WO2012043438A1 - Lighting apparatus and display device - Google Patents

Lighting apparatus and display device Download PDF

Info

Publication number
WO2012043438A1
WO2012043438A1 PCT/JP2011/071808 JP2011071808W WO2012043438A1 WO 2012043438 A1 WO2012043438 A1 WO 2012043438A1 JP 2011071808 W JP2011071808 W JP 2011071808W WO 2012043438 A1 WO2012043438 A1 WO 2012043438A1
Authority
WO
WIPO (PCT)
Prior art keywords
emission surface
fluorescent member
light
emission
surface region
Prior art date
Application number
PCT/JP2011/071808
Other languages
French (fr)
Japanese (ja)
Inventor
裕紀 行方
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012043438A1 publication Critical patent/WO2012043438A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/04Materials and properties dye
    • G02F2202/046Materials and properties dye fluorescent

Definitions

  • the present invention relates to a lighting device and a display device.
  • the liquid crystal display panel that displays images does not emit light, so an illumination device is installed on the back side of the liquid crystal display panel (the side opposite to the display surface side of the liquid crystal display panel)
  • the liquid crystal display panel is illuminated with light from the illumination device.
  • the illuminating device installed in the back surface side of a liquid crystal display panel is called the backlight unit etc., for example.
  • a cold cathode fluorescent lamp in which mercury or xenon is enclosed in a fluorescent tube is known.
  • the cold cathode fluorescent lamp is used as the light source of the backlight unit, there are disadvantages that the light emission luminance and life are insufficient, and that the luminance on the low-pressure side is low, making it difficult to obtain a uniform light emission. It was.
  • the backlight unit is roughly classified into two types, an edge light type and a direct type.
  • An edge-light type backlight unit has a light guide plate arranged directly under a liquid crystal display panel (a region facing the back surface of the liquid crystal display panel), and a light source arranged so as to face a predetermined side end surface of the light guide plate. It is.
  • the edge light type backlight unit when light is emitted from the light source, the light from the light source is introduced into the light guide plate through a predetermined side end surface of the light guide plate. Then, the light introduced into the light guide plate is emitted from the front surface of the light guide plate (the surface directed to the liquid crystal display panel side) to illuminate the liquid crystal display panel.
  • the direct type backlight unit has a light source arranged directly under the liquid crystal display panel.
  • Such a direct type backlight unit is advantageous for illuminating a large area with high output, and is often used for a large-sized liquid crystal display device.
  • the LED package 101 is normally mounted on the mounting surface of the substrate 102, so that the diffusion plate 103 is opposed to the mounting surface of the substrate 102 with a predetermined interval. Is arranged. Thereby, the light emitted from the LED package 101 enters the diffusion plate 103 and is introduced into the diffusion plate 103, and then diffused and emitted from the diffusion plate 103 to illuminate a liquid crystal display panel (not shown). become.
  • the region 100a (LED in FIG.
  • the region 100b region overlapping with the gap between adjacent LED packages 101) becomes darker than the region overlapping with the package 101), resulting in inconvenience that luminance unevenness occurs in the illumination light.
  • the region 100b becomes darker than the region 100a in FIG. 9, and luminance unevenness occurs in the illumination light.
  • This invention was made in order to solve the said subject, and it aims at providing the illuminating device and display apparatus which can suppress that the brightness nonuniformity generate
  • an illumination device has a light source that emits ultraviolet rays and an emission surface that faces the illuminated body side, and introduces ultraviolet rays emitted from the light source to emit light from the emission surface. And a translucent plate that emits light. And the fluorescent member which absorbs an ultraviolet-ray and light-emits is formed on the output surface of a translucent board.
  • the fluorescent member since the ultraviolet ray emitted from the emission surface of the translucent plate is incident on the fluorescent member by being configured as described above, the fluorescent member is excited to emit light, and from the fluorescent member The emitted light becomes the basis of the illumination light. And if it does in this way, since the light emitted from a fluorescent member will spread in all directions, it will become possible to suppress that a brightness nonuniformity arises in illumination light.
  • the amount of ultraviolet light emitted per unit area varies depending on the emission position of the light emitting surface of the light transmitting plate (for example, the amount of ultraviolet light emitted per unit area in the first light emitting surface region of the light emitting surface of the light transmitting plate) Is larger than the amount of ultraviolet light emitted per unit area in the second emission surface area), the fluorescent member formation density in the first emission surface area is reduced, and the fluorescence member in the second emission surface area is reduced.
  • the difference between the amount of ultraviolet light per unit area incident on the fluorescent member in the first emission surface region and the amount of ultraviolet light per unit area incident on the fluorescent member in the second emission surface region (first The difference between the light emission amount per unit area in the one emission surface region and the light emission amount per unit area in the second emission surface region can be reduced. Thereby, even if the amount of ultraviolet rays emitted per unit area differs depending on the emission position of the emission surface of the translucent plate, luminance unevenness generated in the illumination light is effectively suppressed.
  • a fluorescent member that includes a plurality of types of phosphors that are excited by ultraviolet rays to emit light is used. If comprised in this way, white illumination light can be obtained easily.
  • the amount of emitted ultraviolet light per unit area in the first emitting surface region out of the emitting surface of the translucent plate is larger than the amount of emitted ultraviolet light per unit area in the second emitting surface region.
  • the formation density of the fluorescent member in the second emission surface region is higher than the formation density of the fluorescence member in the first emission surface region. If comprised in this way, it can suppress effectively that a brightness nonuniformity arises in illumination light.
  • the fluorescent member in the second emission surface region with respect to the formation area of the fluorescent member in the first emission surface region area when viewed in plan from the side facing the emission surface of the light transmitting plate).
  • the formation area of the fluorescent member may be increased, or the thickness of the fluorescent member in the second emission surface region may be increased relative to the thickness (application amount) of the fluorescent member in the first emission surface region.
  • the emission surface of the light transmitting plate is not covered with the fluorescence member over the entire surface. It is preferable to be exposed. If comprised in this way, the fluorescent member in a 2nd output surface area
  • the formation density of can be increased.
  • the fluorescent member may be composed of a plurality of island-shaped portions, and the plurality of island-shaped portions may be arranged in a dispersed manner. As described above, if the plurality of island-shaped portions as the fluorescent member are arranged in a distributed manner, the fluorescent member in the second emission surface region can be easily formed with respect to the formation density of the fluorescent member in the first emission surface region. The position of the exposed portion of the exit surface of the light transmissive plate can be adjusted as appropriate so that the formation density is increased.
  • the outer size of the plurality of island portions may gradually increase as the distance from the exit surface region increases, and the dispersion interval of the plurality of island portions gradually decreases as the distance from the first exit surface region increases. Also good. If comprised in this way, the formation density of a fluorescent member will become high gradually as it leaves
  • the fluorescent member may be composed of a plurality of linear portions, and the plurality of linear portions may be arranged in a lattice shape. As described above, if the plurality of linear portions as the fluorescent member are arranged in a grid pattern, the fluorescent member in the second emission surface region can be easily formed with respect to the formation density of the fluorescent member in the first emission surface region. The position of the exposed portion of the exit surface of the light transmissive plate can be adjusted as appropriate so that the formation density is increased.
  • the line widths of the plurality of linear portions may gradually increase as the distance from the exit surface region increases, and the adjacent intervals of the plurality of linear portions gradually decrease as the distance from the first exit surface region increases. Also good. If comprised in this way, the formation density of a fluorescent member will become high gradually as it leaves
  • the display device includes the illumination device according to the first aspect and a display panel illuminated with light from the illumination device.
  • an illuminating device and a display device capable of suppressing the occurrence of luminance unevenness in illumination light.
  • FIG. 1 It is a disassembled perspective view of the liquid crystal display device (display device) provided with the backlight unit (illumination device) by 1st Embodiment of this invention.
  • the top view (the fluorescent member formed on the output surface of a diffuser plate) when the diffuser plate (light-transmitting plate) of the backlight unit by 1st Embodiment of this invention is seen planarly from the side facing an output surface FIG.
  • FIG. It is a figure showing the formation state of the fluorescent member formed on the output surface of the diffusion plate of the backlight unit by 1st Embodiment of this invention.
  • This display device is a liquid crystal display device, and as shown in FIG. 1, is installed on a liquid crystal display panel (illuminated body) 10 for displaying an image and a back surface side opposite to the display surface side of the liquid crystal display panel 10.
  • the backlight unit 20 is provided at least.
  • the liquid crystal display panel 10 is an example of the “display panel” in the present invention
  • the backlight unit 20 is an example of the “illuminating device” in the present invention.
  • the liquid crystal display panel 10 has a display area where an image is actually displayed and a non-display area which is an outer edge area of the display area. A plurality of pixels arranged in a matrix are formed in the display area of the liquid crystal display panel 10.
  • Each of the plurality of pixels is driven by a switching element, a pixel electrode, a common electrode, and the like. Note that the switching element, the pixel electrode, and the common electrode are not shown in order to make the drawing easy to see, and wirings that are electrically connected to them are not shown.
  • the switching element is made of a TFT (thin film transistor), the gate of the switching element is connected to a gate line (scanning line), and the source of the switching element is connected to a source line (data line).
  • a pixel electrode is connected to the drain of the switching element, a common electrode is disposed so as to face the pixel electrode, and a liquid crystal (not shown) is sandwiched between the pixel electrode and the common electrode.
  • the switching elements are individually provided for each pixel, and the pixel electrodes are also individually provided for each pixel.
  • the common electrode is common to each pixel.
  • the backlight unit 20 employs a direct type system, emits white backlight light (illumination light) in a planar shape, and uniformly illuminates the back surface of the liquid crystal display panel 10 with the backlight light. It is supposed to be.
  • the optical property (light transmittance) of the liquid crystal is changed for each pixel based on the video signal. Specifically, in each pixel, an electric field is generated between the pixel electrode and the common electrode by supplying predetermined power to the pixel electrode via the switching element. The orientation of the liquid crystal, that is, the transmittance of light transmitted through the liquid crystal is changed by the electric field generated between the pixel electrode and the common electrode.
  • the transmission amount of the backlight light transmitted through the liquid crystal display panel 10 is different for each pixel. As a result, a desired image is displayed on the display surface of the liquid crystal display panel 10.
  • the liquid crystal display panel 10 includes at least two transparent substrates 11 and 12.
  • One transparent substrate 11 is referred to as an active matrix substrate, and the other transparent substrate 12 may be referred to as a counter substrate because it is disposed opposite to the transparent substrate 11, or a color filter.
  • a switching element and a pixel electrode are formed, and a gate line (scanning line) and a source line (data line) electrically connected to them are also formed.
  • a common electrode is formed on a predetermined surface of the other transparent substrate 12.
  • a color filter is further formed on the predetermined surface of the other transparent substrate 12 as necessary.
  • Each predetermined surface of the two transparent electrodes 11 and 12 is covered with an alignment film (not shown) capable of aligning the liquid crystal in a specific direction.
  • the two transparent substrates 11 and 12 are bonded to each other via a seal material (not shown) so that their predetermined surfaces face each other.
  • a liquid crystal is sealed between the two transparent substrates 11 and 12.
  • the liquid crystal is sandwiched between the pixel electrode and the common electrode (between the alignment film covering the predetermined surface of one transparent substrate 11 and the alignment film covering the predetermined surface of the other transparent electrode 12). ing.
  • the outer sizes of the two transparent substrates 11 and 12 are different from each other, and the outer size of the transparent substrate 11 is larger than the outer size of the transparent substrate 12. Accordingly, the two transparent substrates 11 and 12 are bonded to each other, but the predetermined ends of the transparent substrates 11 and 12 do not match each other, and a part of the predetermined surface of the transparent substrate 11 is separated from the transparent substrate 12. Exposed. The exposed portion of the predetermined surface of the transparent substrate 11 is a region of a non-display area, and is used for electrically connecting a driver (not shown) to the transparent substrate 11.
  • a polarizing sheet 13 that transmits only light waves in a specific vibration direction is attached to each of the surfaces of the two transparent substrates 11 and 12 opposite to the predetermined surfaces (surfaces on the liquid crystal side). Yes.
  • the transmission axis directions of the two polarizing sheets 13 are shifted from each other by about 90 °.
  • the backlight unit 20 installed on the back side of the liquid crystal display panel 10 includes at least a back chassis 21, a light source module 22, a reflection sheet 23, a diffusion plate 24, and an optical sheet 25.
  • the diffuser plate 24 is an example of the “translucent plate” in the present invention.
  • the back chassis 21 is formed in a substantially box shape with the liquid crystal display panel 10 side opened. That is, the back chassis 21 has a bottom portion 21a having a substantially rectangular shape in plan view (when viewed from the liquid crystal display panel 10 side), and a side portion 21b standing on the outer periphery of the bottom portion 21a. Yes. And the area
  • a plurality of light source modules 22 are housed in the housing area of the back chassis 21 and are fixed to the bottom 21 a of the back chassis 21. In a state where the backlight unit 20 is installed on the back side of the liquid crystal display panel 10, the light source module 22 is disposed immediately below the liquid crystal display panel 10 (region facing the back side of the liquid crystal display panel 10).
  • the light source module 22 has a structure in which two or more LED packages 26 each emitting ultraviolet light are used as light sources, and the two or more LED packages 26 are formed on a mounting surface of the same LED substrate 27 formed in a strip shape. It has been installed.
  • the peak wavelength of ultraviolet rays emitted from two or more LED packages 26 is 400 nm or less (for example, about 210 nm to 400 nm).
  • the two or more LED packages 26 are arranged in a line along the longitudinal direction of the LED substrate 27 and are connected in series. Note that the number of LED packages 26 to be mounted on the mounting surface of the same LED substrate 27 is not particularly limited, and can be changed according to the application.
  • the plurality of light source modules 22 are accommodated in the accommodation area of the back chassis 21, but the plurality of light source modules 22 are parallel to the bottom surface of the bottom portion 21 a of the back chassis 21. They are two-dimensionally arranged at predetermined intervals in the X direction (longitudinal direction of the back chassis 21) and the Y direction (short direction of the back chassis 21). In this state, the longitudinal direction of the LED board 27 and the X direction coincide with each other, and the short side direction of the LED board 27 and the Y direction coincide with each other.
  • the light source modules 22 adjacent in the X direction are electrically connected to each other via a connector (not shown).
  • the LED boards 27 included in each of the one light source module 22 and the other light source module 22 adjacent in the X direction are electrically connected to each other via the connector.
  • the reflection sheet 23 is for reflecting the ultraviolet rays emitted from the LED package 26 toward the liquid crystal display panel 10, and is housed in the housing area of the back chassis 21 together with the light source module 22.
  • the shape of the reflection sheet 23 includes a bottom portion 23a having a substantially rectangular shape in plan view, and an obliquely inclined side portion 23b standing on the outer periphery of the bottom portion 23a.
  • the bottom 23 a of the reflection sheet 23 is placed on the bottom surface of the bottom 21 a of the back chassis 21 with the LED substrate 27 interposed therebetween. That is, the bottom portion 23 a of the reflection sheet 23 covers the mounting surface of the LED substrate 27 (including the surface of the bottom surface 21 a of the back chassis 21 that does not overlap the LED substrate 27).
  • the side portion 23 b of the reflection sheet 23 covers the inner side surface of the side portion 21 b of the back chassis 21.
  • the LED package 26 mounted on the LED substrate 27 is also covered with the bottom portion 23 a of the reflection sheet 23. Accordingly, the same number of exposure holes 23c having circular openings are formed in the bottom 23a of the reflection sheet 23 so that the LED package 26 is exposed to the liquid crystal display panel 10 side. One LED package 26 is exposed (projected) to the liquid crystal display panel 10 side from each of the exposed holes 23 c of the reflection sheet 23.
  • the diffusion plate 24 is for introducing ultraviolet rays emitted from the LED package 26 and diffusing and emitting the ultraviolet rays toward the liquid crystal display panel 10 side.
  • the diffusion plate 24 has a substantially rectangular front surface and a rear surface opposite to the front surface. And a plurality of side surfaces connected to the rear surface.
  • the diffusion plate 24 is disposed so as to close the opening of the back chassis 21, the front surface of the diffusion plate 24 is directed toward the liquid crystal display panel 10, and the rear surface of the diffusion plate 24 is directed toward the bottom 21 a side of the back chassis 21. It is in the state that was. That is, the light source module 22 is covered by the diffusion plate 24 from the liquid crystal display panel 10 side.
  • the ultraviolet rays are introduced into the diffusion plate 24 from the rear surface of the diffusion plate 24.
  • the ultraviolet rays introduced into the diffusion plate 24 are diffused and emitted from the front surface of the diffusion plate 24 toward the liquid crystal display panel 10 side.
  • the front surface of the diffusion plate 24 is referred to as an emission surface 24a.
  • the constituent material of the diffusion plate 24 is not particularly limited, and for example, an acrylic resin or a vinyl resin can be considered. Further, the shape and thickness of the diffusion plate 24 are not particularly limited, and can be changed according to the application.
  • the optical sheet 25 is a sheet group including a diffusion sheet, a lens sheet, and the like, and is disposed on the emission surface 24 a of the diffusion plate 24.
  • the type and the number of sheets used of the optical sheet 25 are appropriately changed according to the application.
  • a fluorescent member 28 (see FIG. 2) is formed on the emission surface 24a of the diffusion plate 24. For this reason, the fluorescent member 28 is actually sandwiched between the diffusion plate 24 and the optical sheet 25. In other words, the optical sheet 25 is disposed on the emission surface 24 a of the diffusion plate 24 via the fluorescent member 28.
  • the emission surface 24 a of the diffusion plate 24 by applying a fluorescent member 28 that absorbs ultraviolet rays and emits white light to the emission surface 24 a of the diffusion plate 24, the emission surface 24 a of the diffusion plate 24.
  • the fluorescent member 28 is formed on the top. For this reason, although ultraviolet rays are emitted from the emission surface 24 a of the diffusion plate 24, the ultraviolet rays are converted into white light by the fluorescent member 28. Therefore, white light is incident on the optical sheet 25 (see FIG. 1), and the white light diffused (collected) by the optical sheet 25 illuminates the back surface of the liquid crystal display panel 10 (see FIG. 1).
  • the fluorescent member 28 formed on the emission surface 24a of the diffusion plate 24 for example, a phosphor that absorbs ultraviolet rays and converts them into red light, a phosphor that absorbs ultraviolet rays and converts it into green light, and absorbs ultraviolet rays.
  • the phosphor contains three types of phosphors that convert blue light. Thereby, if each phosphor contained in the fluorescent member 28 is excited by ultraviolet rays and emits light, they are mixed and become white, so that the fluorescent member 28 emits white light.
  • the fluorescent member 28 may include any number of phosphors.
  • the amount of ultraviolet light emitted from the light exit surface 24a of the diffusion plate 24 per unit area is not uniform over the entire surface, and varies depending on the light output position. That is, as shown in FIG. 3, the vicinity area 26 a of the LED package 26 in the plan view (when viewed in a plan view from the side facing the emission surface 24 a of the diffusion plate 24) of the emission surface 24 a of the diffusion plate 24.
  • the amount of ultraviolet light emitted per unit area from a predetermined overlapping exit surface region is an exit surface region other than the predetermined exit surface region (“ It corresponds to the amount of the emitted light per unit area of the ultraviolet light from the “second emission surface area”.
  • the amount of ultraviolet light emitted per unit area other than the predetermined emission surface area gradually decreases as the distance from the predetermined emission surface area increases.
  • a predetermined emission surface region having the largest ultraviolet ray emission amount among the emission surfaces 24a of the diffusion plate 24 is referred to as a first emission surface region, and the ultraviolet ray emission amount is larger than that of the predetermined emission surface region.
  • a small number of other exit surface regions are referred to as second exit surface regions to be distinguished.
  • the formation density of the fluorescent member 28 in the second emission surface region is set higher than the formation density of the fluorescent member 28 in the first emission surface region. Furthermore, the formation density of the fluorescent members 28 in the second emission surface area is gradually increased as the distance from the first emission surface area increases. By doing so, the difference between the amount of ultraviolet light per unit area incident on the fluorescent member 28 in the first emission surface area and the amount of ultraviolet light per unit area incident on the fluorescent member 28 in the second emission surface area. Is made smaller. In other words, the difference between the light emission amount per unit area in the first emission surface region and the light emission amount per unit area in the second emission surface region is reduced.
  • the entire emission surface 24a of the diffusion plate 24 is covered with the fluorescent member 28. No. That is, the fluorescent member 28 is not uniformly formed on the entire emission surface 24a of the diffusion plate 24, and the emission surface 24a of the diffusion plate 24 is partially exposed.
  • the fluorescent member 28 is composed of a plurality of island-shaped portions 28a each formed in a substantially circular shape. Then, the plurality of island portions 28a are dispersed so as to be separated from each other so that the formation density of the fluorescent members 28 in the second emission surface area is higher than the formation density of the fluorescence members 28 in the first emission surface area. Is arranged. Further, the outer shape size (diameter) D of the plurality of island-shaped portions 28a gradually increases as the distance from the first emission surface region increases so that the formation density of the fluorescent members 28 gradually increases as the distance from the first emission surface region increases. It has been enlarged. Note that the outer size D of the plurality of island-shaped portions 28a included in the fluorescent member 28 can be changed as appropriate according to the use and the like as long as it gradually increases with distance from the first emission surface area.
  • the LED package 26 that emits ultraviolet rays is used as the light source, and the fluorescent member 28 that emits light by absorbing the ultraviolet rays is formed on the emission surface 24a of the diffusion plate 24, thereby diffusing the plate 24. Since the ultraviolet rays emitted from the emission surface 24a enter the fluorescent member 28, the fluorescent member 28 is excited to emit white light, and the white light emitted from the fluorescent member 28 becomes the basis of the backlight light. In this case, since the white light emitted from the fluorescent member 28 spreads in all directions, it is assumed that the backlight unit 20 is thinned by reducing the distance between the diffusion plate 24 and the LED package 26. However, it is possible to suppress the occurrence of luminance unevenness in the backlight light.
  • the amount of ultraviolet rays emitted per unit area differs depending on the emission position of the emission surface 24a of the diffusion plate 24 (the amount of emitted ultraviolet light per unit area in the first emission surface region is the second emission amount).
  • the amount of ultraviolet light emitted per unit area in the surface area is larger), which lowers the formation density of the fluorescent member 28 in the first emission surface area and increases the formation density of the fluorescent member 28 in the second emission surface area. Therefore, the difference between the amount of ultraviolet light per unit area incident on the fluorescent member 28 in the first emission surface area and the amount of ultraviolet light per unit area incident on the fluorescent member 28 in the second emission surface area (first emission surface).
  • the difference between the light emission amount per unit area in the surface area and the light emission amount per unit area in the second emission surface area) is reduced. Thereby, even if the amount of ultraviolet rays emitted per unit area differs depending on the emission position of the emission surface 24a of the diffusing plate 24, luminance unevenness generated in the backlight light is effectively suppressed.
  • the exit surface 24a of the diffuser plate 24 is partially exposed without being covered with the fluorescent member 28 over the entire surface, so that the exit surface 24a of the diffuser plate 24 is exposed. If the position of the exposed portion is appropriately adjusted, the formation density of the fluorescent member 28 in the second emission surface area can be easily increased with respect to the formation density of the fluorescence member 28 in the first emission surface area.
  • the formation density of the fluorescent members 28 in the first emission surface region can be easily determined.
  • the position of the exposed portion of the exit surface 24a of the diffusion plate 24 can be adjusted as appropriate so that the formation density of the fluorescent members 28 in the second exit surface region is increased.
  • the outer size D of the plurality of island-shaped portions 28a as the fluorescent member 28 is gradually increased as the distance from the first emission surface region is increased, the formation density of the fluorescent member 28 is first. It gradually increases as the distance from the exit surface area increases. Therefore, even if the emission amount per unit area of the ultraviolet rays gradually decreases as the distance from the first emission surface region increases, it is possible to effectively suppress the occurrence of luminance unevenness in the backlight light.
  • the optical sheet 25 is disposed on the emission surface 24a of the diffusion plate 24 via the fluorescent member 28, thereby diffusing white light emitted from the fluorescent member 28. It can be condensed. Thereby, better backlight light can be obtained.
  • the light diffusing effect is improved by forming the fluorescent member 28 on the emission surface 24a of the diffusing plate 24 instead of a mere transparent plate having no light diffusing function. Further, it is possible to further suppress the occurrence of luminance unevenness in the backlight light.
  • the outer shape of the plurality of island portions 28a as the fluorescent member 28 may be changed.
  • the outer shape of the plurality of island-shaped portions 28a as the fluorescent member 28 may be a quadrangular shape (including a substantially quadrangular shape) or a triangular shape (including a substantially triangular shape), and may have other shapes. May be.
  • a simple transparent plate having no light diffusion function may be used instead of the diffusion plate 24. That is, the fluorescent member 28 may be formed on a simple transparent plate having no light diffusion function.
  • the transparent plate corresponds to the “translucent plate” of the present invention.
  • the fluorescent member 28 is formed on the emission surface 24a of the diffusion plate 24, and the fluorescent member 28 includes a plurality of islands. It consists of the shape part 28a. Further, the plurality of island portions 28a as the fluorescent member 28 are separated from each other so that the formation density of the fluorescent member 28 in the second emission surface region is higher than the formation density of the fluorescent member 28 in the first emission surface region. Are so distributed.
  • the plurality of island portions 28a as the fluorescent member 28 have substantially the same outer size.
  • interval G of the some island-shaped part 28a is made small gradually as it leaves
  • interval G of the some island-shaped part 28a contained in the fluorescent member 28 if it becomes small gradually as it leaves
  • the other configuration of the second embodiment is the same as the configuration of the first embodiment, and a detailed description thereof will be omitted.
  • the formation density of the fluorescent member 28 is reduced by gradually decreasing the dispersion interval G of the plurality of island-like portions 28a as the fluorescent member 28 as the distance from the first emission surface region increases.
  • the distance gradually increases as the distance from the first exit surface area increases.
  • the dispersion interval of the plurality of island-shaped portions 28a as the fluorescent member 28 is gradually reduced as the distance from the first emission surface region increases, and the plurality of island-shaped as the fluorescent member 28 is formed.
  • the outer size of the portion 28a may be gradually increased as the distance from the first exit surface area increases. That is, the configuration of the first embodiment may be combined with the configuration of the second embodiment.
  • a fluorescent member 38 made of the same material as that of the fluorescent member 28 of the first embodiment is formed on the emission surface 24 a of the diffusion plate 24. Includes a plurality of linear portions 38a.
  • FIG. 5 is not a cross-sectional view, hatching is applied to a portion corresponding to the fluorescent member 38 in order to make the drawing easy to see.
  • the formation density of the fluorescent member 38 in the second emission surface area is higher than the formation density of the fluorescent member 38 in the first emission surface area, and the formation density of the fluorescent member 38 is separated from the first emission surface area. Therefore, the plurality of linear portions 38a are arranged in a lattice pattern so as to gradually increase. More specifically, the line width W of the plurality of linear portions 38a as the fluorescent member 38 is gradually increased as the distance from the first emission surface area increases. Note that the line width W of the plurality of linear portions 38a included in the fluorescent member 38 can be changed as appropriate depending on the application and the like as long as it gradually increases as the distance from the first emission surface region increases.
  • the fluorescent member 38 composed of a plurality of linear portions 38a is formed on the emission surface 24a of the diffusion plate 24, and the plurality of linear portions 38a are arranged in a lattice pattern, Further, by gradually increasing the line width W of the plurality of linear portions 38a as the distance from the first emission surface area increases, the formation density of the fluorescent member 38 gradually increases as the distance from the first emission surface area increases. As a result, as in the first embodiment, even if the emission amount per unit area of ultraviolet light gradually decreases as the distance from the first emission surface region increases, it is effective to cause uneven brightness in the backlight light. Can be suppressed.
  • the fluorescent member 38 is formed on the emission surface 24a of the diffuser plate 24, and the fluorescent member 38 includes a plurality of lines. It consists of the shape part 38a.
  • the formation density of the fluorescent member 38 in the second emission surface region is higher than the formation density of the fluorescence member 38 in the first emission surface region, and the formation density of the fluorescence member 38 is separated from the first emission surface region. Therefore, the plurality of linear portions 38a are arranged in a lattice pattern so as to gradually increase.
  • FIG. 6 is not a cross-sectional view, a portion corresponding to the fluorescent member 38 is hatched to make the drawing easy to see.
  • the line widths of the plurality of linear portions 38a as the fluorescent member 38 are substantially the same.
  • the adjacent spacing G of the plurality of linear portions 38a is gradually decreased as the distance from the first emission surface area is increased so that the formation density of the fluorescent member 38 gradually increases as the distance from the first emission surface area increases. Yes.
  • the adjacent gap G between the plurality of linear portions 38a included in the fluorescent member 38 can be appropriately changed depending on the application and the like as long as it gradually decreases as the distance from the first emission surface region increases.
  • the fluorescent member 38 composed of a plurality of linear portions 38a is formed on the emission surface 24a of the diffusion plate 24, and the plurality of linear portions 38a are arranged in a lattice pattern,
  • the formation density of the fluorescent member 38 gradually increases as the distance from the first emission surface area increases.
  • the interval between the plurality of linear portions 38a as the fluorescent member 38 is gradually reduced as the distance from the first emission surface region increases, and the plurality of linear shapes as the fluorescent member 38 is used.
  • the line width of the portion 38a may be gradually increased as the distance from the first exit surface area increases. That is, the configuration of the third embodiment may be combined with the configuration of the fourth embodiment.
  • a fluorescent member 48 made of the same material as that of the fluorescent member 28 of the first embodiment is formed on the emission surface 24a of the diffusion plate 24.
  • Reference numeral 48 covers substantially the entire exit surface 24 a of the diffusion plate 24.
  • the other configuration of the fifth embodiment is the same as the configuration of the first embodiment, and a detailed description thereof will be omitted.
  • the amount of the fluorescent member 48 applied to the emission surface 24a of the diffusion plate 24 is adjusted (in the second emission surface region with respect to the thickness of the fluorescence member 48 in the first emission surface region). By increasing the thickness of the fluorescent member 48, the same effect as in the first embodiment can be obtained.
  • the backlight unit 50 installed on the back side of the liquid crystal display panel 10 is an edge light type.
  • the edge light type backlight unit 50 includes at least a light guide plate 51, a light source module 52, and an optical sheet 53.
  • the light guide plate 51 is an example of the “translucent plate” in the present invention.
  • the light guide plate 51 has a front surface and a rear surface opposite to the front surface, and a plurality of side end surfaces connected to the front surface and the rear surface, and is arranged so that the front surface faces the liquid crystal display panel 10 side.
  • the light source module 52 has an LED package 54 that emits ultraviolet rays as a light source, and the LED package 54 is mounted on the mounting surface of the LED substrate 55. And the light source module 52 is arrange
  • the ultraviolet rays when ultraviolet rays are emitted from the LED package 54, the ultraviolet rays enter the predetermined side end surface of the light guide plate 51 and are introduced into the light guide plate 51. Thereafter, the ultraviolet light introduced into the light guide plate 51 is emitted from the front surface of the light guide plate 51 toward the liquid crystal display panel 10.
  • the front surface of the light guide plate 51 is referred to as an emission surface 51a.
  • the optical sheet 53 is a group of sheets including a diffusion sheet, a lens sheet, and the like, and is disposed on the emission surface 51 a of the light guide plate 51.
  • the type and the number of sheets used of the optical sheet 53 are appropriately changed according to the application.
  • the fluorescent member 56 is formed on the emission surface 51a of the light guide plate 51 (the fluorescent member 56 is sandwiched between the light guide plate 51 and the optical sheet 53).
  • the fluorescent member 56 is made of the same material as the fluorescent member 28 of the first embodiment, and absorbs ultraviolet rays to emit white light. For this reason, although ultraviolet rays are emitted from the emission surface 51 a of the light guide plate 51, the ultraviolet rays are converted into white light by the fluorescent member 56. Therefore, white light is incident on the optical sheet 53, and the white light diffused (condensed) by the optical sheet 53 illuminates the back surface of the liquid crystal display panel 10.
  • the present invention is not limited thereto, and the lighting device installed in a display device other than the liquid crystal display device is used.
  • the present invention may be applied.
  • Liquid crystal display panel (display panel) 20, 50 Backlight unit (lighting device) 24 Diffuser (Translucent plate) 24a, 51a Emitting surface 26, 54 LED package (light source) 28, 38, 48, 56 Fluorescent member 28a Island portion 38a Linear portion 51 Light guide plate (translucent plate)

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

Provided is a lighting device which is capable of suppressing occurrence of luminance unevenness in illumination light. This lighting device comprises: an LED package (26) that emits ultraviolet light; and a diffusion plate (24) that has an exit surface (24a) and discharges the ultraviolet light, which is emitted by the LED package (26) and entered into the diffusion plate (24), from the exit surface (24a). A fluorescent member (28) which absorbs ultraviolet light and emits light is formed on the exit surface (24a).

Description

照明装置および表示装置Illumination device and display device
 本発明は、照明装置および表示装置に関する。 The present invention relates to a lighting device and a display device.
 表示装置の一つである液晶表示装置では、映像を表示する液晶表示パネルが非発光であるため、液晶表示パネルの裏面側(液晶表示パネルの表示面側とは反対側)に照明装置を設置し、その照明装置からの光で液晶表示パネルを照明するようになっている。なお、液晶表示パネルの裏面側に設置される照明装置は、たとえば、バックライトユニットなどと称されている。 In a liquid crystal display device that is one of the display devices, the liquid crystal display panel that displays images does not emit light, so an illumination device is installed on the back side of the liquid crystal display panel (the side opposite to the display surface side of the liquid crystal display panel) The liquid crystal display panel is illuminated with light from the illumination device. In addition, the illuminating device installed in the back surface side of a liquid crystal display panel is called the backlight unit etc., for example.
 バックライトユニットに使用する光源としては、水銀やキセノンを蛍光管の内部に封入した冷陰極蛍光ランプが知られている。しかし、冷陰極蛍光ランプをバックライトユニットの光源とした場合、発光輝度や寿命が不十分となり、さらに、低圧側の輝度が低くなることで均整のとれた発光が得られ難くなるという不都合があった。 As a light source used in the backlight unit, a cold cathode fluorescent lamp in which mercury or xenon is enclosed in a fluorescent tube is known. However, when the cold cathode fluorescent lamp is used as the light source of the backlight unit, there are disadvantages that the light emission luminance and life are insufficient, and that the luminance on the low-pressure side is low, making it difficult to obtain a uniform light emission. It was.
 そこで、このような不都合を解消するために、冷陰極蛍光ランプに代えて、LED(発光ダイオード)パッケージを光源としたバックライトユニットが提案されている。バックライトユニットに使用する光源をLEDパッケージとすると、上述した不都合が解消されることに加えて、低消費電力化が容易に図られ、環境負荷の低減も実現できる。 Therefore, in order to eliminate such inconvenience, a backlight unit using an LED (light emitting diode) package as a light source has been proposed in place of the cold cathode fluorescent lamp. When the light source used for the backlight unit is an LED package, in addition to eliminating the above-described disadvantages, it is possible to easily reduce power consumption and to reduce the environmental load.
 また、バックライトユニットは、大別するとエッジライト型方式と直下型方式との2つに分類される。 Also, the backlight unit is roughly classified into two types, an edge light type and a direct type.
 エッジライト型のバックライトユニットは、液晶表示パネルの直下(液晶表示パネルの裏面と対向する領域)に導光板を配置し、その導光板の所定の側端面と対向するように光源を配置したものである。このエッジライト型のバックライトユニットでは、光源から光が発せられると、光源からの光が導光板の所定の側端面を介して導光板内に導入される。そして、導光板内に導入された光が導光板の前面(液晶表示パネル側に向けられた面)から出射されることで液晶表示パネルが照明される。 An edge-light type backlight unit has a light guide plate arranged directly under a liquid crystal display panel (a region facing the back surface of the liquid crystal display panel), and a light source arranged so as to face a predetermined side end surface of the light guide plate. It is. In the edge light type backlight unit, when light is emitted from the light source, the light from the light source is introduced into the light guide plate through a predetermined side end surface of the light guide plate. Then, the light introduced into the light guide plate is emitted from the front surface of the light guide plate (the surface directed to the liquid crystal display panel side) to illuminate the liquid crystal display panel.
 一方、直下型のバックライトユニットは、液晶表示パネルの直下に光源を配置したものである。このような直下型のバックライトユニットは、大面積を高出力で照明するのに有利であって、大型サイズの液晶表示装置に使用されることが多い。 On the other hand, the direct type backlight unit has a light source arranged directly under the liquid crystal display panel. Such a direct type backlight unit is advantageous for illuminating a large area with high output, and is often used for a large-sized liquid crystal display device.
 ところで、LEDパッケージを光源とする直下型のバックライトユニットにおいては、LEDパッケージから発せられた光を拡散板で拡散するのが一般的である(たとえば、特許文献1参照)。 By the way, in a direct type backlight unit using an LED package as a light source, light emitted from the LED package is generally diffused by a diffusion plate (see, for example, Patent Document 1).
 一例として、図9に示すように、通常はLEDパッケージ101が基板102の搭載面上に搭載されるので、その基板102の搭載面に対して所定の間隔を隔てて対向するように拡散板103を配置している。これにより、LEDパッケージ101から発せられた光は、拡散板103に入射して拡散板103内に導入された後、拡散板103から拡散出射されて液晶表示パネル(図示せず)を照明することになる。 As an example, as shown in FIG. 9, the LED package 101 is normally mounted on the mounting surface of the substrate 102, so that the diffusion plate 103 is opposed to the mounting surface of the substrate 102 with a predetermined interval. Is arranged. Thereby, the light emitted from the LED package 101 enters the diffusion plate 103 and is introduced into the diffusion plate 103, and then diffused and emitted from the diffusion plate 103 to illuminate a liquid crystal display panel (not shown). become.
特開2008-140646号公報JP 2008-140646 A
 しかしながら、図9に示した従来のバックライトユニットでは、LEDパッケージ101と拡散板103との間の距離を小さくすることでバックライトユニットの薄型化を図ろうとすると、図9中の領域100a(LEDパッケージ101と重畳する領域)よりも領域100b(隣接するLEDパッケージ101間の間隙と重畳する領域)が暗くなってしまい、照明光に輝度ムラが発生するという不都合が生じる。 However, in the conventional backlight unit shown in FIG. 9, when it is attempted to reduce the thickness of the backlight unit by reducing the distance between the LED package 101 and the diffusion plate 103, the region 100a (LED in FIG. The region 100b (region overlapping with the gap between adjacent LED packages 101) becomes darker than the region overlapping with the package 101), resulting in inconvenience that luminance unevenness occurs in the illumination light.
 なお、隣接するLEDパッケージ101間の間隙が大きい場合にも、図9中の領域100aよりも領域100bが暗くなってしまい、照明光に輝度ムラが発生する。 Even when the gap between the adjacent LED packages 101 is large, the region 100b becomes darker than the region 100a in FIG. 9, and luminance unevenness occurs in the illumination light.
 本発明は、上記課題を解決するためになされたものであり、照明光に輝度ムラが発生するのを抑制することが可能な照明装置および表示装置を提供することを目的とする。 This invention was made in order to solve the said subject, and it aims at providing the illuminating device and display apparatus which can suppress that the brightness nonuniformity generate | occur | produces in illumination light.
 上記目的を達成するために、本発明の第1の局面による照明装置は、紫外線を発する光源と、被照明体側に向く出射面を有し、光源から発せられた紫外線を導入して出射面から出射する透光板とを備えている。そして、紫外線を吸収して発光する蛍光部材が透光板の出射面上に形成されている。 In order to achieve the above object, an illumination device according to a first aspect of the present invention has a light source that emits ultraviolet rays and an emission surface that faces the illuminated body side, and introduces ultraviolet rays emitted from the light source to emit light from the emission surface. And a translucent plate that emits light. And the fluorescent member which absorbs an ultraviolet-ray and light-emits is formed on the output surface of a translucent board.
 第1の局面による照明装置では、上記のように構成することによって、透光板の出射面から出射された紫外線が蛍光部材に入射するので、蛍光部材が励起されて発光し、その蛍光部材から発せられる光が照明光の基となる。そして、このようにすると、蛍光部材から発せられる光は四方八方に広がるので、照明光に輝度ムラが生じてしまうのを抑制することが可能となる。 In the illuminating device according to the first aspect, since the ultraviolet ray emitted from the emission surface of the translucent plate is incident on the fluorescent member by being configured as described above, the fluorescent member is excited to emit light, and from the fluorescent member The emitted light becomes the basis of the illumination light. And if it does in this way, since the light emitted from a fluorescent member will spread in all directions, it will become possible to suppress that a brightness nonuniformity arises in illumination light.
 さらに、透光板の出射面の出射位置によって単位面積当たりの紫外線の出射量が異なってしまう(たとえば、透光板の出射面のうち、第1出射面領域における紫外線の単位面積当たりの出射量が第2出射面領域における紫外線の単位面積当たりの出射量よりも多くなってしまう)場合には、第1出射面領域における蛍光部材の形成密度を低くし、第2出射面領域における蛍光部材の形成密度を高くしておけば、第1出射面領域において蛍光部材に入射する単位面積当たりの紫外線量と、第2出射面領域において蛍光部材に入射する単位面積当たりの紫外線量との差(第1出射面領域における単位面積当たりの発光量と、第2出射面領域における単位面積当たりの発光量との差)を小さくすることができる。これにより、透光板の出射面の出射位置によって単位面積当たりの紫外線の出射量が異なっていたとしても、照明光に生じる輝度ムラが効果的に抑制される。 Furthermore, the amount of ultraviolet light emitted per unit area varies depending on the emission position of the light emitting surface of the light transmitting plate (for example, the amount of ultraviolet light emitted per unit area in the first light emitting surface region of the light emitting surface of the light transmitting plate) Is larger than the amount of ultraviolet light emitted per unit area in the second emission surface area), the fluorescent member formation density in the first emission surface area is reduced, and the fluorescence member in the second emission surface area is reduced. If the formation density is increased, the difference between the amount of ultraviolet light per unit area incident on the fluorescent member in the first emission surface region and the amount of ultraviolet light per unit area incident on the fluorescent member in the second emission surface region (first The difference between the light emission amount per unit area in the one emission surface region and the light emission amount per unit area in the second emission surface region can be reduced. Thereby, even if the amount of ultraviolet rays emitted per unit area differs depending on the emission position of the emission surface of the translucent plate, luminance unevenness generated in the illumination light is effectively suppressed.
 第1の局面による照明装置において、紫外線で励起されて発光する複数種類の蛍光体を含むものが蛍光部材とされていることが好ましい。このように構成すれば、容易に、白色の照明光を得ることができる。 In the illumination device according to the first aspect, it is preferable that a fluorescent member that includes a plurality of types of phosphors that are excited by ultraviolet rays to emit light is used. If comprised in this way, white illumination light can be obtained easily.
 第1の局面による照明装置において、透光板の出射面のうち、第1出射面領域における紫外線の単位面積当たりの出射量が第2出射面領域における紫外線の単位面積当たりの出射量よりも多くなっている場合には、第1出射面領域における蛍光部材の形成密度に対して第2出射面領域における蛍光部材の形成密度が高くなっていることが好ましい。このように構成すれば、照明光に輝度ムラが生じるのを効果的に抑制することができる。なお、この場合には、第1出射面領域における蛍光部材の形成面積(透光板の出射面と対向する側から平面的に見た場合の面積)に対して第2出射面領域における蛍光部材の形成面積を大きくしてもよいし、第1出射面領域における蛍光部材の厚み(塗布量)に対して第2出射面領域における蛍光部材の厚みを大きくしてもよい。 In the illuminating device according to the first aspect, the amount of emitted ultraviolet light per unit area in the first emitting surface region out of the emitting surface of the translucent plate is larger than the amount of emitted ultraviolet light per unit area in the second emitting surface region. In this case, it is preferable that the formation density of the fluorescent member in the second emission surface region is higher than the formation density of the fluorescence member in the first emission surface region. If comprised in this way, it can suppress effectively that a brightness nonuniformity arises in illumination light. In this case, the fluorescent member in the second emission surface region with respect to the formation area of the fluorescent member in the first emission surface region (area when viewed in plan from the side facing the emission surface of the light transmitting plate). The formation area of the fluorescent member may be increased, or the thickness of the fluorescent member in the second emission surface region may be increased relative to the thickness (application amount) of the fluorescent member in the first emission surface region.
 第1出射面領域における蛍光部材の形成密度に対して第2出射面領域における蛍光部材の形成密度が高くなっている構成において、透光板の出射面が全面にわたって蛍光部材で覆われずに部分的に露出されていることが好ましい。このように構成すれば、透光板の出射面の露出部分の位置を適宜調整することにより、容易に、第1出射面領域における蛍光部材の形成密度に対して第2出射面領域における蛍光部材の形成密度を高くすることができる。 In the configuration in which the formation density of the fluorescent member in the second emission surface region is higher than the formation density of the fluorescence member in the first emission surface region, the emission surface of the light transmitting plate is not covered with the fluorescence member over the entire surface. It is preferable to be exposed. If comprised in this way, the fluorescent member in a 2nd output surface area | region will be easily with respect to the formation density of the fluorescent member in a 1st output surface area by adjusting the position of the exposed part of the output surface of a translucent board suitably. The formation density of can be increased.
 透光板の出射面が部分的に露出されている構成において、蛍光部材が複数の島状部からなっており、その複数の島状部が分散して配置されていてもよい。このように、蛍光部材としての複数の島状部を分散して配置するようにすれば、容易に、第1出射面領域における蛍光部材の形成密度に対して第2出射面領域における蛍光部材の形成密度が高くなるように、透光板の出射面の露出部分の位置を適宜調整することができる。 In the configuration in which the emission surface of the translucent plate is partially exposed, the fluorescent member may be composed of a plurality of island-shaped portions, and the plurality of island-shaped portions may be arranged in a dispersed manner. As described above, if the plurality of island-shaped portions as the fluorescent member are arranged in a distributed manner, the fluorescent member in the second emission surface region can be easily formed with respect to the formation density of the fluorescent member in the first emission surface region. The position of the exposed portion of the exit surface of the light transmissive plate can be adjusted as appropriate so that the formation density is increased.
 蛍光部材としての複数の島状部が分散して配置されている構成において、第1出射面領域から離れるにしたがって紫外線の単位面積当たりの出射量が徐々に少なくなっている場合には、第1出射面領域から離れるにしたがって複数の島状部の外形サイズが徐々に大きくなっていてもよいし、第1出射面領域から離れるにしたがって複数の島状部の分散間隔が徐々に小さくなっていてもよい。このように構成すれば、第1出射面領域から離れるにしたがって蛍光部材の形成密度が徐々に高くなる。すなわち、第1出射面領域から離れるにしたがって紫外線の単位面積当たりの出射量が徐々に少なくなっていたとしても、照明光に輝度ムラが生じるのを効果的に抑制することができる。 In a configuration in which a plurality of island-shaped parts as fluorescent members are arranged in a dispersed manner, when the emission amount per unit area of ultraviolet light gradually decreases as the distance from the first emission surface region increases, The outer size of the plurality of island portions may gradually increase as the distance from the exit surface region increases, and the dispersion interval of the plurality of island portions gradually decreases as the distance from the first exit surface region increases. Also good. If comprised in this way, the formation density of a fluorescent member will become high gradually as it leaves | separates from a 1st output surface area | region. That is, even when the amount of emitted light per unit area of ultraviolet rays gradually decreases as the distance from the first exit surface region increases, it is possible to effectively suppress the occurrence of uneven brightness in the illumination light.
 また、透光板の出射面が部分的に露出されている構成において、蛍光部材が複数の線状部からなっており、その複数の線状部が格子状に配置されていてもよい。このように、蛍光部材としての複数の線状部を格子状に配置するようにすれば、容易に、第1出射面領域における蛍光部材の形成密度に対して第2出射面領域における蛍光部材の形成密度が高くなるように、透光板の出射面の露出部分の位置を適宜調整することができる。 Further, in the configuration in which the emission surface of the translucent plate is partially exposed, the fluorescent member may be composed of a plurality of linear portions, and the plurality of linear portions may be arranged in a lattice shape. As described above, if the plurality of linear portions as the fluorescent member are arranged in a grid pattern, the fluorescent member in the second emission surface region can be easily formed with respect to the formation density of the fluorescent member in the first emission surface region. The position of the exposed portion of the exit surface of the light transmissive plate can be adjusted as appropriate so that the formation density is increased.
 蛍光部材としての複数の線状部が格子状に配置されている構成において、第1出射面領域から離れるにしたがって紫外線の単位面積当たりの出射量が徐々に少なくなっている場合には、第1出射面領域から離れるにしたがって複数の線状部の線幅が徐々に大きくなっていてもよいし、第1出射面領域から離れるにしたがって複数の線状部の隣接間隔が徐々に小さくなっていてもよい。このように構成すれば、第1出射面領域から離れるにしたがって蛍光部材の形成密度が徐々に高くなる。すなわち、第1出射面領域から離れるにしたがって紫外線の単位面積当たりの出射量が徐々に少なくなっていたとしても、照明光に輝度ムラが生じるのを効果的に抑制することができる。 In the configuration in which the plurality of linear portions as the fluorescent member are arranged in a lattice shape, when the emission amount per unit area of ultraviolet light gradually decreases as the distance from the first emission surface region increases, The line widths of the plurality of linear portions may gradually increase as the distance from the exit surface region increases, and the adjacent intervals of the plurality of linear portions gradually decrease as the distance from the first exit surface region increases. Also good. If comprised in this way, the formation density of a fluorescent member will become high gradually as it leaves | separates from a 1st output surface area | region. That is, even when the amount of emitted light per unit area of ultraviolet rays gradually decreases as the distance from the first exit surface region increases, it is possible to effectively suppress the occurrence of uneven brightness in the illumination light.
 第1出射面領域における蛍光部材の形成密度に対して第2出射面領域における蛍光部材の形成密度が高くなっている構成において、透光板の出射面が全面にわたって蛍光部材で覆われており、第1出射面領域における蛍光部材の厚みに対して第2出射面領域における蛍光部材の厚みが大きくなっていてもよい。このように構成すれば、容易に、第1出射面領域における蛍光部材の形成密度に対して第2出射面領域における蛍光部材の形成密度を高くすることができる。 In the configuration in which the formation density of the fluorescent member in the second emission surface region is higher than the formation density of the fluorescence member in the first emission surface region, the emission surface of the translucent plate is entirely covered with the fluorescence member, The thickness of the fluorescent member in the second emission surface region may be larger than the thickness of the fluorescent member in the first emission surface region. If comprised in this way, the formation density of the fluorescent member in a 2nd output surface area | region can be easily made high with respect to the formation density of the fluorescent member in a 1st output surface area | region.
 本発明の第2の局面による表示装置は、第1の局面による照明装置と、その照明装置からの光で照明される表示パネルとを備えている。 The display device according to the second aspect of the present invention includes the illumination device according to the first aspect and a display panel illuminated with light from the illumination device.
 このように構成された表示装置では、照明光に輝度ムラが生じてしまうのを抑制することが可能となる。 In the display device configured as described above, it is possible to suppress uneven brightness from occurring in the illumination light.
 以上のように、本発明によれば、照明光に輝度ムラが生じるのを抑制することが可能な照明装置および表示装置を得ることができる。 As described above, according to the present invention, it is possible to obtain an illuminating device and a display device capable of suppressing the occurrence of luminance unevenness in illumination light.
本発明の第1実施形態によるバックライトユニット(照明装置)を備えた液晶表示装置(表示装置)の分解斜視図である。It is a disassembled perspective view of the liquid crystal display device (display device) provided with the backlight unit (illumination device) by 1st Embodiment of this invention. 本発明の第1実施形態によるバックライトユニットの拡散板(透光板)を出射面と対向する側から平面的に見た場合の平面図(拡散板の出射面上に形成された蛍光部材の形成状態を表した図)である。The top view (the fluorescent member formed on the output surface of a diffuser plate) when the diffuser plate (light-transmitting plate) of the backlight unit by 1st Embodiment of this invention is seen planarly from the side facing an output surface FIG. 本発明の第1実施形態によるバックライトユニットの拡散板の出射面上に形成された蛍光部材の形成状態を表した図である。It is a figure showing the formation state of the fluorescent member formed on the output surface of the diffusion plate of the backlight unit by 1st Embodiment of this invention. 本発明の第2実施形態によるバックライトユニットの拡散板の出射面上に形成された蛍光部材の形成状態を表した図である。It is the figure showing the formation state of the fluorescent member formed on the output surface of the diffusion plate of the backlight unit by 2nd Embodiment of this invention. 本発明の第3実施形態によるバックライトユニットの拡散板の出射面上に形成された蛍光部材の形成状態を表した図である。It is a figure showing the formation state of the fluorescent member formed on the output surface of the diffusion plate of the backlight unit by 3rd Embodiment of this invention. 本発明の第4実施形態によるバックライトユニットの拡散板の出射面上に形成された蛍光部材の形成状態を表した図である。It is a figure showing the formation state of the fluorescent member formed on the output surface of the diffusion plate of the backlight unit by 4th Embodiment of this invention. 本発明の第5実施形態によるバックライトユニットの拡散板の出射面上に形成された蛍光部材の形成状態を表した図である。It is a figure showing the formation state of the fluorescent member formed on the output surface of the diffusion plate of the backlight unit by 5th Embodiment of this invention. 本発明の第6実施形態によるバックライトユニットの概略図である。It is the schematic of the backlight unit by 6th Embodiment of this invention. 従来のバックライトユニットの概略図である。It is the schematic of the conventional backlight unit.
 (第1実施形態)
 本発明の第1実施形態による照明装置を備えた表示装置の構成について、図1~図3を参照して説明する。
(First embodiment)
A configuration of a display device including the illumination device according to the first embodiment of the present invention will be described with reference to FIGS.
 この表示装置は液晶表示装置であって、図1に示すように、映像を表示する液晶表示パネル(被照明体)10と、液晶表示パネル10の表示面側とは反対の裏面側に設置されるバックライトユニット20とを少なくとも備えている。なお、液晶表示パネル10は、本発明の「表示パネル」の一例であり、バックライトユニット20は、本発明の「照明装置」の一例である。 This display device is a liquid crystal display device, and as shown in FIG. 1, is installed on a liquid crystal display panel (illuminated body) 10 for displaying an image and a back surface side opposite to the display surface side of the liquid crystal display panel 10. The backlight unit 20 is provided at least. The liquid crystal display panel 10 is an example of the “display panel” in the present invention, and the backlight unit 20 is an example of the “illuminating device” in the present invention.
 液晶表示パネル10は、実際に映像が表示される表示領域と、その表示領域の外縁領域である非表示領域とを有している。そして、液晶表示パネル10の表示領域には、マトリクス状に配列された複数の画素が作り込まれている。 The liquid crystal display panel 10 has a display area where an image is actually displayed and a non-display area which is an outer edge area of the display area. A plurality of pixels arranged in a matrix are formed in the display area of the liquid crystal display panel 10.
 複数の画素のそれぞれは、スイッチング素子、画素電極および共通電極などによって駆動されるようになっている。なお、図面を見易くするため、スイッチング素子、画素電極および共通電極は図示しておらず、それらに対して電気的に接続される配線などについても図示していない。 Each of the plurality of pixels is driven by a switching element, a pixel electrode, a common electrode, and the like. Note that the switching element, the pixel electrode, and the common electrode are not shown in order to make the drawing easy to see, and wirings that are electrically connected to them are not shown.
 スイッチング素子はTFT(薄膜トランジスタ)からなっていて、スイッチング素子のゲートはゲート線(走査線)に接続され、スイッチング素子のソースはソース線(データ線)に接続される。また、スイッチング素子のドレインには画素電極が接続されるとともに、その画素電極と対向するように共通電極が配置され、さらに、画素電極と共通電極との間に液晶(図示せず)が挟持される。なお、スイッチング素子は各画素に個々に設けられており、画素電極も各画素に個々に設けられている。一方、共通電極については、その名の通り、各画素で共通となっている。 The switching element is made of a TFT (thin film transistor), the gate of the switching element is connected to a gate line (scanning line), and the source of the switching element is connected to a source line (data line). A pixel electrode is connected to the drain of the switching element, a common electrode is disposed so as to face the pixel electrode, and a liquid crystal (not shown) is sandwiched between the pixel electrode and the common electrode. The Note that the switching elements are individually provided for each pixel, and the pixel electrodes are also individually provided for each pixel. On the other hand, as the name indicates, the common electrode is common to each pixel.
 また、バックライトユニット20は、直下型方式を採用したものであって、白色のバックライト光(照明光)を面状に出射し、そのバックライト光で液晶表示パネル10の裏面をムラなく照明するようになっている。 Further, the backlight unit 20 employs a direct type system, emits white backlight light (illumination light) in a planar shape, and uniformly illuminates the back surface of the liquid crystal display panel 10 with the backlight light. It is supposed to be.
 そして、表示動作の際には、映像信号に基づいて、液晶の光学的性質(光透過率)が画素毎に変化される。具体的には、各画素において、スイッチング素子を介して画素電極に所定の電力が供給されることにより、画素電極と共通電極との間に電界が発生される。そして、画素電極と共通電極との間に発生した電界によって、液晶の配向、すなわち、液晶を透過する光の透過率が変化される。 In the display operation, the optical property (light transmittance) of the liquid crystal is changed for each pixel based on the video signal. Specifically, in each pixel, an electric field is generated between the pixel electrode and the common electrode by supplying predetermined power to the pixel electrode via the switching element. The orientation of the liquid crystal, that is, the transmittance of light transmitted through the liquid crystal is changed by the electric field generated between the pixel electrode and the common electrode.
 このため、バックライトユニット20からのバックライト光によって液晶表示パネル10の裏面が照明されると、液晶表示パネル10を透過するバックライト光の透過量が画素毎に異ならされることになる。これにより、液晶表示パネル10の表示面に所望の映像が表示される。 For this reason, when the back surface of the liquid crystal display panel 10 is illuminated by the backlight light from the backlight unit 20, the transmission amount of the backlight light transmitted through the liquid crystal display panel 10 is different for each pixel. As a result, a desired image is displayed on the display surface of the liquid crystal display panel 10.
 以下に、液晶表示パネル10およびバックライトユニット20の構成についてより詳細に説明する。 Hereinafter, the configuration of the liquid crystal display panel 10 and the backlight unit 20 will be described in more detail.
 液晶表示パネル10は、2枚の透明基板11および12を少なくとも備えている。一方の透明基板11は、アクティブマトリクス基板と称されるものであり、他方の透明基板12は、透明基板11に対して対向配置されることから対向基板と称される場合もあるし、カラーフィルタ基板と称される場合もある。 The liquid crystal display panel 10 includes at least two transparent substrates 11 and 12. One transparent substrate 11 is referred to as an active matrix substrate, and the other transparent substrate 12 may be referred to as a counter substrate because it is disposed opposite to the transparent substrate 11, or a color filter. Sometimes referred to as a substrate.
 一方の透明基板11の所定面上には、スイッチング素子および画素電極が形成されているとともに、それらに電気的に接続されるゲート線(走査線)およびソース線(データ線)も形成されている。また、他方の透明基板12の所定面上には、共通電極が形成されている。なお、他方の透明基板12の所定面上には、共通電極に加えて、必要に応じてカラーフィルタがさらに形成される。そして、2枚の透明電極11および12のそれぞれの所定面は、液晶を特定方向に配向させることが可能な配向膜(図示せず)によって覆われている。 On a predetermined surface of one transparent substrate 11, a switching element and a pixel electrode are formed, and a gate line (scanning line) and a source line (data line) electrically connected to them are also formed. . A common electrode is formed on a predetermined surface of the other transparent substrate 12. In addition to the common electrode, a color filter is further formed on the predetermined surface of the other transparent substrate 12 as necessary. Each predetermined surface of the two transparent electrodes 11 and 12 is covered with an alignment film (not shown) capable of aligning the liquid crystal in a specific direction.
 また、2枚の透明基板11および12は、それぞれの所定面が向き合うように、シール材(図示せず)を介して互いに貼り合わされている。そして、2枚の透明基板11および12の間に液晶が封止されている。これによって、画素電極と共通電極との間(一方の透明基板11の所定面を覆う配向膜と他方の透明電極12の所定面を覆う配向膜との間)に液晶が挟持された状態となっている。 Also, the two transparent substrates 11 and 12 are bonded to each other via a seal material (not shown) so that their predetermined surfaces face each other. A liquid crystal is sealed between the two transparent substrates 11 and 12. As a result, the liquid crystal is sandwiched between the pixel electrode and the common electrode (between the alignment film covering the predetermined surface of one transparent substrate 11 and the alignment film covering the predetermined surface of the other transparent electrode 12). ing.
 さらに、2枚の透明基板11および12のそれぞれの外形サイズは互いに異ならされていて、透明基板11の外形サイズが透明基板12の外形サイズよりも大きくなっている。したがって、2枚の透明基板11および12は互いに貼り合わされているが、透明基板11および12のそれぞれの所定端は互いに合致しておらず、透明基板11の所定面の一部が透明基板12から露出されている。この透明基板11の所定面の露出した部分は、非表示領域の一領域であって、透明基板11にドライバ(図示せず)を電気的に接続するために用いられる。 Furthermore, the outer sizes of the two transparent substrates 11 and 12 are different from each other, and the outer size of the transparent substrate 11 is larger than the outer size of the transparent substrate 12. Accordingly, the two transparent substrates 11 and 12 are bonded to each other, but the predetermined ends of the transparent substrates 11 and 12 do not match each other, and a part of the predetermined surface of the transparent substrate 11 is separated from the transparent substrate 12. Exposed. The exposed portion of the predetermined surface of the transparent substrate 11 is a region of a non-display area, and is used for electrically connecting a driver (not shown) to the transparent substrate 11.
 また、2枚の透明基板11および12の所定面(液晶側の面)とは反対側の面のそれぞれには、特定の振動方向の光波だけを透過させる偏光シート13が1枚ずつ貼付されている。そして、2枚の偏光シート13のそれぞれの透過軸方向は、互いに約90°ずらされている。 In addition, a polarizing sheet 13 that transmits only light waves in a specific vibration direction is attached to each of the surfaces of the two transparent substrates 11 and 12 opposite to the predetermined surfaces (surfaces on the liquid crystal side). Yes. The transmission axis directions of the two polarizing sheets 13 are shifted from each other by about 90 °.
 この液晶表示パネル10の裏面側に設置されるバックライトユニット20は、バックシャーシ21と、光源モジュール22と、反射シート23と、拡散板24と、光学シート25とを少なくとも備えている。なお、拡散板24は、本発明の「透光板」の一例である。 The backlight unit 20 installed on the back side of the liquid crystal display panel 10 includes at least a back chassis 21, a light source module 22, a reflection sheet 23, a diffusion plate 24, and an optical sheet 25. The diffuser plate 24 is an example of the “translucent plate” in the present invention.
 バックシャーシ21は、液晶表示パネル10側が開口された略箱状に形成されている。すなわち、バックシャーシ21は、平面視(液晶表示パネル10側から平面的に見た場合)における形状が略長方形状の底部21aと、底部21aの外周に立設する側部21bとを有している。そして、バックシャーシ21の底部21aおよび側部21bで取り囲まれた領域が収容領域とされている。 The back chassis 21 is formed in a substantially box shape with the liquid crystal display panel 10 side opened. That is, the back chassis 21 has a bottom portion 21a having a substantially rectangular shape in plan view (when viewed from the liquid crystal display panel 10 side), and a side portion 21b standing on the outer periphery of the bottom portion 21a. Yes. And the area | region enclosed by the bottom part 21a and the side part 21b of the back chassis 21 is made into the accommodation area | region.
 光源モジュール22は、バックシャーシ21の収容領域に複数収容され、バックシャーシ21の底部21aに固定されている。そして、バックライトユニット20が液晶表示パネル10の裏面側に設置された状態においては、光源モジュール22が液晶表示パネル10の直下(液晶表示パネル10の裏面と対向する領域)に配置される。 A plurality of light source modules 22 are housed in the housing area of the back chassis 21 and are fixed to the bottom 21 a of the back chassis 21. In a state where the backlight unit 20 is installed on the back side of the liquid crystal display panel 10, the light source module 22 is disposed immediately below the liquid crystal display panel 10 (region facing the back side of the liquid crystal display panel 10).
 光源モジュール22の構造としては、それぞれが紫外線を発する2個以上のLEDパッケージ26を光源として持ち、その2個以上のLEDパッケージ26が短冊状に形成された同一のLED基板27の搭載面上に搭載されたものとなっている。2個以上のLEDパッケージ26から発せられる紫外線のピーク波長は400nm以下(たとえば、210nm~400nm程度)である。また、2個以上のLEDパッケージ26は、LED基板27の長手方向に沿って一列に並べられ、かつ、直列に接続されている。なお、同一のLED基板27の搭載面上に搭載するLEDパッケージ26の搭載数については特に限定されるものではなく、用途に応じて変更可能である。 The light source module 22 has a structure in which two or more LED packages 26 each emitting ultraviolet light are used as light sources, and the two or more LED packages 26 are formed on a mounting surface of the same LED substrate 27 formed in a strip shape. It has been installed. The peak wavelength of ultraviolet rays emitted from two or more LED packages 26 is 400 nm or less (for example, about 210 nm to 400 nm). Further, the two or more LED packages 26 are arranged in a line along the longitudinal direction of the LED substrate 27 and are connected in series. Note that the number of LED packages 26 to be mounted on the mounting surface of the same LED substrate 27 is not particularly limited, and can be changed according to the application.
 また、バックシャーシ21の収容領域に複数の光源モジュール22が収容されていることは既に述べたが、それら複数の光源モジュール22は、バックシャーシ21の底部21aの底面に対して平行な方向であるX方向(バックシャーシ21の長手方向)およびY方向(バックシャーシ21の短手方向)に互いに所定の間隔を隔てて二次元的に配列されている。なお、この状態においては、LED基板27の長手方向とX方向とが一致し、LED基板27の短手方向とY方向とが一致している。 As described above, the plurality of light source modules 22 are accommodated in the accommodation area of the back chassis 21, but the plurality of light source modules 22 are parallel to the bottom surface of the bottom portion 21 a of the back chassis 21. They are two-dimensionally arranged at predetermined intervals in the X direction (longitudinal direction of the back chassis 21) and the Y direction (short direction of the back chassis 21). In this state, the longitudinal direction of the LED board 27 and the X direction coincide with each other, and the short side direction of the LED board 27 and the Y direction coincide with each other.
 そして、X方向に隣り合う光源モジュール22同士は、図示しないコネクタを介して互いに電気的に接続されている。言い換えると、X方向に隣り合う一方の光源モジュール22および他方の光源モジュール22のそれぞれに含まれるLED基板27同士がコネクタを介して互いに電気的に接続されている。 The light source modules 22 adjacent in the X direction are electrically connected to each other via a connector (not shown). In other words, the LED boards 27 included in each of the one light source module 22 and the other light source module 22 adjacent in the X direction are electrically connected to each other via the connector.
 反射シート23は、LEDパッケージ26から発せられた紫外線を液晶表示パネル10側に向けて反射するためのものであって、光源モジュール22と共にバックシャーシ21の収容領域に収容されている。この反射シート23の形状としては、平面視における形状が略長方形状の底部23aと、底部23aの外周に立設する斜めに傾斜した側部23bとを有したものとなっている。 The reflection sheet 23 is for reflecting the ultraviolet rays emitted from the LED package 26 toward the liquid crystal display panel 10, and is housed in the housing area of the back chassis 21 together with the light source module 22. The shape of the reflection sheet 23 includes a bottom portion 23a having a substantially rectangular shape in plan view, and an obliquely inclined side portion 23b standing on the outer periphery of the bottom portion 23a.
 そして、バックシャーシ21の収容領域に反射シート23が収容された状態では、反射シート23の底部23aがバックシャーシ21の底部21aの底面上にLED基板27を挟んで載置されている。すなわち、反射シート23の底部23aは、LED基板27の搭載面(バックシャーシ21の底部21aの底面のうちのLED基板27と重畳していない面も含む)を覆っている。一方、反射シート23の側部23bは、バックシャーシ21の側部21bの内側面を覆っている。 In the state where the reflection sheet 23 is accommodated in the accommodation area of the back chassis 21, the bottom 23 a of the reflection sheet 23 is placed on the bottom surface of the bottom 21 a of the back chassis 21 with the LED substrate 27 interposed therebetween. That is, the bottom portion 23 a of the reflection sheet 23 covers the mounting surface of the LED substrate 27 (including the surface of the bottom surface 21 a of the back chassis 21 that does not overlap the LED substrate 27). On the other hand, the side portion 23 b of the reflection sheet 23 covers the inner side surface of the side portion 21 b of the back chassis 21.
 なお、反射シート23の底部23aでLED基板27の搭載面の全面を覆うようにすると、LED基板27の搭載面上に搭載されたLEDパッケージ26も反射シート23の底部23aで覆われてしまう。したがって、反射シート23の底部23aには、LEDパッケージ26を液晶表示パネル10側に露出させるために、開口形状が円形状とされた露出穴23cがLEDパッケージ26と同数だけ形成されている。そして、それら反射シート23の露出穴23cのそれぞれから、LEDパッケージ26が1つずつ液晶表示パネル10側に露出(突出)されている。 If the bottom surface 23 a of the reflection sheet 23 covers the entire surface of the LED substrate 27, the LED package 26 mounted on the LED substrate 27 is also covered with the bottom portion 23 a of the reflection sheet 23. Accordingly, the same number of exposure holes 23c having circular openings are formed in the bottom 23a of the reflection sheet 23 so that the LED package 26 is exposed to the liquid crystal display panel 10 side. One LED package 26 is exposed (projected) to the liquid crystal display panel 10 side from each of the exposed holes 23 c of the reflection sheet 23.
 拡散板24は、LEDパッケージ26から発せられた紫外線を導入して液晶表示パネル10側に向けて拡散出射するためのものであって、略長方形状の前面およびその反対面である後面と、前面および後面に繋がる複数の側面とを有している。そして、拡散板24はバックシャーシ21の開口を塞ぐように配置されており、拡散板24の前面が液晶表示パネル10側に向けられ、拡散板24の後面がバックシャーシ21の底部21a側に向けられた状態となっている。すなわち、この拡散板24によって、光源モジュール22が液晶表示パネル10側から覆われている。 The diffusion plate 24 is for introducing ultraviolet rays emitted from the LED package 26 and diffusing and emitting the ultraviolet rays toward the liquid crystal display panel 10 side. The diffusion plate 24 has a substantially rectangular front surface and a rear surface opposite to the front surface. And a plurality of side surfaces connected to the rear surface. The diffusion plate 24 is disposed so as to close the opening of the back chassis 21, the front surface of the diffusion plate 24 is directed toward the liquid crystal display panel 10, and the rear surface of the diffusion plate 24 is directed toward the bottom 21 a side of the back chassis 21. It is in the state that was. That is, the light source module 22 is covered by the diffusion plate 24 from the liquid crystal display panel 10 side.
 これにより、LEDパッケージ26から紫外線が発せられると、その紫外線が拡散板24の後面から拡散板24内に導入される。そして、拡散板24内に導入された紫外線は、拡散板24の前面から液晶表示パネル10側に向けて拡散出射される。なお、以下の説明では、拡散板24の前面を出射面24aと言う。 Thereby, when ultraviolet rays are emitted from the LED package 26, the ultraviolet rays are introduced into the diffusion plate 24 from the rear surface of the diffusion plate 24. The ultraviolet rays introduced into the diffusion plate 24 are diffused and emitted from the front surface of the diffusion plate 24 toward the liquid crystal display panel 10 side. In the following description, the front surface of the diffusion plate 24 is referred to as an emission surface 24a.
 この拡散板24の構成材料は特に限定されるものではないが、たとえば、アクリル樹脂やビニル樹脂などが考えられる。また、拡散板24の形状および板厚についても特に限定されず、用途に応じて変更可能である。 The constituent material of the diffusion plate 24 is not particularly limited, and for example, an acrylic resin or a vinyl resin can be considered. Further, the shape and thickness of the diffusion plate 24 are not particularly limited, and can be changed according to the application.
 光学シート25は、拡散シートやレンズシートなどを含むシート群であり、拡散板24の出射面24a上に配置されている。この光学シート25の種類や使用枚数については、用途に応じて適宜変更される。なお、後に詳細に説明するが、拡散板24の出射面24a上には蛍光部材28(図2参照)が形成される。このため、実際には、拡散板24と光学シート25との間に蛍光部材28が挟み込まれる。言い換えると、光学シート25は、拡散板24の出射面24a上に蛍光部材28を介して配置されることになる。 The optical sheet 25 is a sheet group including a diffusion sheet, a lens sheet, and the like, and is disposed on the emission surface 24 a of the diffusion plate 24. The type and the number of sheets used of the optical sheet 25 are appropriately changed according to the application. As will be described in detail later, a fluorescent member 28 (see FIG. 2) is formed on the emission surface 24a of the diffusion plate 24. For this reason, the fluorescent member 28 is actually sandwiched between the diffusion plate 24 and the optical sheet 25. In other words, the optical sheet 25 is disposed on the emission surface 24 a of the diffusion plate 24 via the fluorescent member 28.
 ここで、第1実施形態では、図2に示すように、紫外線を吸収して白色光を発光する蛍光部材28を拡散板24の出射面24aに塗布することで、拡散板24の出射面24a上に蛍光部材28が形成された状態にしている。このため、拡散板24の出射面24aからは紫外線が出射されるが、その紫外線は蛍光部材28によって白色光に変換される。したがって、光学シート25(図1参照)には白色光が入射され、光学シート25で拡散(集光)された白色光が液晶表示パネル10(図1参照)の裏面を照明することになる。 Here, in the first embodiment, as shown in FIG. 2, by applying a fluorescent member 28 that absorbs ultraviolet rays and emits white light to the emission surface 24 a of the diffusion plate 24, the emission surface 24 a of the diffusion plate 24. The fluorescent member 28 is formed on the top. For this reason, although ultraviolet rays are emitted from the emission surface 24 a of the diffusion plate 24, the ultraviolet rays are converted into white light by the fluorescent member 28. Therefore, white light is incident on the optical sheet 25 (see FIG. 1), and the white light diffused (collected) by the optical sheet 25 illuminates the back surface of the liquid crystal display panel 10 (see FIG. 1).
 拡散板24の出射面24a上に形成する蛍光部材28としては、たとえば、紫外線を吸収して赤色光に変換する蛍光体、紫外線を吸収して緑色光に変換する蛍光体、および、紫外線を吸収して青色光に変換する蛍光体、の3種類の蛍光体を含んだものである。これにより、蛍光部材28に含まれる各蛍光体が紫外線で励起されて発光すれば、それらが混色して白色となるので、蛍光部材28は白色に発光することになる。もちろん、蛍光部材28の発光色が白色になるのであれば、蛍光部材28に含まれる蛍光体は何種類であってもよい。 As the fluorescent member 28 formed on the emission surface 24a of the diffusion plate 24, for example, a phosphor that absorbs ultraviolet rays and converts them into red light, a phosphor that absorbs ultraviolet rays and converts it into green light, and absorbs ultraviolet rays. Thus, the phosphor contains three types of phosphors that convert blue light. Thereby, if each phosphor contained in the fluorescent member 28 is excited by ultraviolet rays and emits light, they are mixed and become white, so that the fluorescent member 28 emits white light. Of course, as long as the emission color of the fluorescent member 28 becomes white, the fluorescent member 28 may include any number of phosphors.
 ところで、拡散板24の出射面24aからの紫外線の単位面積当たりの出射量は、全面にわたって均一にはなっておらず、出射位置によって異なっている。すなわち、図3に示すように、拡散板24の出射面24aのうち、平面視(拡散板24の出射面24aと対向する側から平面的に見た場合)においてLEDパッケージ26の近傍領域26aと重畳する所定の出射面領域(本発明の「第1出射面領域」に相当)からの紫外線の単位面積当たりの出射量は、所定の出射面領域以外の他の出射面領域(本発明の「第2出射面領域」に相当)からの紫外線の単位面積当たりの出射量よりも多くなっている。さらに、所定の出射面領域以外の他の出射面領域からの紫外線の単位面積当たりの出射量については、所定の出射面領域から離れるにしたがって徐々に少なくなっている。なお、以下の説明では、拡散板24の出射面24aのうち、紫外線の出射量が最も多い所定の出射面領域を第1出射面領域と称し、所定の出射面領域よりも紫外線の出射量が少ない他の出射面領域を第2出射面領域と称して区別する。 Incidentally, the amount of ultraviolet light emitted from the light exit surface 24a of the diffusion plate 24 per unit area is not uniform over the entire surface, and varies depending on the light output position. That is, as shown in FIG. 3, the vicinity area 26 a of the LED package 26 in the plan view (when viewed in a plan view from the side facing the emission surface 24 a of the diffusion plate 24) of the emission surface 24 a of the diffusion plate 24. The amount of ultraviolet light emitted per unit area from a predetermined overlapping exit surface region (corresponding to the “first exit surface region” of the present invention) is an exit surface region other than the predetermined exit surface region (“ It corresponds to the amount of the emitted light per unit area of the ultraviolet light from the “second emission surface area”. Furthermore, the amount of ultraviolet light emitted per unit area other than the predetermined emission surface area gradually decreases as the distance from the predetermined emission surface area increases. In the following description, a predetermined emission surface region having the largest ultraviolet ray emission amount among the emission surfaces 24a of the diffusion plate 24 is referred to as a first emission surface region, and the ultraviolet ray emission amount is larger than that of the predetermined emission surface region. A small number of other exit surface regions are referred to as second exit surface regions to be distinguished.
 そこで、第1実施形態では、第1出射面領域における蛍光部材28の形成密度に対して第2出射面領域における蛍光部材28の形成密度を高くしている。さらに、第2出射面領域における蛍光部材28の形成密度については、第1出射面領域から離れるにしたがって徐々に高くしている。そして、そのようにすることによって、第1出射面領域において蛍光部材28に入射する単位面積当たりの紫外線量と、第2出射面領域において蛍光部材28に入射する単位面積当たりの紫外線量との差を小さくしている。言い換えると、第1出射面領域における単位面積当たりの発光量と、第2出射面領域における単位面積当たりの発光量との差を小さくしている。 Therefore, in the first embodiment, the formation density of the fluorescent member 28 in the second emission surface region is set higher than the formation density of the fluorescent member 28 in the first emission surface region. Furthermore, the formation density of the fluorescent members 28 in the second emission surface area is gradually increased as the distance from the first emission surface area increases. By doing so, the difference between the amount of ultraviolet light per unit area incident on the fluorescent member 28 in the first emission surface area and the amount of ultraviolet light per unit area incident on the fluorescent member 28 in the second emission surface area. Is made smaller. In other words, the difference between the light emission amount per unit area in the first emission surface region and the light emission amount per unit area in the second emission surface region is reduced.
 このように、拡散板24の出射面24aの位置に応じて蛍光部材28の形成密度を異ならせるために、第1実施形態では、拡散板24の出射面24aの全面を蛍光部材28で覆ってはいない。すなわち、蛍光部材28が拡散板24の出射面24aの全面上に均一に形成されておらず、拡散板24の出射面24aが部分的に露出されている。 Thus, in order to make the formation density of the fluorescent member 28 different according to the position of the emission surface 24a of the diffusion plate 24, in the first embodiment, the entire emission surface 24a of the diffusion plate 24 is covered with the fluorescent member 28. No. That is, the fluorescent member 28 is not uniformly formed on the entire emission surface 24a of the diffusion plate 24, and the emission surface 24a of the diffusion plate 24 is partially exposed.
 具体的に言うと、この蛍光部材28は、それぞれが略円形状に形成された複数の島状部28aからなっている。そして、第1出射面領域における蛍光部材28の形成密度に対して第2出射面領域における蛍光部材28の形成密度が高くなるように、複数の島状部28aが互い離間するように分散して配置されている。さらに、蛍光部材28の形成密度が第1出射面領域から離れるにしたがって徐々に高くなるように、複数の島状部28aの外形サイズ(直径)Dが第1出射面領域から離れるにしたがって徐々に大きくされている。なお、蛍光部材28に含まれる複数の島状部28aの外形サイズDとしては、第1出射面領域から離れるにしたがって徐々に大きくなっていれば、用途などに応じて適宜変更可能である。 More specifically, the fluorescent member 28 is composed of a plurality of island-shaped portions 28a each formed in a substantially circular shape. Then, the plurality of island portions 28a are dispersed so as to be separated from each other so that the formation density of the fluorescent members 28 in the second emission surface area is higher than the formation density of the fluorescence members 28 in the first emission surface area. Is arranged. Further, the outer shape size (diameter) D of the plurality of island-shaped portions 28a gradually increases as the distance from the first emission surface region increases so that the formation density of the fluorescent members 28 gradually increases as the distance from the first emission surface region increases. It has been enlarged. Note that the outer size D of the plurality of island-shaped portions 28a included in the fluorescent member 28 can be changed as appropriate according to the use and the like as long as it gradually increases with distance from the first emission surface area.
 第1実施形態では、上記のように、紫外線を発するLEDパッケージ26を光源として用い、紫外線を吸収して発光する蛍光部材28を拡散板24の出射面24a上に形成することによって、拡散板24の出射面24aから出射された紫外線が蛍光部材28に入射するので、蛍光部材28が励起されて白色に発光し、その蛍光部材28から発せられる白色光がバックライト光の基となる。そして、このようにすると、蛍光部材28から発せられる白色光は四方八方に広がるので、拡散板24とLEDパッケージ26との間の距離を小さくすることでバックライトユニット20の薄型化を図ったとしても、バックライト光に輝度ムラが生じてしまうのを抑制することが可能となる。 In the first embodiment, as described above, the LED package 26 that emits ultraviolet rays is used as the light source, and the fluorescent member 28 that emits light by absorbing the ultraviolet rays is formed on the emission surface 24a of the diffusion plate 24, thereby diffusing the plate 24. Since the ultraviolet rays emitted from the emission surface 24a enter the fluorescent member 28, the fluorescent member 28 is excited to emit white light, and the white light emitted from the fluorescent member 28 becomes the basis of the backlight light. In this case, since the white light emitted from the fluorescent member 28 spreads in all directions, it is assumed that the backlight unit 20 is thinned by reducing the distance between the diffusion plate 24 and the LED package 26. However, it is possible to suppress the occurrence of luminance unevenness in the backlight light.
 特に、第1実施形態では、拡散板24の出射面24aの出射位置によって単位面積当たりの紫外線の出射量が異なっている(第1出射面領域における紫外線の単位面積当たりの出射量が第2出射面領域における紫外線の単位面積当たりの出射量よりも多くなっている)が、第1出射面領域における蛍光部材28の形成密度を低くし、第2出射面領域における蛍光部材28の形成密度を高くしているので、第1出射面領域において蛍光部材28に入射する単位面積当たりの紫外線量と、第2出射面領域において蛍光部材28に入射する単位面積当たりの紫外線量との差(第1出射面領域における単位面積当たりの発光量と、第2出射面領域における単位面積当たりの発光量との差)が小さくなる。これにより、拡散板24の出射面24aの出射位置によって単位面積当たりの紫外線の出射量が異なっていたとしても、バックライト光に生じる輝度ムラが効果的に抑制される。 In particular, in the first embodiment, the amount of ultraviolet rays emitted per unit area differs depending on the emission position of the emission surface 24a of the diffusion plate 24 (the amount of emitted ultraviolet light per unit area in the first emission surface region is the second emission amount). The amount of ultraviolet light emitted per unit area in the surface area is larger), which lowers the formation density of the fluorescent member 28 in the first emission surface area and increases the formation density of the fluorescent member 28 in the second emission surface area. Therefore, the difference between the amount of ultraviolet light per unit area incident on the fluorescent member 28 in the first emission surface area and the amount of ultraviolet light per unit area incident on the fluorescent member 28 in the second emission surface area (first emission surface). The difference between the light emission amount per unit area in the surface area and the light emission amount per unit area in the second emission surface area) is reduced. Thereby, even if the amount of ultraviolet rays emitted per unit area differs depending on the emission position of the emission surface 24a of the diffusing plate 24, luminance unevenness generated in the backlight light is effectively suppressed.
 また、第1実施形態では、上記のように、拡散板24の出射面24aを全面にわたって蛍光部材28で覆わずに部分的に露出させるようにすることによって、その拡散板24の出射面24aの露出部分の位置を適宜調整すれば、容易に、第1出射面領域における蛍光部材28の形成密度に対して第2出射面領域における蛍光部材28の形成密度を高くすることができる。 In the first embodiment, as described above, the exit surface 24a of the diffuser plate 24 is partially exposed without being covered with the fluorescent member 28 over the entire surface, so that the exit surface 24a of the diffuser plate 24 is exposed. If the position of the exposed portion is appropriately adjusted, the formation density of the fluorescent member 28 in the second emission surface area can be easily increased with respect to the formation density of the fluorescence member 28 in the first emission surface area.
 この場合、第1実施形態では、蛍光部材28(複数の島状部28a)を分散して配置するようにしているので、容易に、第1出射面領域における蛍光部材28の形成密度に対して第2出射面領域における蛍光部材28の形成密度が高くなるように、拡散板24の出射面24aの露出部分の位置を適宜調整することができる。 In this case, in the first embodiment, since the fluorescent members 28 (the plurality of island portions 28a) are arranged in a distributed manner, the formation density of the fluorescent members 28 in the first emission surface region can be easily determined. The position of the exposed portion of the exit surface 24a of the diffusion plate 24 can be adjusted as appropriate so that the formation density of the fluorescent members 28 in the second exit surface region is increased.
 さらに、第1実施形態では、蛍光部材28としての複数の島状部28aの外形サイズDを第1出射面領域から離れるにしたがって徐々に大きくしているので、蛍光部材28の形成密度が第1出射面領域から離れるにしたがって徐々に高くなっている。したがって、紫外線の単位面積当たりの出射量が第1出射面領域から離れるにしたがって徐々に少なくなっていたとしても、バックライト光に輝度ムラが生じるのを効果的に抑制することができる。 Furthermore, in the first embodiment, since the outer size D of the plurality of island-shaped portions 28a as the fluorescent member 28 is gradually increased as the distance from the first emission surface region is increased, the formation density of the fluorescent member 28 is first. It gradually increases as the distance from the exit surface area increases. Therefore, even if the emission amount per unit area of the ultraviolet rays gradually decreases as the distance from the first emission surface region increases, it is possible to effectively suppress the occurrence of luminance unevenness in the backlight light.
 また、第1実施形態では、上記のように、拡散板24の出射面24a上に蛍光部材28を介して光学シート25を配置することによって、蛍光部材28から発せられた白色光を拡散したり集光したりすることができる。これにより、より良好なバックライト光を得ることができる。 In the first embodiment, as described above, the optical sheet 25 is disposed on the emission surface 24a of the diffusion plate 24 via the fluorescent member 28, thereby diffusing white light emitted from the fluorescent member 28. It can be condensed. Thereby, better backlight light can be obtained.
 また、第1実施形態では、上記のように、光拡散機能を持たない単なる透明板ではなくて拡散板24の出射面24a上に蛍光部材28を形成することによって、光拡散効果が向上するので、バックライト光に輝度ムラが生じるのをより抑制することができる。 In the first embodiment, as described above, the light diffusing effect is improved by forming the fluorescent member 28 on the emission surface 24a of the diffusing plate 24 instead of a mere transparent plate having no light diffusing function. Further, it is possible to further suppress the occurrence of luminance unevenness in the backlight light.
 なお、第1実施形態の構成において、蛍光部材28としての複数の島状部28aの外形形状を変更してもよい。たとえば、蛍光部材28としての複数の島状部28aの外形形状が四角形状(略四角形状を含む)や三角形状(略三角形状を含む)であってもよく、さらに、それら以外の形状であってもよい。 In the configuration of the first embodiment, the outer shape of the plurality of island portions 28a as the fluorescent member 28 may be changed. For example, the outer shape of the plurality of island-shaped portions 28a as the fluorescent member 28 may be a quadrangular shape (including a substantially quadrangular shape) or a triangular shape (including a substantially triangular shape), and may have other shapes. May be.
 また、第1実施形態の構成において、拡散板24に代えて、光拡散機能を持たない単なる透明板を用いてもよい。すなわち、光拡散機能を持たない単なる透明板上に蛍光部材28を形成するようにしてもよい。この場合には、透明板が本発明の「透光板」に相当することになる。 In the configuration of the first embodiment, a simple transparent plate having no light diffusion function may be used instead of the diffusion plate 24. That is, the fluorescent member 28 may be formed on a simple transparent plate having no light diffusion function. In this case, the transparent plate corresponds to the “translucent plate” of the present invention.
 (第2実施形態)
 次に、図4を参照して、この第2実施形態では、第1実施形態と同様、拡散板24の出射面24a上に蛍光部材28が形成されており、その蛍光部材28が複数の島状部28aからなっている。また、第1出射面領域における蛍光部材28の形成密度に対して第2出射面領域における蛍光部材28の形成密度が高くなるように、蛍光部材28としての複数の島状部28aが互い離間するように分散されている。
(Second Embodiment)
Next, referring to FIG. 4, in the second embodiment, as in the first embodiment, the fluorescent member 28 is formed on the emission surface 24a of the diffusion plate 24, and the fluorescent member 28 includes a plurality of islands. It consists of the shape part 28a. Further, the plurality of island portions 28a as the fluorescent member 28 are separated from each other so that the formation density of the fluorescent member 28 in the second emission surface region is higher than the formation density of the fluorescent member 28 in the first emission surface region. Are so distributed.
 ただし、第2実施形態では、蛍光部材28としての複数の島状部28aの外形サイズが互いに略同じになっている。そして、蛍光部材28の形成密度が第1出射面領域から離れるにしたがって徐々に高くなるように、複数の島状部28aの分散間隔Gが第1出射面領域から離れるにしたがって徐々に小さくされている。なお、蛍光部材28に含まれる複数の島状部28aの分散間隔Gとしては、第1出射面領域から離れるにしたがって徐々に小さくなっていれば、用途などに応じて適宜変更可能である。 However, in the second embodiment, the plurality of island portions 28a as the fluorescent member 28 have substantially the same outer size. And the dispersion | distribution space | interval G of the some island-shaped part 28a is made small gradually as it leaves | separates from a 1st output surface area so that the formation density of the fluorescent member 28 may become high gradually as it leaves | separates from a 1st output surface area | region. Yes. In addition, as the dispersion | distribution space | interval G of the some island-shaped part 28a contained in the fluorescent member 28, if it becomes small gradually as it leaves | separates from a 1st output surface area | region, it can change suitably according to a use etc.
 第2実施形態のその他の構成は、第1実施形態の構成と同様であるため、その詳細な説明は省略する。 The other configuration of the second embodiment is the same as the configuration of the first embodiment, and a detailed description thereof will be omitted.
 第2実施形態では、上記のように、蛍光部材28としての複数の島状部28aの分散間隔Gを第1出射面領域から離れるにしたがって徐々に小さくすることによって、蛍光部材28の形成密度が第1出射面領域から離れるにしたがって徐々に高くなる。これにより、第1実施形態と同様、紫外線の単位面積当たりの出射量が第1出射面領域から離れるにしたがって徐々に少なくなっていたとしても、バックライト光に輝度ムラが生じるのを効果的に抑制することができる。 In the second embodiment, as described above, the formation density of the fluorescent member 28 is reduced by gradually decreasing the dispersion interval G of the plurality of island-like portions 28a as the fluorescent member 28 as the distance from the first emission surface region increases. The distance gradually increases as the distance from the first exit surface area increases. As a result, as in the first embodiment, even if the emission amount per unit area of ultraviolet light gradually decreases as the distance from the first emission surface region increases, it is effective to cause uneven brightness in the backlight light. Can be suppressed.
 この第2実施形態のその他の効果は、第1実施形態の効果と同様である。 Other effects of the second embodiment are the same as those of the first embodiment.
 なお、第2実施形態の構成において、蛍光部材28としての複数の島状部28aの分散間隔を第1出射面領域から離れるにしたがって徐々に小さくし、かつ、蛍光部材28としての複数の島状部28aの外形サイズを第1出射面領域から離れるにしたがって徐々に大きくしてもよい。すなわち、第2実施形態の構成に第1実施形態の構成を組み合わせるようにしてもよい。 In the configuration of the second embodiment, the dispersion interval of the plurality of island-shaped portions 28a as the fluorescent member 28 is gradually reduced as the distance from the first emission surface region increases, and the plurality of island-shaped as the fluorescent member 28 is formed. The outer size of the portion 28a may be gradually increased as the distance from the first exit surface area increases. That is, the configuration of the first embodiment may be combined with the configuration of the second embodiment.
 (第3実施形態)
 以下に、図5を参照して、第3実施形態の構成について説明する。
(Third embodiment)
The configuration of the third embodiment will be described below with reference to FIG.
 第3実施形態では、図5に示すように、第1実施形態の蛍光部材28と同様の材料からなる蛍光部材38が拡散板24の出射面24a上に形成されているが、その蛍光部材38は複数の線状部38aを含んでいる。なお、図5は断面図ではないが、図面を見易くするために、蛍光部材38に対応する部分にハッチングを施している。 In the third embodiment, as shown in FIG. 5, a fluorescent member 38 made of the same material as that of the fluorescent member 28 of the first embodiment is formed on the emission surface 24 a of the diffusion plate 24. Includes a plurality of linear portions 38a. Although FIG. 5 is not a cross-sectional view, hatching is applied to a portion corresponding to the fluorescent member 38 in order to make the drawing easy to see.
 そして、第1出射面領域における蛍光部材38の形成密度に対して第2出射面領域における蛍光部材38の形成密度が高くなり、かつ、蛍光部材38の形成密度が第1出射面領域から離れるにしたがって徐々に高くなるように、複数の線状部38aが格子状に配置されている。より具体的には、蛍光部材38としての複数の線状部38aの線幅Wが第1出射面領域から離れるにしたがって徐々に大きくされている。なお、蛍光部材38に含まれる複数の線状部38aの線幅Wとしては、第1出射面領域から離れるにしたがって徐々に大きくなっていれば、用途などに応じて適宜変更可能である。 The formation density of the fluorescent member 38 in the second emission surface area is higher than the formation density of the fluorescent member 38 in the first emission surface area, and the formation density of the fluorescent member 38 is separated from the first emission surface area. Therefore, the plurality of linear portions 38a are arranged in a lattice pattern so as to gradually increase. More specifically, the line width W of the plurality of linear portions 38a as the fluorescent member 38 is gradually increased as the distance from the first emission surface area increases. Note that the line width W of the plurality of linear portions 38a included in the fluorescent member 38 can be changed as appropriate depending on the application and the like as long as it gradually increases as the distance from the first emission surface region increases.
 第3実施形態のその他の構成は、第1実施形態の構成と同様であるため、その詳細な説明は省略する。 Other configurations of the third embodiment are the same as the configurations of the first embodiment, and thus detailed description thereof is omitted.
 第3実施形態では、上記のように、複数の線状部38aからなる蛍光部材38を拡散板24の出射面24a上に形成するとともに、その複数の線状部38aを格子状に配置し、かつ、複数の線状部38aの線幅Wを第1出射面領域から離れるにしたがって徐々に大きくすることによって、蛍光部材38の形成密度が第1出射面領域から離れるにしたがって徐々に高くなる。これにより、第1実施形態と同様、紫外線の単位面積当たりの出射量が第1出射面領域から離れるにしたがって徐々に少なくなっていたとしても、バックライト光に輝度ムラが生じるのを効果的に抑制することができる。 In the third embodiment, as described above, the fluorescent member 38 composed of a plurality of linear portions 38a is formed on the emission surface 24a of the diffusion plate 24, and the plurality of linear portions 38a are arranged in a lattice pattern, Further, by gradually increasing the line width W of the plurality of linear portions 38a as the distance from the first emission surface area increases, the formation density of the fluorescent member 38 gradually increases as the distance from the first emission surface area increases. As a result, as in the first embodiment, even if the emission amount per unit area of ultraviolet light gradually decreases as the distance from the first emission surface region increases, it is effective to cause uneven brightness in the backlight light. Can be suppressed.
 この第3実施形態のその他の効果は、第1実施形態の効果と同様である。 Other effects of the third embodiment are the same as those of the first embodiment.
 (第4実施形態)
 次に、図6を参照して、この第4実施形態では、第3実施形態と同様、拡散板24の出射面24a上に蛍光部材38が形成されており、その蛍光部材38が複数の線状部38aからなっている。また、第1出射面領域における蛍光部材38の形成密度に対して第2出射面領域における蛍光部材38の形成密度が高くなり、かつ、蛍光部材38の形成密度が第1出射面領域から離れるにしたがって徐々に高くなるように、複数の線状部38aが格子状に配置されている。なお、図6は断面図ではないが、図面を見易くするために、蛍光部材38に対応する部分にハッチングを施している。
(Fourth embodiment)
Next, referring to FIG. 6, in the fourth embodiment, as in the third embodiment, the fluorescent member 38 is formed on the emission surface 24a of the diffuser plate 24, and the fluorescent member 38 includes a plurality of lines. It consists of the shape part 38a. In addition, the formation density of the fluorescent member 38 in the second emission surface region is higher than the formation density of the fluorescence member 38 in the first emission surface region, and the formation density of the fluorescence member 38 is separated from the first emission surface region. Therefore, the plurality of linear portions 38a are arranged in a lattice pattern so as to gradually increase. Although FIG. 6 is not a cross-sectional view, a portion corresponding to the fluorescent member 38 is hatched to make the drawing easy to see.
 ただし、第4実施形態では、蛍光部材38としての複数の線状部38aの線幅が互いに略同じになっている。そして、蛍光部材38の形成密度が第1出射面領域から離れるにしたがって徐々に高くなるように、複数の線状部38aの隣接間隔Gが第1出射面領域から離れるにしたがって徐々に小さくされている。なお、蛍光部材38に含まれる複数の線状部38aの隣接間隔Gとしては、第1出射面領域から離れるにしたがって徐々に小さくなっていれば、用途などに応じて適宜変更可能である。 However, in the fourth embodiment, the line widths of the plurality of linear portions 38a as the fluorescent member 38 are substantially the same. The adjacent spacing G of the plurality of linear portions 38a is gradually decreased as the distance from the first emission surface area is increased so that the formation density of the fluorescent member 38 gradually increases as the distance from the first emission surface area increases. Yes. It should be noted that the adjacent gap G between the plurality of linear portions 38a included in the fluorescent member 38 can be appropriately changed depending on the application and the like as long as it gradually decreases as the distance from the first emission surface region increases.
 第4実施形態のその他の構成は、第1実施形態の構成と同様であるため、その詳細な説明は省略する。 The other configurations of the fourth embodiment are the same as the configurations of the first embodiment, and thus detailed description thereof is omitted.
 第4実施形態では、上記のように、複数の線状部38aからなる蛍光部材38を拡散板24の出射面24a上に形成するとともに、その複数の線状部38aを格子状に配置し、かつ、複数の線状部38aの隣接間隔Gを第1出射面領域から離れるにしたがって徐々に小さくすることによって、蛍光部材38の形成密度が第1出射面領域から離れるにしたがって徐々に高くなる。これにより、第1実施形態と同様、紫外線の単位面積当たりの出射量が第1出射面領域から離れるにしたがって徐々に少なくなっていたとしても、バックライト光に輝度ムラが生じるのを効果的に抑制することができる。 In the fourth embodiment, as described above, the fluorescent member 38 composed of a plurality of linear portions 38a is formed on the emission surface 24a of the diffusion plate 24, and the plurality of linear portions 38a are arranged in a lattice pattern, In addition, by gradually reducing the interval G between the plurality of linear portions 38a as the distance from the first emission surface area increases, the formation density of the fluorescent member 38 gradually increases as the distance from the first emission surface area increases. As a result, as in the first embodiment, even if the emission amount per unit area of ultraviolet light gradually decreases as the distance from the first emission surface region increases, it is effective to cause uneven brightness in the backlight light. Can be suppressed.
 この第4実施形態のその他の効果は、第1実施形態の効果と同様である。 Other effects of the fourth embodiment are the same as those of the first embodiment.
 なお、第4実施形態の構成において、蛍光部材38としての複数の線状部38aの隣接間隔を第1出射面領域から離れるにしたがって徐々に小さくし、かつ、蛍光部材38としての複数の線状部38aの線幅を第1出射面領域から離れるにしたがって徐々に大きくしてもよい。すなわち、第4実施形態の構成に第3実施形態の構成を組み合わせるようにしてもよい。 In the configuration of the fourth embodiment, the interval between the plurality of linear portions 38a as the fluorescent member 38 is gradually reduced as the distance from the first emission surface region increases, and the plurality of linear shapes as the fluorescent member 38 is used. The line width of the portion 38a may be gradually increased as the distance from the first exit surface area increases. That is, the configuration of the third embodiment may be combined with the configuration of the fourth embodiment.
 (第5実施形態)
 図7を参照して、この第5実施形態では、第1実施形態の蛍光部材28と同様の材料からなる蛍光部材48が拡散板24の出射面24a上に形成されているが、その蛍光部材48は拡散板24の出射面24aの略全面を覆っている。
(Fifth embodiment)
Referring to FIG. 7, in the fifth embodiment, a fluorescent member 48 made of the same material as that of the fluorescent member 28 of the first embodiment is formed on the emission surface 24a of the diffusion plate 24. Reference numeral 48 covers substantially the entire exit surface 24 a of the diffusion plate 24.
 第5実施形態のその他の構成は、第1実施形態の構成と同様であるため、その詳細な説明は省略する。 The other configuration of the fifth embodiment is the same as the configuration of the first embodiment, and a detailed description thereof will be omitted.
 このように構成された第5実施形態では、拡散板24の出射面24aに対する蛍光部材48の塗布量を調整する(第1出射面領域における蛍光部材48の厚みに対して第2出射面領域における蛍光部材48の厚みを大きくする)ことにより、第1実施形態と同様の効果が得られる。 In the fifth embodiment configured as described above, the amount of the fluorescent member 48 applied to the emission surface 24a of the diffusion plate 24 is adjusted (in the second emission surface region with respect to the thickness of the fluorescence member 48 in the first emission surface region). By increasing the thickness of the fluorescent member 48, the same effect as in the first embodiment can be obtained.
 (第6実施形態)
 以下に、図8を参照して、第6実施形態の構成について説明する。
(Sixth embodiment)
The configuration of the sixth embodiment will be described below with reference to FIG.
 第6実施形態では、液晶表示パネル10の裏面側に設置されるバックライトユニット50がエッジライト型とされている。 In the sixth embodiment, the backlight unit 50 installed on the back side of the liquid crystal display panel 10 is an edge light type.
 このエッジライト型のバックライトユニット50は、導光板51と、光源モジュール52と、光学シート53とを少なくとも備えている。なお、導光板51は、本発明の「透光板」の一例である。 The edge light type backlight unit 50 includes at least a light guide plate 51, a light source module 52, and an optical sheet 53. The light guide plate 51 is an example of the “translucent plate” in the present invention.
 導光板51は、前面およびその反対面である後面と、前面および後面に繋がる複数の側端面とを有しており、前面が液晶表示パネル10側に向くように配置されている。 The light guide plate 51 has a front surface and a rear surface opposite to the front surface, and a plurality of side end surfaces connected to the front surface and the rear surface, and is arranged so that the front surface faces the liquid crystal display panel 10 side.
 光源モジュール52は、紫外線を発するLEDパッケージ54を光源として持ち、そのLEDパッケージ54がLED基板55の搭載面上に搭載されたものとなっている。そして、導光板51の複数の側端面のうちの所定の側端面とLEDパッケージ54とが対向するように、導光板51の所定の側端面の側に光源モジュール52が配置されている。 The light source module 52 has an LED package 54 that emits ultraviolet rays as a light source, and the LED package 54 is mounted on the mounting surface of the LED substrate 55. And the light source module 52 is arrange | positioned at the side of the predetermined | prescribed side end surface of the light-guide plate 51 so that the predetermined | prescribed side end surface and LED package 54 of the some side end surfaces of the light-guide plate 51 may oppose.
 これにより、LEDパッケージ54から紫外線が発せられると、その紫外線が導光板51の所定の側端面に入射して導光板51内に導入される。その後、導光板51内に導入された紫外線は、導光板51の前面から液晶表示パネル10側に向けて出射される。なお、以下の説明では、導光板51の前面を出射面51aと言う。 Thus, when ultraviolet rays are emitted from the LED package 54, the ultraviolet rays enter the predetermined side end surface of the light guide plate 51 and are introduced into the light guide plate 51. Thereafter, the ultraviolet light introduced into the light guide plate 51 is emitted from the front surface of the light guide plate 51 toward the liquid crystal display panel 10. In the following description, the front surface of the light guide plate 51 is referred to as an emission surface 51a.
 また、光学シート53は、拡散シートやレンズシートなどを含むシート群であって、導光板51の出射面51a上に配置されている。この光学シート53の種類や使用枚数については、用途に応じて適宜変更される。 The optical sheet 53 is a group of sheets including a diffusion sheet, a lens sheet, and the like, and is disposed on the emission surface 51 a of the light guide plate 51. The type and the number of sheets used of the optical sheet 53 are appropriately changed according to the application.
 ここで、第6実施形態では、導光板51の出射面51a上に蛍光部材56が形成されている(導光板51と光学シート53との間に蛍光部材56が挟み込まれている)。この蛍光部材56は、第1実施形態の蛍光部材28と同様の材料からなっていて、紫外線を吸収して白色光を発光するようになっている。このため、導光板51の出射面51aからは紫外線が出射されるが、その紫外線は蛍光部材56によって白色光に変換される。したがって、光学シート53には白色光が入射され、光学シート53で拡散(集光)された白色光が液晶表示パネル10の裏面を照明することになる。 Here, in the sixth embodiment, the fluorescent member 56 is formed on the emission surface 51a of the light guide plate 51 (the fluorescent member 56 is sandwiched between the light guide plate 51 and the optical sheet 53). The fluorescent member 56 is made of the same material as the fluorescent member 28 of the first embodiment, and absorbs ultraviolet rays to emit white light. For this reason, although ultraviolet rays are emitted from the emission surface 51 a of the light guide plate 51, the ultraviolet rays are converted into white light by the fluorescent member 56. Therefore, white light is incident on the optical sheet 53, and the white light diffused (condensed) by the optical sheet 53 illuminates the back surface of the liquid crystal display panel 10.
 このように構成された第6実施形態では、第1実施形態と同様の効果が得られる。 In the sixth embodiment configured as described above, the same effects as in the first embodiment can be obtained.
 今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and includes all modifications within the meaning and scope equivalent to the scope of claims for patent.
 たとえば、上記実施形態では、液晶表示装置に設置される照明装置に本発明を適用する例について説明したが、本発明はこれに限らず、液晶表示装置以外の表示装置に設置される照明装置に本発明を適用してもよい。 For example, in the above-described embodiment, an example in which the present invention is applied to a lighting device installed in a liquid crystal display device has been described. However, the present invention is not limited thereto, and the lighting device installed in a display device other than the liquid crystal display device is used. The present invention may be applied.
  10 液晶表示パネル(表示パネル)
  20、50 バックライトユニット(照明装置)
  24 拡散板(透光板)
  24a、51a 出射面
  26、54 LEDパッケージ(光源)
  28、38、48、56 蛍光部材
  28a 島状部
  38a 線状部
  51 導光板(透光板)
10 Liquid crystal display panel (display panel)
20, 50 Backlight unit (lighting device)
24 Diffuser (Translucent plate)
24a, 51a Emitting surface 26, 54 LED package (light source)
28, 38, 48, 56 Fluorescent member 28a Island portion 38a Linear portion 51 Light guide plate (translucent plate)

Claims (12)

  1.  紫外線を発する光源と、
     被照明体側に向く出射面を有し、前記光源から発せられた前記紫外線を導入して前記出射面から出射する透光板とを備え、
     前記紫外線を吸収して発光する蛍光部材が前記透光板の出射面上に形成されていることを特徴とする照明装置。
    A light source that emits ultraviolet light;
    A light-transmitting plate that has an emission surface facing the illuminated body side, introduces the ultraviolet rays emitted from the light source, and emits the ultraviolet light from the emission surface;
    An illuminating device, wherein a fluorescent member that absorbs ultraviolet rays and emits light is formed on an emission surface of the translucent plate.
  2.  前記紫外線で励起されて発光する複数種類の蛍光体を含むものが前記蛍光部材とされていることを特徴とする請求項1に記載の照明装置。 The illumination device according to claim 1, wherein the fluorescent member includes a plurality of types of phosphors that are excited by the ultraviolet rays to emit light.
  3.  前記透光板の出射面のうち、第1出射面領域における前記紫外線の単位面積当たりの出射量が第2出射面領域における前記紫外線の単位面積当たりの出射量よりも多くなり、
     前記第1出射面領域における前記蛍光部材の形成密度に対して前記第2出射面領域における前記蛍光部材の形成密度が高くなっていることを特徴とする請求項1または2に記載の照明装置。
    Of the exit surface of the translucent plate, the output amount per unit area of the ultraviolet rays in the first exit surface region is larger than the exit amount per unit area of the ultraviolet rays in the second exit surface region,
    3. The lighting device according to claim 1, wherein a formation density of the fluorescent member in the second emission surface region is higher than a formation density of the fluorescent member in the first emission surface region.
  4.  前記透光板の出射面が全面にわたって前記蛍光部材で覆われずに部分的に露出されていることを特徴とする請求項3に記載の照明装置。 4. The illumination device according to claim 3, wherein an exit surface of the translucent plate is partially exposed without being covered with the fluorescent member over the entire surface.
  5.  前記蛍光部材が複数の島状部からなっており、
     前記複数の島状部が分散して配置されていることを特徴とする請求項4に記載の照明装置。
    The fluorescent member is composed of a plurality of island-shaped portions,
    The lighting device according to claim 4, wherein the plurality of island portions are arranged in a distributed manner.
  6.  前記第1出射面領域から離れるにしたがって前記紫外線の単位面積当たりの出射量が徐々に少なくなっており、
     前記第1出射面領域から離れるにしたがって前記複数の島状部の外形サイズが徐々に大きくなっていることを特徴とする請求項5に記載の照明装置。
    The emission amount per unit area of the ultraviolet light gradually decreases as the distance from the first emission surface region increases.
    The lighting device according to claim 5, wherein an outer size of the plurality of island-shaped portions gradually increases as the distance from the first emission surface area increases.
  7.  前記第1出射面領域から離れるにしたがって前記紫外線の単位面積当たりの出射量が徐々に少なくなっており、
     前記第1出射面領域から離れるにしたがって前記複数の島状部の分散間隔が徐々に小さくなっていることを特徴とする請求項5に記載の照明装置。
    The emission amount per unit area of the ultraviolet light gradually decreases as the distance from the first emission surface region increases.
    The illumination device according to claim 5, wherein a dispersion interval of the plurality of island-shaped portions is gradually reduced as the distance from the first emission surface area increases.
  8.  前記蛍光部材が複数の線状部からなっており、
     前記複数の線状部が格子状に配置されていることを特徴とする請求項4に記載の照明装置。
    The fluorescent member is composed of a plurality of linear portions,
    The lighting device according to claim 4, wherein the plurality of linear portions are arranged in a grid pattern.
  9.  前記第1出射面領域から離れるにしたがって前記紫外線の単位面積当たりの出射量が徐々に少なくなっており、
     前記第1出射面領域から離れるにしたがって前記複数の線状部の線幅が徐々に大きくなっていることを特徴とする請求項8に記載の照明装置。
    The emission amount per unit area of the ultraviolet light gradually decreases as the distance from the first emission surface region increases.
    The lighting device according to claim 8, wherein line widths of the plurality of linear portions gradually increase as the distance from the first emission surface area increases.
  10.  前記第1出射面領域から離れるにしたがって前記紫外線の単位面積当たりの出射量が徐々に少なくなっており、
     前記第1出射面領域から離れるにしたがって前記複数の線状部の隣接間隔が徐々に小さくなっていることを特徴とする請求項8に記載の照明装置。
    The emission amount per unit area of the ultraviolet light gradually decreases as the distance from the first emission surface region increases.
    The lighting device according to claim 8, wherein an interval between the plurality of linear portions is gradually reduced as the distance from the first emission surface area increases.
  11.  前記透光板の出射面が全面にわたって前記蛍光部材で覆われており、
     前記第1出射面領域における前記蛍光部材の厚みに対して前記第2出射面領域における前記蛍光部材の厚みが大きくなっていることを特徴とする請求項3に記載の照明装置。
    The emission surface of the translucent plate is covered with the fluorescent member over the entire surface,
    The lighting device according to claim 3, wherein a thickness of the fluorescent member in the second emission surface region is larger than a thickness of the fluorescent member in the first emission surface region.
  12.  請求項1~11のいずれかに記載の照明装置と、
     前記照明装置からの光で照明される表示パネルとを備えていることを特徴とする表示装置。
    The lighting device according to any one of claims 1 to 11,
    And a display panel illuminated with light from the illumination device.
PCT/JP2011/071808 2010-09-30 2011-09-26 Lighting apparatus and display device WO2012043438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010221498 2010-09-30
JP2010-221498 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043438A1 true WO2012043438A1 (en) 2012-04-05

Family

ID=45892884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071808 WO2012043438A1 (en) 2010-09-30 2011-09-26 Lighting apparatus and display device

Country Status (1)

Country Link
WO (1) WO2012043438A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093659A (en) * 2016-09-30 2017-08-25 深圳市玲涛光电科技有限公司 Flexible surface light source and its manufacture method and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129364A (en) * 2003-10-23 2005-05-19 Sharp Corp Lighting system
JP2006135225A (en) * 2004-11-09 2006-05-25 Toshiba Corp Light-emitting device
JP2007005098A (en) * 2005-06-23 2007-01-11 Seiko Instruments Inc Phosphor film, lighting system and display device using it
JP2010062135A (en) * 2008-08-05 2010-03-18 Sharp Corp Light source module, method for manufacturing the same, and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129364A (en) * 2003-10-23 2005-05-19 Sharp Corp Lighting system
JP2006135225A (en) * 2004-11-09 2006-05-25 Toshiba Corp Light-emitting device
JP2007005098A (en) * 2005-06-23 2007-01-11 Seiko Instruments Inc Phosphor film, lighting system and display device using it
JP2010062135A (en) * 2008-08-05 2010-03-18 Sharp Corp Light source module, method for manufacturing the same, and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093659A (en) * 2016-09-30 2017-08-25 深圳市玲涛光电科技有限公司 Flexible surface light source and its manufacture method and electronic equipment
WO2018059598A1 (en) * 2016-09-30 2018-04-05 深圳市玲涛光电科技有限公司 Light source assembly, display device, and manufacturing method for light source assembly

Similar Documents

Publication Publication Date Title
JP4600257B2 (en) Light guide plate, backlight device, manufacturing method thereof, and liquid crystal display device
KR101970552B1 (en) Diffusion sheet having quantum dot and backlight unit inculding the same
KR102096436B1 (en) Backlight assembly and liquid crystal display including the same
US9016919B2 (en) Lighting device, display device and television receiver
WO2011077866A1 (en) Lighting device, display device, and television receiver device
KR20090043799A (en) Liquid crystal display device module
EP2500625A1 (en) Illumination device, display device, and television receiver
KR20110064743A (en) Backlight unit and liquid crystal display device having the same
US8823902B2 (en) Liquid crystal display device
CN105892148B (en) Backlight module and liquid crystal display device
KR101792104B1 (en) Light guide plate and liquid crystal display device having thereof
KR20090128693A (en) Liquid crystal display device
JP2010123551A (en) Surface light source and liquid crystal display device
WO2011092953A1 (en) Lighting device, display device, and television receiver device
WO2011077864A1 (en) Illumination device, display device, and television receiver
KR20130019250A (en) Backlight unit and liquid crystal display device having the same
KR20120047715A (en) Light emitting diode, back light unit and liquid crystal display device having thereof
KR20100072652A (en) Liquid crystal display device
WO2012043438A1 (en) Lighting apparatus and display device
KR20130071925A (en) Liquid crystal display module inculding backlight unit
WO2012056929A1 (en) Display device
KR101983312B1 (en) Backlight unit and liquid crystal display device including the same
KR20110024270A (en) Backlight unit and liquid crystal display device having the same
WO2018193691A1 (en) Illumination device, display device, and television receiver device
WO2012086511A1 (en) Lighting unit, display unit and television receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP