JP2007005098A - Phosphor film, lighting system and display device using it - Google Patents

Phosphor film, lighting system and display device using it Download PDF

Info

Publication number
JP2007005098A
JP2007005098A JP2005182851A JP2005182851A JP2007005098A JP 2007005098 A JP2007005098 A JP 2007005098A JP 2005182851 A JP2005182851 A JP 2005182851A JP 2005182851 A JP2005182851 A JP 2005182851A JP 2007005098 A JP2007005098 A JP 2007005098A
Authority
JP
Japan
Prior art keywords
light
phosphor
light source
light guide
guide plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005182851A
Other languages
Japanese (ja)
Other versions
JP2007005098A5 (en
JP4579065B2 (en
Inventor
Norihiro Dejima
範宏 出島
Shin Kurihara
慎 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005182851A priority Critical patent/JP4579065B2/en
Priority to US11/430,615 priority patent/US20060268537A1/en
Priority to KR1020060048639A priority patent/KR20060125535A/en
Publication of JP2007005098A publication Critical patent/JP2007005098A/en
Publication of JP2007005098A5 publication Critical patent/JP2007005098A5/ja
Application granted granted Critical
Publication of JP4579065B2 publication Critical patent/JP4579065B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display device having excellent moisture resistance, and good color displaying and mixing properties, by providing and using a phosphor film having excellent fluorescent characteristics and excellent moisture resistance. <P>SOLUTION: A phosphor layer formed by applying phosphor particles mixed in a binding agent is formed on a translucent film base material, and the surface of the phosphor layer is coated with a water-impermeable material layer. In addition, this phosphor film is provided at least at one spot out of between the light source of a lighting system and a light guide plate, on the light irradiating surface of the light guide plate, and between the light guide plate and a reflector. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、携帯情報機器や携帯電話などに用いられる表示素子を照明する照明装置、及びこれを用いた表示装置に関する。詳しくは照明装置に用いる蛍光体フィルムに関する。   The present invention relates to an illuminating device that illuminates a display element used in a portable information device, a cellular phone, and the like, and a display device using the same. Specifically, the present invention relates to a phosphor film used for an illumination device.

近年では携帯電話やモバイルコンピュータなどに用いられる表示装置には、高精彩カラー画像が少ない消費電力で得られる液晶表示装置が用いられている。特に携帯電話では、開口が大きく明るい反射型液晶表示装置や、表裏両面から画像情報を表示することが可能な両面可視型の液晶表示装置が用いられている。液晶表示装置に用いられる液晶素子を照明するため、高輝度白色LEDを用いた照明装置が多用されるようになっている。この白色LEDは、光源である青色LED素子の発光面に樹脂中に分散させた緑色蛍光体または黄色蛍光体を配して、その結果得られる緑色光または黄色光と元の青色光とを混色させて白色光を得る構造としたものが一般的である。   In recent years, liquid crystal display devices that can obtain high-definition color images with low power consumption have been used as display devices used in mobile phones and mobile computers. In particular, a cellular phone uses a reflective liquid crystal display device having a large opening and a bright, and a double-sided visible type liquid crystal display device capable of displaying image information from both the front and back surfaces. In order to illuminate a liquid crystal element used in a liquid crystal display device, an illuminating device using a high-intensity white LED is frequently used. In this white LED, a green phosphor or a yellow phosphor dispersed in a resin is arranged on the light emitting surface of a blue LED element as a light source, and the resulting green or yellow light and the original blue light are mixed. In general, a structure in which white light is obtained is obtained.

このような構成の白色LEDでは、蛍光体に照射される光強度が強いために、蛍光体の光劣化を防ぐために、導光板の裏面に蛍光体を所定の形成密度で塗布形成することが知られている(例えば、特許文献1を参照)。さらに、より少ない面積の蛍光体で波長変換を行なうために、青色LED素子と導光板の光入射面との間に層状の波長変換体を設けた構成が知られている(例えば、特許文献2を参照)。
特開平7−176794号公報(第2頁、第1図) 特開平10−269822号公報(第3項、第1図)
In the white LED having such a configuration, it is known that the fluorescent material is applied and formed on the back surface of the light guide plate at a predetermined formation density in order to prevent light deterioration of the fluorescent material because the intensity of light applied to the fluorescent material is strong. (For example, see Patent Document 1). Furthermore, in order to perform wavelength conversion with a phosphor having a smaller area, a configuration in which a layered wavelength converter is provided between a blue LED element and a light incident surface of a light guide plate is known (for example, Patent Document 2). See).
Japanese Patent Laid-Open No. 7-176794 (2nd page, FIG. 1) Japanese Patent Laid-Open No. 10-269822 (term 3, FIG. 1)

図13は青色光を黄色光に変換する黄色蛍光体粒子を用いた場合の発光色を説明するための色度図である。青色光(図中、色度101)で励起された黄色光は色度102で示される。従って、青色光の強度を変化させたり、黄色蛍光体粒子濃度を調整したりして黄色光強度との比率を調節することによって、色度101と色度102とを結ぶ任意の色度の発光色を得ることができる。このとき、厳密には青色光が変換されて得られる光は黄色光以外の成分も含まれるために、色度101と色度102とを結ぶ幅を持った線上の色度を表現することが可能となる。しかしながら、色度101と色度102とを結ぶ線の幅は広くないために、青色光と黄色蛍光体だけを用いて再現できる色は図13のRGBで示される広い色三角形103の範囲を全て表現することはできない。   FIG. 13 is a chromaticity diagram for explaining the emission color when using yellow phosphor particles that convert blue light into yellow light. Yellow light excited by blue light (chromaticity 101 in the figure) is indicated by chromaticity 102. Therefore, by adjusting the ratio of the yellow light intensity by changing the intensity of the blue light or adjusting the concentration of the yellow phosphor particles, the light emission of an arbitrary chromaticity connecting the chromaticity 101 and the chromaticity 102. Color can be obtained. At this time, strictly speaking, the light obtained by converting the blue light includes components other than the yellow light, and therefore, it is possible to express the chromaticity on a line having a width connecting the chromaticity 101 and the chromaticity 102. It becomes possible. However, since the width of the line connecting the chromaticity 101 and the chromaticity 102 is not wide, the color that can be reproduced using only blue light and the yellow phosphor covers the entire range of the wide color triangle 103 indicated by RGB in FIG. It cannot be expressed.

これを解決するためには、蛍光体粒子4として青色光を緑色光に変換する緑色蛍光体粒子と、青色光を赤色光に変換する赤色蛍光体粒子とを所定の割合で混合したものを結合剤2に混合して用いるのが良い。このような蛍光体粒子としては、希土類元素をドープしたS化合物、Se化合物、Te化合物などのいわゆるカルコゲナイド化合物蛍光体粒子が適している。このときの色度図を図12に示す。図12において、色度18の青色光で励起された緑色蛍光体粒子は色度19の緑色光を発光し、色度18の青色光で励起された赤色蛍光体粒子は色度20の赤色光を発光する。緑色光と赤色光の発光強度は、緑色蛍光体粒子と赤色蛍光体粒子の波長変換効率と混合濃度、励起光である青色光の強度に依存する。従って、緑色蛍光体粒子と赤色蛍光体粒子の混合比率、混合濃度を調節し、青色光強度を変化させることによって、色度18、色度19、および色度20を結ぶ三角形内の全ての色に対応した光を得ることができる。この三角形は、RGBで示した色三角形103の大部分を占め、表色範囲が広くなることが分かる。   In order to solve this problem, a combination of green phosphor particles that convert blue light into green light and red phosphor particles that convert blue light into red light at a predetermined ratio is combined as phosphor particles 4. It is good to mix with the agent 2. As such phosphor particles, so-called chalcogenide compound phosphor particles such as S compounds doped with rare earth elements, Se compounds, and Te compounds are suitable. The chromaticity diagram at this time is shown in FIG. In FIG. 12, green phosphor particles excited by blue light having chromaticity 18 emit green light having chromaticity 19, and red phosphor particles excited by blue light having chromaticity 18 are red light having chromaticity 20. Is emitted. The emission intensities of green light and red light depend on the wavelength conversion efficiency and mixed concentration of green phosphor particles and red phosphor particles, and the intensity of blue light that is excitation light. Therefore, by adjusting the mixing ratio and mixing concentration of the green phosphor particles and the red phosphor particles and changing the blue light intensity, all the colors in the triangle connecting the chromaticity 18, the chromaticity 19 and the chromaticity 20 are obtained. The light corresponding to can be obtained. It can be seen that this triangle occupies most of the color triangle 103 shown in RGB, and the color specification range is widened.

しかしながら、上記のカルコゲナイド化合物蛍光体粒子は水分を吸収すると特性が劣化し易くなり、常用するのが困難であった。   However, the properties of the chalcogenide compound phosphor particles described above tend to deteriorate when they absorb moisture, and are difficult to use regularly.

このように、従来の蛍光体が塗布されたフィルムを用いて光源からの光を波長変換して加法混色による白色光を得る方法の場合、特に光変換効率の高いS化合物、Se化合物、Te化合物などに希土類元素をドープしたいわゆるカルコゲナイド蛍光体を用いる場合には、環境の湿気により蛍光体が劣化し、長時間に渡って効率の良い混色を行なうことができないという課題を有していた。   Thus, in the case of a method for obtaining white light by additive color mixing by converting the wavelength of light from a light source using a film coated with a conventional phosphor, an S compound, Se compound, or Te compound having particularly high light conversion efficiency. When a so-called chalcogenide phosphor doped with a rare earth element is used, the phosphor deteriorates due to environmental moisture, and there is a problem that efficient color mixing cannot be performed for a long time.

本発明は、カルコゲナイド蛍光体を用いても寿命の長い蛍光体フィルムを実現し、これを用いることによって、導光体の設計に大きな影響を与えず、効率の良い広い色再現範囲を持った液晶表示装置を提供することを目的とする。   The present invention realizes a phosphor film having a long life even when a chalcogenide phosphor is used, and by using this, a liquid crystal having an efficient and wide color reproduction range without greatly affecting the design of the light guide. An object is to provide a display device.

本発明の蛍光体フィルムは、透光性のフィルム基材上に結合剤に混合された蛍光体粒子を塗布した蛍光体層を形成し、その蛍光体層の表面を第一非通水性材料層によって被覆した構造とした。このような蛍光体フィルムによれば、カルコゲナイド系蛍光体材料を蛍光体粒子として用いても、環境の水分によって影響を受けることなく長期間にわたってその特性を保持することが可能となる。   In the phosphor film of the present invention, a phosphor layer is formed by coating phosphor particles mixed with a binder on a translucent film substrate, and the surface of the phosphor layer is a first water-impermeable material layer. It was set as the structure coat | covered with. According to such a phosphor film, even when a chalcogenide phosphor material is used as the phosphor particles, it is possible to maintain the characteristics over a long period of time without being affected by environmental moisture.

また、透光性フィルムが薄い場合には、この透光性フィルム自体を非通水性材料とするか、またはこの透光性フィルム上に第二非通水性材料層を形成し、その上に蛍光体層を塗布し、これをさらに第一非通水性材料層で被覆することによって、蛍光体層を環境の水分から隔離することが可能となる。その結果、蛍光体粒子の特性を長期間に渡って保持することが可能となる。   When the translucent film is thin, the translucent film itself is used as a non-water-permeable material, or a second non-water-permeable material layer is formed on the translucent film and the fluorescent film is formed thereon. By applying the body layer and further coating it with the first water-impermeable material layer, the phosphor layer can be isolated from the environmental moisture. As a result, the characteristics of the phosphor particles can be maintained over a long period.

また、本発明の照明装置は、光源からの光と、前記光源からの光によって蛍光体を励起して得た波長変換光とを伝播して平面状に照射する導光板を有しており、蛍光体として蛍光体粒子を結合剤に混合分散させてなる蛍光体層が第一非通水性材料層または、第一非通水性材料層と第二非通水性材料層で被覆されて透光性フィルムに形成された蛍光体フィルムを用いている。そして、光源として青色光源を用い、青色光を緑色光に変換する緑色蛍光体と、青色光を赤色光に変換する赤色蛍光体とを各々空間的に分離して形成した。さらに、2種類の蛍光体のうち、より波長の短い励起光に変換する蛍光体を、より光源側に配置した。   Further, the illumination device of the present invention has a light guide plate that propagates the light from the light source and the wavelength converted light obtained by exciting the phosphor with the light from the light source and irradiates it in a planar shape, A phosphor layer formed by mixing and dispersing phosphor particles in a binder as a phosphor is coated with the first water-impermeable material layer or the first water-impermeable material layer and the second water-impermeable material layer so as to be translucent. A phosphor film formed on the film is used. Then, using a blue light source as a light source, a green phosphor that converts blue light into green light and a red phosphor that converts blue light into red light are each spatially separated. Further, among the two types of phosphors, a phosphor that converts to excitation light having a shorter wavelength was disposed on the light source side.

このような構成によって、導光板の伝播特性を変えることなく、均一な蛍光体分布を用いて効率の良い波長変換を行なうことができる。また、蛍光体層を空間的に分離して形成することによって、より波長変換効率の悪い蛍光体層を光源の近くに配置することが可能となり、結果として各色に対する色変換効率を最大化することが可能となった。さらに、蛍光体粒子が環境の水分に影響を受けないために、照明装置自体の寿命を長くすることが可能となった。   With such a configuration, efficient wavelength conversion can be performed using a uniform phosphor distribution without changing the propagation characteristics of the light guide plate. In addition, by forming the phosphor layers spatially separated, it is possible to place a phosphor layer with a lower wavelength conversion efficiency near the light source, and as a result, maximize the color conversion efficiency for each color. Became possible. Furthermore, since the phosphor particles are not affected by the moisture of the environment, it is possible to extend the life of the lighting device itself.

また、光源として紫外線光源と青色光源を用い、蛍光体層として紫外光を緑色光に変換する緑色蛍光体層と、紫外光を赤色光に変換する赤色蛍光体層を用いることとした。これによって、発光効率の高い緑色発光と赤色発光が実現でき、これを青色光と混色することによって色再現範囲の広い液晶表示装置が実現できた。   Further, an ultraviolet light source and a blue light source are used as the light source, and a green phosphor layer that converts ultraviolet light into green light and a red phosphor layer that converts ultraviolet light into red light are used as the phosphor layer. As a result, green light emission and red light emission with high luminous efficiency can be realized, and by mixing this with blue light, a liquid crystal display device with a wide color reproduction range can be realized.

また、光源として紫外線光源を用いる場合は、蛍光体層を光源と導光板入射面との間に設け、この蛍光体層と導光板の入射面との間に紫外線吸収フィルムを設けた。このような構成によって、導光板などの高分子構成要素が紫外線によって劣化することが防止でき、照明装置の長寿命化が実現できる。   When an ultraviolet light source is used as the light source, a phosphor layer is provided between the light source and the light guide plate incident surface, and an ultraviolet absorbing film is provided between the phosphor layer and the light guide plate incident surface. With such a configuration, it is possible to prevent the polymer components such as the light guide plate from being deteriorated by ultraviolet rays, and it is possible to extend the life of the lighting device.

また、蛍光体層を、透光性フィルム上に高分子結合剤に蛍光体粒子を混合させて所定の形状に印刷または塗布して形成することができる。さらにこの蛍光体層の上に非通水性材料層を形成した。そして、蛍光体層は、透光性フィルム上に、高分子結合剤に第一蛍光体粒子を分散させた第一蛍光体層と、高分子結合剤に第二蛍光体粒子を分散させた第二蛍光体層とを、面内に互いに重なり合うことなく配した。このような構成により、一層の蛍光体層で多色への波長変換が可能となる。そして、蛍光体が互いに重なり合わないために、他の蛍光体による光吸収を低減でき、実質的に波長変換効率を向上させることが可能となった。なお、このとき、各蛍光体層が形成されている領域を充分小さく、かつ近接させることによって混色特性を改善し、色むらのない波長変換を可能とした。また、このようにして、第一非通水性材料層または第一かつ第二非通水性材料層で蛍光体層を被覆することによって蛍光体の特性寿命を延ばすことができた。   Further, the phosphor layer can be formed on a light-transmitting film by mixing phosphor particles in a polymer binder and printing or applying the phosphor particles in a predetermined shape. Further, a water-impermeable material layer was formed on the phosphor layer. The phosphor layer includes a first phosphor layer in which the first phosphor particles are dispersed in the polymer binder on the translucent film, and a second phosphor particle in which the second phosphor particles are dispersed in the polymer binder. The two phosphor layers were arranged in the plane without overlapping each other. With such a configuration, it is possible to perform wavelength conversion to multiple colors with a single phosphor layer. Since the phosphors do not overlap each other, light absorption by other phosphors can be reduced, and the wavelength conversion efficiency can be substantially improved. At this time, the region where each phosphor layer is formed is sufficiently small and close to each other, thereby improving the color mixing characteristics and enabling wavelength conversion without color unevenness. Moreover, the characteristic lifetime of the phosphor could be extended by covering the phosphor layer with the first water impermeable material layer or the first and second water impermeable material layers in this way.

そして、上記分散させる発光層の面積密度を必要とする励起光強度に比例するようにした。これによって、一様な色混合比を持った液晶表示装置とすることができた。   The area density of the light emitting layer to be dispersed was proportional to the required excitation light intensity. As a result, a liquid crystal display device having a uniform color mixing ratio could be obtained.

一方、蛍光体層を用いない方法として、光源からの光を伝播し線状に上記導光板の光入射面に照射する光パイプ中に、第一蛍光体粒子と第二蛍光体粒子とを所定の割合で分散させて、光パイプ内で波長変換と混色を同時に行なった。この光パイプ表面を非通水性材料層で被覆した。   On the other hand, as a method that does not use the phosphor layer, the first phosphor particles and the second phosphor particles are predetermined in a light pipe that propagates light from a light source and linearly irradiates the light incident surface of the light guide plate. In the light pipe, wavelength conversion and color mixing were performed simultaneously. The surface of the light pipe was covered with a water-impermeable material layer.

光パイプ内に蛍光体を分散させることによって、均一で強い光強度内での波長変換が可能となり、波長変換効率を向上させることが可能となった。また、光パイプ内では、光源からの光が多重反射を繰り返すために、光の混色性も向上させることが可能となった。そして、光パイプを非通水性材料層で被覆することによって、蛍光体を環境の水分から保護することができ、その寿命を長くすることができた。   Dispersing the phosphor in the light pipe enables wavelength conversion within a uniform and strong light intensity, thereby improving the wavelength conversion efficiency. Further, since the light from the light source repeats multiple reflections in the light pipe, it is possible to improve the light color mixing. Then, by covering the light pipe with the water-impermeable material layer, the phosphor can be protected from environmental moisture, and its lifetime can be extended.

さらに、蛍光体フィルムと光パイプを併用する構成とした。これは、光源からの光を伝播し線状に上記導光板の光入射面に照射する光パイプ中に第一蛍光体粒子を分散させ、前記光パイプと前記導光板の光入射面との間に第二蛍光体を配した上記蛍光体フィルムを配した構造である。この場合も、光パイプの表面は非通水性材料層で被覆した。このような構成によって、光パイプ内への蛍光体の混合分散を均一に行なうことが可能となり、より均一な色変換が可能となった。また、蛍光体層に照射される光強度も一様となるために、蛍光体フィルムも蛍光体を一様に塗布することが可能となり、その作製が容易となった。   Further, the phosphor film and the light pipe are used in combination. This is because the first phosphor particles are dispersed in a light pipe that propagates light from the light source and linearly irradiates the light incident surface of the light guide plate, and between the light pipe and the light incident surface of the light guide plate. This is a structure in which the above phosphor film in which the second phosphor is arranged is arranged. In this case as well, the surface of the light pipe was covered with a water-impermeable material layer. With such a configuration, the phosphor can be mixed and dispersed uniformly in the light pipe, and more uniform color conversion can be achieved. In addition, since the light intensity applied to the phosphor layer is uniform, the phosphor film can be uniformly applied to the phosphor film, and the production thereof becomes easy.

以上説明したように、本発明の蛍光体フィルムは、色変換効率が高く、耐湿性に優れた波長変換フィルムとして用いることが可能であり、多用途での光源光の波長変換に用いることができ、色光源の低消費電力化、小型化、薄型化を促進できるという効果を有する。   As described above, the phosphor film of the present invention can be used as a wavelength conversion film having high color conversion efficiency and excellent moisture resistance, and can be used for wavelength conversion of light source light in various applications. This has the effect of facilitating the reduction in power consumption, size and thickness of the color light source.

また、本発明の液晶表示装置の照明装置は、耐湿性に優れ、長寿命で表色領域が広く光利用効率の高い照明装置とすることができるために、平面を照明するための良好なカラー照明装置とすることができるという効果を有する。   In addition, the lighting device of the liquid crystal display device of the present invention is excellent in moisture resistance, has a long lifetime, has a wide color display region, and has a high light utilization efficiency. It has the effect that it can be set as an illuminating device.

また、本発明の照明装置を液晶表示装置に用いることにより、素子の表色性が向上し、より高精彩なカラー液晶表示装置を実現できるという効果を有する。   In addition, by using the lighting device of the present invention for a liquid crystal display device, the colorimetric properties of the elements are improved, and a color liquid crystal display device with higher definition can be realized.

さらに、本発明の液晶表示装置の照明装置は環境に含まれる湿度に対して強いために、夏季の車載用などの高温多湿環境下で用いる液晶表示装置に適している。   Furthermore, since the lighting device of the liquid crystal display device of the present invention is resistant to the humidity contained in the environment, it is suitable for a liquid crystal display device used in a hot and humid environment such as in-vehicle use in summer.

また、本発明の液晶表示装置の照明装置は、一般の室内などで用いる平面型照明装置とすることによって、低消費電力の壁掛け型照明装置を実現することが可能となり、一般の照明環境を向上させるとともに省資源化が可能であるという効果を有する。   Moreover, the lighting device of the liquid crystal display device of the present invention can be realized as a wall-mounted lighting device with low power consumption by improving the general lighting environment by using a flat lighting device used in a general room or the like. As well as resource saving.

本発明の照明装置は、光源と、光源からの光によって励起する蛍光体と、光源からの光と励起光を伝播して平面状に照射する導光板を有し、蛍光体が、透光性フィルムと、透光性フィルム上に設けられ、蛍光体粒子が結合剤に混合された蛍光体層と、蛍光体層の表面に設けられた非通水性材料層とを備えている。   The illuminating device of the present invention includes a light source, a phosphor that is excited by light from the light source, and a light guide plate that propagates light and excitation light from the light source to irradiate in a planar shape. A film, a phosphor layer provided on a light-transmitting film and phosphor particles mixed with a binder, and a non-water-permeable material layer provided on the surface of the phosphor layer are provided.

ここで、蛍光体を、光源からの光によって励起され、第一の波長範囲の励起光を発する第一の蛍光体と、第二の波長範囲の励起光を発する第二の蛍光体で構成した。このとき、波長の短い光を励起光として発する蛍光体を光源側に配置した。あるいは、第一の蛍光体と第二の蛍光体を、面内に互いに重なり合わないように配置した。   Here, the phosphor is composed of a first phosphor that is excited by light from the light source and emits excitation light in the first wavelength range, and a second phosphor that emits excitation light in the second wavelength range. . At this time, a phosphor that emits light having a short wavelength as excitation light was disposed on the light source side. Alternatively, the first phosphor and the second phosphor are arranged in the plane so as not to overlap each other.

また、蛍光体を光源と導光体の間に設け、蛍光体粒子の混合密度を光源に近い領域ほど大きくなるように設定した。   In addition, the phosphor was provided between the light source and the light guide, and the mixing density of the phosphor particles was set so as to increase in the region closer to the light source.

あるいは、蛍光体内での位置に応じて蛍光体粒子の混合密度を変えることにより、導光体から出射する光の強度を調整することができる。例えば、蛍光体粒子の混合密度を、光源の輻射強度分布に反比例するように設定する。   Or the intensity | strength of the light radiate | emitted from a light guide can be adjusted by changing the mixing density of fluorescent substance particles according to the position in fluorescent substance. For example, the mixing density of the phosphor particles is set to be inversely proportional to the radiation intensity distribution of the light source.

また、光源からの光を伝播して導光板に線状に光が入射するように、光源と導光板の間に光パイプを設け、蛍光体層を光パイプ内に形成し、光パイプの全表面を覆うように非通水性材料層を設けた。   In addition, a light pipe is provided between the light source and the light guide plate so that light from the light source propagates and linearly enters the light guide plate, a phosphor layer is formed in the light pipe, and the entire surface of the light pipe A water-impermeable material layer was provided so as to cover.

あるいは、光源からの光を伝播して導光板に線状に光が入射するように、光源と導光板の間に光パイプを設け、第一の蛍光体の蛍光体粒子を光パイプの中に設け、光パイプの全表面を覆うように非通水性材料層を設け、光パイプと導光板の光入射面との間に第二の蛍光体を設ける構成とした。   Alternatively, a light pipe is provided between the light source and the light guide plate so that light from the light source propagates and the light is incident linearly on the light guide plate, and phosphor particles of the first phosphor are provided in the light pipe. The non-water-permeable material layer is provided so as to cover the entire surface of the light pipe, and the second phosphor is provided between the light pipe and the light incident surface of the light guide plate.

図1に本実施例の蛍光体フィルムの断面構成を模式的に示す。図1に示すように、蛍光体フィルムは、蛍光体粒子4が混合された結合剤2が透光性フィルム1の上に塗布された構成である。この蛍光体粒子4が混合された結合剤2からなる層を以下蛍光体層と呼ぶことにする。そして、結合剤2に蛍光体粒子4が混合された蛍光体層上に、環境からの水分を遮断するために第一非通水性材料層3が形成されている。この第一非通水性材料層3を形成する材料としては、シリコン樹脂、シクロオレフィン系樹脂、フッ化物系樹脂などを用いることができる。また、ガラスゾルや二酸化ケイ素ゾルなどの無機非通水性材料も用いることができる。この非通水性材料層3の層厚は厚ければ厚いほど良いが、5μm程度以上で効果が現れる。特に、高分子非通水性材料層を用いる場合は、20μm程度以上望むらくは50μm以上あれば良い。   FIG. 1 schematically shows a cross-sectional configuration of the phosphor film of this example. As shown in FIG. 1, the phosphor film has a configuration in which a binder 2 in which phosphor particles 4 are mixed is applied on a translucent film 1. Hereinafter, the layer made of the binder 2 mixed with the phosphor particles 4 will be referred to as a phosphor layer. The first water-impermeable material layer 3 is formed on the phosphor layer in which the phosphor particles 4 are mixed with the binder 2 in order to block moisture from the environment. As a material for forming the first water impermeable material layer 3, silicon resin, cycloolefin resin, fluoride resin, or the like can be used. Moreover, inorganic water-impermeable materials such as glass sol and silicon dioxide sol can also be used. The thicker the non-water-permeable material layer 3 is, the better. However, the effect appears at about 5 μm or more. In particular, in the case of using a polymer water-impermeable material layer, about 20 μm or more is desired and 50 μm or more is sufficient.

透光性フィルム1は、25〜500μm程度の厚みを有する透光性高分子材料から形成されている。この透光性高分子材料としては、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)、アクリル樹脂、TAC(トリアセチルセルロース)などの通常の樹脂を用いることができる。結合剤2としてはアクリル系接着剤やエポキシ系接着剤などを用いることができる。これらの接着剤は、熱硬化型接着剤でも紫外線硬化型接着剤でも自然硬化型接着剤でも良い。また、透光性フィルム1として用いる通常の樹脂は通水性が高いために、特に透光性フィルム1の厚みが25〜100μmと薄い場合は、非通水性高分子材料層としてシリコン系樹脂、シクロオレフィン系樹脂、またはフッ化物系樹脂を用いるのが好ましい。   The translucent film 1 is formed from a translucent polymer material having a thickness of about 25 to 500 μm. As this translucent polymer material, ordinary resins such as PET (polyethylene terephthalate), PC (polycarbonate), acrylic resin, and TAC (triacetyl cellulose) can be used. As the binder 2, an acrylic adhesive, an epoxy adhesive, or the like can be used. These adhesives may be thermosetting adhesives, ultraviolet curable adhesives, or natural curable adhesives. In addition, since a normal resin used as the translucent film 1 has high water permeability, particularly when the thickness of the translucent film 1 is as thin as 25 to 100 μm, the non-water-permeable polymer material layer is made of silicon resin, cyclohexane. It is preferable to use an olefin resin or a fluoride resin.

また、蛍光体粒子4の材料としては、用いる励起光波長と目的とする蛍光波長とによって適宜選択して用いる。例えば、励起光として青色光を用い、蛍光体粒子4として青色光を黄色光に変換する黄色蛍光体を用いて励起光である青色光の強度を調整すれば、励起光と波長変換された光との加法混色によって所望の色度を持った光が得られる。
(具体例1)
透光性フィルムとして厚み200μmのPETフィルムを用い、その上にエポキシ樹脂にS系緑色蛍光体粒子とS系赤色蛍光体粒子とを1:1の割合でエポキシ樹脂に対する全重量濃度が40%となるように混合したものを塗布した。この蛍光体層上を厚み100μのシリコン樹脂で被覆した。90%60℃環境下で、この試料に青色LEDからの青色光を照射して得られたフィルム透過光の色度を測定しながらその変化を調べたところ、非通水性材料層が形成されない同様の試料は24時間で劣化したのに対し、本試料は1000時間でも特性の劣化は見られなかった。
(具体例2)
透光性フィルムとして、厚み200μmのシクロオレフィン系樹脂(ゼオノア:日本ゼオン商品名)を用い、具体例1と同様の蛍光体層を形成した。この蛍光体層を厚み100μmのPTFE(四フッ化エチレン樹脂)エナメルで被覆した。これを、具体例1と同様に試験したところ、1000時間でも劣化は見られなかった。
The material for the phosphor particles 4 is appropriately selected depending on the excitation light wavelength to be used and the target fluorescence wavelength. For example, if the intensity of blue light, which is excitation light, is adjusted by using blue light as excitation light and a yellow phosphor that converts blue light into yellow light as the phosphor particles 4, excitation light and wavelength-converted light can be obtained. Light having a desired chromaticity can be obtained by the additive color mixture.
(Specific example 1)
A PET film having a thickness of 200 μm is used as the translucent film, and the S-based green phosphor particles and the S-based red phosphor particles are added to the epoxy resin at a ratio of 1: 1, and the total weight concentration with respect to the epoxy resin is 40%. What was mixed was applied. This phosphor layer was covered with a silicon resin having a thickness of 100 μm. When the change was examined while measuring the chromaticity of the film transmitted light obtained by irradiating the sample with blue light from a blue LED in a 90% 60 ° C. environment, a non-water-permeable material layer was not formed. This sample deteriorated in 24 hours, whereas this sample showed no deterioration in characteristics even after 1000 hours.
(Specific example 2)
A phosphor layer similar to that in Example 1 was formed using a cycloolefin resin (Zeonor: Nippon Zeon brand name) having a thickness of 200 μm as the translucent film. This phosphor layer was coated with PTFE (tetrafluoroethylene resin) enamel having a thickness of 100 μm. When this was tested in the same manner as in Example 1, no deterioration was observed even after 1000 hours.

図2に本実施例の蛍光体フィルムの断面構成を模式的に示す。本実施例が実施例1と異なる点は、透光性フィルム1の上に、第二非通水性材料層5が形成されている点である。第二非通水性材料層5としては、第一非通水性材料層3と同様の材料を用いることができる。このように第二非通水性材料層5を形成することによって、透光性フィルム1にPCなどの通常の透光性フィルム材料を用いても良好な防水効果を得ることが可能となる。
(具体例3)
厚さ50μmのPETフィルム上に、二酸化ケイ素ゾルを5μm形成し、その上に具体例1と同様の蛍光体層を100μm形成した。その上に、フッ素含有エポキシ接着剤を塗布し硬化させて、厚み120μmの非通水性材料層3を形成した。具体例1および具体例2と同様にしてその発光色の変化を調べたところ、1000時間以上に渡って劣化が見られなかった。
(具体例4)
厚さ100μmのPFA(四フッ化エチレンパーフルオロビニルエーテル共重合体)フィルム上に、具体例3と同様に二酸化ケイ素ゾルを2μm形成し、その上に蛍光体層とフッ素含有シリコン樹脂を200μm形成して発光色の色度評価をしたところ、1000時間以上に渡って劣化が見られなかった。
FIG. 2 schematically shows a cross-sectional configuration of the phosphor film of this example. This example is different from Example 1 in that a second water-impermeable material layer 5 is formed on the translucent film 1. As the second water-impermeable material layer 5, the same material as that of the first water-impermeable material layer 3 can be used. By forming the second water-impermeable material layer 5 in this way, a good waterproof effect can be obtained even if a normal light-transmitting film material such as PC is used for the light-transmitting film 1.
(Specific example 3)
5 μm of silicon dioxide sol was formed on a 50 μm thick PET film, and 100 μm of the same phosphor layer as in Example 1 was formed thereon. A non-water-permeable material layer 3 having a thickness of 120 μm was formed thereon by applying and curing a fluorine-containing epoxy adhesive. When the change in the emission color was examined in the same manner as in Specific Example 1 and Specific Example 2, no deterioration was observed over 1000 hours.
(Specific example 4)
A 2 μm silicon dioxide sol was formed on a 100 μm thick PFA (tetrafluoroethylene perfluorovinyl ether copolymer) film in the same manner as in Example 3, and then a phosphor layer and a fluorine-containing silicon resin were formed 200 μm thereon. When the chromaticity of the emitted color was evaluated, no deterioration was observed over 1000 hours.

図3は本実施例の照明装置の構成を模式的に示す断面図である。図3に示すように、光源6と導光板7の間に第一蛍光体フィルム9が、反射板8と導光板7の間に第二蛍光体フィルム10が設けられている。   FIG. 3 is a cross-sectional view schematically showing the configuration of the illumination device of this embodiment. As shown in FIG. 3, a first phosphor film 9 is provided between the light source 6 and the light guide plate 7, and a second phosphor film 10 is provided between the reflector plate 8 and the light guide plate 7.

また、導光板7は、アクリル樹脂やポリカーボネート樹脂やシクロオレフィン系樹脂などの透明高分子で形成されており、光源6からの光を光入射面から取り込んで内部に伝播する。一般に、導光板7の光出射面または裏面には微細なプリズム群や散乱構造体が形成されており、光出射面から面上の均一な光を照射する。光源6は青色LEDであり、導光板の光入射面に通常2つ以上配されている。図3に示す実施例では、導光板7の裏面には微細なプリズム群が形成されており、内部を伝播する光を所定の割合で裏面に取り出し、この裏面から照射された光は反射板8で反射されて再び導光板7を透過して、導光板7の光出射面から照射される。反射板8としては、PETなどの高分子基材上にAlやAgまたはAgとPdとの合金などを蒸着した反射層を形成したものや、内部に反射率の高い白色顔料を混合した透明高分子基材などを用いることができる。   The light guide plate 7 is made of a transparent polymer such as an acrylic resin, a polycarbonate resin, or a cycloolefin resin. The light guide plate 7 takes light from the light source 6 from the light incident surface and propagates the light into the inside. In general, a fine prism group or a scattering structure is formed on the light exit surface or the back surface of the light guide plate 7, and uniform light on the surface is irradiated from the light exit surface. The light sources 6 are blue LEDs, and usually two or more are arranged on the light incident surface of the light guide plate. In the embodiment shown in FIG. 3, a fine prism group is formed on the back surface of the light guide plate 7, and light propagating through the inside is taken out to the back surface at a predetermined ratio, and the light irradiated from the back surface is reflected by the reflection plate 8. Then, the light is again transmitted through the light guide plate 7 and irradiated from the light exit surface of the light guide plate 7. As the reflector 8, a reflective layer obtained by depositing Al, Ag, an alloy of Ag and Pd or the like on a polymer base material such as PET, or a transparent high-mixed white pigment having a high reflectance is used. A molecular substrate or the like can be used.

第一蛍光体フィルム9と第二蛍光体フィルム10は各々異なった蛍光体粒子を用いた蛍光体層が塗布され、その上を非通水性材料層で被覆した構成であり、実施例1と実施例2に示した蛍光体フィルムである。具体的に本実施例では、第一蛍光体フィルム9は青色光を赤色光に波長変換する赤色蛍光体層が第二非通水性材料層を塗布した透明なポリエチレンテレフタレート(PET)フィルム上に透明なシリコン樹脂バインダーやエポキシ樹脂バインダーを結合剤として塗布されている。そして、この赤色蛍光体層の表面には第一非通水性材料層が塗布されている。また、第二蛍光体フィルム10は青色光を緑色光に波長変換する緑色蛍光体層を第二非通水性材料層が塗布された透明なPETフィルム上に透明なシリコン樹脂バインダーを母材として塗布されている。そして、この緑色蛍光体層の表面には第一非通水性材料層が塗布されている。   The first phosphor film 9 and the second phosphor film 10 each have a structure in which phosphor layers using different phosphor particles are coated and coated with a non-water-permeable material layer. It is the phosphor film shown in Example 2. Specifically, in this embodiment, the first phosphor film 9 is transparent on a transparent polyethylene terephthalate (PET) film in which a red phosphor layer that converts blue light into red light is coated with a second water-impermeable material layer. A silicone resin binder or an epoxy resin binder is applied as a binder. And the 1st water-impermeable material layer is apply | coated to the surface of this red fluorescent substance layer. The second phosphor film 10 is a green phosphor layer for converting blue light to green light, and a transparent silicon resin binder is coated on a transparent PET film coated with the second water-impermeable material layer as a base material. Has been. And the 1st water-impermeable material layer is apply | coated to the surface of this green fluorescent substance layer.

第二蛍光体フィルム10に照射される光は均一な強度を持っているために、それに塗布する蛍光体層の膜厚は一様に塗布することができる。また、第一蛍光体フィルム9に塗布されている蛍光体層は少なくとも光源6からの光が照射される領域に塗布されておれば良い。   Since the light applied to the second phosphor film 10 has a uniform intensity, the phosphor layer applied to the second phosphor film 10 can be applied uniformly. Further, the phosphor layer applied to the first phosphor film 9 may be applied to at least a region irradiated with light from the light source 6.

一方、一般により短波長の光を波長変換する場合、波長変換して得られる光の波長が長くなるほど波長変換効率は低下する。従って、同じ光強度の変換光を得ようとすると、変換波長が長くなるほど照射光強度を大きくする必要がある。従って、赤色蛍光体を光源6の近傍に配することにより、青色光を赤色光に効率良く変換することができる。また、導光板7を形成する透明高分子材料の赤色光に対する吸収係数は、緑色光や青色光に比較して良いため、変換後の光路が長くなっても照射されるまでの損失を少なくすることができる。   On the other hand, when wavelength conversion of light having a shorter wavelength is generally performed, the wavelength conversion efficiency decreases as the wavelength of light obtained by wavelength conversion becomes longer. Therefore, to obtain converted light having the same light intensity, it is necessary to increase the irradiation light intensity as the conversion wavelength increases. Therefore, blue light can be efficiently converted into red light by arranging the red phosphor in the vicinity of the light source 6. Moreover, since the absorption coefficient with respect to red light of the transparent polymer material which forms the light-guide plate 7 may be compared with green light and blue light, even if the optical path after conversion becomes long, the loss until it irradiates is reduced. be able to.

一方、青色光から緑色光に波長変換する緑色蛍光体は赤色蛍光体に比べて波長変換効率が良いため、第二蛍光体フィルム10に配して均一な波長変換を行なう。   On the other hand, since the green phosphor that converts the wavelength from blue light to green light has better wavelength conversion efficiency than the red phosphor, it is arranged on the second phosphor film 10 to perform uniform wavelength conversion.

このような構成により、表色範囲が広く耐湿性に優れた照明装置が実現できた。   With such a configuration, a lighting device having a wide color range and excellent moisture resistance can be realized.

図4に本実施例の照明装置の構成を模式的に示す。本実施例では、第一蛍光体フィルム9を導光板7の裏面に、第二蛍光体フィルム10を導光板7の表面に配した。光源には発光波長460nmの青色LEDを用いた。そして、第一蛍光体フィルム9には赤色蛍光体を用い、第二蛍光体フィルム10には緑色蛍光体を用いた。このような構成によって、耐湿性に優れ、表色範囲の広い照明装置とすることが可能となった。   FIG. 4 schematically shows the configuration of the illumination device of the present embodiment. In this example, the first phosphor film 9 was disposed on the back surface of the light guide plate 7, and the second phosphor film 10 was disposed on the surface of the light guide plate 7. A blue LED having an emission wavelength of 460 nm was used as the light source. A red phosphor was used for the first phosphor film 9 and a green phosphor was used for the second phosphor film 10. With such a configuration, it is possible to obtain an illumination device that has excellent moisture resistance and a wide color range.

また、第一蛍光体フィルム9を通過する青色光は導光板7側からの照射光と反射板8側からの反射光で2回利用されるために、1回だけ青色光を波長変換する場合に比べて第一蛍光体フィルム9に含有させる蛍光体濃度を半分にすることができる。   In addition, since the blue light passing through the first phosphor film 9 is used twice by irradiation light from the light guide plate 7 side and reflected light from the reflection plate 8 side, the wavelength of the blue light is converted only once. As compared with the above, the phosphor concentration contained in the first phosphor film 9 can be halved.

また、この実施例では導光板7の内部を伝播する光は実質的に青色光だけとなるため、光出射面から照射するための導光板の構造設計を容易にすることができ、照明効率を向上させることができると共に設計納期を短縮することができた。さらにこのことにより、導光板2内部を伝播する光を外部に取り出して照射する手段として、導光板7の光出射面または裏面に微細プリズム群や微細散乱構造体を用いる以外に、ホログラムを効率良く用いることが可能となった。このホログラムとしては、二光束干渉縞によって得たパターンをリソグラフィーによって転写したり、リップマン型ホログラムなどの計算機ホログラムをリソグラフィーによって形成したりすることによって容易に作製することができる。   In this embodiment, since the light propagating through the light guide plate 7 is substantially only blue light, the structure design of the light guide plate for irradiation from the light exit surface can be facilitated, and the illumination efficiency can be improved. It was possible to improve the design delivery time. In addition, as a means for taking out and irradiating light propagating through the light guide plate 2 to the outside, this makes it possible to efficiently generate a hologram other than using a fine prism group or a fine scattering structure on the light exit surface or the back surface of the light guide plate 7. It became possible to use. This hologram can be easily produced by transferring a pattern obtained by two-beam interference fringes by lithography, or by forming a computer generated hologram such as a Lippmann hologram by lithography.

また、この実施例において、図9に示すように、蛍光体層12を反射板8の反射面に直接形成することもできる。   Further, in this embodiment, as shown in FIG. 9, the phosphor layer 12 can be directly formed on the reflecting surface of the reflecting plate 8.

図5は本実施例の照明装置の構成を示した模式的断面図である。本実施例が実施例4と異なる点は、第一蛍光体フィルム9と第二蛍光体フィルム10が両方とも導光板7の光出射面側に配されていることである。導光板7の光出射光は光強度分布が70%以上の均一性を有しているために、このような配置によって第一蛍光体フィルム9および第二蛍光体フィルム10による波長変換によって得られた励起光強度を均一にし、混色性を向上させることができた。さらに、第一蛍光体フィルム9に赤色蛍光体を、第二蛍光体フィルム10に緑色蛍光体を用いることによって、波長変換効率を向上させることができた。   FIG. 5 is a schematic cross-sectional view showing the configuration of the illumination device of this example. The difference between the present embodiment and the fourth embodiment is that both the first phosphor film 9 and the second phosphor film 10 are arranged on the light emitting surface side of the light guide plate 7. Since the light emitted from the light guide plate 7 has a light intensity distribution having a uniformity of 70% or more, it is obtained by wavelength conversion by the first phosphor film 9 and the second phosphor film 10 with such an arrangement. The excitation light intensity was made uniform and the color mixing property was improved. Furthermore, the wavelength conversion efficiency could be improved by using a red phosphor for the first phosphor film 9 and a green phosphor for the second phosphor film 10.

そして、非通水性材料層で被覆しない通常の蛍光体フィルムを用いた場合に比べて、第一実施例または第二実施例で示した本発明の蛍光体フィルムを用いることによって耐湿性に優れた照明装置とすることができた。   And compared with the case where the normal phosphor film not covered with the non-water-permeable material layer is used, the moisture resistance is excellent by using the phosphor film of the present invention shown in the first example or the second example. The lighting device could be used.

図6に本実施例の照明装置の模式的な断面構成を示す。本実施例では、第一蛍光体フィルム9と第二蛍光体フィルム10を光源6と導光板7の光入射面との間に設ける構成とした。この場合も、第一蛍光体フィルム9に赤色蛍光体を、第二蛍光体フィルム10に緑色蛍光体を用いることによって、波長変換効率を向上させることができた。   FIG. 6 shows a schematic cross-sectional configuration of the lighting apparatus of the present embodiment. In this embodiment, the first phosphor film 9 and the second phosphor film 10 are provided between the light source 6 and the light incident surface of the light guide plate 7. Also in this case, the wavelength conversion efficiency could be improved by using a red phosphor for the first phosphor film 9 and a green phosphor for the second phosphor film 10.

本実施例では、第一蛍光体フィルム9と第二蛍光体フィルム10とは光源6に近いために、これら蛍光体層に照射される光強度分布が大きくなる。そのため、これら蛍光体層で波長変換されて発光する光強度は、励起光の強度が大きな部分が強くなるために導光板内部で混色されるときに色むらが発生してしまう。そこで、励起光の光照射強度が大きな部分は蛍光体層に塗布する蛍光体厚みを薄く、励起光の光照射強度が小さな部分は蛍光体層に塗布する蛍光体厚みを厚くして、励起光と波長変換で得られた発光光との比がほぼ一定になるようにした。   In the present embodiment, since the first phosphor film 9 and the second phosphor film 10 are close to the light source 6, the light intensity distribution applied to these phosphor layers is increased. For this reason, the light intensity of the light emitted from the phosphor layers after being wavelength-converted becomes uneven when the colors are mixed inside the light guide plate because the portion where the intensity of the excitation light is large becomes strong. Therefore, the portion where the excitation light irradiation intensity is high has a small phosphor thickness applied to the phosphor layer, and the portion where the excitation light irradiation intensity is low is increased the phosphor thickness applied to the phosphor layer, so that the excitation light And the ratio of the emitted light obtained by wavelength conversion to be almost constant.

そして、光源6として近紫外光を発光する紫外線LEDと青色光を発光する青色LEDを近接して配した光源を用いることができる。紫外線LEDは例えば発光波長365nmであり、蛍光体に対する励起エネルギーが高いために高効率の波長変換を行なうことができる。しかしながら、紫外線は導光板7を構成する高分子材料などの照明装置の構成部材によって大きな吸収を受けるために、紫外線を導光板内に伝播させて広い領域で均一に蛍光体を励起することは困難である。従って、図6に示すように紫外線LEDと導光板7の間隙に蛍光体層を配置して、導光板内では変換後の可視光を伝播させて用いれば効率が良くなる。   As the light source 6, a light source in which an ultraviolet LED that emits near ultraviolet light and a blue LED that emits blue light are arranged close to each other can be used. The ultraviolet LED has an emission wavelength of 365 nm, for example, and has high excitation energy with respect to the phosphor, so that highly efficient wavelength conversion can be performed. However, since the ultraviolet rays are greatly absorbed by the constituent members of the lighting device such as the polymer material constituting the light guide plate 7, it is difficult to propagate the ultraviolet rays into the light guide plate and uniformly excite the phosphor in a wide area. It is. Therefore, as shown in FIG. 6, the efficiency can be improved by arranging a phosphor layer in the gap between the ultraviolet LED and the light guide plate 7 to propagate the visible light after conversion in the light guide plate.

図10は光源を3つ並列に並べて配置した場合の、第一蛍光体フィルム9および第二蛍光体フィルム10に塗布する蛍光体の濃度分布を模式的に示した平面図である。図10において、領域14、15、16の順に蛍光体粒子の濃度が高くなっている。領域14は光源の輝度中心に対応しており照射光強度が最も強く、この輝度中心から離れるに従って照射光強度が弱くなる。蛍光体は一般に照射光強度が強いほど波長変換効率が高くなり変換光成分が多くなる。従って、このように光源の輝度中心から遠ざかるにつれて蛍光体の濃度を大きくすることによって一様な色分布の照明光を得ることが可能となる。図では各光源に対応して領域を領域14、15、16の3領域に分割したが、より多くの領域に分割した方が色分布を良くすることができる。   FIG. 10 is a plan view schematically showing the concentration distribution of the phosphor applied to the first phosphor film 9 and the second phosphor film 10 when three light sources are arranged in parallel. In FIG. 10, the concentration of the phosphor particles increases in the order of regions 14, 15, and 16. The region 14 corresponds to the luminance center of the light source, and the irradiation light intensity is the strongest, and the irradiation light intensity decreases with increasing distance from the luminance center. In general, the stronger the irradiation light intensity of the phosphor, the higher the wavelength conversion efficiency and the more the converted light component. Therefore, it is possible to obtain illumination light with a uniform color distribution by increasing the concentration of the phosphor as the distance from the luminance center of the light source increases. In the figure, the area is divided into three areas 14, 15, and 16 corresponding to each light source, but the color distribution can be improved by dividing the area into more areas.

このような領域の作製は、スクリーン印刷やオフセット印刷などで各領域に対応した印刷版を用いて蛍光体濃度の異なる蛍光体層を順次印刷することによって容易に得ることができる。蛍光体フィルム9は、このように蛍光体層を形成した上に非通水性材料層を形成して環境の水分が蛍光体粒子に影響を与えないようにしてある。   The production of such a region can be easily obtained by sequentially printing phosphor layers having different phosphor concentrations using a printing plate corresponding to each region by screen printing, offset printing, or the like. The phosphor film 9 is formed in such a manner that a non-water-permeable material layer is formed on the phosphor layer so that moisture in the environment does not affect the phosphor particles.

このようにして、図6における第一蛍光体フィルム9と第二蛍光体フィルム10に形成する蛍光体濃度に分布を設けることによって、耐湿性に優れ、表色性が良く混色も良好な照明装置を得ることができた。
(具体例5)
図6において、紫外線LEDと青色LEDとを近接させて1つのパッケージに封入した光源6を3つ並列に配置した。紫外線LEDの発光波長は365nmであり、青色LEDの発光波長は470nmとした。透光性フィルム上に図10で示すような分布を持たせて結合剤に混合した赤色蛍光体粒子を5段階の濃度でスクリーン印刷して硬化させ、さらにその上にフッ素含有エポキシ樹脂を塗布して硬化して第一蛍光体フィルムとした。第二蛍光体フィルム10としては緑色蛍光体を第一蛍光体フィルム9と同様に印刷硬化させ、フッ素含有エポキシ樹脂で被覆したものを用いた。
In this way, by providing a distribution in the phosphor concentration formed in the first phosphor film 9 and the second phosphor film 10 in FIG. 6, the illumination device is excellent in moisture resistance, colorimetric characteristics, and color mixing. Could get.
(Specific example 5)
In FIG. 6, three light sources 6 in which ultraviolet LEDs and blue LEDs are placed close to each other and enclosed in one package are arranged in parallel. The emission wavelength of the ultraviolet LED was 365 nm, and the emission wavelength of the blue LED was 470 nm. On the translucent film, the red phosphor particles having the distribution shown in FIG. 10 and mixed with the binder are screen printed and cured at a concentration of 5 levels, and further a fluorine-containing epoxy resin is applied thereon. And cured to obtain a first phosphor film. As the second phosphor film 10, a green phosphor was printed and cured in the same manner as the first phosphor film 9 and coated with a fluorine-containing epoxy resin.

このようにして、紫外線LEDで赤色光と緑色光とを励起して、青色LEDからの青色光と混色することによって、色再現範囲が広く、混色性も良好な照明装置とすることができた。特に、励起光として用いる紫外光は色再現に与える影響はなく、励起された赤色光と緑色光、および青色光源からの青色光の混色のみを考えれば良いために、色調整の容易な照明装置とすることができた。   In this way, the red LED and the green light are excited by the ultraviolet LED and mixed with the blue light from the blue LED, so that an illumination device having a wide color reproduction range and a good color mixing property has been achieved. . In particular, the ultraviolet light used as excitation light has no effect on color reproduction, and it is only necessary to consider the mixed color of excited red light, green light, and blue light from a blue light source. And was able to.

なお、紫外光は照明装置の構成部材である導光板などの高分子材料の劣化を促進し、また液晶装置に紫外線の混入した光を照射すると液晶が劣化してしまう。さらには、観測者の目にも悪影響を与える。そのため、図6には明示していないが、本具体例では第二蛍光体フィルム10と導光板7の光入射面との間に、紫外線吸収フィルムを挿入した。   Note that ultraviolet light promotes deterioration of a polymer material such as a light guide plate that is a component of the lighting device, and the liquid crystal deteriorates when the liquid crystal device is irradiated with light mixed with ultraviolet light. In addition, it has an adverse effect on the eyes of the observer. Therefore, although not explicitly shown in FIG. 6, an ultraviolet absorbing film is inserted between the second phosphor film 10 and the light incident surface of the light guide plate 7 in this specific example.

図7は、本実施例の照明装置の構成を模式的に示す斜視図である。本実施例では、二つの青色光源6aと6bが光パイプ11の両側端に配置されている。これらの青色光源から出射した光は光パイプ11の内部を伝播して均一化されて、光パイプ11の導光板7との対向面またはその逆面に形成されたプリズムによって偏向され、導光板7の光入射面に一様に照射されて導光板7の内部に導かれる。本実施例の照明装置では、光パイプ6の中に赤色蛍光体を混合した構成とした。これにより、光パイプ6内部で青色光が赤色光に波長変換することとなり、均一な波長変換と混色が実現できる。また、光パイプ6の中では青色光は繰り返し反射する上に、光強度が強いために効率の良い波長変換が可能となった。なお、光パイプ11の全表面には図示しない非通水性材料層が形成され、光パイプ11内の赤色蛍光体粒子が環境の水分によって劣化しないようにしてある。   FIG. 7 is a perspective view schematically showing the configuration of the illumination device of the present embodiment. In the present embodiment, two blue light sources 6 a and 6 b are arranged at both ends of the light pipe 11. Light emitted from these blue light sources propagates through the inside of the light pipe 11 to be uniformed, and is deflected by a prism formed on the surface of the light pipe 11 facing the light guide plate 7 or on the opposite surface thereof. The light incident surface is uniformly irradiated and guided into the light guide plate 7. In the illuminating device of the present example, a red phosphor was mixed in the light pipe 6. As a result, the wavelength of blue light is converted into red light inside the light pipe 6, and uniform wavelength conversion and color mixing can be realized. In addition, the blue light is repeatedly reflected in the light pipe 6 and the light intensity is strong, so that efficient wavelength conversion is possible. A non-water-permeable material layer (not shown) is formed on the entire surface of the light pipe 11 so that the red phosphor particles in the light pipe 11 are not deteriorated by moisture in the environment.

一方、導光板7の裏面には実施例1または実施例2で示した第二蛍光体フィルム10が配されており、その表面に緑色蛍光体層が一様に形成されており、さらにその緑色蛍光体層の表面を非通水性材料層で被覆してある。このような構成によって、耐湿性に優れ、表色性と混色性が良好な照明装置が実現できた。   On the other hand, the second phosphor film 10 shown in Example 1 or Example 2 is disposed on the back surface of the light guide plate 7, and the green phosphor layer is uniformly formed on the surface, and the green phosphor layer is further formed. The surface of the phosphor layer is covered with a water-impermeable material layer. With such a configuration, an illuminating device having excellent moisture resistance and excellent coloration and color mixing properties can be realized.

図8は、本実施例の照明装置の構成を模式的に示す斜視図である。本実施例が実施例7と異なる点は、第二蛍光体フィルム10が光パイプ11と導光板7の光入射面との間に挿入されている点である。実施例7で説明したように、光パイプ11の内部に混合された赤色蛍光体は、光パイプ11内部の均一で強度の強い青色光によって効率良く青色光を赤色光に波長変換する。また、光パイプ内部で青色光と赤色光とは、充分均一に混色することができる。さらに、光パイプ11から導光板7の光入射面側に出射される光は均一であるために、第二蛍光体フィルム10に塗布する蛍光体層は均一であれば良い。また、実施例7に比べて、第二蛍光体フィルム10に照射される光強度が強いために、青色光を緑色光に変換する効率を高くすることができるという特長を持っている。そして、第二蛍光体フィルム10の面積を実施例7に比較して小さくすることができるために、使用する蛍光体の量を減らすことができ、照明装置の製造コストを削減することができる。   FIG. 8 is a perspective view schematically showing the configuration of the lighting apparatus of the present embodiment. The present embodiment is different from the seventh embodiment in that the second phosphor film 10 is inserted between the light pipe 11 and the light incident surface of the light guide plate 7. As described in the seventh embodiment, the red phosphor mixed inside the light pipe 11 efficiently converts the wavelength of the blue light into red light by the uniform and strong blue light inside the light pipe 11. Also, blue light and red light can be mixed sufficiently uniformly inside the light pipe. Furthermore, since the light emitted from the light pipe 11 to the light incident surface side of the light guide plate 7 is uniform, the phosphor layer applied to the second phosphor film 10 may be uniform. Moreover, since the light intensity irradiated to the 2nd fluorescent substance film 10 is strong compared with Example 7, it has the feature that the efficiency which converts blue light into green light can be made high. And since the area of the 2nd fluorescent substance film 10 can be made small compared with Example 7, the quantity of the fluorescent substance to be used can be reduced and the manufacturing cost of an illuminating device can be reduced.

このようにして、本実施例においても、より少ない蛍光体を用いて、耐湿性に優れ、表色性と混色性が良好な照明装置を実現することができた。   In this way, also in this example, it was possible to realize an illuminating device that was excellent in moisture resistance, and excellent in coloration and color mixing, using fewer phosphors.

図8に示した実施例8では、第二蛍光体フィルム10の表面に塗布する蛍光体は均一で一様にすれば良い。このとき例えば、青色光を赤色蛍光体で波長変換して赤色光を得る場合は波長変換に必要なエネルギーを吸収して強度が落ちる。その強度が落ちた青色光を緑色蛍光体に照射して青色光を緑色光に波長変換するのは効率的ではない。そこで、本実施例では、第二蛍光体フィルム10に赤色蛍光体と緑色蛍光体をフィルム面上で領域分割して互いに重なり合わないように選択的に印刷した。これにより励起光を有効に用いることができる。具体的には、図11に示すように透光性フィルム13上に、赤色蛍光体塗布領域16と緑色蛍光体塗布領域17とを互いに離間させたパターンを用いて、各々の領域に赤色蛍光体と緑色蛍光体とを結合剤中に混合分散させてスクリーン印刷した。そして、さらにその上を非通水性材料層で被覆した。このような構成によって、光パイプ6の内部に蛍光体を混合分散させることなく、1枚の蛍光体フィルムを用いることによって1光源から2波長の波長変換を効率良く行なうことが可能となった。また、各蛍光体は互いに励起光を吸収して弱め合うことなく良好な強度の励起光で波長変換することができるようになる。   In Example 8 shown in FIG. 8, the phosphor applied to the surface of the second phosphor film 10 may be uniform and uniform. At this time, for example, when blue light is wavelength-converted with a red phosphor to obtain red light, energy required for wavelength conversion is absorbed and the intensity decreases. It is not efficient to convert blue light into green light by irradiating the green phosphor with the blue light whose intensity has dropped. Therefore, in this embodiment, the red phosphor and the green phosphor are divided on the second phosphor film 10 and selectively printed so as not to overlap each other. Thereby, excitation light can be used effectively. Specifically, as shown in FIG. 11, a pattern in which a red phosphor coating region 16 and a green phosphor coating region 17 are spaced apart from each other on a translucent film 13 is used. And green phosphor were mixed and dispersed in a binder and screen printed. Further, a non-water-permeable material layer was further coated thereon. With such a configuration, it is possible to efficiently perform wavelength conversion of two wavelengths from one light source by using one phosphor film without mixing and dispersing phosphors in the light pipe 6. In addition, each phosphor can absorb the excitation light and can be wavelength-converted with excitation light having a good intensity without weakening each other.

図11において、分割する領域の形状は必ずしも矩形である必要は無く、ドット形状や多角形形状をしていても良い。波長変換される光の強度は分割領域の面積密度を調節することによって容易に調整することができる。また、印刷する蛍光体層の厚みや、結合剤に分散させる蛍光体粒子濃度を変えても良い。   In FIG. 11, the shape of the area to be divided does not necessarily have to be a rectangle, and may be a dot shape or a polygonal shape. The intensity of the light subjected to wavelength conversion can be easily adjusted by adjusting the area density of the divided regions. Further, the thickness of the phosphor layer to be printed and the concentration of the phosphor particles dispersed in the binder may be changed.

充分な混色を行なうためには、印刷領域は可能な限り小さい方が良い。スクリーン印刷やオフセット印刷またはインクジェットによる印刷法を用いることによって、印刷領域の大きさは50〜200μmまでの任意の大きさに調節することができ、充分な混色が可能である。印刷領域の大きさを変化させて各領域の蛍光体粒子濃度を変化させることによって、図10に示すような蛍光体濃度分布を実質的に持った蛍光体層を形成することも容易に実現することが可能となる。   In order to achieve sufficient color mixing, the print area should be as small as possible. By using screen printing, offset printing, or inkjet printing, the size of the printing area can be adjusted to an arbitrary size of 50 to 200 μm, and sufficient color mixing is possible. By changing the size of the printing region and changing the phosphor particle concentration in each region, it is possible to easily form a phosphor layer substantially having a phosphor concentration distribution as shown in FIG. It becomes possible.

また、このように蛍光体形成領域を分散させて形成することは、蛍光体層を光源と導光板の光入射面との間隙に配する以外の場合でも適用できることは言うまでもない。   Further, it goes without saying that the formation of the phosphor forming regions dispersed in this manner can be applied to cases other than arranging the phosphor layer in the gap between the light source and the light incident surface of the light guide plate.

以上のように、本発明による照明装置は、耐湿性に優れ、表色性と混色性が良好な照明装置とすることができ、高精彩な液晶表示装置に用いることによってその表色性、耐湿性を向上させるのみならず、高輝度化をはかることができる。   As described above, the illuminating device according to the present invention can be an illuminating device that is excellent in moisture resistance and has excellent color and color mixing properties, and can be used for a high-definition liquid crystal display device. In addition to improving the brightness, it is possible to increase the brightness.

もちろん、本発明の蛍光体フィルムと照明装置は、液晶表示装置の照明装置としてのみならず、一般の平面型光源や照明装置として用いることができることは言うまでもない。   Of course, it goes without saying that the phosphor film and the illuminating device of the present invention can be used not only as an illuminating device of a liquid crystal display device but also as a general flat light source or illuminating device.

図14に、本発明による表示装置の構成を模式的に示す。前述の実施例で説明した構成の照明装置が液晶表示素子を照明するために設けられている。すなわち、導光板7の上部に拡散板24を配し、その上に液晶表示素子23が設けられている。導光板7の下部には反射シート8が設けられている。これらの構成要素は筐体25によって保護、保持されている。導光板7の一方の端面には配線基板21に実装された光源6が配してあり、導光板7と位置ずれすることなく対向している。図14には図示していないが、上述した実施例と同様に蛍光体フィルムが導光板7の周辺のいずれかの箇所に配されていることは言うまでもない。   FIG. 14 schematically shows a configuration of a display device according to the present invention. An illumination device having the configuration described in the above embodiment is provided to illuminate the liquid crystal display element. That is, the diffusion plate 24 is disposed on the light guide plate 7, and the liquid crystal display element 23 is provided thereon. A reflection sheet 8 is provided below the light guide plate 7. These components are protected and held by the housing 25. The light source 6 mounted on the wiring substrate 21 is disposed on one end face of the light guide plate 7 and faces the light guide plate 7 without being displaced. Although not shown in FIG. 14, it goes without saying that the phosphor film is disposed at any location around the light guide plate 7 as in the above-described embodiment.

本発明の蛍光体フィルムの構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the fluorescent substance film of this invention. 本発明の蛍光体フィルムの構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the fluorescent substance film of this invention. 本発明による照明装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the illuminating device by this invention. 本発明による照明装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the illuminating device by this invention. 本発明による照明装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the illuminating device by this invention. 本発明による照明装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the illuminating device by this invention. 本発明による照明装置の構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the illuminating device by this invention. 本発明による照明装置の構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the illuminating device by this invention. 本発明の照明装置に用いた蛍光体層の構成を示す模式図である。It is a schematic diagram which shows the structure of the fluorescent substance layer used for the illuminating device of this invention. 本発明の照明装置に用いた蛍光体層の構成を示す模式図である。It is a schematic diagram which shows the structure of the fluorescent substance layer used for the illuminating device of this invention. 本発明の照明装置に用いた蛍光体層の構成を示す模式図である。It is a schematic diagram which shows the structure of the fluorescent substance layer used for the illuminating device of this invention. 本発明の照明装置の表色性を示す色度図である。It is a chromaticity diagram which shows the color specification of the illuminating device of this invention. 従来の照明装置の表色性を示す色度図である。It is a chromaticity diagram which shows the color specification of the conventional illuminating device. 本発明の液晶表示装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the liquid crystal display device of this invention.

符号の説明Explanation of symbols

1 透光性フィルム
2 結合剤
3 第一非通水性材料層
4 蛍光体粒子
5 第二非通水性材料層
6 光源
7 導光板
8 反射板
9 第一蛍光体フィルム
10 第二蛍光体フィルム
11 光パイプ
12 蛍光体層
13 透光性フィルム
16 赤色蛍光体塗布領域
17 緑色蛍光体塗布領域
21 配線基板
23 液晶表示素子
24 拡散板
25 筐体
DESCRIPTION OF SYMBOLS 1 Translucent film 2 Binder 3 1st water-impermeable material layer 4 Phosphor particle 5 2nd water-impermeable material layer 6 Light source 7 Light guide plate 8 Reflector 9 First phosphor film 10 Second phosphor film 11 Light Pipe 12 Phosphor layer 13 Translucent film 16 Red phosphor coating region 17 Green phosphor coating region 21 Wiring substrate 23 Liquid crystal display element 24 Diffusion plate 25 Housing

Claims (17)

光源と、
前記光源からの光によって励起され、励起光を発する蛍光体と、
前記光源からの光と前記励起光を伝播して平面状に照射する導光板と、を有する照明装置であって、前記蛍光体が、透光性フィルムと、前記透光性フィルムの一方の表面上に設けられ、蛍光体粒子が結合剤に混合された蛍光体層と、前記蛍光体層の表面に設けられた非通水性材料層とを備えることを特徴とする照明装置。
A light source;
A phosphor that is excited by light from the light source and emits excitation light;
An illumination device comprising: a light guide plate that propagates light from the light source and the excitation light to irradiate it in a planar shape, wherein the phosphor is a translucent film and one surface of the translucent film An illuminating device comprising: a phosphor layer provided on the phosphor layer in which phosphor particles are mixed with a binder; and a non-water-permeable material layer provided on a surface of the phosphor layer.
前記光源は青色光源であり、前記蛍光体粒子は、青色光を緑色光に変換する緑色蛍光体粒子と、青色光を赤色光に変換する赤色蛍光体粒子を含むことを特徴とする請求項1に記載の照明装置。   The light source is a blue light source, and the phosphor particles include green phosphor particles that convert blue light into green light and red phosphor particles that convert blue light into red light. The lighting device described in 1. 前記光源は紫外線光源と青色光源であり、前記蛍光体粒子は、紫外光を緑色光に変換する緑色蛍光体粒子と、紫外光を赤色光に変換する赤色蛍光体粒子であることを特徴とする請求項1に記載の照明装置。   The light sources are an ultraviolet light source and a blue light source, and the phosphor particles are green phosphor particles that convert ultraviolet light into green light and red phosphor particles that convert ultraviolet light into red light. The lighting device according to claim 1. 前記蛍光体は、前記光源からの光によって励起され、第一の波長範囲の励起光を発する第一の蛍光体と、第二の波長範囲の励起光を発する第二の蛍光体であることを特徴とする請求項1に記載の照明装置。   The phosphor is a first phosphor that is excited by light from the light source and emits excitation light in a first wavelength range, and a second phosphor that emits excitation light in a second wavelength range. The lighting device according to claim 1, wherein 前記第一の蛍光体と前記第二の蛍光体のうち、波長の短い光を励起光として発する蛍光体が光源側に配置されたことを特徴とする請求項4に記載の照明装置。   The illuminating device according to claim 4, wherein a phosphor that emits light having a short wavelength as excitation light among the first phosphor and the second phosphor is disposed on a light source side. 前記導光体の背後側には反射体が設けられ、前記第一の蛍光体は前記光源と前記導光体の間に、前記第二の蛍光体は前記導光体と前記反射体の間に設けられたことを特徴とする請求項4に記載の照明装置。   A reflector is provided behind the light guide, the first phosphor is between the light source and the light guide, and the second phosphor is between the light guide and the reflector. The lighting device according to claim 4, wherein the lighting device is provided in the lighting device. 前記導光体の背後側には反射体が設けられ、前記第一の蛍光体は前記導光体と前記反射体の間に、前記第二の蛍光体は前記導光体の照射面側に設けられたことを特徴とする請求項4に記載の照明装置。   A reflector is provided behind the light guide, the first phosphor is disposed between the light guide and the reflector, and the second phosphor is disposed on the irradiation surface side of the light guide. The lighting device according to claim 4, wherein the lighting device is provided. 前記第一の蛍光体と前記第二の蛍光体は前記光源と前記導光体の間に設けられ、前記第一の蛍光体が前記第二の蛍光体よりも前記光源の近くに設けられたことを特徴とする請求項4に記載の照明装置。   The first phosphor and the second phosphor are provided between the light source and the light guide, and the first phosphor is provided closer to the light source than the second phosphor. The lighting device according to claim 4. 前記第一の蛍光体と前記第二の蛍光体は、面内に互いに重なり合わないように配されたことを特徴とする請求項4に記載の照明装置。   The lighting device according to claim 4, wherein the first phosphor and the second phosphor are arranged so as not to overlap each other in a plane. 前記蛍光体が前記光源と前記導光体の間に設けられるとともに、前記蛍光体粒子が混合された密度が、前記光源に近い領域ほど大きくなるように設定されたことを特徴とする請求項1に記載の照明装置。   2. The phosphor is provided between the light source and the light guide, and the density at which the phosphor particles are mixed is set so as to increase in a region closer to the light source. The lighting device described in 1. 前記蛍光体粒子が混合された密度を前記蛍光体の位置に応じて変えることにより、前記導光体から出射する光の強度を調整したことを特徴とする請求項1に記載の照明装置。   The illumination device according to claim 1, wherein the intensity of light emitted from the light guide is adjusted by changing a density of the phosphor particles mixed according to a position of the phosphor. 前記蛍光体粒子の混合密度は、前記光源の輻射強度分布に反比例するように設定されたことを特徴とする請求項11に記載の照明装置。   The lighting device according to claim 11, wherein a mixing density of the phosphor particles is set to be inversely proportional to a radiation intensity distribution of the light source. 前記光源からの光を伝播して前記導光板に線状に光が入射するように、前記光源と前記導光板の間に設けられた光パイプを備え、前記蛍光体層が前記光パイプ内に形成され、前記光パイプの全表面を覆うように非通水性材料層が設けられたことを特徴とする請求項1に記載の照明装置。   A light pipe provided between the light source and the light guide plate so that light from the light source propagates and linearly enters the light guide plate, and the phosphor layer is formed in the light pipe. The non-water-permeable material layer is provided so that the whole surface of the said light pipe may be covered, The illuminating device of Claim 1 characterized by the above-mentioned. 前記光源からの光を伝播して前記導光板に線状に光が入射するように、前記光源と前記導光板の間に設けられた光パイプを備え、
前記第一の蛍光体の蛍光体粒子を前記光パイプの中に設け、前記光パイプの全表面を覆うように非通水性材料層を設け、前記光パイプと前記導光板の光入射面との間に前記第二の蛍光体を設けたことを特徴とする請求項4に記載の照明装置。
A light pipe provided between the light source and the light guide plate so that the light from the light source propagates and the light is linearly incident on the light guide plate;
The phosphor particles of the first phosphor are provided in the light pipe, a non-water-permeable material layer is provided so as to cover the entire surface of the light pipe, and the light pipe and the light incident surface of the light guide plate The lighting device according to claim 4, wherein the second phosphor is provided therebetween.
請求項1から14のいずれか一項に記載された構成の照明装置と、前記照明装置の照射面からの光により照明される非自発光型の表示素子と、を備えることを特徴とする表示装置。   15. A display comprising: the illumination device having the configuration according to claim 1; and a non-self-luminous display element that is illuminated by light from an irradiation surface of the illumination device. apparatus. 透光性フィルムと、前記透光性フィルムの一方の表面上に設けられ、蛍光体粒子が結合剤に混合された蛍光体層と、前記蛍光体層の表面に設けられた非通水性材料層と、を備えることを特徴とする蛍光体フィルム。   A translucent film, a phosphor layer provided on one surface of the translucent film, phosphor particles mixed with a binder, and a non-water-permeable material layer provided on the surface of the phosphor layer And a phosphor film. 前記透光性フィルムが非通水性材料で形成されたことを特徴とする請求項16に記載の蛍光体フィルム。   The phosphor film according to claim 16, wherein the translucent film is formed of a non-water-permeable material.
JP2005182851A 2005-05-31 2005-06-23 Illumination device and display device including the same Expired - Fee Related JP4579065B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005182851A JP4579065B2 (en) 2005-06-23 2005-06-23 Illumination device and display device including the same
US11/430,615 US20060268537A1 (en) 2005-05-31 2006-05-09 Phosphor film, lighting device using the same, and display device
KR1020060048639A KR20060125535A (en) 2005-05-31 2006-05-30 Phosphor film, lighting device using the same, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005182851A JP4579065B2 (en) 2005-06-23 2005-06-23 Illumination device and display device including the same

Publications (3)

Publication Number Publication Date
JP2007005098A true JP2007005098A (en) 2007-01-11
JP2007005098A5 JP2007005098A5 (en) 2008-08-07
JP4579065B2 JP4579065B2 (en) 2010-11-10

Family

ID=37690511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005182851A Expired - Fee Related JP4579065B2 (en) 2005-05-31 2005-06-23 Illumination device and display device including the same

Country Status (1)

Country Link
JP (1) JP4579065B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158119A (en) * 2007-12-25 2009-07-16 Stanley Electric Co Ltd Surface light source device
JP2009199832A (en) * 2008-02-20 2009-09-03 Sony Corp Illumination apparatus and display apparatus
WO2010055941A1 (en) * 2008-11-17 2010-05-20 アルプス電気株式会社 Illuminated small-size electronic apparatus
JP2011013567A (en) * 2009-07-03 2011-01-20 Sony Corp Color conversion member and display device
JP2011124063A (en) * 2009-12-10 2011-06-23 Ushio Inc Linear light source device
JP2011222506A (en) * 2010-04-10 2011-11-04 Lg Innotek Co Ltd Light source device
WO2012044303A1 (en) * 2010-09-30 2012-04-05 Hewlett-Packard Development Company, L.P. Reflective color pixel
WO2012043438A1 (en) * 2010-09-30 2012-04-05 シャープ株式会社 Lighting apparatus and display device
WO2012121092A1 (en) * 2011-03-08 2012-09-13 シャープ株式会社 Lighting apparatus, display apparatus, and television receiver apparatus
JP2012220956A (en) * 2011-04-05 2012-11-12 Lg Innotek Co Ltd Display device
WO2013024558A1 (en) * 2011-08-15 2013-02-21 パナソニック株式会社 Fluorescent optical element and light-emitting device using same
KR101241703B1 (en) * 2011-02-18 2013-03-11 이승현 Luminous body and touch screen for coordinates cognition using the same
WO2013012193A3 (en) * 2011-07-20 2013-04-11 Lg Innotek Co., Ltd. Optical member and display device having the same
WO2014017334A1 (en) 2012-07-25 2014-01-30 デクセリアルズ株式会社 Phosphor sheet
TWI447450B (en) * 2011-11-30 2014-08-01 Au Optronics Corp Light guide panel, backlight module, and manufacturing method thereof
KR101508284B1 (en) * 2009-12-15 2015-04-06 엘지이노텍 주식회사 Back Light Unit Using Quantum Dots and Liquid Display Device Comprising of the Same
KR101562986B1 (en) * 2009-12-09 2015-10-23 엘지이노텍 주식회사 front light unit using quantum dots
WO2016148053A1 (en) * 2015-03-18 2016-09-22 シャープ株式会社 Illumination device, display device, and television receiving device
WO2016158597A1 (en) * 2015-03-27 2016-10-06 住友化学株式会社 Light-emitting element
US9715055B2 (en) 2011-07-14 2017-07-25 Lg Innotek Co., Ltd. Display device and optical member
US9720159B2 (en) 2011-01-31 2017-08-01 Lg Innotek Co., Ltd. Optical member and display device including the same
KR101778900B1 (en) * 2013-09-02 2017-09-14 센젠 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Screening method suitable for fluorescent-powder optical film of backlight module, and backlight module
US9766386B2 (en) 2011-07-18 2017-09-19 Lg Innotek Co., Ltd. Optical member and display device having the same
US9766392B2 (en) 2011-07-14 2017-09-19 Lg Innotek Co., Ltd. Optical member, display device having the same and method of fabricating the same
US9804319B2 (en) 2008-12-30 2017-10-31 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
WO2017191687A1 (en) * 2016-05-06 2017-11-09 堺ディスプレイプロダクト株式会社 Display device
US9835785B2 (en) 2011-07-18 2017-12-05 Lg Innotek Co., Ltd. Optical member, display device having the same, and method of fabricating the same
US9851602B2 (en) 2011-07-18 2017-12-26 Lg Innotek Co., Ltd. Optical member and display device having the same
JP2018088401A (en) * 2016-11-18 2018-06-07 東レ株式会社 Light source unit and liquid crystal display
WO2019059065A1 (en) * 2017-09-21 2019-03-28 株式会社小糸製作所 Lamp unit
US10247871B2 (en) 2011-11-07 2019-04-02 Lg Innotek Co., Ltd. Optical sheet, display device and light emitting device having the same
US11198270B2 (en) 2008-12-30 2021-12-14 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062530A (en) * 2000-06-05 2002-02-28 Toshiba Corp Backlight for color liquid crystal, color liquid crystal display device and el (electroluminescence) light- emitting element for backlight for color liquid crystal
JP2003059325A (en) * 2001-08-10 2003-02-28 Alps Electric Co Ltd Surface light emitting device and liquid crystal display device therewith
JP2004071357A (en) * 2002-08-06 2004-03-04 Shigeo Fujita Lighting device
JP2004119375A (en) * 2002-09-26 2004-04-15 Agilent Technol Inc Backlight structure using luminescent material, and method and system for providing the same
JP2004164977A (en) * 2002-11-12 2004-06-10 Nichia Chem Ind Ltd Light-emitting apparatus using phosphor sheet
JP2004349647A (en) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd Light-emitting device and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062530A (en) * 2000-06-05 2002-02-28 Toshiba Corp Backlight for color liquid crystal, color liquid crystal display device and el (electroluminescence) light- emitting element for backlight for color liquid crystal
JP2003059325A (en) * 2001-08-10 2003-02-28 Alps Electric Co Ltd Surface light emitting device and liquid crystal display device therewith
JP2004071357A (en) * 2002-08-06 2004-03-04 Shigeo Fujita Lighting device
JP2004119375A (en) * 2002-09-26 2004-04-15 Agilent Technol Inc Backlight structure using luminescent material, and method and system for providing the same
JP2004164977A (en) * 2002-11-12 2004-06-10 Nichia Chem Ind Ltd Light-emitting apparatus using phosphor sheet
JP2004349647A (en) * 2003-05-26 2004-12-09 Matsushita Electric Works Ltd Light-emitting device and method of manufacturing the same

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158119A (en) * 2007-12-25 2009-07-16 Stanley Electric Co Ltd Surface light source device
JP2009199832A (en) * 2008-02-20 2009-09-03 Sony Corp Illumination apparatus and display apparatus
WO2010055941A1 (en) * 2008-11-17 2010-05-20 アルプス電気株式会社 Illuminated small-size electronic apparatus
US11420412B2 (en) 2008-12-30 2022-08-23 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10899105B2 (en) 2008-12-30 2021-01-26 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US9804319B2 (en) 2008-12-30 2017-10-31 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10302845B2 (en) 2008-12-30 2019-05-28 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10444423B2 (en) 2008-12-30 2019-10-15 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US11198270B2 (en) 2008-12-30 2021-12-14 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US11396158B2 (en) 2008-12-30 2022-07-26 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
JP2011013567A (en) * 2009-07-03 2011-01-20 Sony Corp Color conversion member and display device
US8517551B2 (en) 2009-07-03 2013-08-27 Dexerials Corporation Phosphor sheet, a diffusion plate, an illuminating device, and a display unit
KR101562986B1 (en) * 2009-12-09 2015-10-23 엘지이노텍 주식회사 front light unit using quantum dots
JP2011124063A (en) * 2009-12-10 2011-06-23 Ushio Inc Linear light source device
USRE47964E1 (en) 2009-12-15 2020-04-28 Lg Innotek Co., Ltd. Display device
US9244209B2 (en) 2009-12-15 2016-01-26 Lg Innotek Co., Ltd. Display device
KR101508284B1 (en) * 2009-12-15 2015-04-06 엘지이노텍 주식회사 Back Light Unit Using Quantum Dots and Liquid Display Device Comprising of the Same
USRE48012E1 (en) 2009-12-15 2020-05-26 Lg Innotek Co., Ltd. Display device
US9541695B2 (en) 2010-04-10 2017-01-10 Lg Innotek Co., Ltd. Light source device
JP2011222506A (en) * 2010-04-10 2011-11-04 Lg Innotek Co Ltd Light source device
WO2012044303A1 (en) * 2010-09-30 2012-04-05 Hewlett-Packard Development Company, L.P. Reflective color pixel
US8998434B2 (en) 2010-09-30 2015-04-07 Hewlett-Packard Development Company, L.P. Reflective color pixel
WO2012043438A1 (en) * 2010-09-30 2012-04-05 シャープ株式会社 Lighting apparatus and display device
US9720159B2 (en) 2011-01-31 2017-08-01 Lg Innotek Co., Ltd. Optical member and display device including the same
KR101241703B1 (en) * 2011-02-18 2013-03-11 이승현 Luminous body and touch screen for coordinates cognition using the same
WO2012121092A1 (en) * 2011-03-08 2012-09-13 シャープ株式会社 Lighting apparatus, display apparatus, and television receiver apparatus
JP2012220956A (en) * 2011-04-05 2012-11-12 Lg Innotek Co Ltd Display device
USRE47584E1 (en) 2011-04-05 2019-08-27 Lg Innotek Co., Ltd. Display device
US8783930B2 (en) 2011-04-05 2014-07-22 Lg Innotek Co., Ltd. Display device
US9075173B2 (en) 2011-04-05 2015-07-07 Lg Innotek Co., Ltd. Display device
US9715055B2 (en) 2011-07-14 2017-07-25 Lg Innotek Co., Ltd. Display device and optical member
US9720160B2 (en) 2011-07-14 2017-08-01 Lg Innotek Co., Ltd. Display device and optical member
US9766392B2 (en) 2011-07-14 2017-09-19 Lg Innotek Co., Ltd. Optical member, display device having the same and method of fabricating the same
US9835785B2 (en) 2011-07-18 2017-12-05 Lg Innotek Co., Ltd. Optical member, display device having the same, and method of fabricating the same
US10054730B2 (en) 2011-07-18 2018-08-21 Lg Innotek Co., Ltd. Optical member, display device having the same, and method of fabricating the same
US9766386B2 (en) 2011-07-18 2017-09-19 Lg Innotek Co., Ltd. Optical member and display device having the same
US9851602B2 (en) 2011-07-18 2017-12-26 Lg Innotek Co., Ltd. Optical member and display device having the same
KR101294415B1 (en) * 2011-07-20 2013-08-08 엘지이노텍 주식회사 Optical member and display device having the same
US9829621B2 (en) 2011-07-20 2017-11-28 Lg Innotek Co., Ltd. Optical member and display device having the same
WO2013012193A3 (en) * 2011-07-20 2013-04-11 Lg Innotek Co., Ltd. Optical member and display device having the same
WO2013024558A1 (en) * 2011-08-15 2013-02-21 パナソニック株式会社 Fluorescent optical element and light-emitting device using same
US9897286B2 (en) 2011-08-15 2018-02-20 Panasonic Intellectual Property Management Co., Ltd. Phosphor optical element and light-emitting device using the same
JP5583281B2 (en) * 2011-08-15 2014-09-03 パナソニック株式会社 Phosphor optical element and light emitting device using the same
US9605832B2 (en) 2011-08-15 2017-03-28 Panasonic Intellectual Property Management Co., Ltd. Phosphor optical element and light-emitting device using the same
US10247871B2 (en) 2011-11-07 2019-04-02 Lg Innotek Co., Ltd. Optical sheet, display device and light emitting device having the same
TWI447450B (en) * 2011-11-30 2014-08-01 Au Optronics Corp Light guide panel, backlight module, and manufacturing method thereof
KR20150038078A (en) 2012-07-25 2015-04-08 데쿠세리아루즈 가부시키가이샤 Phosphor sheet
WO2014017334A1 (en) 2012-07-25 2014-01-30 デクセリアルズ株式会社 Phosphor sheet
US9850427B2 (en) 2012-07-25 2017-12-26 Dexerials Corporation Phosphor sheet
KR101778900B1 (en) * 2013-09-02 2017-09-14 센젠 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 Screening method suitable for fluorescent-powder optical film of backlight module, and backlight module
JP2018198207A (en) * 2015-03-18 2018-12-13 シャープ株式会社 Illumination device, display device, and television receiving device
JP2018195583A (en) * 2015-03-18 2018-12-06 シャープ株式会社 Luminaire, display device and television receiver
WO2016148053A1 (en) * 2015-03-18 2016-09-22 シャープ株式会社 Illumination device, display device, and television receiving device
JPWO2016148053A1 (en) * 2015-03-18 2017-11-30 シャープ株式会社 Lighting device, display device, and television receiver
WO2016158597A1 (en) * 2015-03-27 2016-10-06 住友化学株式会社 Light-emitting element
CN107407751A (en) * 2015-03-27 2017-11-28 住友化学株式会社 Light-emitting component
WO2017191687A1 (en) * 2016-05-06 2017-11-09 堺ディスプレイプロダクト株式会社 Display device
JP2018088401A (en) * 2016-11-18 2018-06-07 東レ株式会社 Light source unit and liquid crystal display
WO2019059065A1 (en) * 2017-09-21 2019-03-28 株式会社小糸製作所 Lamp unit

Also Published As

Publication number Publication date
JP4579065B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4579065B2 (en) Illumination device and display device including the same
US7695150B2 (en) Lighting unit, display device, and phosphor film
US20060268537A1 (en) Phosphor film, lighting device using the same, and display device
JP2006202533A (en) Lighting system
US7859175B2 (en) Illuminating device, display device and optical film
KR101177480B1 (en) Lighting apparatus and display device comprising the same
JP6532179B2 (en) Lighting device, display device, and television receiver
JP6259443B2 (en) Liquid crystal display
JP4898332B2 (en) Display device
US7597470B2 (en) Illuminating device, and display device and portable electronic device having the same
TWI497167B (en) Direct-type backlight module and diffuser structure
JP4976196B2 (en) Display device and lighting device
KR101955188B1 (en) Illumination device
JP2009231273A (en) Illumination device and display device equipped therewith
WO2000058665A1 (en) Planar light source
JP2007073206A (en) Led light source device, lighting system and display device
KR20110080088A (en) Backlight apparatus
JP2019139905A (en) Illumination device, display device, and television receiver
WO2009145319A1 (en) Light source device and display unit equipped with light source device
JP2008108523A (en) Lighting system, and display device equipped with it
CN111308778B (en) Backlight unit and display device including the same
JP2009104941A (en) Illumination device and display device
CN111665662B (en) Lighting device and display device
CN106907620A (en) Front located light source and the display device including the front located light source
KR20160015833A (en) Backlight device for LCD panel using quantum dot microcapsules

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4579065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees