JP2007001809A - Cobalt oxyhydroxide particle and method for producing the same - Google Patents

Cobalt oxyhydroxide particle and method for producing the same Download PDF

Info

Publication number
JP2007001809A
JP2007001809A JP2005184101A JP2005184101A JP2007001809A JP 2007001809 A JP2007001809 A JP 2007001809A JP 2005184101 A JP2005184101 A JP 2005184101A JP 2005184101 A JP2005184101 A JP 2005184101A JP 2007001809 A JP2007001809 A JP 2007001809A
Authority
JP
Japan
Prior art keywords
cobalt oxyhydroxide
particles
aqueous solution
cobalt
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005184101A
Other languages
Japanese (ja)
Other versions
JP4846280B2 (en
Inventor
Mamoru Shimakawa
嶋川  守
Takeshi Usui
臼井  猛
Mikio Hata
未来夫 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Original Assignee
Tanaka Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp filed Critical Tanaka Chemical Corp
Priority to JP2005184101A priority Critical patent/JP4846280B2/en
Publication of JP2007001809A publication Critical patent/JP2007001809A/en
Application granted granted Critical
Publication of JP4846280B2 publication Critical patent/JP4846280B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide high-density spherical cobalt oxyhydroxide particles and to provide a method for producing the same. <P>SOLUTION: The cobalt oxyhydroxide particles can be obtained by adding an aqueous alkali solution to a divalent Co salt aqueous solution in the presence of ammonium ion and agitating it, and oxidizing the Co salt by bringing it into contact with air in the presence of an oxidation catalyst and precipitating the product as spherical particles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、オキシ水酸化コバルト粒子に関する。さらに詳しくは、高密度であり、かつほぼ球状の形状を有し、酸化度が実質的に100%であるオキシ水酸化コバルト粒子及びその製造方法に関する。   The present invention relates to cobalt oxyhydroxide particles. More specifically, the present invention relates to cobalt oxyhydroxide particles having a high density, a substantially spherical shape, and an oxidation degree of substantially 100%, and a method for producing the same.

従来から板状粒子のオキシ水酸化コバルトの製造方法としては、まず原料として板状粒子の水酸化コバルトを製造し、その後それをスラリー状とし、適当な酸化剤を用いて酸化する方法が知られていた(例えば、特許文献1参照)。しかしかかる方法は、酸化生成物の形状や粒径分布が、原料の形状や粒径分布に依存するという問題を有する。さらに、完全に酸化することが難しいという問題を有する。   Conventionally, as a method for producing plate-like particles of cobalt oxyhydroxide, a method is first known in which plate-like particles of cobalt hydroxide are first produced as a raw material, and then made into a slurry and oxidized using an appropriate oxidizing agent. (For example, refer to Patent Document 1). However, this method has a problem that the shape and particle size distribution of the oxidation product depend on the shape and particle size distribution of the raw material. Furthermore, it has the problem that it is difficult to oxidize completely.

一方粒状のオキシ水酸化コバルトの製造方法についても研究開発の努力が続けられており、高密度でほぼ球状のオキシ水酸化コバルトの製造方法が知られている(例えば、特許文献2参照)。しかし近年特に電池の高容量化が望まれる傾向にあり、上の方法により得られる粒状のオキシ水酸化コバルトの有する密度(タップ密度を含む)よりもさらに高い密度の粒状オキシ水酸化コバルトの実現が強く望まれている。
特開2002-321922号公報 特開2005-104771号公報
On the other hand, research and development efforts have been continued on a method for producing granular cobalt oxyhydroxide, and a method for producing high-density, almost spherical cobalt oxyhydroxide is known (for example, see Patent Document 2). However, in recent years, there has been a tendency to increase the capacity of the battery in particular, and the realization of granular cobalt oxyhydroxide having a density higher than the density (including the tap density) of the granular cobalt oxyhydroxide obtained by the above method is realized. It is strongly desired.
JP 2002-321922 A JP 2005-104771 A

本発明は、高密度であり、かつほぼ球状の形状を有し、酸化度が実質的に100%であるオキシ水酸化コバルト粒子、およびそれを単一工程で容易に得ることができる製造方法を見いだすことを課題とする。   The present invention relates to a cobalt oxyhydroxide particle having a high density, a substantially spherical shape, and an oxidation degree of substantially 100%, and a production method capable of easily obtaining it in a single step. The challenge is to find it.

本発明者等は鋭意研究した結果、酸化触媒の存在下で空気酸化により、アンモニウムイオンの存在下、2価のCo塩水溶液から単一工程でオキシ水酸化コバルトを球状の粒子として沈殿させる方法を見出し本発明を完成させた。   As a result of diligent research, the present inventors have found a method for precipitating cobalt oxyhydroxide as spherical particles from a divalent Co salt aqueous solution in the presence of ammonium ions by air oxidation in the presence of an oxidation catalyst in a single step. Heading The present invention has been completed.

すなわち本発明は、タッピング密度が2.3g/cm以上であり、かつほぼ球状のオキシ水酸化コバルト粒子に関する。 That is, the present invention relates to substantially spherical cobalt oxyhydroxide particles having a tapping density of 2.3 g / cm 3 or more and a substantially spherical shape.

さらに本発明は、平均粒径が5μm〜15μmであり、タッピング密度が2.3g/cm以上のほぼ球状のオキシ水酸化コバルト粒子に関する。 Furthermore, the present invention relates to substantially spherical cobalt oxyhydroxide particles having an average particle diameter of 5 μm to 15 μm and a tapping density of 2.3 g / cm 3 or more.

また本発明は、高密度であり、かつほぼ球状のオキシ水酸化コバルト粒子を製造する方法であって、酸化触媒、およびアンモニウムイオンの存在下で、2価のCo塩水溶液とアルカリ水溶液の混合物を攪拌して空気と接触させることにより酸化し、ほぼ球状のオキシ水酸化コバルト粒子を沈殿生成させることを特徴とする、オキシ水酸化コバルト粒子の製造方法に関する。   The present invention also provides a method for producing high-density and substantially spherical cobalt oxyhydroxide particles, wherein a mixture of an aqueous divalent Co salt solution and an alkaline aqueous solution is formed in the presence of an oxidation catalyst and ammonium ions. The present invention relates to a method for producing cobalt oxyhydroxide particles, which is oxidized by being brought into contact with air and precipitated to form substantially spherical cobalt oxyhydroxide particles.

また本発明は、高密度であり、かつほぼ球状のオキシ水酸化コバルト粒子を製造する方法であって、酸化触媒、およびアンモニウムイオンの存在下で、2価のCo塩水溶液とアルカリ水溶液の混合物を攪拌して空気と接触させることにより酸化し、ほぼ球状のオキシ水酸化コバルト粒子を沈殿生成させることを特徴とする、オキシ水酸化コバルト粒子の製造方法であって、前記アンモニウムイオンとCoイオンのモル比が1:0.03〜1であることを特徴とする製造方法に関する。   The present invention also provides a method for producing high-density and substantially spherical cobalt oxyhydroxide particles, wherein a mixture of an aqueous divalent Co salt solution and an alkaline aqueous solution is formed in the presence of an oxidation catalyst and ammonium ions. A method for producing cobalt oxyhydroxide particles, which is oxidized by stirring and contacting with air to precipitate substantially spherical cobalt oxyhydroxide particles, wherein the moles of ammonium ions and Co ions are The present invention relates to a production method characterized in that the ratio is 1: 0.03-1.

さらに本発明は、高密度であり、かつほぼ球状のオキシ水酸化コバルト粒子を製造する方法であって、酸化触媒、およびアンモニウムイオンの存在下で、2価のCo塩水溶液とアルカリ水溶液の混合物を攪拌して空気と接触させることにより酸化し、ほぼ球状のオキシ水酸化コバルト粒子を沈殿生成させることを特徴とする、オキシ水酸化コバルト粒子の製造方法であって、前記酸化触媒が、鉄、ニッケル、クロムのいずれか一種以上から構成される金属若しくはそれらのイオンであることを特徴とするオキシ水酸化コバルト粒子の製造方法に関する。   Furthermore, the present invention provides a method for producing high-density and substantially spherical cobalt oxyhydroxide particles, wherein a mixture of a divalent Co salt aqueous solution and an alkaline aqueous solution is formed in the presence of an oxidation catalyst and ammonium ions. A method for producing cobalt oxyhydroxide particles, which is oxidized by stirring and contacting with air to form substantially spherical cobalt oxyhydroxide particles, wherein the oxidation catalyst comprises iron, nickel The present invention relates to a method for producing cobalt oxyhydroxide particles, which is a metal composed of at least one of chromium or ions thereof.

本発明に係る製造方法は、アンモニウムイオンの存在下で、2価のコバルト塩水溶液から単一工程でオキシ水酸化コバルト粒子を得る方法であることから、完全に酸化された、かつ粉体特性(密度、粒径分布、平均粒径)の制御されたほぼ球状のオキシ水酸化コバルト粒子を得ることが可能となる。   Since the production method according to the present invention is a method of obtaining cobalt oxyhydroxide particles from a divalent cobalt salt aqueous solution in a single step in the presence of ammonium ions, it is completely oxidized and has powder characteristics ( It is possible to obtain substantially spherical cobalt oxyhydroxide particles with controlled density, particle size distribution, and average particle size.

以下に本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(オキシ水酸化コバルト粒子)
本発明により得られるオキシ水酸化コバルト粒子は、従来知られているオキシ水酸化コバルトより高密度であり、そのタップ密度が少なくとも1.8g/cmの密度を有することを特徴とし、場合により2.3g/cmを越える密度を有する。
(Cobalt oxyhydroxide particles)
The cobalt oxyhydroxide particles obtained according to the present invention are characterized in that they are denser than conventionally known cobalt oxyhydroxide and have a tap density of at least 1.8 g / cm 3 , optionally 2 A density greater than 3 g / cm 3 ;

さらに、その形状は一次粒子が集まった滑らかな表面を有するほぼ球状の二次粒子であり、平均粒径が5μm〜15μmであることを特徴とする。   Further, the shape is a substantially spherical secondary particle having a smooth surface where primary particles are gathered, and the average particle size is 5 μm to 15 μm.

また、得られた粒子は黒色であり、実際に実測された酸化度が実質的に100%であることを特徴とする。   The obtained particles are black, and the actually measured degree of oxidation is substantially 100%.

ここで密度(バルク密度、タッピング密度)又は形状、平均粒径については、以下説明するように、2価コバルト塩溶液の濃度、アンモニウムイオン濃度、温度等の製造条件を適宜選択することにより広範に制御することができる。   Here, the density (bulk density, tapping density), shape, and average particle diameter can be broadly selected by appropriately selecting the production conditions such as the concentration of the divalent cobalt salt solution, the ammonium ion concentration, and the temperature, as will be described below. Can be controlled.

表面の形状については例えば走査電子顕微鏡の観察により容易に判別することができ、粒径分布についても通常の粒径分布測定装置を用いて得ることができる。さらに、酸化度については酸化還元滴定等の化学分析方法や、X線回折方法により得ることができる。   The shape of the surface can be easily discriminated by, for example, observation with a scanning electron microscope, and the particle size distribution can also be obtained using a normal particle size distribution measuring apparatus. Further, the degree of oxidation can be obtained by a chemical analysis method such as oxidation-reduction titration or an X-ray diffraction method.

(製造方法)
本発明に係る製造方法は、上で説明した本発明にかかる、高密度であり、かつ滑らか案表面を有するほぼ球状の形状を有し、酸化度が実質的に100%であるオキシ水酸化コバルト粒子を2価コバルト塩を出発として単一の工程で沈殿として製造することを特徴とする。
(Production method)
The manufacturing method according to the present invention is a cobalt oxyhydroxide according to the present invention described above, which has a high-density and substantially spherical shape with a smooth surface and has an oxidation degree of substantially 100%. It is characterized in that the particles are produced as a precipitate in a single step starting from a divalent cobalt salt.

すなわち、かかる単一工程とは、適当な酸化触媒と空気の存在下、アンモニウムイオンの存在下、2価のCo塩水溶液にアルカリ水溶液を攪拌しつつ加えて、オキシ水酸化コバルトをほぼ球状の粒子として生成させる工程である。   That is, such a single step means that cobalt oxyhydroxide is added to a substantially spherical particle by adding an alkaline aqueous solution to a divalent Co salt aqueous solution with stirring in the presence of an appropriate oxidation catalyst and air and ammonium ions. It is the process of producing | generating as.

本発明において用いることができる「2価のCo塩」としては、具体的には、硝酸コバルト(Co(NO))、塩化コバルト(CoCl)、硫酸コバルト(CoSO)等が好適な一例として挙げられる。これらのCo塩は、単独で用いても良く、あるいは、2種以上を組み合わせて用いても良い。また必要に応じて他の金属塩を共存させてもよい。他の金属にはマグネシウムが挙げられる。 As the “divalent Co salt” that can be used in the present invention, specifically, cobalt nitrate (Co (NO 3 ) 2 ), cobalt chloride (CoCl 2 ), cobalt sulfate (CoSO 4 ) and the like are preferable. As an example. These Co salts may be used alone or in combination of two or more. Moreover, you may coexist other metal salt as needed. Other metals include magnesium.

また本発明は、2価のCo塩水溶液の濃度等を変化させることで容易に粒径や密度を好ましい範囲に揃えることが可能となる。2価のCo塩水溶液の濃度は、具体的にはコバルトの量に換算して10g/L〜150g/Lの範囲が可能であり、好ましくは40g/L〜100g/L、さらに好ましくは60g/L〜90g/Lの範囲である。   Further, in the present invention, it is possible to easily adjust the particle size and density to a preferable range by changing the concentration of the divalent Co salt aqueous solution. Specifically, the concentration of the divalent Co salt aqueous solution can be in the range of 10 g / L to 150 g / L, preferably 40 g / L to 100 g / L, more preferably 60 g / L, in terms of the amount of cobalt. It is the range of L-90 g / L.

さらに本発明は、アンモニウムイオンを共存させることを特徴とする。アンモニウムイオンの添加方法、添加量については特に制限はない。好ましくはアルカリ水溶液を加える前に反応溶液中に添加する。また添加量は、反応させるCoイオン1モルに対し、0.03モル以上であることが好ましい。より好ましくは、Coイオン1モルに対し、0.03モル以上1モル以下である。かかる濃度より低い場合には充分なアンモニウムイオンによる効果が得られず、十分高い密度のオキシ水酸化コバルトが得られない。またかかる濃度より高い場合にも十分高い密度のオキシ水酸化コバルトが得られない。   Furthermore, the present invention is characterized by coexisting ammonium ions. There is no restriction | limiting in particular about the addition method and addition amount of an ammonium ion. Preferably, it is added to the reaction solution before adding the alkaline aqueous solution. The amount added is preferably 0.03 mol or more per 1 mol of Co ions to be reacted. More preferably, it is 0.03 mol or more and 1 mol or less with respect to 1 mol of Co ions. When the concentration is lower than this, the effect of sufficient ammonium ions cannot be obtained, and sufficiently high density cobalt oxyhydroxide cannot be obtained. Further, even when the concentration is higher than this, a sufficiently high density cobalt oxyhydroxide cannot be obtained.

アンモニウムイオンを存在させる方法は、特に制限はなく種々の塩化合物等を添加することにより所定の量のアンモニウムイオンを添加することができる。具体的には硫酸アンモニウム、塩化アンモニウム、アンモニア水が挙げられる。特に好ましくはアンモニア水の使用である。   The method for causing ammonium ions to be present is not particularly limited, and a predetermined amount of ammonium ions can be added by adding various salt compounds and the like. Specific examples include ammonium sulfate, ammonium chloride, and aqueous ammonia. Particularly preferred is the use of aqueous ammonia.

一般的には反応させる2価のCo塩水溶液の濃度とアルカリ濃度が低い方が、より大きなサイズの一次粒子が生成し、該一次粒子からなるオキシ水酸化コバルト粒子の密度は高くなる傾向にある。例えば、2価のCo塩水溶液として硫酸コバルト水溶液を用いる場合、硫酸コバルトの濃度は、例えば、90g/Lの場合は緻密な一次粒子からなるほぼ球状のオキシ水酸化コバルト粒子(密度1.8g/cm)が得られ、60g/Lの場合にはより細かい一次粒子からなるほぼ球状のオキシ水酸化コバルト粒子(タップ密度2.3g/cm以上)が得られる。 In general, when the concentration of the divalent Co salt aqueous solution to be reacted and the alkali concentration are lower, primary particles of a larger size are generated, and the density of the cobalt oxyhydroxide particles comprising the primary particles tends to be higher. . For example, when a cobalt sulfate aqueous solution is used as the divalent Co salt aqueous solution, for example, when the concentration of cobalt sulfate is 90 g / L, almost spherical cobalt oxyhydroxide particles (density 1.8 g / L) composed of dense primary particles. cm 3 ), and in the case of 60 g / L, substantially spherical cobalt oxyhydroxide particles (tap density of 2.3 g / cm 3 or more) composed of finer primary particles are obtained.

なお、得られるオキシ水酸化コバルト粒子の粒状特性(球状性、平均粒径、密度等)は、これらコバルト塩水溶液の濃度の他、アンモニウムイオン濃度、アルカリ水溶液の濃度、アルカリ水溶液の滴下時間、アルカリ水溶液の滴下量、反応温度、反応時間、撹拌速度、触媒の種類、触媒の添加量、空気の吹き込み速度等により制御可能である。すなわちこれらの条件を適宜選択して所望の粒状特性を得ることは当業者にとって容易である。   In addition, the granular properties (sphericity, average particle diameter, density, etc.) of the obtained cobalt oxyhydroxide particles are not only the concentration of these cobalt salt aqueous solutions, but also the ammonium ion concentration, the concentration of the alkaline aqueous solution, the dropping time of the alkaline aqueous solution, the alkali It can be controlled by the dropping amount of the aqueous solution, the reaction temperature, the reaction time, the stirring speed, the type of the catalyst, the added amount of the catalyst, the air blowing speed, and the like. That is, it is easy for those skilled in the art to select these conditions as appropriate and obtain desired granular characteristics.

また、本発明において用いることができる「アルカリ水溶液」としては、具体的には、NaOH水溶液、KOH水溶液、アンモニア水等が好適な一例として挙げられるが、NaOH水溶液の使用がより好ましい。アルカリ水溶液は、反応中反応液のpHを11〜13に維持するべく添加することが好ましい。より好ましくは、反応中反応液のpHを12.0〜12.8に維持するべく添加することが好ましい。アルカリ水溶液の添加の方法には特に制限はなく、反応溶液のpHが速やかに所望のpHとなるようにすることが好ましい。pHを好ましい範囲に維持するためにpHモニターを使用し、自動的にアルカリ水溶液の添加量を調節できることが好ましい。   Specific examples of the “alkaline aqueous solution” that can be used in the present invention include NaOH aqueous solution, KOH aqueous solution, aqueous ammonia, and the like, but the use of NaOH aqueous solution is more preferable. The aqueous alkaline solution is preferably added to maintain the pH of the reaction solution at 11 to 13 during the reaction. More preferably, it is preferably added to maintain the pH of the reaction solution at 12.0 to 12.8 during the reaction. The method for adding the alkaline aqueous solution is not particularly limited, and it is preferable that the pH of the reaction solution is quickly adjusted to a desired pH. In order to maintain the pH within a preferable range, it is preferable that a pH monitor can be used to automatically adjust the addition amount of the alkaline aqueous solution.

本発明において用いることができる触媒は、アルカリ水溶液の条件下で、空気中の酸素による酸化反応を触媒するものであればよい。酸素と触媒による2価コバルト塩の、アルカリ存在下所定のpHにおいてオキシ水酸化コバルトに酸化される機構については触媒によりそれぞれ異なると考えられるが、1つの機構として一旦溶液中で生成したCo(OH)(粒子、沈殿に制限されない)が速やかに酸化され沈殿として生成されると考えられる。 The catalyst that can be used in the present invention may be any catalyst that catalyzes an oxidation reaction by oxygen in the air under the condition of an alkaline aqueous solution. The mechanism of divalent cobalt salt by oxygen and catalyst being oxidized to cobalt oxyhydroxide at a predetermined pH in the presence of an alkali is considered to differ depending on the catalyst, but one mechanism is Co (OH) once formed in a solution. ) 2 (particles, not limited to precipitation) is thought to be rapidly oxidized and produced as a precipitate.

酸化触媒は、具体的には鉄、クロム、ニッケル等の金属又はそれらの金属イオンが挙げられる。かかる触媒は反応溶液中に添加したり、またステンレススチール製のような鉄製の反応容器中で反応させる場合においては反応溶液が反応容器の壁に接触したり、また鉄製反応容器からごく少量の金属イオンが溶液中に遊離することでも存在可能となる。   Specific examples of the oxidation catalyst include metals such as iron, chromium and nickel, or metal ions thereof. Such a catalyst is added to the reaction solution, or in the case of reacting in an iron reaction vessel such as stainless steel, the reaction solution contacts the reaction vessel wall, or a very small amount of metal from the iron reaction vessel. It can also exist when ions are liberated in solution.

同様に本発明において用いることができる酸化剤としての酸素は空気を吹き込むことにより容易に導入可能である。吹き込み量については特に制限はないが、反応溶液中に十分吹き込み常に飽和状態に保持することが好ましい。   Similarly, oxygen as an oxidizing agent that can be used in the present invention can be easily introduced by blowing air. Although there is no restriction | limiting in particular about the amount of blowing, It is preferable that it blows into a reaction solution sufficiently and always maintains a saturated state.

さらに酸素との反応を均一にかつ迅速に行うために反応溶液を空気とともに十分に攪拌することが好ましい。   Furthermore, it is preferable to sufficiently stir the reaction solution together with air in order to uniformly and rapidly react with oxygen.

反応温度についても特に制限はないが、通常40〜60℃の範囲が好ましい。   Although there is no restriction | limiting in particular about reaction temperature, Usually, the range of 40-60 degreeC is preferable.

反応は、最初は溶液であるが沈殿が生成するにつれスラリー状となる。粒子形状、粒径を望ましい範囲にそろえる目的で所定の反応時間が経過し定常状態になった後はオーバーフロー装置によりスラリーを連続的に取り出すことが好ましい。取り出した粒子は濾過等の通常の方法により分離し、熱風等で乾燥することができる。   The reaction is initially in solution but becomes a slurry as a precipitate forms. For the purpose of aligning the particle shape and particle size within a desired range, it is preferable that the slurry is continuously taken out by an overflow device after a predetermined reaction time has passed and a steady state is reached. The extracted particles can be separated by a normal method such as filtration and dried with hot air or the like.

本発明で得られたオキシ水酸化コバルト粒子は、高密度かつ平均粒径及び粒径分布が所望の範囲であり、かつほぼ完全に酸化されているものであることから、リチウム2次電池の材料等に広く使用することができる。   The cobalt oxyhydroxide particles obtained in the present invention have a high density, an average particle size and a particle size distribution in a desired range, and are almost completely oxidized. Can be widely used for etc.

以下本発明を実施例に即して説明する。   Hereinafter, the present invention will be described with reference to examples.

攪拌機とオーバーフローパイプを備えた有効容積15Lの円筒形反応槽に水を13L入れた。反応槽の材質にはSUS304を用いた。次いでpHが12.7になるまで30%水酸化ナトリウム溶液を加え、電熱ヒーターにて温度を60℃に保持した。次いで反応槽内の溶液中に十分空気が含まれるように一定速度にて攪拌を行った。Coイオンが1Lあたり60g含まれている硫酸コバルト溶液中に、アンモニウムイオンを1Lあたり100g含む硫酸アンモニウム溶液を用いてアンモニア濃度が5g/Lになるように混合し、その溶液を10cc/分の一定速度にて連続供給した。
さらに反応槽内の溶液がpH12.7に保持されるように30%水酸化ナトリウムを断続的に加えオキシ水酸化コバルト粒子を形成させた。反応槽内が定常状態になった72時間後にオーバーフローパイプよりオキシ水酸化コバルト粒子を連続的に24時間採取し水洗後、濾過し100℃にて15時間乾燥し乾燥粉末であるオキシ水酸化コバルトを得た。
13 L of water was placed in a cylindrical reaction tank having an effective volume of 15 L equipped with a stirrer and an overflow pipe. SUS304 was used as the material for the reaction vessel. Next, 30% sodium hydroxide solution was added until the pH reached 12.7, and the temperature was maintained at 60 ° C. with an electric heater. Next, the solution in the reaction tank was stirred at a constant speed so that air was sufficiently contained. A cobalt sulfate solution containing 60 g of Co ions per liter is mixed with an ammonium sulfate solution containing 100 g of ammonium ions per liter so that the ammonia concentration is 5 g / L, and the solution is mixed at a constant rate of 10 cc / min. Was continuously supplied.
Further, 30% sodium hydroxide was intermittently added to form cobalt oxyhydroxide particles so that the solution in the reaction vessel was maintained at pH 12.7. Cobalt oxyhydroxide particles were continuously collected for 24 hours from the overflow pipe after the reaction vessel was in a steady state for 24 hours, washed with water, filtered and dried at 100 ° C. for 15 hours to obtain cobalt oxyhydroxide as a dry powder. Obtained.

色調:黒色
得られたオキシ水酸化コバルト(試料1とする)のX線回折による分析を以下のように行った。
試料の調整:試料1をそのまま使用した。
測定装置と条件:株式会社理学製、RINT2000(Cu−Kα)
測定結果:化学式CoO(OH)にて表されるオキシ水酸化コバルトを得た。
Color tone: Black The obtained cobalt oxyhydroxide (referred to as Sample 1) was analyzed by X-ray diffraction as follows.
Sample preparation: Sample 1 was used as it was.
Measuring apparatus and conditions: RINT2000 (Cu-Kα) manufactured by Rigaku Corporation
Measurement results: Cobalt oxyhydroxide represented by the chemical formula CoO (OH) was obtained.

また、試料1のタッピング密度を以下のように測定した。
試料の調整:試料1を以下のように使用した。
20mLセルの質量を測定し[A]、48meshのフルイで結晶をセルに自然落下させ充填した。4cmスペーサー装着のセイシン企業株式会社製、「TAPDENSER KYT3000」を用いて200回タッピング後セルの質量[B]と充填容積[D]を測定した。次式により計算した。
タップ密度=(B−A)/D g/cc
測定結果:2.74g/cc
試料1の平均粒径を以下のように測定した。
試料の調整:試料1をそのまま使用した。
測定装置と条件:堀場製作所製LA−910を使用し、操作手順書に従った。
測定結果:11.6μm
試料1の酸化度をヨードメトリー法にて測定した。なお、酸化度はオキシ水酸化コバルトに含まれる全Co量に対する価数が3価であるCoの量を百分率にて表した。
測定結果:酸化度=102.3%
表1に得られた粒子の分析結果をまとめた。
Further, the tapping density of Sample 1 was measured as follows.
Sample preparation: Sample 1 was used as follows.
The mass of the 20 mL cell was measured [A], and the crystal was spontaneously dropped into the cell with a 48 mesh sieve and filled. The mass [B] and the filling volume [D] of the cell after tapping 200 times were measured using “TAPDENSER KYT3000” manufactured by Seishin Enterprise Co., Ltd. with a 4 cm spacer. The following formula was used for calculation.
Tap density = (B−A) / D g / cc
Measurement result: 2.74 g / cc
The average particle size of Sample 1 was measured as follows.
Sample preparation: Sample 1 was used as it was.
Measurement apparatus and conditions: LA-910 manufactured by HORIBA, Ltd. was used and the operation procedure manual was followed.
Measurement result: 11.6 μm
The oxidation degree of Sample 1 was measured by an iodometry method. The degree of oxidation was expressed as a percentage of Co having a valence of 3 with respect to the total amount of Co contained in cobalt oxyhydroxide.
Measurement result: degree of oxidation = 102.3%
Table 1 summarizes the analysis results of the particles obtained.

図1に走査電子顕微鏡による表面構造を示した。細かい一次粒子が集まり、表面の滑らかなほぼ球状の二次粒子となっていることが分かる。
図2にはXRDによる生成相の同定結果を示した。X線回折パターンからオキシ水酸化コバルトによる典型的ピークを有することが分かる。
FIG. 1 shows the surface structure by a scanning electron microscope. It can be seen that fine primary particles gather to form a substantially spherical secondary particle with a smooth surface.
FIG. 2 shows the identification result of the generated phase by XRD. It can be seen from the X-ray diffraction pattern that there is a typical peak due to cobalt oxyhydroxide.

攪拌機とオーバーフローパイプを備えた有効容積15Lの円筒形反応槽に水を13L入れた。反応槽の材質にはSUS304を用いた。次いでpHが12.7になるまで30%水酸化ナトリウム溶液を加え、電熱ヒーターにて温度を60℃に保持した。次いで反応槽内の溶液中に十分空気が含まれるように一定速度にて攪拌を行った。Coイオンが1Lあたり60g含まれている硫酸コバルト溶液を10cc/分の一定速度にて連続供給した。次いでアンモニウムイオンを1Lあたり100g含む硫酸アンモニウム溶液を0.5cc/分の一定速度にて連続供給した。   13 L of water was placed in a cylindrical reaction tank having an effective volume of 15 L equipped with a stirrer and an overflow pipe. SUS304 was used as the material for the reaction vessel. Next, 30% sodium hydroxide solution was added until the pH reached 12.7, and the temperature was maintained at 60 ° C. with an electric heater. Next, the solution in the reaction tank was stirred at a constant speed so that air was sufficiently contained. A cobalt sulfate solution containing 60 g of Co ions per liter was continuously supplied at a constant rate of 10 cc / min. Subsequently, an ammonium sulfate solution containing 100 g of ammonium ions per liter was continuously supplied at a constant rate of 0.5 cc / min.

さらに反応槽内の溶液がpH12.7に保持されるように30%水酸化ナトリウムを断続的に加えオキシ水酸化コバルト粒子を形成させた。反応槽内が定常状態になった72時間後にオーバーフローパイプよりオキシ水酸化コバルト粒子を連続的に24時間採取し水洗後、濾過し100℃にて15時間乾燥し乾燥粉末であるオキシ水酸化コバルトを得た。   Further, 30% sodium hydroxide was intermittently added to form cobalt oxyhydroxide particles so that the solution in the reaction vessel was maintained at pH 12.7. Cobalt oxyhydroxide particles were continuously collected for 24 hours from the overflow pipe after the reaction vessel was in a steady state for 24 hours, washed with water, filtered and dried at 100 ° C. for 15 hours to obtain cobalt oxyhydroxide as a dry powder. Obtained.

色調:黒色
得られたオキシ水酸化コバルト(試料2とする)について実施例1と同様に分析を行った。
X線回折測定結果:化学式CoO(OH)にて表されるオキシ水酸化コバルトを得た。
タップ密度測定結果:2.71g/cc
平均粒径測定結果:11.2μm
酸化度測定結果:酸化度=101.3%
表1に得られた粒子の分析結果をまとめた。
Color: Black
The obtained cobalt oxyhydroxide (referred to as sample 2) was analyzed in the same manner as in Example 1.
X-ray diffraction measurement result: Cobalt oxyhydroxide represented by the chemical formula CoO (OH) was obtained.
Tap density measurement result: 2.71 g / cc
Average particle diameter measurement result: 11.2 μm
Oxidation degree measurement result: degree of oxidation = 101.3%
Table 1 summarizes the analysis results of the particles obtained.

実施例1で得られたオキシ水酸化コバルト粒子の電子顕微鏡写真(5000倍)を示す。The electron micrograph (5000 times) of the cobalt oxyhydroxide particle | grains obtained in Example 1 is shown. 実施例1で得られたオキシ水酸化コバルト粒子のXRDを示す。The XRD of the cobalt oxyhydroxide particle | grains obtained in Example 1 is shown.

Claims (5)

タッピング密度が2.3g/cm以上であり、かつほぼ球状のオキシ水酸化コバルト粒子。 Cobalt oxyhydroxide particles having a tapping density of 2.3 g / cm 3 or more and substantially spherical. さらに平均粒径が5μm〜15μmである、請求項1に記載のオキシ水酸化コバルト粒子。   Furthermore, the cobalt oxyhydroxide particle | grains of Claim 1 whose average particle diameter is 5 micrometers-15 micrometers. 高密度であり、かつほぼ球状のオキシ水酸化コバルト粒子を製造する方法であって、酸化触媒、およびアンモニウムイオンの存在下で、2価のCo塩水溶液とアルカリ水溶液の混合物を攪拌して空気と接触させることにより酸化し、ほぼ球状のオキシ水酸化コバルト粒子を沈殿生成させることを特徴とする、オキシ水酸化コバルト粒子の製造方法。   A method for producing cobalt oxyhydroxide particles having a high density and substantially spherical shape, wherein a mixture of a divalent Co salt aqueous solution and an alkaline aqueous solution is agitated in the presence of an oxidation catalyst and ammonium ions, A method for producing cobalt oxyhydroxide particles, characterized in that the particles are oxidized by contact to form precipitates of substantially spherical cobalt oxyhydroxide particles. 前記アンモニウムイオンとCoイオンのモル比が1:0.03〜1であることを特徴とする製造方法。   The manufacturing method characterized by the molar ratio of said ammonium ion and Co ion being 1: 0.03-1. 前記酸化触媒が、鉄、ニッケル、クロムのいずれか一種以上から構成される金属若しくはそれらのイオンであることを特徴とする、請求項3に記載のオキシ水酸化コバルト粒子の製造方法。   The method for producing cobalt oxyhydroxide particles according to claim 3, wherein the oxidation catalyst is a metal composed of at least one of iron, nickel, and chromium or ions thereof.
JP2005184101A 2005-06-23 2005-06-23 Cobalt oxyhydroxide particles and method for producing the same Expired - Fee Related JP4846280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005184101A JP4846280B2 (en) 2005-06-23 2005-06-23 Cobalt oxyhydroxide particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005184101A JP4846280B2 (en) 2005-06-23 2005-06-23 Cobalt oxyhydroxide particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007001809A true JP2007001809A (en) 2007-01-11
JP4846280B2 JP4846280B2 (en) 2011-12-28

Family

ID=37687746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005184101A Expired - Fee Related JP4846280B2 (en) 2005-06-23 2005-06-23 Cobalt oxyhydroxide particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP4846280B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119104A1 (en) 2008-03-28 2009-10-01 戸田工業株式会社 Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP2009242135A (en) * 2008-03-28 2009-10-22 Toda Kogyo Corp Cobalt oxyhydroxide particulate powder and production method of the same
JP2010116302A (en) * 2008-11-13 2010-05-27 Toda Kogyo Corp Lithium cobaltate particulate powder and method for producing the same, and non-aqueous electrolyte secondary battery
WO2015027841A1 (en) * 2013-08-27 2015-03-05 江苏华东锂电技术研究院有限公司 Method for preparing spherical cobalt oxyhydroxide
US10230105B2 (en) 2014-02-05 2019-03-12 Sumitomo Metal Mining Co., Ltd. Cobalt hydroxide particles and manufacturing process therefor and positive electrode active material and manufacturing process therefor
CN113457680A (en) * 2020-03-31 2021-10-01 中国科学院宁波材料技术与工程研究所 Cobalt catalyst and preparation method thereof
CN113788501A (en) * 2021-09-24 2021-12-14 南通金通储能动力新材料有限公司 Method for preparing cobalt oxyhydroxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021195957A1 (en) * 2020-03-31 2021-10-07 中国科学院宁波材料技术与工程研究所 Cobalt catalyst and preparation method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354428A (en) * 2000-06-09 2001-12-25 Nikko Metal Plating Kk Cobalt oxide powder, method for manufacturing the same and lithium cobaltate
JP2002211930A (en) * 2001-01-12 2002-07-31 Sumitomo Metal Mining Co Ltd Method for producing cobalt oxide particles by neutralization method
JP2002321922A (en) * 2001-04-23 2002-11-08 Toyota Central Res & Dev Lab Inc Cobalt hydroxide oxide lamellar particle and its manufacturing method
JP2003503300A (en) * 1999-06-29 2003-01-28 オーエムジー・フィンランド・オイ Method for producing cobalt hydroxide or cobalt mixed hydroxide of high density and large particle size and product produced by this method
JP2004196603A (en) * 2002-12-19 2004-07-15 Nippon Chem Ind Co Ltd Lithium cobaltate, its preparation method, and non-aqueous electrolyte secondary battery
JP2005050762A (en) * 2003-07-31 2005-02-24 Matsushita Electric Ind Co Ltd Oxy-cobalt hydroxide, its manufacturing method, and alkaline storage battery using it
JP2005104771A (en) * 2003-09-30 2005-04-21 Tanaka Chemical Corp Cobalt oxyhydroxide particle and method for producing the same
JP2005206422A (en) * 2004-01-22 2005-08-04 Honjo Chemical Corp High density lithium cobaltate and its producing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503300A (en) * 1999-06-29 2003-01-28 オーエムジー・フィンランド・オイ Method for producing cobalt hydroxide or cobalt mixed hydroxide of high density and large particle size and product produced by this method
JP2001354428A (en) * 2000-06-09 2001-12-25 Nikko Metal Plating Kk Cobalt oxide powder, method for manufacturing the same and lithium cobaltate
JP2002211930A (en) * 2001-01-12 2002-07-31 Sumitomo Metal Mining Co Ltd Method for producing cobalt oxide particles by neutralization method
JP2002321922A (en) * 2001-04-23 2002-11-08 Toyota Central Res & Dev Lab Inc Cobalt hydroxide oxide lamellar particle and its manufacturing method
JP2004196603A (en) * 2002-12-19 2004-07-15 Nippon Chem Ind Co Ltd Lithium cobaltate, its preparation method, and non-aqueous electrolyte secondary battery
JP2005050762A (en) * 2003-07-31 2005-02-24 Matsushita Electric Ind Co Ltd Oxy-cobalt hydroxide, its manufacturing method, and alkaline storage battery using it
JP2005104771A (en) * 2003-09-30 2005-04-21 Tanaka Chemical Corp Cobalt oxyhydroxide particle and method for producing the same
JP2005206422A (en) * 2004-01-22 2005-08-04 Honjo Chemical Corp High density lithium cobaltate and its producing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119104A1 (en) 2008-03-28 2009-10-01 戸田工業株式会社 Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP2009242135A (en) * 2008-03-28 2009-10-22 Toda Kogyo Corp Cobalt oxyhydroxide particulate powder and production method of the same
CN101945825A (en) * 2008-03-28 2011-01-12 户田工业株式会社 Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP2010116302A (en) * 2008-11-13 2010-05-27 Toda Kogyo Corp Lithium cobaltate particulate powder and method for producing the same, and non-aqueous electrolyte secondary battery
WO2015027841A1 (en) * 2013-08-27 2015-03-05 江苏华东锂电技术研究院有限公司 Method for preparing spherical cobalt oxyhydroxide
US10230105B2 (en) 2014-02-05 2019-03-12 Sumitomo Metal Mining Co., Ltd. Cobalt hydroxide particles and manufacturing process therefor and positive electrode active material and manufacturing process therefor
CN113457680A (en) * 2020-03-31 2021-10-01 中国科学院宁波材料技术与工程研究所 Cobalt catalyst and preparation method thereof
CN113457680B (en) * 2020-03-31 2022-11-22 中国科学院宁波材料技术与工程研究所 Cobalt catalyst and preparation method thereof
CN113788501A (en) * 2021-09-24 2021-12-14 南通金通储能动力新材料有限公司 Method for preparing cobalt oxyhydroxide
CN113788501B (en) * 2021-09-24 2023-10-17 南通金通储能动力新材料有限公司 Method for preparing cobalt oxyhydroxide

Also Published As

Publication number Publication date
JP4846280B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4846280B2 (en) Cobalt oxyhydroxide particles and method for producing the same
JP4846309B2 (en) Method for producing nickel manganese cobalt composite oxide
JP3961826B2 (en) Method for producing high density and large particle size cobalt hydroxide or cobalt mixed hydroxide and product produced by this method
JP2008195608A (en) High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2008239399A (en) Method for producing iron oxyhydroxide particle
JP2011057518A (en) High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same
JP2009527365A (en) Production of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and alloys
JP2008105921A (en) Method of producing iron-arsenic compound excellent in crystallinity
JP2010285340A (en) Scorodite-type iron/arsenic compound particle, production method thereof, and arsenic-containing solid
JP2009298679A (en) Production method of aluminum-containing nickel hydroxide particle
JP6194618B2 (en) Trimanganese tetraoxide and method for producing the same
JP4669214B2 (en) Cobalt oxyhydroxide particles and method for producing the same
JP3816305B2 (en) Method for producing cobalt oxide powder
JPH06122519A (en) Hydrated amorphous ferric oxide particle powder and its production
JP7454425B2 (en) Method for producing cobalt ferrite particles and cobalt ferrite particles produced thereby
JP4271407B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP4652791B2 (en) Mg solid solution cobalt oxyhydroxide particles and production method thereof
RU2158657C2 (en) Metallic cobalt agglomerates, method of manufacture and application thereof
JP2011042573A (en) Cobalt oxyhydroxide particle
EP3960706A1 (en) Method for producing cobalt ferrite particles and cobalt ferrite particles produced by same
JP2010284581A (en) METHOD OF REMOVING Cu ION FROM ARSENIC ACID SOLUTION
JP4552324B2 (en) Method for producing cobalt oxide particles by neutralization method
JP2010120842A (en) Method for producing tri-metal tetraoxide
JP2007015871A (en) Magnetic powder and its manufacturing method
JP2829644B2 (en) Production method of α-iron oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4846280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees