JP2004196603A - Lithium cobaltate, its preparation method, and non-aqueous electrolyte secondary battery - Google Patents

Lithium cobaltate, its preparation method, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004196603A
JP2004196603A JP2002367952A JP2002367952A JP2004196603A JP 2004196603 A JP2004196603 A JP 2004196603A JP 2002367952 A JP2002367952 A JP 2002367952A JP 2002367952 A JP2002367952 A JP 2002367952A JP 2004196603 A JP2004196603 A JP 2004196603A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
secondary battery
electrolyte secondary
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002367952A
Other languages
Japanese (ja)
Other versions
JP4114918B2 (en
Inventor
Katsuyuki Negishi
克幸 根岸
Hidekazu Awano
英和 粟野
Yoshihide Oishi
義英 大石
Nobuyuki Yamazaki
信幸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2002367952A priority Critical patent/JP4114918B2/en
Priority to TW093108497A priority patent/TW200532961A/en
Publication of JP2004196603A publication Critical patent/JP2004196603A/en
Application granted granted Critical
Publication of JP4114918B2 publication Critical patent/JP4114918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide lithium cobaltate which is excellent in load characteristics and blister inhibition and is useful as a positive electrode active material in a non-aqueous electrolyte secondary battery, its preparation process, and a non-aqueous electrolyte secondary battery using a positive electrode active material containing the same. <P>SOLUTION: The lithium cobaltate is obtained from cobalt oxyhydroxide and a lithium compound and has an average particle size of 10-15 μm and a residual lithium carbonate content of ≤0.1 wt.%. In the preparation method of the lithium cobaltate, cobalt oxyhydroxide having an angle of repose of ≤50° and a tap density of 1.3-1.8 g/cm<SP>3</SP>is mixed with the lithium compound and subsequently baked. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、コバルト酸リチウム及びその製造方法並びに非水電解質二次電池に関するものである。
【0002】
【従来の技術】
近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源として非水電解質二次電池が実用化されている。
この非水電解質二次電池については、コバルト酸リチウムに関する研究開発が活発に進められており、これまで多くの提案がなされている。
【0003】
コバルト酸リチウムに関して電池特性を向上させるために様々な改良がこれまでなされてきた。例えば、正極活物質LiCoO2中の残存Li2CO3が10重量%以下である正極活物質LiCoO2が提案されている(例えば、特許文献1参照)。
【0004】
また、正極であるLiaMO2(但し、Mは遷移金属の少なくとも1種を表し、0.05≦a≦1.10である。)の表面に炭酸リチウムを被覆させた非水電解質二次電池が提案されている。(例えば、特許文献2参照)
【0005】
また、オキシ水酸化コバルト粒子粉末を酸素含有ガス中300〜500℃で焼成してBET比表面積30〜200m2/gのコバルト酸化物微結晶粒子粉末を製造し、次いで、このコバルト酸化物微結晶粒子粉末とリチウム化合物とを混合した後、酸素含有ガス中にて焼成することを特徴とするリチウムコバルト酸化物粒子粉末の製造方法が提案されている。(例えば、特許文献3参照)
【0006】
【特許文献1】
特開平4−56064号公報
【特許文献2】
特開平4−329268号公報
【特許文献3】
特開平10−324522号公報
【0007】
【発明が解決しようとする課題】
しかしながら、現在では上記方法を用いても充分な電池性能を満たすことができなくなっている。特に、安全性、電池容量、負荷特性の向上やアルミラミネート電池における膨れ抑制の改善が要求されている。
従って、本発明の目的は非水電解質二次電池の正極活物質として用いたときに、特に負荷特性と膨れ抑制に優れた非水電解質二次電池の正極活物質として有用なコバルト酸リチウム、その製造方法、これを含有する正極活物質を用いる非水電解質二次電池を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記実情において鋭意研究を重ねた結果、コバルト酸リチウムの平均粒子径の範囲と残存する炭酸リチウムの量を制御することにより上記目的を達成することができることを見出し、本発明を完成するに至った。
【0009】
即ち、本発明は、オキシ水酸化コバルトとリチウム化合物とから得られるコバルト酸リチウムであって、該コバルト酸リチウムの平均粒子径の範囲が10〜15μm、且つ残存する炭酸リチウムの量が0.1重量%以下であることを特徴とするコバルト酸リチウムに係るものである。
また、本発明は安息角が50度以下で、且つタップ密度が1.3〜1.8g/cm3であるオキシ水酸化コバルトとリチウム化合物を混合した後、焼成することを特徴とするコバルト酸リチウムの製造方法に係るものである。
前記オキシ水酸化コバルトは、0.1〜1μmの1次粒子が凝集した2次粒子を形成し、該2次粒子の平均粒子径が8〜15μmである前記コバルト酸リチウムの製造方法に係るものである。
正極が、前記コバルト酸リチウムを正極活物質として含んでいることを特徴とする非水電解質二次電池に係るものである。
【0010】
【発明の実施形態】
以下、本発明について詳細に説明する。
すなわち、本発明はオキシ水酸化コバルトとリチウム化合物とから得られるコバルト酸リチウムであって、該コバルト酸リチウムの平均粒子径の範囲が10〜15μm、且つ残存する炭酸リチウムの量が0.1重量%以下であることを特徴とするコバルト酸リチウムに係るものである。
係る平均粒子経は、10〜15μm、好ましくは10〜13μmである。本発明に係る平均粒子経は、レーザー散乱粒度分布測定装置により得られた粒度分布の累積50%(D50)の値を示す。
【0011】
また、更に特徴的なことは、コバルト酸リチウムに残存する炭酸リチウムの量が0.1重量%以下、好ましくは0.05重量%以下であることである。
係るコバルト酸リチウムは、一般式(1)のLixCoO2(式中、xは、0.2≦x≦1.2の範囲内の数を表す)又は一般式(2)
LixCo1-yy2-z (式中、Mは、Coを除く遷移金属元素または原子番号9以上の元素からなる群から選択される1種以上の元素を表し、xは、0.2≦x≦1.2の範囲内の数を表し、yは、0<y≦0.4の範囲内の数を表し、zは、0≦z≦1.0の範囲内の数を表す)で表されるものである。
【0012】
具体的にはLixCoO2又はLixCo1-yy2-z のCoの一部を他の金属元素で置換したものであってもよく、置換する金属元素としては例えばNa, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Ni, Zn, Si, Ga, Zr, Nb, W, Moから選ばれる1種以上である。
また、LixCoO2又はLixCo1-yy2-z のCoの一部を他の金属元素で置換したコバルト酸リチウムの表面に硫酸塩を被覆したものであってもよい。
【0013】
本発明のコバルト酸リチウムの製造方法は、安息角が50度以下で、且つタップ密度が1.3〜1.8g/cm3であるオキシ水酸化コバルトとリチウム化合物を混合した後、焼成することを特徴とする。
原料として使用されるオキシ水酸化コバルトは、安息角50度以下、好ましくは45度以下、またタップ密度1.3〜1.8g/cm3、好ましくは1.5〜1.8g/cm3であるものが好ましく使われる。
【0014】
更に、本発明のオキシ水酸化コバルトは、0.1〜1μmの1次粒子が凝集した2次粒子を形成し、該2次粒子の平均粒子径が8〜15μmであることが好ましい。
1次粒子が凝集して2次粒子を形成しているとは、SEM写真観察で確認することができる。図1〜3に具体的なSEM写真を示す。
かかるオキシ水酸化コバルトは、如何なる方法において得られてもよいが、例えば硝酸コバルト、塩化コバルト、硫酸コバルト等の2価のコバルトを有する化合物を、酸化剤で酸化させた後、アルカリで中和したものを用いることができる。
【0015】
上記酸化剤としては特に限定されず、例えば、空気、酸素、オゾン;過マンガン酸(HMnO4 )及びMMnO4 等で表されるその塩;クロム酸(CrO3 )及びM2 Cr27 、M2 CrO4 、MCrO3 Cl、CrO2 Cl2 等で表されるその関連化合物;F2 、Cl2 、Br2 、I2 等のハロゲン;H22 、Na22 、BaO2 等の過酸化物;ペルオクソ酸及びM228 、M2 SO5、H2 CO3 、CH3 CO3 H等で表されるその塩;酸素酸及びMClO、MBrO、MIO、MClO3 、MBrO3 、MIO3 、MClO4 、MIO4 、Na32 IO6 、KIO4 等で表されるその塩等を挙げることができる。式中、Mは、アルカリ金属元素を表す。
上記アルカリとしては特に限定されず、例えば、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、水酸化アンモニウム等の水溶液等を挙げることができる。
【0016】
上記オキシ水酸化コバルトは、具体的には硝酸コバルト、塩化コバルト、硫酸コバルト等の2価のコバルトを有する化合物を水に溶解させて水溶液とし、上記酸化剤及び上記アルカリを添加して、中和と酸化とを同時に行うことにより得ることができる。また、上記2価のコバルトを有する化合物を含む水溶液に上記アルカリを加えて、2価の水酸化コバルトを合成した後、酸化剤を添加して酸化することにより上記オキシ水酸化コバルトを得ることもできる。更に、上記2価のコバルトを有する化合物を含む水溶液に上記酸化剤を添加した後、上記アルカリを添加して中和することにより上記オキシ水酸化コバルトを得ることもできる。オキシ水酸化コバルトの主成分は、CoOOHであるが、その他にCo34、CoCO3等が含まれているものである。
【0017】
上記リチウム化合物は、特に限定されないが、例えば水酸化リチウム、炭酸リチウム、硝酸リチウム等の無機リチウム塩を好適に用いることができる。リチウム化合物としては、炭酸リチウムが工業的に入手し易く、安価であるため好ましい。
【0018】
本発明に係る製造方法は、例えば、上記オキシ水酸化リチウムとリチウム化合物、好ましくは炭酸リチウムを混合し、混合物を得る。混合は、乾式または湿式の何れの方法でよいが、製造が容易であるため乾式が好ましい。乾式混合の場合は、原料が均一に混合するためのブレンダーを用いることが好ましい。混合工程の原料のリチウム化合物とコバルト化合物との配合割合は、Co原子とLi原子のモル比(Li/Co)で、0.99〜1.06、好ましくは0.99〜1.02とすることが好ましい。
次に、混合物を焼成する。焼成温度は700〜1100℃、850〜1050℃が好ましい。焼成時間は1〜24時間、好ましくは2〜10時間である。
【0019】
焼成は、大気中又は酸素雰囲気中のいずれかで行ってもよく、特に制限されるものではない。焼成後は、適宜冷却し、必要に応じ粉砕してコバルト酸リチウムを得る。なお、必要に応じて行われる粉砕は、焼成して得られるコバルト酸リチウムがもろく結合したブロック状のものである場合適宜行われる。
上記方法により得られるコバルト酸リチウムは、レーザー法測定で平均粒子径が10〜15μm、好ましくは10〜13μm、更には残存する炭酸リチウムの量が0.1重量1%以下である。
【0020】
本発明のコバルト酸リチウムは、上記の特性を有するが故に、非水電解質ニ次電池の正極活物質として用いる場合、充填性が高く、安全性の高いものとなり、更に負荷特性と膨れ抑制に優れた非水電解質ニ次電池の正極活物質として有用である。
【0021】
本発明の非水電解質二次電池は、正極、負極、セパレータ、非水電解質(例えばリチウム塩含有電解質)等から構成され、正極は、正極板(正極集電体:例えばアルミニウム板)上に正極活物質、導電剤及び結着剤を含有してなる正極合剤を塗布してなるものである。本発明の非水電解質二次電池は、正極板を構成する正極活物質として上記正極活物質を使用するものである。なお、正極活物質を予め製造するのではなく、正極合剤を調製する際に、上記本発明の正極活物質の条件を満足する構成のリチウム複合酸化物粒子を配合して均一に混合しても良い。
【0022】
本発明の非水電解質二次電池の負極に用いられる負極材料としては、特に制限されるものではないが、例えば炭素質材料、金属複合酸化物、リチウム金属またはリチウム合金などが挙げられる。炭素質材料としては、難黒鉛化炭素材料、黒鉛系炭素材料などが挙げられ、金属複合酸化物としては、SnM1 1-x2 yz(式中、M1は、Mn、Fe、PbまたはGeから選ばれる1種以上を表し、M2は、Al、B、P、Si、周期律表第1族、第2族、第3族またはハロゲン元素から選ばれる2種以上の元素を表し、xは、0<x≦1の範囲内の数を表し、yは、1≦y≦3の範囲内の数を表し、zは、1≦z≦8の範囲内の数を表す)などの化合物が挙げられる。
【0023】
正極合剤は、正極活物質に加えて導電剤、結着剤及びフィラーなどを添加することができる。導電剤としては、例えば天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、炭素繊維、ニッケル粉のような金属粉等からなる群から選択された導電性材料の1種または2種以上を使用することができる。上述のなかで、黒鉛とアセチレンブラックを導電剤として併用することが好ましい。なお、正極合剤への導電剤の配合量は、1〜50重量%、好ましくは2〜30重量%の範囲内である。
【0024】
また、結着剤としては、例えばポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルピロリドン、エチレン−プロピレン−ジエンターボリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、ポリエチレンオキシドなどの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマーなどの1種または2種以上を使用することができる。なお、正極合剤への結着剤の配合量は、2〜30重量%の範囲内が好ましい。
更に、フィラーは、非水電解質二次電池において、化学変化を起こさない繊維状材料であればいずれのものも使用可能であるが、通常ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス繊維、炭素繊維のような繊維が用いられる。正極合剤へのフィラー配合量は、特に限定されるものではないが、0〜30重量%の範囲内が好ましい。
なお、本発明の正極活物質の正極合剤への配合量は、特に限定されるものではないが、好ましくは60〜95重量%、特に好ましくは70〜94重量%の範囲内である。
【0025】
次に、非水電解質二次電池に用いられる非水電解液は、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチルラクトン、1,2−ジメトキシエタン、テトラヒドロキシフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、礒酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒の少なくとも1種以上を混合した溶媒と、その溶媒に溶解するリチウム塩例えばLiClO4、LiBF4、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、LiAlCl4、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウムなどの1種以上のリチウム塩から構成される。
また、非水電解液の他に、有機固体電解質を用いることもできる。例えばポリエチレン誘導体またはこれを含むポリマー、ポリプロピレンオキサイド誘導体またはこれを含むポリマー、燐酸エステルポリマーなどが挙げられる。
【0026】
上記化合物を所望の量混合して非水電解質二次電池を構成させることができる。電極の集電体は、構成された非水電解質二次電池において化学変化を起こさない電子伝導体であれば特に制限されるものではないが、例えばステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、アルミニウムやステンレス鋼の表面をカーボン、ニッケル、銅、チタンまたは銀で表面処理したもの、負極にはステンレス鋼、ニッケル、銅、チタン、アルミニウム、焼成炭素などの他に、銅やステンレス鋼の表面をカーボン、ニッケル、チタンまたは銀などで処理したもの、Al−Cd合金などが用いられる。
【0027】
非水電解質二次電池の形状は、コイン、ボタン、シート、シリンダー、角などのいずれにも適用できる。
本発明の非水電解質二次電池の用途は、特に制限されないが、例えばノートパソコン、ラップトップパソコン、ポケットワープロ、携帯電話、コードレス電話機、ポータブルCD、ラジオなどの電子機器、自動車、電動車両、ゲーム機器などの民生用電子機器などが挙げられる。
【0028】
【実施例】
次に実施例をあげて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
【0029】
実施例1
平均粒子径10μm、安息角45度 タップ密度1.5g/cm3のオキシ水酸化コバルトとリチウム化合物をLi/Co比1.00の配合比で計量する。次に乳鉢を用いて均一になるまで混合する。混合原料をアルミナ製坩堝にいれ、大気下、800℃〜1100℃で10時間焼成する。焼成後は、粉砕、分級を行った。また、図1、図2、図3に前記オキシ水酸化コバルトのSEM写真を倍率を変えたものである。
得られたコバルト酸リチウムの平均粒子経は12.3μmであり、残留炭酸リチウム量は0.05重量%であった。また、加圧密度は3.77g/cm3であった。
【0030】
実施例2
平均粒子径12μm、安息角42度、タップ密度1.6g/cm3のオキシ水酸化コバルトを用いた以外は実施例1と同じに行った。得られたコバルト酸リチウムの平均粒子経は12.5μmであり、残留炭酸リチウム量は0.04重量%であった。また、加圧密度は3.78g/cm3であった。
【0031】
実施例3
平均粒子径14μm、安息角40度、タップ密度1.7g/cm3のオキシ水酸化コバルトを用いた以外は実施例1と同じに行った。得られたコバルト酸リチウムの平均粒子経は12.8μmであり、残留炭酸リチウム量は0.05重量%であった。また、加圧密度は3.75g/cm3であった。
【0032】
比較例1
平均粒子径2μm、安息角63度、タップ密度1.1g/cm3の酸化コバルトを用いた以外は実施例1と同じに行った。得られたコバルト酸リチウムの平均粒子経は12.6μmであり、残留炭酸リチウム量は0.15重量%であった。また、加圧密度は3.51g/cm3であった。
【0033】
比較例2
平均粒子径3μ、安息角60度、タップ密度1.2g/cm3の酸化コバルトを用いた以外は実施例1と同じに行った。得られたコバルト酸リチウムの平均粒子経は12.7μmであり、残留炭酸リチウム量は0.18重量%であった。また、加圧密度は3.52g/cm3であった。
【0034】
(測定条件)
(タップ密度の測定方法)
50mlのメスシリンダーにサンプル50g をいれ、ユアサアイオニクス(株)製、DUAL AUTOTAP 装置にセットし、500 回タップし容積を読みとり見かけ密度を算出し、タップ密度とした。
【0035】
(安息角の測定)
パウダーテスターPT −N 型装置(ホソカワミクロン製)を使用した。サンプルを目開き250μm のふるいに通過させ、ロートを介して安息角測定用テーブルに落下させ、山の形が安定したらところで安息角を測定した。
【0036】
(平均粒子径の測定)
Microtrac粒度分布計9320 −X100 (Leed &Northrup 社製)を用いて以下の条件で行った。上記粒度分布計に内蔵されているサンプルセルに超純水を300ml 投入し、次いで10 %ヘキサメタりん酸ソーダ2mlを添加した。次いで、試料を粒度分布計に適した濃度になるまで添加した。尚、前記操作は環流量40ml /sec で行った。次いで、超音波を出力40W で60 秒かけて分散処理した後、平均粒子径を測定した。
【0037】
(加圧密度測定)
直径15mmの金型を用いて2ton/cm2のプレス(ハンドプレス東洋商工社製、形式;WPN−10)を1分行う。その後ペレットの重量および体積を測定して、ペレットの密度を算出する。
【0038】
<電池性能試験>
(I)コイン型非水電解質二次電池の作製;
上記のように製造した実施例1〜3及び比較例1〜2のコバルト酸リチウム91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン3重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用して非水電解質二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF6 1モルを溶解したものを使用した。
【0039】
(II)負荷特性の評価
作製したコイン型非水電解質二次電池を室温で作動させ、負荷特性を評価した。まず正極に対して定電流電圧(CCCV)充電により0.5Cで5時間かけて、4.3Vまで充電した後、放電レート0.2Cで2.7Vまで放電させる充放電を行い、これらの操作を1サイクルとして1サイクル毎に放電容量を測定した。このサイクルを3回繰り返し、1サイクル目〜3サイクル目のそれぞれの放電容量相加平均値をもとめ、この値を0.2Cにおける放電容量とした。
上記操作を2Cでも同様に行い、放電容量を求めた。この2つをもとに2C/0.2Cの放電容量比を計算した。(大きい方が負荷特性良好)
【0040】
(III)アルミラミネート型非水電解質二次次電池の作製
実施例1〜3及び比較例1〜2のコバルト酸リチウム91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン3重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、50cm×5cmに裁断し正極シートを得た。一方、MCMB85重量%、ポリフッ化ビニリデン15重量%を混合して負極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストを銅箔に塗布したのち乾燥、50cm×5cmに裁断し負極シートを得た。次に正極、負極シートに端子を溶接する。正極シートと負極シートの間にセパレーターをいれて2.5cmのスペーサーをベースに折りたたんでいく。これをアルミラミネートの中に入れて電解液を真空含浸させて、ヒートシールを行いアルミラミネートセルを製作した。
【0041】
(IV)膨れの評価
作製したアルミラミネート型非水電解質二次電池を60℃、4.3Vの充電状態で20日間保持した。20日後、アルミラミネート型非水電解質二次電池を取り出し、膨れの状態を確認した。
【0042】
【表1】

Figure 2004196603
【0043】
【発明の効果】
以上説明したように、本発明によるコバルト酸リチウムを正極活物質として使用することにより、電池の膨れも抑制し、かつ負荷特性の優れた非水電解質ニ次電池を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例1で使用したオキシ水酸化コバルトのSEM写真
【図2】本発明の実施例1で使用したオキシ水酸化コバルトのSEM写真
【図3】本発明の実施例1で使用したオキシ水酸化コバルトのSEM写真[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to lithium cobaltate, a method for producing the same, and a nonaqueous electrolyte secondary battery.
[0002]
[Prior art]
2. Description of the Related Art In recent years, as home appliances become more portable and cordless, non-aqueous electrolyte secondary batteries have been put into practical use as power sources for small electronic devices such as laptop personal computers, mobile phones, and video cameras.
With respect to this nonaqueous electrolyte secondary battery, research and development on lithium cobalt oxide have been actively promoted, and many proposals have been made so far.
[0003]
Various improvements have been made on lithium cobaltate to improve battery characteristics. For example, a positive electrode active material LiCoO 2 in which the residual Li 2 CO 3 in the positive electrode active material LiCoO 2 is 10% by weight or less has been proposed (for example, see Patent Document 1).
[0004]
A nonaqueous electrolyte secondary battery in which lithium carbonate is coated on the surface of a positive electrode Li a MO 2 (where M represents at least one transition metal and 0.05 ≦ a ≦ 1.10.) Batteries have been proposed. (For example, see Patent Document 2)
[0005]
The cobalt oxyhydroxide particles are fired in an oxygen-containing gas at 300 to 500 ° C. to produce cobalt oxide microcrystal particles having a BET specific surface area of 30 to 200 m 2 / g. There has been proposed a method for producing lithium cobalt oxide particle powder, which comprises mixing the particle powder with a lithium compound and then firing the mixture in an oxygen-containing gas. (For example, see Patent Document 3)
[0006]
[Patent Document 1]
JP-A-4-56064 [Patent Document 2]
JP-A-4-329268 [Patent Document 3]
JP 10-324522 A
[Problems to be solved by the invention]
However, at present, it is no longer possible to satisfy sufficient battery performance even by using the above method. In particular, improvements in safety, battery capacity, load characteristics, and suppression of blistering in aluminum laminate batteries are required.
Therefore, the object of the present invention, when used as a positive electrode active material of a non-aqueous electrolyte secondary battery, particularly useful as a positive electrode active material of a non-aqueous electrolyte secondary battery excellent in load characteristics and suppression of swelling, It is an object of the present invention to provide a manufacturing method and a non-aqueous electrolyte secondary battery using a positive electrode active material containing the same.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in the above circumstances and found that the above object can be achieved by controlling the range of the average particle diameter of lithium cobaltate and the amount of remaining lithium carbonate, and the present invention Was completed.
[0009]
That is, the present invention relates to a lithium cobalt oxide obtained from cobalt oxyhydroxide and a lithium compound, wherein the average particle diameter of the lithium cobalt oxide is in the range of 10 to 15 μm, and the amount of the remaining lithium carbonate is 0.1 to 0.1 μm. % By weight or less.
The present invention also provides a cobalt acid characterized in that cobalt oxyhydroxide having a repose angle of 50 degrees or less and a tap density of 1.3 to 1.8 g / cm 3 and a lithium compound are mixed and then calcined. The present invention relates to a method for producing lithium.
The cobalt oxyhydroxide according to the method for producing lithium cobaltate, wherein the secondary particles form secondary particles in which primary particles of 0.1 to 1 μm are aggregated, and the average particle diameter of the secondary particles is 8 to 15 μm. It is.
A non-aqueous electrolyte secondary battery, wherein the positive electrode contains the lithium cobaltate as a positive electrode active material.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
That is, the present invention relates to lithium cobaltate obtained from cobalt oxyhydroxide and a lithium compound, wherein the average particle size of the lithium cobaltate is 10 to 15 μm, and the amount of the remaining lithium carbonate is 0.1% by weight. % Or less, according to lithium cobalt oxide.
The average particle size is 10 to 15 μm, preferably 10 to 13 μm. The average particle diameter according to the present invention indicates a value of a cumulative 50% (D 50 ) of the particle size distribution obtained by the laser scattering particle size distribution measuring device.
[0011]
It is further characteristic that the amount of lithium carbonate remaining in lithium cobalt oxide is 0.1% by weight or less, preferably 0.05% by weight or less.
Such lithium cobaltate is prepared by using Li x CoO 2 of the general formula (1) (where x represents a number in the range of 0.2 ≦ x ≦ 1.2) or the general formula (2)
During Li x Co 1-y M y O 2-z ( wherein, M represents at least one element selected from the group consisting of transition metal elements or atomic number 9 or more elements excluding Co, x is Represents a number in the range of 0.2 ≦ x ≦ 1.2, y represents a number in the range of 0 <y ≦ 0.4, and z is a number in the range of 0 ≦ z ≦ 1.0 Is represented).
[0012]
Specifically Li x CoO 2 or Li x Co 1-y M y O part of Co of 2-z may be the be those substituted with other metal elements, the metal element substituted for example Na, At least one selected from Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Ni, Zn, Si, Ga, Zr, Nb, W, and Mo.
Also, or may be coated with sulfate in Li x CoO 2 or Li x Co 1-y M y O 2-z in part replaced by other metal elements on the surface of lithium cobalt oxide Co.
[0013]
In the method for producing lithium cobalt oxide of the present invention, after mixing cobalt oxyhydroxide having a repose angle of 50 degrees or less and a tap density of 1.3 to 1.8 g / cm 3 with a lithium compound, the mixture is fired. It is characterized.
Cobalt oxyhydroxide used as a raw material has an angle of repose of 50 degrees or less, preferably 45 degrees or less, and a tap density of 1.3 to 1.8 g / cm 3 , preferably 1.5 to 1.8 g / cm 3 . Some are preferably used.
[0014]
Further, the cobalt oxyhydroxide of the present invention forms secondary particles in which primary particles of 0.1 to 1 μm are aggregated, and the average particle diameter of the secondary particles is preferably 8 to 15 μm.
The fact that the primary particles are aggregated to form secondary particles can be confirmed by SEM photograph observation. 1 to 3 show specific SEM photographs.
Such a cobalt oxyhydroxide may be obtained by any method.For example, a compound having divalent cobalt such as cobalt nitrate, cobalt chloride, and cobalt sulfate is oxidized with an oxidizing agent, and then neutralized with an alkali. Can be used.
[0015]
The oxidizing agent is not particularly limited, and includes, for example, air, oxygen, ozone; permanganic acid (HMnO 4 ) and salts thereof represented by MMnO 4 and the like; chromic acid (CrO 3 ) and M 2 Cr 2 O 7 ; Related compounds represented by M 2 CrO 4 , MCrO 3 Cl, CrO 2 Cl 2 and the like; halogens such as F 2 , Cl 2 , Br 2 and I 2 ; H 2 O 2 , Na 2 O 2 , BaO 2 and the like Peroxides and salts thereof represented by M 2 S 2 O 8 , M 2 SO 5 , H 2 CO 3 , CH 3 CO 3 H and the like; oxygen acids and MCO, MBrO, MIO, MCO 3 , Examples thereof include salts thereof represented by MBrO 3 , MIO 3 , MCIO 4 , MIO 4 , Na 3 H 2 IO 6 , KIO 4 and the like. In the formula, M represents an alkali metal element.
The alkali is not particularly limited, and examples thereof include aqueous solutions of lithium hydroxide, potassium hydroxide, sodium hydroxide, ammonium hydroxide and the like.
[0016]
Specifically, the cobalt oxyhydroxide is neutralized by dissolving a compound having divalent cobalt such as cobalt nitrate, cobalt chloride, and cobalt sulfate in water to form an aqueous solution, and adding the oxidizing agent and the alkali to neutralize the solution. And oxidation at the same time. Alternatively, the above-mentioned alkali may be added to the aqueous solution containing the compound having divalent cobalt to synthesize divalent cobalt hydroxide, and then the above-mentioned cobalt oxyhydroxide may be obtained by adding and oxidizing an oxidizing agent. it can. Furthermore, the cobalt oxyhydroxide can also be obtained by adding the oxidizing agent to an aqueous solution containing the compound having divalent cobalt and then neutralizing by adding the alkali. The main component of cobalt oxyhydroxide is CoOOH, but it also contains Co 3 O 4 , CoCO 3 and the like.
[0017]
The lithium compound is not particularly limited. For example, inorganic lithium salts such as lithium hydroxide, lithium carbonate, and lithium nitrate can be suitably used. As the lithium compound, lithium carbonate is preferable because it is industrially easily available and inexpensive.
[0018]
In the production method according to the present invention, for example, the lithium oxyhydroxide and a lithium compound, preferably lithium carbonate, are mixed to obtain a mixture. Mixing may be performed by either a dry method or a wet method, but a dry method is preferred because of easy production. In the case of dry mixing, it is preferable to use a blender for uniformly mixing the raw materials. The mixing ratio of the lithium compound and the cobalt compound as raw materials in the mixing step is 0.99 to 1.06, preferably 0.99 to 1.02, in a molar ratio of Co atoms to Li atoms (Li / Co). Is preferred.
Next, the mixture is fired. The firing temperature is preferably from 700 to 1100 ° C and from 850 to 1050 ° C. The firing time is 1 to 24 hours, preferably 2 to 10 hours.
[0019]
The firing may be performed in the air or in an oxygen atmosphere, and is not particularly limited. After calcination, the mixture is appropriately cooled and pulverized as necessary to obtain lithium cobalt oxide. The pulverization performed as necessary is appropriately performed when the lithium cobalt oxide obtained by firing is a brittlely bonded block.
The lithium cobalt oxide obtained by the above method has an average particle size of 10 to 15 μm, preferably 10 to 13 μm, and the amount of the remaining lithium carbonate is 0.1% by weight or less by laser measurement.
[0020]
Since the lithium cobaltate of the present invention has the above characteristics, when used as a positive electrode active material of a non-aqueous electrolyte secondary battery, it has high filling properties and high safety, and is excellent in load characteristics and suppression of swelling. It is also useful as a positive electrode active material for nonaqueous electrolyte secondary batteries.
[0021]
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, a non-aqueous electrolyte (for example, a lithium salt-containing electrolyte), and the like. The positive electrode is formed on a positive electrode plate (a positive electrode current collector: for example, an aluminum plate). It is obtained by applying a positive electrode mixture containing an active material, a conductive agent and a binder. The nonaqueous electrolyte secondary battery of the present invention uses the above-mentioned positive electrode active material as a positive electrode active material constituting a positive electrode plate. Note that, instead of preparing the positive electrode active material in advance, when preparing a positive electrode mixture, lithium composite oxide particles having a configuration that satisfies the conditions of the positive electrode active material of the present invention are blended and uniformly mixed. Is also good.
[0022]
The negative electrode material used for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and examples thereof include a carbonaceous material, a metal composite oxide, a lithium metal, and a lithium alloy. Examples of the carbonaceous material include a non-graphitizable carbon material and a graphite-based carbon material, and examples of the metal composite oxide include SnM 11 -x M 2 y O z (where M 1 is Mn, Fe, M 2 represents one or more elements selected from Pb or Ge, and M 2 represents two or more elements selected from Al, B, P, Si, Group 1, Group 2, Group 3, or a halogen element of the periodic table. X represents a number in the range of 0 <x ≦ 1, y represents a number in the range of 1 ≦ y ≦ 3, and z represents a number in the range of 1 ≦ z ≦ 8. And the like.
[0023]
The positive electrode mixture can include a conductive agent, a binder, a filler, and the like in addition to the positive electrode active material. Examples of the conductive agent include a conductive powder selected from the group consisting of natural graphite (scale graphite, flake graphite, earth graphite, etc.), artificial graphite, carbon black, acetylene black, carbon fiber, metal powder such as nickel powder, and the like. One or more of the conductive materials can be used. Among the above, it is preferable to use graphite and acetylene black in combination as the conductive agent. The amount of the conductive agent mixed in the positive electrode mixture is in the range of 1 to 50% by weight, preferably 2 to 30% by weight.
[0024]
Examples of the binder include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl pyrrolidone, ethylene-propylene-diene turbomer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluororubber, One or more of polysaccharides such as polyethylene oxide, a thermoplastic resin, and a polymer having rubber elasticity can be used. In addition, the compounding quantity of the binder to the positive electrode mixture is preferably in the range of 2 to 30% by weight.
Further, as the filler, in a nonaqueous electrolyte secondary battery, any material can be used as long as it is a fibrous material that does not cause a chemical change, but usually, an olefin-based polymer such as polypropylene or polyethylene, glass fiber, or carbon fiber is used. Such fibers are used. The amount of the filler mixed in the positive electrode mixture is not particularly limited, but is preferably in the range of 0 to 30% by weight.
The amount of the positive electrode active material of the present invention in the positive electrode mixture is not particularly limited, but is preferably in the range of 60 to 95% by weight, and particularly preferably in the range of 70 to 94% by weight.
[0025]
Next, the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery is, for example, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyl lactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolan, formamide, dimethylformamide, dioxolan, acetonitrile, nitromethane, methyl isoform, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl -2-oxazodinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether, at least one or more aprotic organic solvents such as 1,3-propanesultone. And solvent combined, lithium salts such as LiClO 4 is dissolved in the solvent, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, chloroborane lithium, It is composed of one or more lithium salts such as lithium lower aliphatic carboxylate and lithium tetraphenylborate.
In addition to the non-aqueous electrolyte, an organic solid electrolyte can also be used. For example, a polyethylene derivative or a polymer containing the same, a polypropylene oxide derivative or a polymer containing the same, a phosphate ester polymer, and the like can be given.
[0026]
The above compounds can be mixed in desired amounts to form a non-aqueous electrolyte secondary battery. The current collector of the electrode is not particularly limited as long as it is an electron conductor that does not cause a chemical change in the configured nonaqueous electrolyte secondary battery, for example, stainless steel, nickel, aluminum, titanium, calcined carbon, Aluminum or stainless steel surface treated with carbon, nickel, copper, titanium, or silver.The negative electrode has the surface of copper or stainless steel in addition to stainless steel, nickel, copper, titanium, aluminum, calcined carbon, etc. A material treated with carbon, nickel, titanium or silver, an Al-Cd alloy, or the like is used.
[0027]
The shape of the nonaqueous electrolyte secondary battery can be applied to any of coins, buttons, sheets, cylinders, corners and the like.
The use of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited. For example, electronic devices such as notebook computers, laptop computers, pocket word processors, mobile phones, cordless phones, portable CDs, radios, automobiles, electric vehicles, and games Consumer electronic devices such as devices.
[0028]
【Example】
Next, the present invention will be described in more detail with reference to examples, but this is merely an example and does not limit the present invention.
[0029]
Example 1
Cobalt oxyhydroxide having an average particle diameter of 10 μm and a repose angle of 45 ° and a tap density of 1.5 g / cm 3 and a lithium compound are weighed at a mixing ratio of Li / Co of 1.00. Then mix using a mortar until uniform. The mixed raw material is placed in an alumina crucible and fired at 800 ° C. to 1100 ° C. for 10 hours in the atmosphere. After firing, pulverization and classification were performed. FIGS. 1, 2 and 3 are SEM photographs of the cobalt oxyhydroxide at different magnifications.
The average particle size of the obtained lithium cobaltate was 12.3 μm, and the amount of residual lithium carbonate was 0.05% by weight. Further, the pressure density was 3.77 g / cm 3 .
[0030]
Example 2
The same operation as in Example 1 was performed except that cobalt oxyhydroxide having an average particle diameter of 12 μm, a repose angle of 42 °, and a tap density of 1.6 g / cm 3 was used. The average particle size of the obtained lithium cobaltate was 12.5 μm, and the amount of residual lithium carbonate was 0.04% by weight. Further, the pressure density was 3.78 g / cm 3 .
[0031]
Example 3
The same operation as in Example 1 was performed except that cobalt oxyhydroxide having an average particle diameter of 14 μm, a repose angle of 40 °, and a tap density of 1.7 g / cm 3 was used. The average particle size of the obtained lithium cobaltate was 12.8 μm, and the amount of residual lithium carbonate was 0.05% by weight. The press density was 3.75 g / cm 3 .
[0032]
Comparative Example 1
The same operation as in Example 1 was performed except that cobalt oxide having an average particle diameter of 2 μm, a repose angle of 63 °, and a tap density of 1.1 g / cm 3 was used. The average particle size of the obtained lithium cobaltate was 12.6 μm, and the amount of residual lithium carbonate was 0.15% by weight. Further, the pressure density was 3.51 g / cm 3 .
[0033]
Comparative Example 2
The same operation as in Example 1 was performed except that cobalt oxide having an average particle diameter of 3 μ, a repose angle of 60 °, and a tap density of 1.2 g / cm 3 was used. The average particle size of the obtained lithium cobaltate was 12.7 μm, and the amount of residual lithium carbonate was 0.18% by weight. Further, the pressure density was 3.52 g / cm 3 .
[0034]
(Measurement condition)
(Method of measuring tap density)
A 50 g sample was placed in a 50 ml measuring cylinder, set on a Dual AUTOTAP device manufactured by Yuasa Ionics Co., Ltd., tapped 500 times, the volume was read, and the apparent density was calculated to obtain the tap density.
[0035]
(Measurement of angle of repose)
A powder tester PT-N type device (manufactured by Hosokawa Micron) was used. The sample was passed through a sieve having a mesh size of 250 μm, dropped onto a table for measuring the angle of repose via a funnel, and the angle of repose was measured when the shape of the mountain was stabilized.
[0036]
(Measurement of average particle size)
The measurement was performed under the following conditions using a Microtrac particle size distribution analyzer 9320-X100 (manufactured by Leed & Northrup). 300 ml of ultrapure water was charged into the sample cell built in the particle size distribution analyzer, and then 2 ml of 10% sodium hexametaphosphate was added. The sample was then added to a concentration suitable for the particle size distribution meter. In addition, the said operation was performed at a circulation flow rate of 40 ml / sec. Next, after the ultrasonic wave was subjected to dispersion treatment at an output of 40 W for 60 seconds, the average particle diameter was measured.
[0037]
(Pressure density measurement)
Using a mold having a diameter of 15 mm, a press of 2 ton / cm 2 (manufactured by Toyo Shoko Co., Ltd., model: WPN-10) is performed for 1 minute. Thereafter, the weight and volume of the pellet are measured to calculate the density of the pellet.
[0038]
<Battery performance test>
(I) Preparation of coin-type non-aqueous electrolyte secondary battery;
91% by weight of lithium cobalt oxide, 6% by weight of graphite powder and 3% by weight of polyvinylidene fluoride prepared in Examples 1 to 3 and Comparative Examples 1 and 2 prepared as described above were mixed to form a positive electrode, and this was mixed with N-methyl. -2-Pyrrolidinone was dispersed to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, pressed, and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a non-aqueous electrolyte secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Among them, a metal lithium foil was used for the negative electrode, and an electrolytic solution obtained by dissolving 1 mol of LiPF 6 in 1 liter of a 1: 1 kneading solution of ethylene carbonate and methyl ethyl carbonate was used.
[0039]
(II) Evaluation of Load Characteristics The manufactured coin-type nonaqueous electrolyte secondary battery was operated at room temperature, and the load characteristics were evaluated. First, the positive electrode was charged to 4.3 V by constant current voltage (CCCV) charging at 0.5 C for 5 hours, and then charged and discharged to discharge to 2.7 V at a discharge rate of 0.2 C. These operations were performed. Was taken as one cycle, and the discharge capacity was measured every cycle. This cycle was repeated three times, and the arithmetic mean value of the discharge capacities of the first to third cycles was obtained, and this value was defined as the discharge capacity at 0.2C.
The above operation was similarly performed in 2C, and the discharge capacity was determined. A discharge capacity ratio of 2C / 0.2C was calculated based on the two. (The larger the better the load characteristics)
[0040]
(III) Preparation of Aluminum Laminated Nonaqueous Electrolyte Secondary Battery 91% by weight of lithium cobalt oxide, 6% by weight of graphite powder, and 3% by weight of polyvinylidene fluoride of Examples 1 to 3 and Comparative Examples 1 to 2 were mixed. This was used as a positive electrode material, and this was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, and cut into 50 cm x 5 cm to obtain a positive electrode sheet. On the other hand, 85% by weight of MCMB and 15% by weight of polyvinylidene fluoride were mixed to prepare a negative electrode agent, which was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. The kneaded paste was applied to a copper foil, dried, and cut into 50 cm x 5 cm to obtain a negative electrode sheet. Next, the terminals are welded to the positive and negative electrode sheets. A separator is inserted between the positive electrode sheet and the negative electrode sheet, and then folded based on a 2.5 cm spacer. This was put in an aluminum laminate and impregnated with an electrolytic solution under vacuum, and heat-sealed to produce an aluminum laminate cell.
[0041]
(IV) Evaluation of swelling The manufactured aluminum-laminated nonaqueous electrolyte secondary battery was held at 60 ° C and a charged state of 4.3 V for 20 days. Twenty days later, the aluminum-laminated nonaqueous electrolyte secondary battery was taken out, and the state of swelling was confirmed.
[0042]
[Table 1]
Figure 2004196603
[0043]
【The invention's effect】
As described above, by using the lithium cobaltate according to the present invention as a positive electrode active material, it is possible to obtain a nonaqueous electrolyte secondary battery that also suppresses battery swelling and has excellent load characteristics.
[Brief description of the drawings]
FIG. 1 is an SEM photograph of cobalt oxyhydroxide used in Example 1 of the present invention. FIG. 2 is an SEM photograph of cobalt oxyhydroxide used in Example 1 of the present invention. FIG. 3 is Example 1 of the present invention. SEM photograph of cobalt oxyhydroxide used in

Claims (4)

オキシ水酸化コバルトとリチウム化合物とから得られるコバルト酸リチウムであって、該コバルト酸リチウムの平均粒子径の範囲が10〜15μm、且つ残存する炭酸リチウムの量が0.1重量%以下であることを特徴とするコバルト酸リチウム。Lithium cobalt oxide obtained from cobalt oxyhydroxide and a lithium compound, wherein the average particle diameter of the lithium cobalt oxide ranges from 10 to 15 μm and the amount of the remaining lithium carbonate is 0.1% by weight or less. Lithium cobaltate characterized by the following. 安息角が50度以下で、且つタップ密度が1.3〜1.8g/cm3であるオキシ水酸化コバルトとリチウム化合物を混合した後、焼成することを特徴とするコバルト酸リチウムの製造方法。A method for producing lithium cobalt oxide, comprising: mixing cobalt oxyhydroxide having a repose angle of 50 degrees or less and a tap density of 1.3 to 1.8 g / cm 3 with a lithium compound, followed by firing. 前記オキシ水酸化コバルトは、0.1〜1μmの1次粒子が凝集した2次粒子を形成し、該2次粒子の平均粒子径が8〜15μmである請求項2記載のコバルト酸リチウムの製造方法。The production of lithium cobalt oxide according to claim 2, wherein the cobalt oxyhydroxide forms secondary particles in which primary particles of 0.1 to 1 µm are aggregated, and the secondary particles have an average particle diameter of 8 to 15 µm. Method. 正極が、請求項1記載のコバルト酸リチウムを正極活物質として含んでいることを特徴とする非水電解質二次電池。2. A non-aqueous electrolyte secondary battery, wherein the positive electrode contains the lithium cobalt oxide according to claim 1 as a positive electrode active material.
JP2002367952A 2002-12-19 2002-12-19 Lithium cobaltate, method for producing the same, and nonaqueous electrolyte secondary battery Expired - Fee Related JP4114918B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002367952A JP4114918B2 (en) 2002-12-19 2002-12-19 Lithium cobaltate, method for producing the same, and nonaqueous electrolyte secondary battery
TW093108497A TW200532961A (en) 2002-12-19 2004-03-29 Lithium cobaltate, its preparation method, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002367952A JP4114918B2 (en) 2002-12-19 2002-12-19 Lithium cobaltate, method for producing the same, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004196603A true JP2004196603A (en) 2004-07-15
JP4114918B2 JP4114918B2 (en) 2008-07-09

Family

ID=32764675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002367952A Expired - Fee Related JP4114918B2 (en) 2002-12-19 2002-12-19 Lithium cobaltate, method for producing the same, and nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP4114918B2 (en)
TW (1) TW200532961A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298699A (en) * 2005-04-20 2006-11-02 Seimi Chem Co Ltd Method for manufacturing lithium cobalt composite oxide having large particle size
JP2007001809A (en) * 2005-06-23 2007-01-11 Tanaka Chemical Corp Cobalt oxyhydroxide particle and method for producing the same
JP2007200827A (en) * 2006-01-30 2007-08-09 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
WO2009119104A1 (en) 2008-03-28 2009-10-01 戸田工業株式会社 Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP2009242135A (en) * 2008-03-28 2009-10-22 Toda Kogyo Corp Cobalt oxyhydroxide particulate powder and production method of the same
JP2010116302A (en) * 2008-11-13 2010-05-27 Toda Kogyo Corp Lithium cobaltate particulate powder and method for producing the same, and non-aqueous electrolyte secondary battery
JP2013143358A (en) * 2012-01-12 2013-07-22 Toyota Motor Corp Lithium secondary battery
JP2015043332A (en) * 2014-10-14 2015-03-05 トヨタ自動車株式会社 Lithium secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298699A (en) * 2005-04-20 2006-11-02 Seimi Chem Co Ltd Method for manufacturing lithium cobalt composite oxide having large particle size
JP2007001809A (en) * 2005-06-23 2007-01-11 Tanaka Chemical Corp Cobalt oxyhydroxide particle and method for producing the same
JP2007200827A (en) * 2006-01-30 2007-08-09 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
WO2009119104A1 (en) 2008-03-28 2009-10-01 戸田工業株式会社 Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP2009242135A (en) * 2008-03-28 2009-10-22 Toda Kogyo Corp Cobalt oxyhydroxide particulate powder and production method of the same
JP2010116302A (en) * 2008-11-13 2010-05-27 Toda Kogyo Corp Lithium cobaltate particulate powder and method for producing the same, and non-aqueous electrolyte secondary battery
JP2013143358A (en) * 2012-01-12 2013-07-22 Toyota Motor Corp Lithium secondary battery
JP2015043332A (en) * 2014-10-14 2015-03-05 トヨタ自動車株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP4114918B2 (en) 2008-07-09
TWI356519B (en) 2012-01-11
TW200532961A (en) 2005-10-01

Similar Documents

Publication Publication Date Title
JP5894388B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4187523B2 (en) Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5325888B2 (en) Electrode active material, electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP5638542B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5534595B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP5098146B2 (en) Method for producing positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
JP5162945B2 (en) Mixture of lithium phosphate transition metal compound and carbon, electrode provided with the same, battery provided with the electrode, method for producing the mixture, and method for producing the battery
JP5263683B2 (en) Nonaqueous electrolyte secondary battery
JP2000082466A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
WO2006134851A1 (en) Lithium ion secondary battery
JP2006107845A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
JP2003292309A (en) Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
JP4194027B2 (en) Method for producing lithium cobalt oxide for positive electrode active material of lithium secondary battery
JP5370102B2 (en) Nonaqueous electrolyte secondary battery
JP5546009B2 (en) Cathode active material for lithium battery, method for producing the same, and lithium battery using the same
JP2003221235A (en) Lithium-cobalt composite oxide, method of manufacturing it, cathode active material for lithium secondary battery and lithium secondary battery
JP2006318926A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP4156358B2 (en) Lithium cobaltate composite compound, method for producing the same, and nonaqueous electrolyte secondary battery
JP4114918B2 (en) Lithium cobaltate, method for producing the same, and nonaqueous electrolyte secondary battery
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
JP2020087822A (en) Lithium nickel-containing composite oxide and manufacturing method thereof, and positive electrode active material for lithium ion secondary battery, which is arranged by use of the lithium nickel-containing composite oxide as base material, and manufacturing method thereof
JP4697504B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP2005190982A (en) Active material, manufacturing method of same, nonaqueous electrolyte secondary battery, and lithium primary battery
JP2020087824A (en) Lithium nickel-containing composite oxide, positive electrode active material for lithium ion secondary battery, which is arranged by use of the lithium nickel-containing composite oxide as base material, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071116

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4114918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees