しい機能性分子レジストと、これを用いたプリント配線基盤の製造方法を提供する。  Accordingly, the present invention provides a new functional molecular resist that enables this and a method for manufacturing a printed wiring board using the same.

本発明における機能性分子レジストとプリント配線基盤の製造方法は以下の特徴を有している。  The method for producing a functional molecular resist and a printed wiring board according to the present invention has the following characteristics.

第1:次式  First:

Figure 2007017921
Figure 2007017921

(式中、Rは、水素原子または炭化水素基を示し、Rは、炭化水素鎖または異種原子もしくは官能基が介在してもよい炭化水素鎖を示し、Xは、水素原子または炭化水素基を示し、Yは、アルコキシ基を示し、nは1から3までの整数であり、Mはアルカリ金属である。)で表わされるチオール反応性アルコキシシラン化合物の1種または2種以上であることを特徴とする多機能性分子レジスト。(In the formula, R 1 represents a hydrogen atom or a hydrocarbon group, R 2 represents a hydrocarbon chain or a hydrocarbon chain that may be interspersed with different atoms or functional groups, and X represents a hydrogen atom or a hydrocarbon group. Y represents an alkoxy group, n is an integer from 1 to 3, and M is an alkali metal.) Or one or more of thiol-reactive alkoxysilane compounds represented by Multifunctional molecular resist characterized by

第2:Rは、硫黄原子、窒素原子またはカルバモイル基もしくはウレア基を介在させた炭化水素鎖であることを特徴とする多機能性分子レジスト。Second: A multifunctional molecular resist characterized in that R 2 is a hydrocarbon chain having a sulfur atom, a nitrogen atom, a carbamoyl group or a urea group interposed therebetween.

第3:Rは、H−,CH−,C−,n−C−,CH=CHCH−,n−C−,C−,またはC11−であり、Rは−CHCH−,−CHCHCH−,−CHCHCHCHCHCH−,−CHCHSCHCH−,
−CHCHCHSCHCHCH−,−CHCHNHCHCHCH−,−(CHCHN−CHCHCH−,
−CHCHOCONHCHCHCH−,−CHCHNHCONHCHCHCH−,または−(CHCHCHOCONHCHCHCH−であり、XはH−,CH−,C−,n−C−,i−C−,n−C−,i−C−,またはt−C−であり、YはCHO−,CO−,n−CO−,i−CO−,n−CO−,i−CO−,またはt−CO−であり、Mは、Li,Na,KまたはCsであることを特徴とする請求項1または2の多機能性分子レジスト。
The 3: R 1 is, H-, CH 3 -, C 2 H 5 -, n-C 3 H 7 -, CH 2 = CHCH 2 -, n-C 4 H 9 -, C 6 H 5 -, or C 6 H 11 — and R 2 is —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 —, —CH 2 CH 2 SCH 2 CH 2− ,
-CH 2 CH 2 CH 2 SCH 2 CH 2 CH 2 -, - CH 2 CH 2 NHCH 2 CH 2 CH 2 -, - (CH 2 CH 2) 2 N-CH 2 CH 2 CH 2 -,
-CH 2 CH 2 OCONHCH 2 CH 2 CH 2 -, - CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 -, or - (CH 2 CH 2) 2 CHOCONHCH 2 CH 2 CH 2 - and is, X is H-, CH 3 -, C 2 H 5 -, n-C 3 H 7 -, i-C 3 H 7 -, n-C 4 H 9 -, i-C 4 H 9 - or t-C 4 H 9, - in and, Y is CH 3 O-, C 2 H 5 O-, n-C 3 H 7 O-, i-C 3 H 7 O-, n-C 4 H 9 O-, i-C 4 H 9 3. The multifunctional molecular resist according to claim 1, wherein the multifunctional molecular resist is O—, or t—C 4 H 9 O—, and M is Li, Na, K, or Cs.

第4:次式  Fourth:

Figure 2007017921
Figure 2007017921

(式中、Zはチオール基またはそのアルカリ金属塩もしくはアミンあるいはアンモニウム付加塩、またはチオカルボン酸もしくはジチオカルボン酸のアルカリ金属塩を示し、Rは、炭化水素鎖または異種原子もしくは官能基が介在してもよい炭化水素鎖を示し、Xは、水素原子または炭化水素基を示し、Yはアルコキシ基を示し、nは1から3までの整数である。)
で表わされるチオール反応性アルコキシシラン化合物の1種または2種以上であることを特徴とする多機能性分子レジスト。
(In the formula, Z represents a thiol group or an alkali metal salt or amine or ammonium addition salt thereof, or an alkali metal salt of thiocarboxylic acid or dithiocarboxylic acid, and R is a hydrocarbon chain or a hetero atom or a functional group intervening. And X represents a hydrogen atom or a hydrocarbon group, Y represents an alkoxy group, and n is an integer of 1 to 3.)
A multifunctional molecular resist which is one or more of thiol-reactive alkoxysilane compounds represented by the formula:

第5:Rは、硫黄原子、窒素原子または酸素原子を介在させた炭化水素鎖であることを特徴とする多機能性分子レジスト。  Fifth: R is a multifunctional molecular resist characterized in that R is a hydrocarbon chain with sulfur atoms, nitrogen atoms or oxygen atoms interposed.

第6:Zは、−SH、−SLi,−SNa,−SK,−SCs、−SH・アミン、−CSSNaであり、−Rは−CHCH−、−CHCHO−、−CHCHNH−、−CHCHNCH−、−CHCHCH−、−CHCHCHNH−、−CHCHCHNCH−、−CHCHCHO−、−CHCHCHN(CHCHN−、−CHCHCHOCHCH(OH)CH−、−CHCHCHCH−、−CHCHCHSCHCH−,−CHCHSCHCH−,−CHCHCHNHCHCH−,CHCHNHCHCHNHCHCH−,−CHCHCHCHCHCH−、−CHCHCHCHCHCHCHCHCHCH−、−C−、−C−、−CHCH−、または−CHCHCHCH−であり、XはCH−,C−,n−C−,i−C−,n−C−,i−C−,またはt−C−であり、YはCHO−,CO−,n−CO−,i−CO−,n−CO−,i−CO−,またはt−CO−であることを特徴とする多機能性分子レジスト。The 6: Z is, -SH, -SLi, -SNa, -SK , -SCs, -SH · amine is -CSSNa, -R is -CH 2 CH 2 -, - CH 2 CH 2 O -, - CH 2 CH 2 NH—, —CH 2 CH 2 NCH 3 —, —CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 NH—, —CH 2 CH 2 CH 2 NCH 3 —, —CH 2 CH 2 CH 2 O—, —CH 2 CH 2 CH 2 N (CH 2 CH 2 ) 2 N—, —CH 2 CH 2 CH 2 OCH 2 CH (OH) CH 2 —, —CH 2 CH 2 CH 2 CH 2 -, -CH 2 CH 2 CH 2 SCH 2 CH 2- , -CH 2 CH 2 SCH 2 CH 2- , -CH 2 CH 2 CH 2 NHCH 2 CH 2- , CH 2 CH 2 NHCH 2 CH 2 NHCH 2 CH 2 -, - CH 2 H 2 CH 2 CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -, - C 6 H 4 -, - C 6 H 4 C 6 H 4 -, - CH 2 C 6 H 4 CH 2 -, or -CH 2 CH 2 C 6 H 4 CH 2 CH 2 - and is, X is CH 3 -, C 2 H 5 -, n-C 3 H 7 -, i-C 3 H 7 -, n-C 4 H 9 -, i-C 4 H 9 -, or t-C 4 H 9 - a and, Y is CH 3 O-, C 2 H 5 O- , N-C 3 H 7 O-, i-C 3 H 7 O-, n-C 4 H 9 O-, i-C 4 H 9 O-, or t-C 4 H 9 O- Characteristic multifunctional molecular resist.

第7:上記1から6のうちの少くともいずれかの多機能性分子レジストを含有することを特徴とするレジスト組成物。  Seventh: A resist composition comprising a multifunctional molecular resist of at least one of the above 1 to 6.

第8:上記1から7の多機能性分子レジストもしくはこれを含有する組成物の溶液中に1μm以下の表面粗度を有する平滑なOH基含有樹脂平面又は立体面を浸漬処理して、樹脂平面又は立体面に単分子層で結合した分子レジストを生成させることを特徴とする反応性樹脂表面の作成方法。  Eighth: A smooth OH group-containing resin plane or a three-dimensional plane having a surface roughness of 1 μm or less is immersed in a solution of the multifunctional molecular resist 1 to 7 or a composition containing the same to obtain a resin plane Alternatively, a method for producing a reactive resin surface, which comprises generating a molecular resist bonded to a three-dimensional surface with a monomolecular layer.

第9:上記8の方法で得られた平滑な反応性樹脂表面をマスクで覆い、200〜400nmの波長の紫外線を照射することを特徴とする反応性及び非反応性微細模様印加樹脂表面の作成方法
第10:上記9の方法で得られた反応性及び非反応性微細模様を有する平滑な樹脂表面を還元性金属塩溶液に浸漬することを特徴とする1μm以下の表面粗度を有する平滑な樹脂平面又は立体面の触媒担持活性化方法。
Ninth: Preparation of a reactive and non-reactive fine pattern application resin surface characterized by covering the smooth reactive resin surface obtained by the above method 8 with a mask and irradiating ultraviolet rays having a wavelength of 200 to 400 nm. Method 10: A smooth resin surface having a surface roughness of 1 μm or less, characterized in that a smooth resin surface having a reactive and non-reactive fine pattern obtained by the method 9 is immersed in a reducing metal salt solution. A catalyst loading activation method for a resin flat surface or a solid surface.

第11:上記10の方法で得られた触媒担持活性化された平滑な樹脂表面を無電解めっき浴に浸漬することを特徴とする導電性微細金属配線模様の1層プリント配線基盤の作製造方法。  Eleventh: A method for producing a one-layer printed wiring board of a conductive fine metal wiring pattern, wherein the catalyst-supported smooth resin surface obtained by the method 10 is immersed in an electroless plating bath .

第12:上記9の方法において表及び裏面にマスクを当てて紫外線照射し、その後、還元性金属塩溶液への浸漬による触媒担持活性化と無電解めっき浴への浸漬の操作を行うことを特徴とする表裏に配線された2層プリント配線基板の製造法
第13:上記8の方法において、表及び裏両面を導通連絡するために、樹脂基盤に予めスルホールを開け、表裏面への紫外線の照射し、その後還元性金属塩溶液への浸漬による触媒担持活性化と無電解めっき浴への浸漬の操作を行うことを特徴とする表裏両面が導通された2層プリント配線基板の製造法。
The twelfth method is characterized in that in the above method 9, the mask is applied to the front and back surfaces and irradiated with ultraviolet light, and thereafter the catalyst support activation by immersion in a reducing metal salt solution and the immersion in an electroless plating bath are performed. Method for manufacturing a two-layer printed wiring board wired on the front and back: 13 In the above method 8, in order to establish electrical communication between the front and back surfaces, through holes are formed in the resin substrate in advance, and ultraviolet irradiation is applied to the front and back surfaces. A method for producing a two-layer printed wiring board in which both front and back surfaces are conductive, characterized in that the catalyst support activation by immersion in a reducing metal salt solution and the immersion in an electroless plating bath are performed.

第14:上記12の方法において表及び裏両面を導通連絡するために、予め樹脂基盤にスルホールを開け、その後表及び裏面にマスクを当てて紫外線照射後、還元性金属塩溶液への浸漬による触媒担持活性化と無電解めっき浴への浸漬の操作を行うことを特徴とする表裏両面が導通された2層プリント配線基板の製造法
第15:上記11または12の方法で得られた導電性微細金属配線模様が印加された平滑な1層及び2層プリント配線基盤を電気めっきすることを特徴とする金属配線の増膜厚化方法。
14th: In order to conduct electrical communication between the front and back surfaces in the above-mentioned method 12, a catalyst is prepared by opening a through hole in the resin substrate in advance, then applying a mask on the front and back surfaces, irradiating with ultraviolet rays, and then dipping in a reducing metal salt solution A method for producing a two-layer printed wiring board having both the front and back surfaces conductive, characterized by carrying out support activation and immersion in an electroless plating bath. 15: Conductive fineness obtained by the above method 11 or 12 A method for increasing the thickness of a metal wiring, comprising electroplating a smooth one-layer and two-layer printed wiring board to which a metal wiring pattern is applied.

第16:上記11から15のいずれかの方法で得られた1層及び2層プリント配線基盤の金属表面および樹脂表面をトリアジントリチオールと還元剤の溶液に浸漬することを特徴とするプリント配線基盤の接着活性化法。  Sixteenth: A printed wiring board characterized by immersing the metal surface and resin surface of the one-layer and two-layer printed wiring boards obtained by any of the above methods 11 to 15 in a solution of triazine trithiol and a reducing agent Adhesion activation method.

第17:上記16の方法で得られた接着活性化された1層及び2層プリント配線基盤と樹脂基板を多層に重ねて加熱圧着することを特徴とする多層プリント基盤の製造法。  Seventeenth: A method for producing a multilayer printed board characterized in that the adhesion-activated one-layer and two-layer printed wiring boards obtained by the above-mentioned method 16 and a resin substrate are stacked and heat-pressed.

第18:上記8から17のいずれかの方法で得られた1GHz以上のクロック高周波特性を有しているプリント配線基盤がその構成の少くとも一部とされていることを特徴とする電気機器または電子機器。  Eighteenth: An electric device characterized in that a printed wiring board having a clock high-frequency characteristic of 1 GHz or more obtained by any of the above methods 8 to 17 is at least a part of its configuration Electronics.

第19:上記18の機器において、高密度多層プリント基盤がその構成の少くとも一部とされていることを特徴とする電気機器または電子機器。  Nineteenth: An electric or electronic device according to the eighteenth device, wherein the high-density multilayer printed board is at least a part of the configuration.

以上のとおりの本発明によれば、省力化された簡便な方法によって、高周波電流でも電気信号が伝播される、金属配線が高い接着力で樹脂表面に形成される。そして1GHz以上の高周波特性に優れた多層プリント配線基盤とこれを用いた電気−電子機器が実現されることになる。  According to the present invention as described above, an electric signal is propagated even with a high-frequency current, and a metal wiring is formed on the resin surface with a high adhesive force by a labor-saving and simple method. And the multilayer printed wiring board excellent in the high frequency characteristic of 1 GHz or more and the electric-electronic device using the same are implement | achieved.

本発明は以上のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。  The present invention has the features as described above, and an embodiment thereof will be described below.

本発明のプリント配線基盤の製造方法において必須とされている多機能性分子レジストは、前記の〔化1〕〔化2〕の式で示される1種または2種以上のもの、あるいはこれを含有する組成物である。  The multifunctional molecular resist which is essential in the method for producing a printed wiring board according to the present invention is one or two or more of those represented by the formulas [Chemical Formula 1] and [Chemical Formula 2], or contains this Composition.

〔化1〕のトリアジン骨格を有するチオール反応性アルコキシシラン化合物については、たとえば、R−NH−R−SiX3−nで表されるアルコキシシラン含有アミン化合物と塩化シアヌルとを反応させ、生成されるアルコキシシラン含有トリアジンジクロリドと水硫化アルカリ(MSH)化合物とを反応させることにより合成することができる。この方法については発明者が既に特許出願しているところである。For the thiol-reactive alkoxysilane compound having a triazine skeleton of [Chemical Formula 1], for example, an alkoxysilane-containing amine compound represented by R 1 —NH—R 2 —SiX 3 —n Y n is reacted with cyanuric chloride. It can be synthesized by reacting the produced alkoxysilane-containing triazine dichloride with an alkali hydrosulfide (MSH) compound. The inventor has already filed a patent application for this method.

そこで、図1に示した本発明の新規方法については、以下のとおり説明される。  Therefore, the novel method of the present invention shown in FIG. 1 will be described as follows.

まず、第1工程の樹脂基盤製造であるが、
上記の多機能性分子レジストは有機溶剤、水および有機−水混合溶媒に溶解し、これに樹脂基盤を浸漬処理すると、樹脂表面に反応性のチオール基を賦与することができる。
First, in the first step, the resin substrate is manufactured.
When the above-mentioned multifunctional molecular resist is dissolved in an organic solvent, water and an organic-water mixed solvent, and a resin substrate is immersed in this, a reactive thiol group can be imparted to the resin surface.

本発明で云う樹脂とはセルロース、ヒドロキシエチルセルロース、デンプン、二酢酸セルロース、フェノール樹脂、ハイドロキノン樹脂、クレゾール樹脂、ポリビニルフェノール樹脂、レゾルシン樹脂、セロファン、メラミン樹脂、グリプタル樹脂、エポキシ樹脂、変性エポキシ樹脂、水酸基含有ポリビニルホルマール樹脂、ポリヒドロキシエチルメタアクリレートとその共重合体、ポリヒドロキシエチルアクリレートとその共重合体、ポリビニルアルコールとその共重合体など樹脂製品の表面に水酸基を有する樹脂であれば何でも良い。従って上記以外の樹脂に対して高分子量又は低分子量の多価アルコール類を混合し、表面に水酸基を有する樹脂複合体なども使用できる。  The resin referred to in the present invention is cellulose, hydroxyethyl cellulose, starch, cellulose diacetate, phenol resin, hydroquinone resin, cresol resin, polyvinyl phenol resin, resorcin resin, cellophane, melamine resin, gliptal resin, epoxy resin, modified epoxy resin, hydroxyl group Any resin having a hydroxyl group on the surface of the resin product, such as a polyvinyl formal resin, polyhydroxyethyl methacrylate and its copolymer, polyhydroxyethyl acrylate and its copolymer, polyvinyl alcohol and its copolymer, etc. may be used. Accordingly, a resin composite having a hydroxyl group on the surface by mixing a high molecular weight or low molecular weight polyhydric alcohol with a resin other than the above can be used.

これらの樹脂は熱による変形を防ぐため補強する必要があるが、この目的のためにカーボン、炭酸カルシウム、タルク、クレー、カオリン、湿式及び乾式シリカなどの充填剤やレーヨン、ナイロン、ポリエステル、ビニロン、スチール、ケブラ、炭素繊維、ガラス繊維などの繊維や布を入れたり、過酸化物などの架橋剤を加えて三次元化して使用することができる。  These resins need to be reinforced to prevent thermal deformation. For this purpose, fillers such as carbon, calcium carbonate, talc, clay, kaolin, wet and dry silica, rayon, nylon, polyester, vinylon, Steel, Kevlar, carbon fiber, glass fiber and other fibers and cloths can be used, or a cross-linking agent such as peroxide can be added to make it three-dimensional.

クロック周波数が1GHzを超えて作動させるためには銅配線の表面粗度が1μm以下にすることが望ましい。この目的を達成するためには樹脂表面粗度が少なくとも1μm以下にする必要がある。1μm以下の樹脂表面粗度を得るためには基盤の加工過程で使用されるロール、プレス板及び金型などの成型加工機の表面粗度が少なくとも1μm以下の物を必要がある。現在の日本の研磨技術では金属の表面粗度をRa:0.01μmレベルに仕上げることは比較的簡単であるから、樹脂表面の粗度を同程度に仕上げることは十分可能である。  In order to operate at a clock frequency exceeding 1 GHz, it is desirable that the surface roughness of the copper wiring be 1 μm or less. In order to achieve this object, the resin surface roughness needs to be at least 1 μm or less. In order to obtain a resin surface roughness of 1 μm or less, it is necessary that the surface roughness of a molding machine such as a roll, a press plate and a mold used in the substrate processing process is at least 1 μm or less. With the current Japanese polishing technology, it is relatively easy to finish the surface roughness of the metal to Ra: 0.01 μm level, so it is possible to finish the surface roughness of the resin to the same extent.

樹脂表面に反応性表面を作成するための多機能性分子レジスト溶液は上記の〔化1〕または〔化2〕の化合物を溶剤に0.001から10重量%(以下wt%と言う)の範囲内で溶剤に溶解して調整する。好ましくは0.01から2重量%である。0.01wt%以下ではめっきの被覆率が十分であるが、十分な剥離強度が得られない場合が発生しやすくなる。2wt%以上では1分子膜層のほかに多分子膜の層も生成し、表面粗化や凹凸の原因となり接着力も低下するので好ましくない。  The multifunctional molecular resist solution for forming a reactive surface on the resin surface is in the range of 0.001 to 10% by weight (hereinafter referred to as wt%) with the compound of [Chemical Formula 1] or [Chemical Formula 2] as a solvent. Adjust by dissolving in solvent. Preferably it is 0.01 to 2 weight%. If it is 0.01 wt% or less, the plating coverage is sufficient, but a case where sufficient peel strength cannot be obtained tends to occur. If it is 2 wt% or more, a polymolecular film layer is formed in addition to the monomolecular film layer, which causes surface roughening and unevenness, and the adhesive force is also reduced.

ここで云う、溶剤とは水、メタノール、エタノール、イソプロパノール、カルビトール、セルソルブ、エチレングリコール、アセトン、ヘキサン、メチルエチルケトン、ヘキサノン、酢酸エチルなどとこれらの混合溶媒が使用可能である。  Examples of the solvent used herein include water, methanol, ethanol, isopropanol, carbitol, cellosolve, ethylene glycol, acetone, hexane, methyl ethyl ketone, hexanone, and ethyl acetate, and mixed solvents thereof.

多機能性分子レジスト溶液に樹脂基盤を浸漬する場合は0℃から100℃の温度範囲内で、1秒から60分間の浸漬で目的が達成される。浸漬条件は溶液の温度、時間及び濃度によって支配されるので、一義的に決められないが、一定濃度では、温度が低い場合は時間が長く、また温度が高い場合は時間が短くなる傾向は明示できる。  When the resin substrate is immersed in the multifunctional molecular resist solution, the object is achieved by immersion for 1 second to 60 minutes within a temperature range of 0 ° C to 100 ° C. The soaking conditions are governed by the temperature, time and concentration of the solution, so they are not uniquely determined, but at a constant concentration, the time tends to be long when the temperature is low and the time is short when the temperature is high. it can.

浸漬後、樹脂基盤は40〜200℃で1〜30分間の加熱乾燥や前記の溶剤による洗浄を行い、反応性の賦与工程を終了する。  After immersion, the resin substrate is dried by heating at 40 to 200 ° C. for 1 to 30 minutes or washed with the above-described solvent, and the reactive application step is completed.

多機能性分子ホトレジスト溶液にエポキシ樹脂を浸漬処理した場合にはアルコキシラン基と水酸基が反応して多機能性レジストがエポキシ樹脂表面に単分子層で結合され、反応性のチオール基が導入される。  When the epoxy resin is immersed in the multifunctional photoresist solution, the alkoxysilane group and the hydroxyl group react to bond the multifunctional resist to the epoxy resin surface in a monomolecular layer and introduce a reactive thiol group. .

この処理法は浸漬であるから、平面及び立体面の全部を処理することが出来る。また、部分的に処理する場合は粘着テープなどを貼り、保護すると部分的な処理が可能となる。  Since this treatment method is immersion, all of the planar and solid surfaces can be treated. In the case of partial processing, a partial processing can be performed by applying and protecting an adhesive tape or the like.

上記のような処理によって樹脂表面に結合した反応性チオール基(SH基)が導入されるが、通常の空気中に放置しても活性は変化しない。しかし、チオール基が太陽光や酸化性の雰囲気に放置されると活性を減少させる。従って、長期に保存する場合や移動する場合には光を遮断して窒素雰囲気下に保存することが重要である。  The reactive thiol group (SH group) bonded to the resin surface is introduced by the treatment as described above, but the activity does not change even when left in normal air. However, the activity decreases when the thiol group is left in sunlight or an oxidizing atmosphere. Therefore, when storing for a long time or when moving, it is important to block light and store in a nitrogen atmosphere.

活性が減退した場合でも、ヒドラジン溶液やNaBH溶液などの還元性溶液に浸漬すると回復すると便利である。Even when the activity decreases, it is convenient to recover by dipping in a reducing solution such as a hydrazine solution or NaBH 4 solution.

本願技術の第2工程は露光工程である。ここでは反応性のSH基が結合した樹脂基盤をマスクで覆い、これに紫外線照射すると、紫外線照射部分はジスルフィド基(SS基)に変化し、未照射部分はSH基として残る。このように紫外線照射により、樹脂表面を反応性の異なる部分に分別することができる。  The second step of the present technique is an exposure step. Here, the resin substrate to which the reactive SH group is bonded is covered with a mask, and when this is irradiated with ultraviolet rays, the ultraviolet irradiated portion changes to a disulfide group (SS group), and the unirradiated portion remains as an SH group. In this way, the resin surface can be separated into parts having different reactivity by ultraviolet irradiation.

紫外線の光源として、水銀ランプ(波長;254、303、313、365nm)やメタルハライドランプ(200−450nm)を使用できる。また、ベンゾフェノン系の増感剤を吸着させるとハイパーメタルハライドランプ(400−450nm)も使用可能である。  As an ultraviolet light source, a mercury lamp (wavelength: 254, 303, 313, 365 nm) or a metal halide lamp (200-450 nm) can be used. Further, when a benzophenone-based sensitizer is adsorbed, a hypermetal halide lamp (400 to 450 nm) can be used.

紫外線照射の条件は0〜100℃、1秒〜100分間で目的を達成できるが、好ましくは20〜50℃で20秒〜180秒である。これら以下の条件では紫外線照射部分が完全にSS基に変換しないでSH基が残る場合がある。またこれら以上の条件では紫外線照射部分が分解する場合があるので、好ましくない場合がある。一般に、100%SS基変換率は温度が低いと、長時間で達成され、温度が高いと短時間で達成される。単分子層での反応であるので、SS基変化速度は一般のホトレジストに比べて高いのが特徴である。  The conditions of ultraviolet irradiation can achieve the purpose at 0 to 100 ° C. and 1 second to 100 minutes, preferably 20 to 50 ° C. and 20 seconds to 180 seconds. Under these conditions below, the UV irradiation part may not be completely converted to SS groups and SH groups may remain. Moreover, since the ultraviolet irradiation part may decompose | disassemble on the conditions beyond these, it may be unpreferable. In general, 100% SS group conversion is achieved in a long time when the temperature is low, and in a short time when the temperature is high. Since it is a reaction in a monomolecular layer, the SS group change rate is characterized by being higher than that of a general photoresist.

多機能性分子レジストは反応性の違いにより配線模様を識別するので、一般に使用されているホトレジストと異なり、現像の操作を必要としないことが特徴である。さらに、エッチングやレジスト残渣の除去操作も必要としない。  Since the multifunctional molecular resist identifies the wiring pattern based on the difference in reactivity, it is characterized in that it does not require a developing operation unlike a commonly used photoresist. Further, no etching or resist removal operation is required.

本願技術の第3工程は無電解めっき工程である。先ず、上記の配線樹脂基盤を活性化浴に浸漬してSH基部分を活性化し、その後無電解めっき浴に浸漬する。  The third step of the present technology is an electroless plating step. First, the above-mentioned wiring resin substrate is immersed in an activation bath to activate the SH group portion, and then immersed in an electroless plating bath.

活性化工程で使用される活性化浴はパラジウム塩、白金塩、銀塩、塩化スズ、アミン錯体などからなる水溶液であり、この水溶液にSH基とSS基含有樹脂基盤を浸漬すると、SH基部分にパラジウム、白金及び銀などが反応して化学的に結合するので洗浄しても脱落しない。しかし、SS基部分には全く付着しない。付着しても水または酸性水で洗浄すると容易に落ちる。  The activation bath used in the activation step is an aqueous solution composed of palladium salt, platinum salt, silver salt, tin chloride, amine complex, etc. When the SH group and SS group-containing resin base is immersed in this aqueous solution, the SH group portion Palladium, platinum, silver and the like react and chemically bond to each other so that they do not fall off even when washed. However, it does not adhere to the SS base part at all. Even if it adheres, it easily falls off when washed with water or acidic water.

一般に、Pd−Sn系の触媒が活性化工程で使用されるが、この活性化浴は水にPdClとSnC12・7HOを溶解させて調整する。PdClとSnC12・7HOはそれぞれ0.001−1mol/Lの濃度範囲で調製され、0−70℃の温度範囲で1秒−60分の浸漬時間で使用される。Generally, Pd-Sn based catalyst is used in the activation process, the activation bath is adjusted by dissolving PdCl 2 and SnC 12 · 7H 2 O in water. PdCl 2 and SnC 12 · 7H 2 O are respectively prepared in the concentration range of 0.001-1mol / L, used in a second -60 minute immersion time at a temperature range of 0-70 ° C..

Pd−Sn触媒が担持された配線模様樹脂基盤を無電解めっき浴に浸漬するが、ここで云う無電解めっき浴とは金属塩と還元剤が主成分であり、これにpH調整剤、緩衝剤、錯化剤、促進剤、安定剤及び改良剤などの補助成分が添加されてなる。  A wiring pattern resin substrate carrying a Pd-Sn catalyst is immersed in an electroless plating bath. The electroless plating bath here is mainly composed of a metal salt and a reducing agent, and includes a pH adjusting agent and a buffering agent. Auxiliary components such as complexing agents, accelerators, stabilizers and improvers are added.

無電解めっきできる金属は金、銀、銅、ニッケル、コバルト、鉄、パラジウム、白金、真鍮、モリブデン、タングステン、パーマロイ、スチールなどであり、これらの金属塩が使用される。  Metals that can be electrolessly plated are gold, silver, copper, nickel, cobalt, iron, palladium, platinum, brass, molybdenum, tungsten, permalloy, steel, and the like, and these metal salts are used.

具体的な金属塩として、AuCN,Ag(NHNO,AgCN,CuSO・5HO,CuEDTA,NiSO・7HO,NiCl,Ni(OCOCH、CoSO,CoCl,SnCl・7HO、PdClなどを上げることができ、主に0.001−1mol/Lの濃度範囲で使用される。Specific metal salts include AuCN, Ag (NH 3 ) 2 NO 3 , AgCN, CuSO 4 .5H 2 O, CuEDTA, NiSO 4 .7H 2 O, NiCl 2 , Ni (OCOCH 3 ) 2 , CoSO 4 , CoCl 2 , SnCl 2 .7H 2 O, PdCl 2 and the like can be increased, and are mainly used in a concentration range of 0.001-1 mol / L.

還元剤とは上記の金属塩を還元して金属を生成する作用を持つものであり、KBH,NaBH,NaHPO,(CHNH・BH,CHO,NHNH,ヒドロキシルアミン塩、N,N−エチルグリシンなどであり、0.001−1mol/Lの濃度範囲で使用される。The reducing agent are those which have the effect of generating a metal by reducing the metal salts, KBH 4, NaBH 4, NaH 2 PO 2, (CH 3) 2 NH · BH 3, CH 2 O, NH 2 NH 2, hydroxylamine salt, N, and the like N- ethyl glycine is used at a concentration range of 0.001-1mol / L.

以上のような主成分に対して、無電解めっき浴の寿命を延長させたり、還元効率を高める目的で補助成分を加えるが、塩基性化合物、無機塩、有機酸塩、クエン酸塩、酢酸塩、ホウ酸塩、炭酸塩、水酸化アンモニア、EDTA,ジアミノエチレン、酒石酸ナトリウム、エチレングリコール、チオ尿素、トリアジンチオール、トリエタノールアミンなどを0.001−0.1mol/Lの濃度範囲で使用される。  To the main components as described above, auxiliary components are added for the purpose of extending the life of the electroless plating bath or increasing the reduction efficiency, but basic compounds, inorganic salts, organic acid salts, citrate salts, acetate salts , Borate, carbonate, ammonia hydroxide, EDTA, diaminoethylene, sodium tartrate, ethylene glycol, thiourea, triazinethiol, triethanolamine, etc. are used in a concentration range of 0.001-0.1 mol / L. .

無電解めっきは浴の種類及びめっきの目的などによりめっき条件は異なり明確に範囲指定し難いが、大よそ0−98℃の温度範囲及び、1分から300分の浸漬時間で使用される。  In electroless plating, the plating conditions differ depending on the type of bath and the purpose of plating, and it is difficult to specify the range clearly. However, the electroless plating is used in a temperature range of about 0 to 98 ° C. and an immersion time of 1 to 300 minutes.

触媒が担持された配線模様樹脂基盤を無電解めっき浴に浸漬すると、触媒が担持された部分に金属が析出して導電性金属配線模様が出来上がる。この時、触媒は樹脂と化学結合したSH基とイオン結合で結合しているので、金属膜と樹脂は化学結合で連結され、接着強度を発生する。  When the wiring pattern resin substrate carrying the catalyst is immersed in the electroless plating bath, a metal is deposited on the portion carrying the catalyst, and a conductive metal wiring pattern is completed. At this time, since the catalyst is bonded to the SH group chemically bonded to the resin by an ionic bond, the metal film and the resin are connected by a chemical bond to generate an adhesive strength.

同時に析出した金属の界面(樹脂と接触した部分)は樹脂表面の粗さが転写されるので、Ra:1μmを越えない。また金属膜の表面(空気との接触面)はレベリング剤などの作用により、Ra:1μm付近を維持する。  At the same time, the roughness of the resin surface is transferred at the interface of the deposited metal (the portion in contact with the resin), so Ra does not exceed 1 μm. The surface of the metal film (contact surface with air) is maintained at a Ra of about 1 μm by the action of a leveling agent or the like.

導電性金属配線模様における金属膜を厚化する場合は電気鍍金を行うと、短時間で金属膜が成長する。  When the metal film in the conductive metal wiring pattern is thickened, the metal film grows in a short time when electroplating is performed.

以上のようにして、表面に金属配線が描写された1層プリント樹脂基盤が得られる。  As described above, a one-layer printed resin substrate having a metal wiring drawn on the surface is obtained.

樹脂表面の反応性賦与、紫外線照射による配線模様の描写、触媒担持、無電解めっき及び電解めっきを樹脂基盤の表裏両面でおこなうと、2層プリント配線基盤が得られる。また、予め、基盤に層間の連結をするスルホールを空けておくか、紫外線照射後にスルホールを空けて、触媒担持、無電解めっき及び電解めっきを樹脂基盤の表裏両面でおこなうと、表裏が連結された2層プリント配線基盤が得られる。  A two-layer printed wiring board can be obtained by imparting reactivity to the resin surface, drawing a wiring pattern by ultraviolet irradiation, carrying a catalyst, electroless plating, and electrolytic plating on both sides of the resin board. In addition, if the through hole for connecting the layers to the base is made in advance, or the through hole is made after ultraviolet irradiation and the catalyst support, electroless plating and electroplating are performed on both sides of the resin base, the front and back are connected. A two-layer printed wiring board is obtained.

本願技術の第4工程は1及び2層プリント樹脂基盤の接着工程である。多層プリント配線基盤は1及び2層プリント樹脂基盤と未処理樹脂の熱圧着による接着によって得られる。この目的を達成するためには、1及び2層プリント樹脂基盤の金属表面及び樹脂表面に接着活性処理をする必要がある。  The fourth step of the present technology is a bonding step of the 1- and 2-layer printed resin base. The multilayer printed wiring board is obtained by bonding the one- and two-layer printed resin boards and the untreated resin by thermocompression bonding. In order to achieve this object, it is necessary to perform an adhesive activation treatment on the metal surface and resin surface of the one- and two-layer printed resin base.

1及び2層プリント樹脂基盤をKBH,NaBH,NaHPO,(CHNH・BH,CHO,NHNH,ヒドロキシルアミン塩、N,N−エチルグリシンなどの還元性水溶液に0〜80℃で1〜100分間浸漬すると、樹脂基板上のSS基はSH基に容易に還元される、接着性が賦与される。1 and 2 layer printed resin substrates such as KBH 4 , NaBH 4 , NaH 2 PO 2 , (CH 3 ) 2 NH · BH 3 , CH 2 O, NH 2 NH 2 , hydroxylamine salt, N, N-ethylglycine, etc. When immersed in a reducing aqueous solution at 0 to 80 ° C. for 1 to 100 minutes, the SS group on the resin substrate is easily reduced to an SH group, thereby imparting adhesiveness.

また、1及び2層プリント樹脂基盤を1〜100mmol/dmのトリアジントリチオールモノナトリウムとトリエタノールアミン混合水溶液に20〜80℃で1秒〜200秒間浸漬し、配線金属表面に接着性を賦与した配線基盤を作成する。Also, 1 and 2 layer printed resin bases are immersed in a mixed aqueous solution of 1-100 mmol / dm 3 triazine trithiol monosodium and triethanolamine at 20-80 ° C. for 1 second-200 seconds to give adhesion to the wiring metal surface. Create a wiring board.

上記のようにして接着処理した1及び2層プリント樹脂基盤と未処理の樹脂基盤を交互に複数枚合わせて100−200℃、1分から180分間、100MPaの圧力で加熱プレスすると多層プリント配線基盤が得られる。  When a plurality of 1- and 2-layer printed resin substrates and untreated resin substrates that have been subjected to adhesion treatment as described above are alternately combined and heated and pressed at 100 to 200 ° C. for 1 to 180 minutes at a pressure of 100 MPa, a multilayer printed wiring substrate is obtained. can get.

さらに、射出成型などで得られた立体樹脂面を立体的なマスクで覆い紫外線照射すると、立体樹脂面にSH基部分とSS基部分からなる配線模様が描かれ、これを触媒液、無電解浴に浸漬すると金属配線を立体的に作ることができる。  Furthermore, when a three-dimensional resin surface obtained by injection molding or the like is covered with a three-dimensional mask and irradiated with ultraviolet rays, a wiring pattern consisting of an SH group portion and an SS group portion is drawn on the three-dimensional resin surface, which is used as a catalyst solution and an electroless bath. When immersed in the metal wiring, the metal wiring can be made three-dimensionally.

以下、実施例により詳細かつ具体的に説明する。もちろん以下の例によって発明が限定されることはない。
<実施例1−8>
先ず、表面粗さRaが6.4μmと0.42μm((株)レスカ社製Friction Playerにて測定)のステンレス板(40×80×0.2mm)をエミリ紙を用いて研磨して作成した。次に、エポキシ基板(40×80×1mm、味の素ファインテック(株)ABF−GX)をサンドイッチに重ねて、1kgf/cmの圧力下で150℃で2分間プレスしてエポキシ樹脂基盤のRaを6.1μmと0.40μmに調整した後、石鹸水で洗浄、水洗して表面の汚れを除去して使用した。エポキシ樹脂基板に2個のスルホール(穴)をあけてこれを、表1に示される多機能性分子レジスト(FMPR)0.1gを100mlのアルコールに溶解して作成した多機能性分子レジスト水溶液に40℃で5分間浸漬する。ここで、表1におけるFMPR−Rの表記においては、上記〔化1〕化合物において、R−N−R−SiZ3−nがRに相当するものとして示されている。また、〔化1〕でのアルカリ金属(M)はNaである。そして、表面をXPS分析を行うため、減圧下150℃で20分間乾燥及びアルコール洗浄して試料を調整した。アルバックファイ(株)製PHI−5600を用いるXPS分析によりS2pスペクトルの強度を求め、多機能性分子レジストの結合量とした。次に、図2のようにマスクで囲み、高圧水銀ランプ(出力:1.5kW,照射エネルギー:2800mJ/cm,アイグラフィック(株)製アイミニグランテイジ)を用いて20℃で裏表30秒間づつ紫外線を照射すると、図3のようにエポキシ樹脂板の表面はチオール基面(紫外線未照射部分)とジスルフィド基面(紫外線照射部分)に分かれる。紫外線照射処理したエポキシ樹脂板はNP−8 150ml/lとHCl 150ml/lに調整した触媒処理液(上村工業(株)製)に25℃で1分間浸漬して、Pd−Sn触媒を担持し、乾燥後の重量(Wb)を測定した。触媒担持エポキシ樹脂板は上村工業(株)のスルカップPSY−1A 100ml/l、スルカップPSY−1B 55ml/l,18.5ホルマリン水溶液 20ml/lからなる無電解銅めっき浴に33℃で20分間浸漬すると、図4のような銅めっきエポキシ板が得られた。無電解めっき銅の特徴を比較例1−3とともに表1に示した。なお、乾燥後の重量(Wa)を測定して銅めっき量を測定した。めっき析出量は(Wb−Wa)/32cmとして求めた。また、以下のようにして碁盤目試験を行った。銅めっき析出部分の1cmの面積に1mm角の縦横の切身を入れ、セロハンテープを貼って剥がし、1mm角の銅箔が剥がれた数を測定し、%で示した。
Hereinafter, the embodiment will be described in detail and specifically. Of course, the invention is not limited by the following examples.
<Example 1-8>
First, a stainless steel plate (40 × 80 × 0.2 mm) having a surface roughness Ra of 6.4 μm and 0.42 μm (measured with a Friction Player manufactured by Reska Co., Ltd.) was polished using emiri paper. . Next, an epoxy substrate (40 × 80 × 1 mm, Ajinomoto Finetech Co., Ltd. ABF-GX) is stacked on the sandwich and pressed at 150 ° C. for 2 minutes under a pressure of 1 kgf / cm 2 to form an epoxy resin-based Ra. After adjusting to 6.1 μm and 0.40 μm, the surface was washed with soapy water and washed with water to remove surface stains. Two through-holes (holes) were made in an epoxy resin substrate, and this was added to a multifunctional molecular resist aqueous solution prepared by dissolving 0.1 g of the multifunctional molecular resist (FMPR) shown in Table 1 in 100 ml of alcohol. Immerse for 5 minutes at 40 ° C. Here, in the notation of FMPR-R in Table 1, R 1 —N—R 2 —SiZ 3−n Y n is shown to correspond to R in the above [Chemical Formula 1] compound. Further, the alkali metal (M) in [Chemical Formula 1] is Na. Then, in order to perform XPS analysis on the surface, the sample was prepared by drying and alcohol washing at 150 ° C. for 20 minutes under reduced pressure. The intensity of the S2p spectrum was determined by XPS analysis using ULVAC-PHI Co., Ltd. PHI-5600, and was used as the binding amount of the multifunctional molecular resist. Next, it is surrounded by a mask as shown in FIG. 2, and using a high-pressure mercury lamp (output: 1.5 kW, irradiation energy: 2800 mJ / cm 2 , Eye Mini Co., Ltd. Eye Mini Grantage) at 20 ° C. for 30 seconds on both sides. When the ultraviolet rays are successively irradiated, as shown in FIG. 3, the surface of the epoxy resin plate is divided into a thiol base surface (an ultraviolet-irradiated portion) and a disulfide base surface (an ultraviolet-irradiated portion). The epoxy resin plate treated with ultraviolet irradiation was immersed in a catalyst treatment solution (manufactured by Uemura Kogyo Co., Ltd.) adjusted to 150 ml / l of NP-8 and 150 ml / l of HCl for 1 minute at 25 ° C. to carry the Pd—Sn catalyst. The weight after drying (Wb) was measured. The catalyst-supported epoxy resin plate was immersed in an electroless copper plating bath of Urumura Kogyo's Sulcup PSY-1A 100 ml / l, Sulcup PSY-1B 55 ml / l, 18.5 formalin aqueous solution 20 ml / l at 33 ° C. for 20 minutes. Then, the copper plating epoxy board as shown in FIG. 4 was obtained. The characteristics of electroless plated copper are shown in Table 1 together with Comparative Example 1-3. In addition, the weight (Wa) after drying was measured and the amount of copper plating was measured. The plating deposition amount was determined as (Wb−Wa) / 32 cm 2 . Further, a cross cut test was performed as follows. A 1 mm 2 vertical and horizontal fillet was placed in a 1 cm 2 area of the copper plating deposit, and the cellophane tape was applied and peeled off. The number of peeled 1 mm square copper foils was measured and indicated in%.

比較例1、2及び3に示されるように、全く処理しないかまたは6−ジブチルアミノ1,3,5−トリアジン−2,4−ジチオール(DB)のように非反応性のトリアジンジチオールではエポキシ樹脂板表面にはXPS分析においても硫黄の存在は認められない。従って、その後触媒の担持されないので無電解銅めっきに浸漬しても銅金属の析出はない。しかしながら、実施例1−8に示されるように、多機能性分子レジスト水溶液中でエポキシ板を処理すると、反応性分子レジストのアルコキシシラン基とエポキシ基のOH基が反応していることがXPS分析においてS2pピーク(硫黄原子の存在を示す)が観察されることから明らかであり、本願が請求する多機能性分子レジストが有効であることが分かる。その結果として、触媒がチオール基面の部分に担持され、光未照射部分に銅薄膜が生成することが明らかである。また、碁盤目試験においても100個の1mm角が全部残り、高い密着強度を持つことが分かる。さらに、ステンレス金型のRaがエポキシ樹脂板に転写され、また無電解めっきされた銅箔のRaもエポキシ樹脂板のRaに近いことが明らかとなった。  As shown in Comparative Examples 1, 2, and 3, epoxy resins are not treated at all or are non-reactive triazine dithiols such as 6-dibutylamino 1,3,5-triazine-2,4-dithiol (DB). The presence of sulfur is not observed on the plate surface even in XPS analysis. Accordingly, since no catalyst is supported thereafter, no copper metal is deposited even when immersed in electroless copper plating. However, as shown in Example 1-8, when the epoxy plate is treated in an aqueous multifunctional molecular resist solution, the XPS analysis shows that the alkoxysilane group of the reactive molecular resist is reacted with the OH group of the epoxy group. It is clear from the fact that the S2p peak (indicating the presence of a sulfur atom) is observed in FIG. As a result, it is clear that the catalyst is supported on the portion of the thiol base surface, and a copper thin film is formed on the portion not irradiated with light. Also, it can be seen that 100 1 mm squares remain in the cross-cut test and have high adhesion strength. Furthermore, it has been clarified that Ra of the stainless steel mold is transferred to the epoxy resin plate, and Ra of the copper foil plated by electroless plating is close to Ra of the epoxy resin plate.

Figure 2007017921
Figure 2007017921

<実施例9−13>
表2には、表面にOH 基を有しないポリ酢酸ビニル樹脂板(40×80×mm、比較例4)、これを5%−NaOHアルコール溶液に50℃で20分間浸漬して、表面にOH基を生成させたポリビニルアルコール樹脂(40×80×mm、実施例9)、完全に硬化反応したエポキシ樹脂(40×80×mm、実施例10)、親水性のOH基を持つセロファン紙樹脂板(40×80×mm、実施例11)、芳香族性のOH基を有するフェノール樹脂板(40×80×mm、実施例12)、通常の半硬化したエポキシ樹脂板(40×80×mm、実施例13)を用意した。これらを、表2に示される多機能性分子レジスト(FMPR)0.1gを100mlの水に溶解して作成した多機能性分子レジスト水溶液に樹脂基板(40×80×mm)を40℃で5分間浸漬する。この樹脂基板を図2のようにマスクで囲み、高圧水銀ランプ(出力:1.5kW,照射エネルギー:2800mJ/cm,アイグラフィック(株)製アイミニグランテイジ)を用いて20℃で裏表30秒間づつ紫外線を照射すると、図3のように基板の表面はチオール基面(紫外線未照射部分)とジスルフィド基面(紫外線照射部分)に分かれる。紫外線照射処理した基板はNP−8 150ml/lとHCl 150ml/lに調整した触媒処理液(上村工業(株)製)に25℃で1分間浸漬して、Pd−Sn触媒を担持し、乾燥後の重量(Wb)を測定した。触媒担持基板は上村工業(株)のスルカップPSY−1A 100ml/l、スルカップPSY−1B 55ml/l,18.5ホルマリン水溶液 20ml/lからなる無電解銅めっき浴に33℃で20分間浸漬すると、図4のような銅めっき基板が得られた。乾燥後の重量(Wa)を測定して銅めっき量を測定した。表2には、比較例4とともに無電解めっき銅の特徴を示した。めっき析出量は(Wb−Wa)/32cmとして求めた。さらに、電気鍍金浴(上村工業(株)製スルカップETN浴、CuSO・5HO;80g/l,HSO;200g/l,Cl−;50ppm,スルカップETN−1A;1ml/l,スルカップETN−1B;10ml/l)中で、無電解銅めっき基板を2.5A/dmで25℃、40分間電気鍍金を行った結果、銅めっき膜厚はおよそ20μmに達した。これに1cm幅の切りを入れて、その端を2cm剥がし、島津オートグラフP−100により、5mm/minの速度でT字型剥離試験を行い、基板と銅箔の接着強度を測定した。
<Example 9-13>
Table 2 shows a polyvinyl acetate resin plate (40 × 80 × mm, Comparative Example 4) having no OH group on the surface, immersed in a 5% -NaOH alcohol solution at 50 ° C. for 20 minutes, and OH on the surface. Group produced polyvinyl alcohol resin (40 × 80 × mm, Example 9), completely cured epoxy resin (40 × 80 × mm, Example 10), cellophane paper resin plate having a hydrophilic OH group (40 × 80 × mm, Example 11), phenolic resin plate having an aromatic OH group (40 × 80 × mm, Example 12), normal semi-cured epoxy resin plate (40 × 80 × mm, Example 13) was prepared. A resin substrate (40 × 80 × mm) was added to an aqueous solution of a multifunctional molecular resist prepared by dissolving 0.1 g of the multifunctional molecular resist (FMPR) shown in Table 2 in 100 ml of water at 40 ° C. Immerse for a minute. The resin substrate is surrounded by a mask as shown in FIG. 2, and a high-pressure mercury lamp (output: 1.5 kW, irradiation energy: 2800 mJ / cm 2 , Eye Mini Co., Ltd., Eye Graphic Co., Ltd.) at 20 ° C. When the ultraviolet rays are irradiated for every second, the surface of the substrate is divided into a thiol base surface (unirradiated portion) and a disulfide base surface (ultraviolet irradiated portion) as shown in FIG. The substrate subjected to the ultraviolet irradiation treatment was immersed in a catalyst treatment solution (manufactured by Uemura Kogyo Co., Ltd.) adjusted to 150 ml / l NP-8 and 150 ml / l HCl for 1 minute at 25 ° C. to carry the Pd—Sn catalyst and dry. The subsequent weight (Wb) was measured. When the catalyst-carrying substrate is immersed in an electroless copper plating bath comprising Urumura Kogyo's Sulcup PSY-1A 100 ml / l, Sulcup PSY-1B 55 ml / l, and 18.5 formalin aqueous solution 20 ml / l at 33 ° C. for 20 minutes, A copper-plated substrate as shown in FIG. 4 was obtained. The weight (Wa) after drying was measured to determine the amount of copper plating. Table 2 shows the characteristics of electrolessly plated copper together with Comparative Example 4. The plating deposition amount was determined as (Wb−Wa) / 32 cm 2 . Further, an electroplating bath (Sulcup ETN bath manufactured by Uemura Kogyo Co., Ltd., CuSO 4 .5H 2 O; 80 g / l, H 2 SO 4 ; 200 g / l, Cl-; 50 ppm, Sulcup ETN-1A; 1 ml / l, In Sulcup ETN-1B; 10 ml / l), the electroless copper plating substrate was electroplated at 2.5 A / dm 2 at 25 ° C. for 40 minutes. As a result, the copper plating film thickness reached approximately 20 μm. A 1 cm wide cut was made, 2 cm of the edge was peeled off, and a T-shaped peel test was performed at a rate of 5 mm / min by Shimadzu Autograph P-100, and the adhesive strength between the substrate and the copper foil was measured.

なお、比較例4は酢酸ビニル樹脂基盤にOH基を持たないので多機能性分子レジストが付着せず、未処理の場合と同様に、触媒担持、無電解銅めっきを行ったが、いずれも銅めっき膜の析出は認められなかった。しかしながら、酢酸ビニル樹脂の表面を加水分解してOH基を生成させると、多機能性分子レジストが反応して付着するため、触媒が担持し、無電解銅めっき浴に浸漬すると、銅膜が生成し、さらにこれを電気鍍金後剥離試験すると、高い接着強度で銅膜が樹脂基板に接着していることが明らかとなった。又、セロファン樹脂基板やフェノール樹脂基板も同様に高い接着強度で銅箔を生成させることが出来た。更に、半硬化のエポキシ樹脂基板はOH基濃度が十分高くないので、接着強度は十分高くならなかった。  In Comparative Example 4, the polyfunctional molecular resist did not adhere to the vinyl acetate resin base because it did not have an OH group, and the catalyst support and electroless copper plating were performed as in the case of untreated. Precipitation of the plating film was not observed. However, when the surface of the vinyl acetate resin is hydrolyzed to generate OH groups, the multifunctional molecular resist reacts and adheres, so the catalyst is supported and a copper film is formed when immersed in an electroless copper plating bath. Further, when this was subjected to a peeling test after electroplating, it was revealed that the copper film was adhered to the resin substrate with high adhesive strength. Similarly, cellophane resin substrates and phenol resin substrates were able to produce copper foils with high adhesive strength. Furthermore, since the OH group concentration is not sufficiently high in the semi-cured epoxy resin substrate, the adhesive strength is not sufficiently high.

Figure 2007017921
Figure 2007017921

<実施例14>
表1と同様のエポキシ樹脂基板を表1に示される多機能性分子レジスト(FMPR)0.1gを100mlのアルコールに溶解して作成した多機能性分子レジスト水溶液に40℃で5分間浸漬する。次に、エポキシ樹脂基板を図2のようにマスクで囲み、高圧水銀ランプ(出力:1.5kW,照射エネルギー:2800mJ/cm,アイグラフィック(株)製アイミニグランテイジ)を用いて20℃で裏表30秒間づつ紫外線を照射すると、図3のようにエポキシ樹脂板の表面はチオール基面(紫外線未照射部分)とジスルフィド基面(紫外線照射部分)に分かれる。紫外線照射処理したエポキシ樹脂板はNP−8 150ml/lとHCl 150ml/lに調整した触媒処理液(上村工業(株)製)に25℃で1分間浸漬して、Pd−Sn触媒を担持し、乾燥後の重量(Wb)を測定した。触媒担持エポキシ樹脂板はカニゼン(株)のシュマー 硫酸ニッケル20g/dm,ジ亜燐酸ソーダー24g/dm,乳酸27g/dm,プロピオン酸2g/dm,からなる無電解ニッケル−リン浴に80℃で60分間浸漬すると、ニッケルめっきエポキシ樹脂基板(図4において銅の代わりニッケル)が得られた。乾燥後のニッケルめっき析出量は1.5mg/cmであり、100%被覆率が得られた。また、ニッケルめっき析出部分の1cmの面積に1mm角の縦横の切身を入れ、セロハンテープを貼って剥がし、1mm角の残したニッケル箔は100%であった。
<Example 14>
An epoxy resin substrate similar to that in Table 1 is immersed in an aqueous multifunctional molecular resist solution prepared by dissolving 0.1 g of the multifunctional molecular resist (FMPR) shown in Table 1 in 100 ml of alcohol at 40 ° C. for 5 minutes. Next, the epoxy resin substrate is surrounded by a mask as shown in FIG. 2, and is used at 20 ° C. using a high-pressure mercury lamp (output: 1.5 kW, irradiation energy: 2800 mJ / cm 2 , Eye Mini Co., Ltd., Eye Graphic Co., Ltd.). In FIG. 3, the surface of the epoxy resin plate is divided into a thiol base surface (unirradiated portion of ultraviolet light) and a disulfide base surface (UV irradiated portion) as shown in FIG. The epoxy resin plate treated with ultraviolet irradiation was immersed in a catalyst treatment solution (manufactured by Uemura Kogyo Co., Ltd.) adjusted to 150 ml / l of NP-8 and 150 ml / l of HCl for 1 minute at 25 ° C. to carry the Pd—Sn catalyst. The weight after drying (Wb) was measured. The catalyst-supported epoxy resin plate was applied to an electroless nickel-phosphorus bath made of Kanisen Co., Ltd. consisting of Sumer nickel sulfate 20 g / dm 3 , sodium diphosphite 24 g / dm 3 , lactic acid 27 g / dm 3 , and propionic acid 2 g / dm 3 . When immersed for 60 minutes at 80 ° C., a nickel-plated epoxy resin substrate (nickel instead of copper in FIG. 4) was obtained. The amount of nickel plating deposited after drying was 1.5 mg / cm 2 , and a 100% coverage was obtained. Further, 1 mm square vertical and horizontal fillets were put in a 1 cm 2 area of the nickel plating deposit, and the cellophane tape was applied and peeled off, and the nickel foil left by 1 mm square was 100%.

このように無電解ニッケルめっきにおいても、触媒担持した部分にニッケル箔が成長し、かつ強固に結合していることが分かった。しかし、多機能性分子レジストにより処理しない場合(比較例5)や紫外線照射面は触媒が担持されないのでニッケルめっきが析出しないことが確認された。
<実施例15>
表1のエポキシ樹脂基盤(20×40×1mm、Ra:0.40μm)を多機能性分子レジスト(FMPR)0.1gを100mlのアルコールに溶解して作成した多機能性分子レジスト水溶液に40℃で5分間浸漬する。減圧下150℃で20分間乾燥及びアルコール洗浄して試料を調整した後、エポキシ樹脂基板上に金網マスクとして載せ、高圧水銀ランプ(出力:1.5kW,照射エネルギー:2800mJ/cm,アイグラフィック(株)製アイミニグランテイジ)を用いて20℃で裏表30秒間づつ紫外線を照射すると、エポキシ樹脂板の表面はチオール基面(紫外線未照射部分)とジスルフィド基面(紫外線照射部分)に分かれる。紫外線照射処理したエポキシ樹脂板はNP−8 150ml/lとHCl 150ml/lに調整した触媒処理液(上村工業(株)製)に25℃で1分間浸漬して、Pd−Sn触媒を担持し、上村工業(株)のスルカップPSY−1A 100ml/l、スルカップPSY−1B 55ml/l,18.5ホルマリン水溶液 20ml/lからなる無電解銅めっき浴に33℃で20分間浸漬すると、図5のように金網の模様が転写された銅めっき配線エポキシ樹脂板が得られた。この試料について碁盤目試験を行ったが、1mm角の銅箔の剥離はなかった。
Thus, also in electroless nickel plating, it turned out that nickel foil grew to the part which carried the catalyst, and was couple | bonded firmly. However, it was confirmed that the nickel plating does not precipitate when the treatment is not performed with the multifunctional molecular resist (Comparative Example 5) or the ultraviolet irradiation surface does not carry the catalyst.
<Example 15>
40 ° C. was added to a multifunctional molecular resist aqueous solution prepared by dissolving 0.1 g of a multifunctional molecular resist (FMPR) in 100 ml of alcohol with the epoxy resin substrate (20 × 40 × 1 mm, Ra: 0.40 μm) of Table 1. Soak for 5 minutes. After adjusting the sample by drying at 150 ° C. under reduced pressure and washing with alcohol for 20 minutes, the sample was placed on an epoxy resin substrate as a wire mesh mask, and a high-pressure mercury lamp (output: 1.5 kW, irradiation energy: 2800 mJ / cm 2 , eye graphic ( When ultraviolet rays are irradiated at 20 ° C. for 30 seconds each at 20 ° C. using Eye Mini Grantage Co., Ltd., the surface of the epoxy resin plate is divided into a thiol base surface (non-ultraviolet irradiation portion) and a disulfide base surface (ultraviolet irradiation portion). The epoxy resin plate treated with ultraviolet irradiation was immersed in a catalyst treatment solution (manufactured by Uemura Kogyo Co., Ltd.) adjusted to 150 ml / l of NP-8 and 150 ml / l of HCl for 1 minute at 25 ° C. to carry the Pd—Sn catalyst. 5 when immersed in an electroless copper plating bath comprising Urumura Kogyo's Sulcup PSY-1A 100 ml / l, Sulcup PSY-1B 55 ml / l, 18.5 aqueous formalin solution 20 ml / l at 33 ° C. Thus, a copper-plated wiring epoxy resin board on which the wire mesh pattern was transferred was obtained. A cross-cut test was conducted on this sample, but there was no peeling of the 1 mm square copper foil.

以上のように配線模様のマスクを使用すると、紫外線が照射されない部分に銅めっきが析出して配線模様ができることが確認できた。
<実施例16−18>
表1のエポキシ樹脂基盤(20×40×1mm、Ra:0.40μm)を多機能性分子レジスト(FMPR)0.1gを100mlのアルコールに溶解して作成した多機能性分子レジスト水溶液に40℃で5分間浸漬する。減圧下150℃で20分間乾燥及びアルコール洗浄して試料を調整した後、エポキシ樹脂基板上にポリエステル上にマスクパターン幅L/Sの異なるポリエステル上に配線模様の描かれたマスクを載せ、高圧水銀ランプ(出力:1.5kW,照射エネルギー:2800mJ/cm,アイグラフィック(株)製アイミニグランテイジ)を用いて20℃で裏表30秒間紫外線を照射すると、エポキシ樹脂板の表面はチオール基面(紫外線未照射部分)とジスルフィド基面(紫外線照射部分)に分かれる。紫外線照射処理したエポキシ樹脂板はNP−8 150ml/lとHCl 150ml/lに調整した触媒処理液(上村工業(株)製)に25℃で1分間浸漬して、Pd−Sn触媒を担持し、上村工業(株)のスルカップPSY−1A 100ml/l、スルカップPSY−1B 55ml/l,18.5ホルマリン水溶液 20ml/lからなる無電解銅めっき浴に33℃で20分間浸漬すると、図6のように模様が転写された銅めっき配線エポキシ樹脂板が得られた。この試料について碁盤目試験を行ったが、1mm角の銅箔の剥離はなかった。結果は表3に示す。なお測定のポイントは図7に示した。
As described above, it was confirmed that when the wiring pattern mask was used, copper plating was deposited on a portion not irradiated with ultraviolet rays to form a wiring pattern.
<Example 16-18>
40 ° C. was added to a multifunctional molecular resist aqueous solution prepared by dissolving 0.1 g of a multifunctional molecular resist (FMPR) in 100 ml of alcohol with the epoxy resin substrate (20 × 40 × 1 mm, Ra: 0.40 μm) of Table 1. Soak for 5 minutes. After adjusting the sample by drying and alcohol washing at 150 ° C. for 20 minutes under reduced pressure, a mask with a wiring pattern drawn on a polyester with a different mask pattern width L / S was placed on the polyester on an epoxy resin substrate, and high-pressure mercury When ultraviolet rays are irradiated at 20 ° C for 30 seconds on both sides, using a lamp (output: 1.5 kW, irradiation energy: 2800 mJ / cm 2 , Eyegraphic Co., Ltd. Eye Mini Grantage), the surface of the epoxy resin plate is a thiol base surface It is divided into (UV-irradiated part) and disulfide base surface (UV-irradiated part). The epoxy resin plate treated with ultraviolet irradiation was immersed in a catalyst treatment solution (manufactured by Uemura Kogyo Co., Ltd.) adjusted to 150 ml / l of NP-8 and 150 ml / l of HCl for 1 minute at 25 ° C. to carry the Pd—Sn catalyst. 6 when immersed in an electroless copper plating bath comprising Urumura Kogyo's Sulcup PSY-1A 100 ml / l, Sulcup PSY-1B 55 ml / l, and 18.5 formalin aqueous solution 20 ml / l at 33 ° C. Thus, a copper-plated wiring epoxy resin board having a pattern transferred thereon was obtained. A cross-cut test was conducted on this sample, but there was no peeling of the 1 mm square copper foil. The results are shown in Table 3. The points of measurement are shown in FIG.

配線幅L/Sは狭くなるに従い、マスクの幅と異なることが分かるが、現在の段階で十分実用性にかなう配線幅を確保できることが分かる。  It can be seen that the wiring width L / S becomes different from the mask width as the wiring width L / S becomes narrower, but it can be seen that a wiring width that can be sufficiently practical can be secured at the present stage.

Figure 2007017921
Figure 2007017921

<実施例19>
表1のエポキシ樹脂基盤(20×40×1mm、Ra:0.40μm)を多機能性分子レジスト(FMPR)0.1gを100mlのアルコールに溶解して作成した多機能性分子レジスト水溶液に40℃で5分間浸漬する。減圧下150℃で20分間乾燥及びアルコール洗浄して試料を調整した後、エポキシ樹脂基板の表裏面に金網マスクをづらして載せ、高圧水銀ランプ(出力:1.5kW,照射エネルギー:2800mJ/cm,アイグラフィック(株)製アイミニグランテイジ)を用いて20℃で裏表30秒間づつ紫外線を照射すると、エポキシ樹脂板の表裏面はチオール基面(紫外線未照射部分)とジスルフィド基面(紫外線照射部分)に分かれる。紫外線照射処理したエポキシ樹脂板はNP−8150ml/lとHCl 150ml/lに調整した触媒処理液(上村工業(株)製)に25℃で1分間浸漬して、Pd−Sn触媒を担持し、上村工業(株)のスルカップPSY−1A 100ml/l、スルカップPSY−1B 55ml/l,18.5ホルマリン水溶液 20ml/lからなる無電解銅めっき浴に33℃で20分間浸漬すると、図8のようにポキシ樹脂基板の表裏面に金網の模様が転写された2層銅めっきプリント配線エポキシ樹脂板が得られた。この試料について碁盤目試験を行ったが、1mm角の銅箔の剥離はなかった。
<Example 19>
40 ° C. was added to a multifunctional molecular resist aqueous solution prepared by dissolving 0.1 g of a multifunctional molecular resist (FMPR) in 100 ml of alcohol with the epoxy resin substrate (20 × 40 × 1 mm, Ra: 0.40 μm) of Table 1. Soak for 5 minutes. After adjusting the sample by drying and alcohol washing at 150 ° C. for 20 minutes under reduced pressure, a metal mesh mask was placed on the front and back surfaces of the epoxy resin substrate, and a high-pressure mercury lamp (output: 1.5 kW, irradiation energy: 2800 mJ / cm 2). , I-Graphic Co., Ltd., Eye Mini Grantage) is used to irradiate ultraviolet rays at 20 ° C for 30 seconds each on the front and back sides. Part). The epoxy resin plate treated with ultraviolet irradiation was immersed in a catalyst treatment solution (manufactured by Uemura Kogyo Co., Ltd.) adjusted to NP-8150 ml / l and HCl 150 ml / l for 1 minute at 25 ° C. to carry the Pd—Sn catalyst, When immersed for 20 minutes at 33 ° C. in an electroless copper plating bath comprising Urumura Kogyo Sulcup PSY-1A 100 ml / l, Sulcup PSY-1B 55 ml / l, and 18.5 formalin aqueous solution 20 ml / l, as shown in FIG. A two-layer copper-plated printed wiring epoxy resin plate having a metal mesh pattern transferred to the front and back surfaces of a poxy resin substrate was obtained. A cross-cut test was conducted on this sample, but there was no peeling of the 1 mm square copper foil.

図8から分かるように、表裏両面に銅配線が描かれていることからビルドアップ多層配線基盤の製造が可能となることが分かる。
<実施例20>
表1のエポキシ樹脂基盤(20×40×1mm、Ra:0.40μm)を多機能性分子レジスト(FMPR)0.1gを100mlのアルコールに溶解して作成した多機能性分子レジスト水溶液に40℃で5分間浸漬する。減圧下150℃で20分間乾燥及びアルコール洗浄して試料を調整した後、エポキシ樹脂基板の表面の右半分をマスクで覆い、高圧水銀ランプ(出力:1.5kW,照射エネルギー:2800mJ/cm,アイグラフィック(株)製アイミニグランテイジ)を用いて20℃で裏表30秒間づつ紫外線を照射すると、エポキシ樹脂板の右半分はチオール基面(紫外線未照射部分)となり、左半面がジスルフィド基面(紫外線照射部分)となる。紫外線照射処理したエポキシ樹脂板はNP−8 150ml/lとHCl 150ml/lに調整した触媒処理液(上村工業(株)製)に25℃で1分間浸漬して、Pd−Sn触媒を担持し、上村工業(株)のスルカップPSY−1A 100ml/l、スルカップPSY−1B 55ml/l,18.5ホルマリン水溶液 20ml/lからなる無電解銅めっき浴に33℃で20分間浸漬すると、右半面に銅めっきが析出し、左半面には樹脂面となる。
As can be seen from FIG. 8, the copper wiring is drawn on both the front and back surfaces, so that it is possible to manufacture a build-up multilayer wiring board.
<Example 20>
40 ° C. was added to a multifunctional molecular resist aqueous solution prepared by dissolving 0.1 g of a multifunctional molecular resist (FMPR) in 100 ml of alcohol with the epoxy resin substrate (20 × 40 × 1 mm, Ra: 0.40 μm) of Table 1. Soak for 5 minutes. After adjusting the sample by drying and alcohol washing at 150 ° C. under reduced pressure for 20 minutes, the right half of the surface of the epoxy resin substrate was covered with a mask, and a high-pressure mercury lamp (output: 1.5 kW, irradiation energy: 2800 mJ / cm 2 , When irradiated with ultraviolet rays at 20 ° C for 30 seconds on both sides, the right half of the epoxy resin plate becomes a thiol base (unirradiated part) and the left half is a disulfide base. (UV irradiation part). The epoxy resin plate treated with ultraviolet irradiation was immersed in a catalyst treatment solution (manufactured by Uemura Kogyo Co., Ltd.) adjusted to 150 ml / l of NP-8 and 150 ml / l of HCl for 1 minute at 25 ° C. to carry the Pd—Sn catalyst. When immersed in an electroless copper plating bath of Uemura Kogyo Co., Ltd. Sulcup PSY-1A 100 ml / l, Sulcup PSY-1B 55 ml / l, 18.5 formalin aqueous solution 20 ml / l at 33 ° C. for 20 minutes, Copper plating is deposited, and the left half is a resin surface.

これを5%ヒドラジン水溶液で20℃で10分間浸漬、水洗後、50mmol/dmのトリアジントリチオールモノナトリウムとトリエタノールアミンの水溶液に50℃で30秒浸漬処理する。このトリアジンチオール処理により銅配線部分に接着性が賦与される。従って、トリアジンチオール処理銅配線基盤1枚と未処理のエポキシ樹脂基板2枚を合わせて、1kg/dmの圧力下で150℃で30分間熱プレスすると接着物が得られる。これに1cmの切れ身をいれて、5mm/minの速度で剥離試験を行ったところ、銅箔/樹脂間で0.8kgf/cm,また樹脂/樹脂間で6kgf/cmの剥離強度が得られた。上記のような処理をしないときにはいずれも接着しない。This was immersed in a 5% hydrazine aqueous solution at 20 ° C. for 10 minutes, washed with water, and then immersed in an aqueous solution of 50 mmol / dm 3 triazine trithiol monosodium and triethanolamine at 50 ° C. for 30 seconds. By this triazine thiol treatment, adhesion is imparted to the copper wiring portion. Accordingly, when one triazine thiol-treated copper wiring board and two untreated epoxy resin substrates are combined and hot pressed at 150 ° C. for 30 minutes under a pressure of 1 kg / dm 3 , an adhesive is obtained. When a peel test was performed at a speed of 5 mm / min with a 1 cm piece, a peel strength of 0.8 kgf / cm between the copper foil / resin and 6 kgf / cm between the resin / resin was obtained. It was. None of the above treatments are bonded.

また、1層または2層プリント配線基盤を予め簡単なTT処理をしておき、未処理樹脂板と重ねてプレスすることにより、図9のように容易に多層基板が製造できる。  In addition, by performing simple TT treatment on a one-layer or two-layer printed wiring board in advance and pressing it with an untreated resin plate, a multilayer substrate can be easily manufactured as shown in FIG.

従来の本発明での操作手順を示したブロック図である。It is the block diagram which showed the operation procedure in the conventional this invention. 紫外線マスクを示した平面概要図である。It is the plane schematic diagram which showed the ultraviolet mask. 紫外線照射後の樹脂板を示した平面概要図である。It is the plane schematic diagram which showed the resin board after ultraviolet irradiation. 無電解銅めっき板を示した平面概要図である。It is the plane schematic diagram which showed the electroless copper plating board. 金網でマスクしてめっき処理した試料を示した図である。It is the figure which showed the sample masked with the metal-mesh and plated. L/Sの異なる試料を示した図である。It is the figure which showed the sample from which L / S differs. 測定ポイントについて示した図である。It is the figure shown about the measurement point. 2層板について示した図である。It is the figure shown about the 2 layer board. 多層配線板の形成について示した図である。It is the figure shown about formation of a multilayer wiring board.

Claims (19)

次式
Figure 2007017921
(式中、Rは、水素原子または炭化水素基を示し、Rは、炭化水素鎖または異種原子もしくは官能基が介在してもよい炭化水素鎖を示し、Xは、水素原子または炭化水素基を示し、Yは、アルコキシ基を示し、nは1から3までの整数であり、Mはアルカリ金属である。)
で表わされるチオール反応性アルコキシシラン化合物の1種または2種以上であることを特徴とする多機能性分子レジスト。
Next formula
Figure 2007017921
(In the formula, R 1 represents a hydrogen atom or a hydrocarbon group, R 2 represents a hydrocarbon chain or a hydrocarbon chain that may be interspersed with different atoms or functional groups, and X represents a hydrogen atom or a hydrocarbon group. And Y represents an alkoxy group, n is an integer from 1 to 3, and M is an alkali metal.)
A multifunctional molecular resist which is one or more of thiol-reactive alkoxysilane compounds represented by the formula:
は、硫黄原子、窒素原子またはカルバモイル基もしくはウレア基を介在させた炭化水素鎖であることを特徴とする請求項1の多機能性分子レジスト。 2. The multifunctional molecular resist according to claim 1, wherein R 2 is a hydrocarbon chain having a sulfur atom, a nitrogen atom, a carbamoyl group or a urea group interposed therebetween. は、H−,CH−,C−,n−C−,CH=CHCH−,n−C−,C−,またはC11−であり、
は−CHCH−,−CHCHCH−,−CHCHCHCHCHCH−,−CHCHSCHCH−,
−CHCHCHSCHCHCH−,−CHCHNHCHCHCH−,−(CHCHN−CHCHCH−,
−CHCHOCONHCHCHCH−,−CHCHNHCONHCHCHCH−,または−(CHCHCHOCONHCHCHCH−であり、XはH−,CH−,C−,n−C−,i−C−,n−C−,i−C−,またはt−C−であり、YはCHO−,CO−,n−CO−,i−CO−,n−CO−,i−CO−,またはt−CO−であり、Mは、Li,Na,KまたはCsであることを特徴とする請求項1または2の多機能性分子レジスト。
R 1 represents H—, CH 3 —, C 2 H 5 —, n—C 3 H 7 —, CH 2 = CHCH 2 —, n—C 4 H 9 —, C 6 H 5 —, or C 6 H. 11
R 2 represents —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 —, —CH 2 CH 2 SCH 2 CH 2 —,
-CH 2 CH 2 CH 2 SCH 2 CH 2 CH 2 -, - CH 2 CH 2 NHCH 2 CH 2 CH 2 -, - (CH 2 CH 2) 2 N-CH 2 CH 2 CH 2 -,
-CH 2 CH 2 OCONHCH 2 CH 2 CH 2 -, - CH 2 CH 2 NHCONHCH 2 CH 2 CH 2 -, or - (CH 2 CH 2) 2 CHOCONHCH 2 CH 2 CH 2 - and is, X is H-, CH 3 -, C 2 H 5 -, n-C 3 H 7 -, i-C 3 H 7 -, n-C 4 H 9 -, i-C 4 H 9 - or t-C 4 H 9, - in and, Y is CH 3 O-, C 2 H 5 O-, n-C 3 H 7 O-, i-C 3 H 7 O-, n-C 4 H 9 O-, i-C 4 H 9 3. The multifunctional molecular resist according to claim 1, wherein the multifunctional molecular resist is O—, or t—C 4 H 9 O—, and M is Li, Na, K, or Cs.
次式
Figure 2007017921
(式中、Zは、チオール基またはそのアルカリ金属塩もしくはアミンあるいはアンモニウム付加塩、またはチオカルボン酸もしくはジチオカルボン酸のアルカリ金属塩を示し、Rは、炭化水素鎖または異種原子もしくは官能基が介在してもよい炭化水素鎖を示し、Xは、水素原子または炭化水素基を示し、Yはアルコキシ基を示し、nは1から3までの整数である。)
で表わされるチオール反応性アルコキシシラン化合物の1種または2種以上であることを特徴とする多機能性分子レジスト。
Next formula
Figure 2007017921
(In the formula, Z represents a thiol group or an alkali metal salt or amine thereof or an ammonium addition salt thereof, or an alkali metal salt of thiocarboxylic acid or dithiocarboxylic acid, and R is a hydrocarbon chain or a hetero atom or a functional group. And X represents a hydrogen atom or a hydrocarbon group, Y represents an alkoxy group, and n is an integer of 1 to 3.)
A multifunctional molecular resist which is one or more of thiol-reactive alkoxysilane compounds represented by the formula:
Rは、硫黄原子、窒素原子または酸素原子を介在させた炭化水素鎖であることを特徴とする請求項4の多機能性分子レジスト。  5. The multifunctional molecular resist according to claim 4, wherein R is a hydrocarbon chain in which a sulfur atom, a nitrogen atom or an oxygen atom is interposed. Zは、−SH、−SLi,−SNa,−SK,−SCs、−SH・アミン、−CSSNaであり、−Rは−CHCH−、−CHCHO−、−CHCHNH−、−CHCHNCH−、−CHCHCH−、−CHCHCHNH−、−CHCHCHNCH−、−CHCHCHO−、−CHCHCHN(CHCHN−、−CHCHCHOCHCH(OH)CH−、−CHCHCHCH−、−CHCHCHSCHCH−,−CHCHSCHCH−,−CHCHCHNHCHCH−,CHCHNHCHCHNHCHCH−,−CHCHCHCHCHCH−、−CHCHCHCHCHCHCHCHCHCH−、−C−、−C−、−CHCH−、または−CHCHCHCH−であり、XはCH−,C−,n−C−,i−C−,n−C−,i−C−,またはt−C−であり、YはCHO−,CO−,n−CO−,i−CO−,n−CO−,i−CO−,またはt−CO−であることを特徴とする請求項4または5の多機能性分子レジスト。Z is, -SH, -SLi, -SNa, -SK , -SCs, -SH · amine is -CSSNa, -R is -CH 2 CH 2 -, - CH 2 CH 2 O -, - CH 2 CH 2 NH—, —CH 2 CH 2 NCH 3 —, —CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 NH—, —CH 2 CH 2 CH 2 NCH 3 —, —CH 2 CH 2 CH 2 O -, - CH 2 CH 2 CH 2 N (CH 2 CH 2) 2 N -, - CH 2 CH 2 CH 2 OCH 2 CH (OH) CH 2 -, - CH 2 CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 SCH 2 CH 2 —, —CH 2 CH 2 SCH 2 CH 2 —, —CH 2 CH 2 CH 2 NHCH 2 CH 2 —, CH 2 CH 2 NHCH 2 CH 2 NHCH 2 CH 2 —, -CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -, - C 6 H 4 -, - C 6 H 4 C 6 H 4 - , —CH 2 C 6 H 4 CH 2 —, or —CH 2 CH 2 C 6 H 4 CH 2 CH 2 —, X is CH 3 —, C 2 H 5 —, nC 3 H 7 —, i-C 3 H 7 -, n-C 4 H 9 -, i-C 4 H 9 -, or t-C 4 H 9 - a and, Y is CH 3 O-, C 2 H 5 O-, n -C 3 H 7 O-, and wherein the i-C 3 H 7 O-, n-C 4 H 9 O-, i-C 4 H 9 O-, or t-C 4 H 9 is O- The multifunctional molecular resist according to claim 4 or 5. 請求項1から6のうちの少くともいずれかの多機能性分子レジストを含有することを特徴とするレジスト組成物。  A resist composition comprising the multifunctional molecular resist of at least one of claims 1 to 6. 請求項1から7の多機能性分子レジストもしくはこれを含有する組成物の溶液中に1μm以下の表面粗度を有する平滑なOH基含有樹脂平面又は立体面を浸漬処理して、樹脂平面又は立体面に単分子層で結合した分子レジストを生成させることを特徴とする反応性樹脂表面の作成方法。  A smooth OH group-containing resin plane or solid surface having a surface roughness of 1 μm or less is dipped in the solution of the multifunctional molecular resist according to claim 1 or a composition containing the same to obtain a resin plane or solid A method for producing a reactive resin surface, characterized in that a molecular resist bonded to the surface by a monomolecular layer is produced. 請求項8の方法で得られた平滑な反応性樹脂表面をマスクで覆い、200〜400nmの波長の紫外線を照射することを特徴とする反応性及び非反応性微細模様印加樹脂表面の作成方法  A smooth reactive resin surface obtained by the method according to claim 8 is covered with a mask and irradiated with ultraviolet rays having a wavelength of 200 to 400 nm. 請求項9の方法で得られた反応性及び非反応性微細模様を有する平滑な樹脂表面を還元性金属塩溶液に浸漬することを特徴とする1μm以下の表面粗度を有する平滑な樹脂平面又は立体面の触媒担持活性化方法。  A smooth resin plane having a surface roughness of 1 μm or less, wherein a smooth resin surface having reactive and nonreactive fine patterns obtained by the method of claim 9 is immersed in a reducing metal salt solution A method for activating a catalyst support on a three-dimensional surface. 請求項10の方法で得られた触媒担持活性化された平滑な樹脂表面を無電解めっき浴に浸漬することを特徴とする導電性微細金属配線模様の1層プリント配線基盤の製造方法。  A method for producing a one-layer printed wiring board having a conductive fine metal wiring pattern, wherein the catalyst-supported and smooth resin surface obtained by the method of claim 10 is immersed in an electroless plating bath. 請求項9において表及び裏面にマスクを当てて紫外線照射し、その後、還元性金属塩溶液への浸漬による触媒担持活性化と無電解めっき浴への浸漬の操作を行うことを特徴とする表裏に配線された2層プリント配線基板の製造法  The front and back surfaces according to claim 9, wherein the front and back surfaces are irradiated with ultraviolet rays, and then the catalyst support activation by immersion in a reducing metal salt solution and the immersion in an electroless plating bath are performed. Manufacturing method of wired two-layer printed wiring board 請求項8の方法において、表及び裏両面を導通連絡するために、樹脂基盤に予めスルホールを開け、表裏面への紫外線の照射し、その後還元性金属塩溶液への浸漬による触媒担持活性化と無電解めっき浴への浸漬の操作を行うことを特徴とする表裏両面が導通された2層プリント配線基板の製造法。  The method according to claim 8, wherein in order to establish electrical communication between the front and back surfaces, the catalyst support is activated by opening a through hole in the resin substrate in advance, irradiating the front and back surfaces with ultraviolet light, and then immersing in a reducing metal salt solution. A method for producing a two-layer printed wiring board in which both front and back surfaces are conducted, characterized by performing an operation of immersion in an electroless plating bath. 請求項12の方法において、表及び裏両面を導通連絡するために、予め樹脂基盤にスルホールを開け、その後表及び裏面にマスクを当てて紫外線照射後、還元性金属塩溶液への浸漬による触媒担持活性化と無電解めっき浴への浸漬の操作を行うことを特徴とする表裏両面が導通された2層プリント配線基板の製造法  13. The method according to claim 12, wherein in order to establish electrical communication between the front and back surfaces, a catalyst is supported by opening a through hole in the resin substrate in advance, applying a mask to the front and back surfaces, and then irradiating with ultraviolet rays, and then dipping in a reducing metal salt solution A method for producing a two-layer printed wiring board having both surface and back surfaces conductive, characterized in that activation and immersion in an electroless plating bath are performed. 請求項11または12の方法で得られた導電性微細金属配線模様が印加された平滑な1層及び2層プリント配線基盤を電気めっきすることを特徴とする金属配線の増膜厚化方法。  A method for increasing the thickness of a metal wiring, comprising electroplating a smooth one-layer and two-layer printed wiring board to which the conductive fine metal wiring pattern obtained by the method of claim 11 or 12 is applied. 請求項11から15のいずれかの方法で得られた1層及び2層プリント配線基盤の金属表面および樹脂表面をトリアジントリチオールと還元剤の溶液に浸漬することを特徴とするプリント配線基盤の接着活性化法。  The adhesion of a printed wiring board, wherein the metal surface and the resin surface of the one-layer and two-layer printed wiring board obtained by the method according to any one of claims 11 to 15 are immersed in a solution of triazine trithiol and a reducing agent. Activation method. 請求項16の方法で得られた接着活性化された1層及び2層プリント配線基盤と樹脂基板を多層に重ねて加熱圧着することを特徴とする多層プリント基盤の製造法。  A method for producing a multilayer printed circuit board, comprising: bonding and activating the adhesion-activated one-layer and two-layer printed circuit boards obtained by the method of claim 16 and a resin substrate; 請求項8から17のいずれかの方法で得られたプリント配線基盤がその構成の少くとも一部とされていることを特徴とする電気機器または電子機器。  An electric or electronic device, wherein the printed wiring board obtained by the method according to any one of claims 8 to 17 is at least a part of the configuration. 請求項18の機器において、1GHz以上のクロック高周波特性を有している高密度多層プリント基盤がその構成の少くとも一部とされていることを特徴とする電気機器または電子機器。  19. The electric device or electronic device according to claim 18, wherein a high-density multilayer printed board having a clock high-frequency characteristic of 1 GHz or more is at least a part of the configuration.
JP2005227209A 2005-07-06 2005-07-06 Printed wiring board and manufacturing method thereof Active JP4660761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227209A JP4660761B2 (en) 2005-07-06 2005-07-06 Printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005227209A JP4660761B2 (en) 2005-07-06 2005-07-06 Printed wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007017921A true JP2007017921A (en) 2007-01-25
JP4660761B2 JP4660761B2 (en) 2011-03-30

Family

ID=37755115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227209A Active JP4660761B2 (en) 2005-07-06 2005-07-06 Printed wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4660761B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205289A (en) * 2007-02-21 2008-09-04 Fujitsu Ltd Manufacturing method of circuit board
JP2010280813A (en) * 2009-06-04 2010-12-16 Sulfur Chemical Institute Inc Method for forming reactive solid surface
JP2011049294A (en) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd Manufacturing method of circuit board and circuit board obtained thereby
JPWO2010029635A1 (en) * 2008-09-11 2012-02-02 パイオニア株式会社 Method for forming metal wiring and electronic component provided with metal wiring
WO2012043631A1 (en) 2010-09-30 2012-04-05 株式会社いおう化学研究所 Bonding method, bondability improving agent, surface modification method, surface modifying agent, and novel compound
WO2012046651A1 (en) 2010-10-04 2012-04-12 株式会社いおう化学研究所 Process for forming metal film, and product equipped with metal film
JP5648212B2 (en) * 2008-06-24 2015-01-07 株式会社新技術研究所 Iron alloy article, iron alloy member and manufacturing method thereof
KR20240036723A (en) 2021-12-24 2024-03-20 내셔널 유니버시티 코포레이션 이와테 유니버시티 Manufacturing method of laminate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151591A (en) * 1987-12-09 1989-06-14 Shin Etsu Chem Co Ltd Organosilicone compound
JPH02298284A (en) * 1989-02-02 1990-12-10 Kunio Mori Electrochemical surface treatment of metal and conjugated body of metal
JPH04326719A (en) * 1991-04-18 1992-11-16 Geo Centers Inc Method of forming high-resolution pattern to solid substrate
JPH0784371A (en) * 1993-09-17 1995-03-31 Res Dev Corp Of Japan Organic sulfur-contained silane modified oxide and modified surface light patterning oxide
JPH07168356A (en) * 1993-12-16 1995-07-04 Res Dev Corp Of Japan Method for fixing nitrogen-containing high molecular compound
JP2001085666A (en) * 1999-09-16 2001-03-30 Seiko Epson Corp Microstructure and its formation method
JP2001203462A (en) * 2000-01-18 2001-07-27 Toa Denka:Kk Manufacturing method for printed wiring board and multilayer printed wiring board
JP2005331564A (en) * 2004-05-18 2005-12-02 Seiko Epson Corp Method for forming thin film pattern, and device
JP2005338338A (en) * 2004-05-26 2005-12-08 Konica Minolta Holdings Inc Display element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151591A (en) * 1987-12-09 1989-06-14 Shin Etsu Chem Co Ltd Organosilicone compound
JPH02298284A (en) * 1989-02-02 1990-12-10 Kunio Mori Electrochemical surface treatment of metal and conjugated body of metal
JPH04326719A (en) * 1991-04-18 1992-11-16 Geo Centers Inc Method of forming high-resolution pattern to solid substrate
JPH0784371A (en) * 1993-09-17 1995-03-31 Res Dev Corp Of Japan Organic sulfur-contained silane modified oxide and modified surface light patterning oxide
JPH07168356A (en) * 1993-12-16 1995-07-04 Res Dev Corp Of Japan Method for fixing nitrogen-containing high molecular compound
JP2001085666A (en) * 1999-09-16 2001-03-30 Seiko Epson Corp Microstructure and its formation method
JP2001203462A (en) * 2000-01-18 2001-07-27 Toa Denka:Kk Manufacturing method for printed wiring board and multilayer printed wiring board
JP2005331564A (en) * 2004-05-18 2005-12-02 Seiko Epson Corp Method for forming thin film pattern, and device
JP2005338338A (en) * 2004-05-26 2005-12-08 Konica Minolta Holdings Inc Display element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205289A (en) * 2007-02-21 2008-09-04 Fujitsu Ltd Manufacturing method of circuit board
US9297079B2 (en) 2008-06-24 2016-03-29 Advanced Technologies, Inc. Iron alloy article, iron alloy member, and method for producing the iron alloy article
JP5648212B2 (en) * 2008-06-24 2015-01-07 株式会社新技術研究所 Iron alloy article, iron alloy member and manufacturing method thereof
JPWO2010029635A1 (en) * 2008-09-11 2012-02-02 パイオニア株式会社 Method for forming metal wiring and electronic component provided with metal wiring
JP2010280813A (en) * 2009-06-04 2010-12-16 Sulfur Chemical Institute Inc Method for forming reactive solid surface
JP2011049294A (en) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd Manufacturing method of circuit board and circuit board obtained thereby
WO2012043631A1 (en) 2010-09-30 2012-04-05 株式会社いおう化学研究所 Bonding method, bondability improving agent, surface modification method, surface modifying agent, and novel compound
US9238757B2 (en) 2010-09-30 2016-01-19 Kunio Mori Bonding method, bondability improving agent, surface modification method, surface modifying agent, and novel compound
US9540403B2 (en) 2010-09-30 2017-01-10 Kunio Mori Bonding method, bondability improving agent, surface modification method, surface modifying agent, and novel compound
WO2012046651A1 (en) 2010-10-04 2012-04-12 株式会社いおう化学研究所 Process for forming metal film, and product equipped with metal film
US8753748B2 (en) 2010-10-04 2014-06-17 Kunio Mori Process for forming metal film, and product equipped with metal film
US9593423B2 (en) 2010-10-04 2017-03-14 Kunio Mori Process for forming metal film, and product equipped with metal film
KR20240036723A (en) 2021-12-24 2024-03-20 내셔널 유니버시티 코포레이션 이와테 유니버시티 Manufacturing method of laminate

Also Published As

Publication number Publication date
JP4660761B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP5135575B2 (en) Functional molecular adhesives and molecular adhesive resin surfaces, methods for producing them, and methods for producing resin-plated products or printed wiring boards
JP4660761B2 (en) Printed wiring board and manufacturing method thereof
JP5419441B2 (en) Method for forming multilayer wiring board
KR101625421B1 (en) Surface metal film material, process for producing surface metal film material, process for producing metal pattern material, and metal pattern material
US4358479A (en) Treatment of copper and use thereof
JPS634075A (en) Formation of seed for electroless plating
JP2007287994A (en) Method for forming metallic pattern, metallic pattern, and printed wiring board
JPH01219168A (en) Pretreatment of non-conductive substrate for electroless plating
JP4734637B2 (en) Surface reactive solid, method for producing surface reactive solid, wiring board using surface reactive solid, and method for producing wiring board
KR102105988B1 (en) Method of forming a metal layer on a photosensitive resin
AU593887B2 (en) Process for providing a landless through-hole connection
SU893136A3 (en) Catalytic varnish for making printed circuits
DK143609B (en) PROCEDURE FOR CATALYTIC SENSITIZATION OF NON-METAL SURFACES FOR SUBSEQUENTLY METAL DEPOSIT
JPS63293994A (en) Method of removing remaining catalyst particles
US5153024A (en) Process for manufacturing a printed circuit board by coating a polymeric substrate with a modified polyamine layer and further contacting the coated substrate with noble metal ions
CA1293605C (en) Process for treating reinforced polymer composite
TW200423842A (en) Method of forming a metal film, semiconductor device and wiring board
JPH0376599B2 (en)
JPH09246716A (en) Surface layer printed wiring board (slc) manufacturing method
US4748056A (en) Process and composition for sensitizing articles for metallization
JP4820989B2 (en) Electroforming mold manufacturing method
JP2003129247A (en) Method for forming conductive film and conductive circuit pattern on resin surface
WO2012029865A1 (en) Method for manufacturing multilayer wiring board
JP2013074193A (en) Laminate having metal layer and production method therefor
JPS6083395A (en) Method of adjusting surface of dielectric substrate for electrolessly plating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150