JP5226656B2 - Solid oxide fuel cell and method for producing solid oxide fuel cell - Google Patents

Solid oxide fuel cell and method for producing solid oxide fuel cell Download PDF

Info

Publication number
JP5226656B2
JP5226656B2 JP2009297706A JP2009297706A JP5226656B2 JP 5226656 B2 JP5226656 B2 JP 5226656B2 JP 2009297706 A JP2009297706 A JP 2009297706A JP 2009297706 A JP2009297706 A JP 2009297706A JP 5226656 B2 JP5226656 B2 JP 5226656B2
Authority
JP
Japan
Prior art keywords
air electrode
fuel cell
electrolyte layer
electrode
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009297706A
Other languages
Japanese (ja)
Other versions
JP2010103122A (en
Inventor
玲一 千葉
嘉隆 田畑
姫子 大類
武志 小松
和彦 野沢
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009297706A priority Critical patent/JP5226656B2/en
Publication of JP2010103122A publication Critical patent/JP2010103122A/en
Application granted granted Critical
Publication of JP5226656B2 publication Critical patent/JP5226656B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)に関するものである。   The present invention relates to a solid oxide fuel cell (SOFC).

近年、酸素イオン伝導体を用いたSOFCに関心が高まりつつある。このSOFCは、カルノー効率の制約を受けないために本質的に高いエネルギー変換効率を有するとともに、良好な環境保全が期待できるなどの優れた特徴を有する。このため、特に、エネルギーの有効利用という観点で各分野から期待されている。   In recent years, interest in SOFCs using oxygen ion conductors is increasing. This SOFC has excellent characteristics such as high energy conversion efficiency because it is not restricted by Carnot efficiency and good environmental conservation. For this reason, it is especially expected from each field from the viewpoint of effective use of energy.

従来のSOFCでは、動作温度が900℃〜1000℃と高いために全ての部材をセラミックで構成しなければならず、このためにセルスタックの製造コストを低減するのが困難であった。SOFCの動作温度を800℃以下、好ましくは700℃程度まで低減することができれば、インターコネクタ等に耐熱合金材料を用いることが可能となるため、製造コストの低減が可能となる。ところが、動作温度を低下させると、空気極における電気化学的な抵抗が急激に増えるために過電圧が増大し、出力電圧の低下を招いてしまうという新たな問題を引き起こしてしまう。この問題を解決するために、空気極の微細化や新たな空気極材料の開発が行われている。中でも、La(NiFe)Oなどニッケルと鉄をBサイトに含むペロブスカイト構造を有する金属酸化物は、高い電極活性を有するため、低温動作用SOFCの空気極の構成材料として期待されている。 In the conventional SOFC, since the operating temperature is as high as 900 ° C. to 1000 ° C., all members must be made of ceramic, and it is difficult to reduce the manufacturing cost of the cell stack. If the operating temperature of the SOFC can be reduced to 800 ° C. or less, preferably about 700 ° C., it becomes possible to use a heat-resistant alloy material for the interconnector and the like, so that manufacturing costs can be reduced. However, when the operating temperature is lowered, the electrochemical resistance in the air electrode is rapidly increased, so that an overvoltage is increased, resulting in a new problem that the output voltage is lowered. In order to solve this problem, miniaturization of the air electrode and development of new air electrode materials have been performed. Among these, metal oxides having a perovskite structure containing nickel and iron at the B site, such as La (NiFe) O 3 , have high electrode activity, and thus are expected as constituent materials for the air electrode of SOFCs for low-temperature operation.

なお、出願人は、本明細書に記載した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を出願時までに発見するには至らなかった。   The applicant has not yet found prior art documents related to the present invention by the time of filing other than the prior art documents specified by the prior art document information described in this specification.

Steven P. Simner、D. Anderson、Jeffry W. Stevenson、in the Extended abstracts of 14th International conference on Solid State Ionics、p.30Steven P. Simner, D. Anderson, Jeffry W. Stevenson, in the Extended abstracts of 14th International conference on Solid State Ionics, p. 30

しかしながら、上記金属酸化物を空気極に用いると、通電による初期化プロセスを経なければ十分な特性を得ることができない。この初期化プロセスとは、燃料電池セルの運転を少量の電流で開始し、電流を少しずつ増やして出力を上げるものである。この初期化プロセスにより、空気極を構成している構成材料の粒子同士の焼結、空気極と電解質層との界面の焼結、空気極と電解質層との界面に薄く形成されるパイロクロア相の消失が行われると考えられる。特に、La(NiFe)Oなどニッケルと鉄をBサイトに含むペロブスカイト酸化物を用いた空気極では、48時間から120時間という長時間の初期化時間を必要とするため、従来より初期化時間の短縮が望まれていた。 However, when the metal oxide is used for an air electrode, sufficient characteristics cannot be obtained unless an initialization process is performed by energization. This initialization process starts the operation of the fuel cell with a small amount of current and gradually increases the current to increase the output. By this initialization process, the particles of the constituent materials constituting the air electrode are sintered, the interface between the air electrode and the electrolyte layer is sintered, and the pyrochlore phase formed thinly at the interface between the air electrode and the electrolyte layer. It is thought that disappearance will occur. In particular, an air electrode using a perovskite oxide containing nickel and iron at the B site such as La (NiFe) O 3 requires a long initialization time of 48 hours to 120 hours. It was desired to shorten the time.

そこで、本願発明は上述したような課題を解決するためになされたものであり、通電初期化時間を短縮することができる固体酸化物型燃料電池および固体酸化物型燃料電池の製造方法を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and provides a solid oxide fuel cell and a method for manufacturing the solid oxide fuel cell that can shorten the energization initialization time. For the purpose.

上述したような課題を解決するために、本発明にかかる固体酸化物型燃料電池は、電解質層の両面に空気極と燃料極が設けられ、電解質層と空気極との間に中間層を有する固体酸化物型燃料電池において、電解質層は、稀土類添加ジルコニア系酸化物から構成され、空気極は、Laからなる第1の金属とFeおよびNiからなる第2の金属とを有するペロブスカイト構造の金属酸化物から構成され、中間層は、セリア系電解質材料から構成されることを特徴とする。   In order to solve the above-described problems, a solid oxide fuel cell according to the present invention has an air electrode and a fuel electrode on both surfaces of an electrolyte layer, and has an intermediate layer between the electrolyte layer and the air electrode. In the solid oxide fuel cell, the electrolyte layer is composed of a rare earth-added zirconia-based oxide, and the air electrode has a perovskite structure including a first metal composed of La and a second metal composed of Fe and Ni. It is composed of a metal oxide, and the intermediate layer is composed of a ceria-based electrolyte material.

上述したような課題を解決するために、本発明にかかる固体酸化物型燃料電池は、電解質層の両面に空気極と燃料極が設けられ、電解質層と空気極との間に中間層を有する固体酸化物型燃料電池において、電解質層は、稀土類添加ジルコニア系酸化物から構成され、空気極は、Aサイトを構成するLaからなる第1の金属とBサイトを構成するFeおよびNiからなる第2の金属とを有するAサイトが定比のペロブスカイト構造の金属酸化物から構成され、中間層は、セリア系電解質材料から構成され、空気極には、さらに稀土類添加ジルコニア系酸化物が含まれることを特徴とする。 In order to solve the above-described problems, a solid oxide fuel cell according to the present invention has an air electrode and a fuel electrode on both surfaces of an electrolyte layer, and has an intermediate layer between the electrolyte layer and the air electrode. In the solid oxide fuel cell, the electrolyte layer is composed of a rare earth-added zirconia-based oxide, and the air electrode is composed of a first metal composed of La composing the A site and Fe and Ni composing the B site. The A site having the second metal is composed of a metal oxide having a ratio of perovskite structure, the intermediate layer is composed of ceria-based electrolyte material , and the air electrode further includes rare earth-added zirconia-based oxide. characterized in that it is.

上記固体酸化物型燃料電池において、稀土類添加ジルコニア系酸化物は、空気極の全重量に対して0.1〜5wt%の割合で混合されるようにしてもよい。 In the solid oxide fuel cell, the rare earth-added zirconia-based oxide may be mixed at a ratio of 0.1 to 5 wt% with respect to the total weight of the air electrode.

また、本発明にかかる他の固体酸化物型燃料電池の製造方法は、電解質層の両面に空気極と燃料極が設けられ、電解質層と空気極との間に中間層が形成された固体酸化物型燃料電池の製造方法であって、セリア系電解質材料を含む溶液を、稀土類添加ジルコニア系酸化物からなる電解質層上に塗布し、乾燥して中間層を形成する中間層形成ステップと、中間層上に、Laからなる第1の金属とFeおよびNiからなる第2の金属とを有するペロブスカイト構造の金属酸化物と、セリア系電解質材料とを含むスラリを、稀土類添加ジルコニア系酸化物からなる電解質層上に塗布し、焼成して空気極を形成する空気極形成ステップとを有することを特徴とする。   Further, another method of manufacturing a solid oxide fuel cell according to the present invention includes a solid oxide in which an air electrode and a fuel electrode are provided on both surfaces of an electrolyte layer, and an intermediate layer is formed between the electrolyte layer and the air electrode. A method for manufacturing a physical fuel cell, wherein a solution containing a ceria-based electrolyte material is applied on an electrolyte layer made of a rare earth-added zirconia-based oxide and dried to form an intermediate layer; and A slurry containing a perovskite-structured metal oxide having a first metal made of La and a second metal made of Fe and Ni and a ceria-based electrolyte material on a middle layer is added to a rare earth-added zirconia-based oxide. And an air electrode forming step in which an air electrode is formed by applying and firing on the electrolyte layer.

また、本発明にかかる他の固体酸化物型燃料電池の製造方法は、電解質層の両面に空気極と燃料極が設けられ、電解質層と空気極との間に中間層が形成された固体酸化物型燃料電池の製造方法であって、セリア系電解質材料を含む溶液を、稀土類添加ジルコニア系酸化物からなる電解質層上に塗布し、乾燥して中間層を形成する中間層形成ステップと、中間層上に、Aサイトを構成するLaからなる第1の金属とBサイトを構成するFeおよびNiからなる第2の金属とを有するAサイトが定比のペロブスカイト構造の金属酸化物と、希土類添加ジルコニア系電解質材料とを含むスラリを塗布し、焼成して空気極を形成する空気極形成ステップとを有することを特徴とする。 Further, another method of manufacturing a solid oxide fuel cell according to the present invention includes a solid oxide in which an air electrode and a fuel electrode are provided on both surfaces of an electrolyte layer, and an intermediate layer is formed between the electrolyte layer and the air electrode. A method for manufacturing a physical fuel cell, wherein a solution containing a ceria-based electrolyte material is applied on an electrolyte layer made of a rare earth-added zirconia-based oxide and dried to form an intermediate layer; and A metal oxide having a perovskite structure in which the A site has a first metal composed of La constituting the A site and a second metal composed of Fe and Ni constituting the B site on the intermediate layer, and a rare earth the slurry containing the added zirconia electrolyte material was coated fabric, characterized in that baked to have an air electrode formation step of forming an air electrode.

また、本発明によれば、電解質層を稀土類添加ジルコニアから構成し、空気極がLaからなる第1の金属とFeおよびNiからなる第2の金属とを有するペロブスカイト構造の金属酸化物から構成し、電解質層と空気極との間に形成する中間層をセリア系電解質材料から構成することにより、通電初期化時間を短縮することが可能となる。   According to the invention, the electrolyte layer is composed of rare earth-added zirconia, and the air electrode is composed of a metal oxide having a perovskite structure having a first metal made of La and a second metal made of Fe and Ni. In addition, by configuring the intermediate layer formed between the electrolyte layer and the air electrode from the ceria-based electrolyte material, it is possible to shorten the energization initialization time.

さらに、本発明によれば、空気極に稀土類添加ジルコニア系酸化物を混合することにより、空気極の電解質層に対する密着力を向上させることが可能となる。   Furthermore, according to the present invention, it is possible to improve the adhesion of the air electrode to the electrolyte layer by mixing the rare earth-added zirconia oxide in the air electrode.

本発明の参考例に係る固体酸化物型燃料電池の単セルの構成を示す断面図である。It is sectional drawing which shows the structure of the single cell of the solid oxide fuel cell which concerns on the reference example of this invention. 本発明の他の固体酸化物型燃料電池の単セルの構成を示す断面図である。It is sectional drawing which shows the structure of the single cell of the other solid oxide fuel cell of this invention. (a)本発明の参考例に係る固体酸化物型燃料電池の単セルの構成を示す平面図、(b)本発明の参考例に係る固体酸化物型燃料電池の単セルの構成を示す断面図である。(A) The top view which shows the structure of the single cell of the solid oxide fuel cell which concerns on the reference example of this invention, (b) The cross section which shows the structure of the single cell of the solid oxide fuel cell which concerns on the reference example of this invention FIG. 図3の単セルを組み込んだ燃料電池の構成を示す要部断面図である。It is principal part sectional drawing which shows the structure of the fuel cell incorporating the single cell of FIG. 密着力試験用の単セルの構成を示す模式図である。It is a schematic diagram which shows the structure of the single cell for an adhesive force test. (a)本発明の他の固体酸化物型燃料電池の単セルの構成を示す平面図、(b)本発明の他の固体酸化物型燃料電池の単セルの構成を示す断面図である。(A) The top view which shows the structure of the single cell of the other solid oxide fuel cell of this invention, (b) It is sectional drawing which shows the structure of the single cell of the other solid oxide fuel cell of this invention.

[第1の参考例]
以下、図面を参照して本発明の第1の参考例について詳細に説明する。図1は、本参考例にかかる固体酸化物型燃料電池の単セルの構成を模式的に示す断面図である。図1において、単セル1は、電解質層2と、この電解質層2の一の面上に形成された空気極3と、電解質層2の他の面上に形成された燃料極4とを備えている。
[First Reference Example]
Hereinafter, a first reference example of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing the configuration of a single cell of a solid oxide fuel cell according to this reference example. In FIG. 1, a unit cell 1 includes an electrolyte layer 2, an air electrode 3 formed on one surface of the electrolyte layer 2, and a fuel electrode 4 formed on the other surface of the electrolyte layer 2. ing.

電解質層2は、稀土類添加ジルコニア系酸化物を含む材料から構成される。   The electrolyte layer 2 is made of a material containing a rare earth-added zirconia oxide.

空気極3は、Aサイトをランタニド金属が占め、BサイトをFeおよびNiが占めるLaNi0.6Fe0.4などのペロブスカイト型構造(ABO)を有する金属酸化物と、Ce0.80.2、Ce0.8Sm0.2、Ce0.8Gd0.2などの酸化セリウム(セリア)系電解質材料とを含む多孔質から構成される。ここで、ペロブスカイト型構造を有する金属酸化物において、FeとNiの原子比は、Fe:Ni=30:70〜60:40である。 The air electrode 3 includes a metal oxide having a perovskite structure (ABO 3 ) such as LaNi 0.6 Fe 0.4 O 3 in which the lanthanide metal occupies the A site and Fe and Ni in the B site, and Ce 0. 8 Y 0.2 O 2 , Ce 0.8 Sm 0.2 O 2 , and cerium oxide (ceria) electrolyte material such as Ce 0.8 Gd 0.2 O 2 . Here, in the metal oxide having a perovskite structure, the atomic ratio of Fe to Ni is Fe: Ni = 30: 70 to 60:40.

燃料極4は、例えばNiO−YSZなど固体酸化物型燃料電池の燃料極として用いられる材料から構成される。   The fuel electrode 4 is made of a material used as a fuel electrode of a solid oxide fuel cell such as NiO-YSZ.

このような単セル1は、次のように形成される。まず、例えばドクターブレード法などの公知の方法により、厚さ20〜100μm程度の電解質層2を形成する。   Such a single cell 1 is formed as follows. First, the electrolyte layer 2 having a thickness of about 20 to 100 μm is formed by a known method such as a doctor blade method.

次いで、電解質層2の一方の面に燃料極4を形成後、電解質層2の他方の面にスラリ状の上記空気極3の材料をスクリーン印刷等の公知の方法により塗布し、SOFCの動作温度よりも高い温度で焼成することにより空気極3を形成する。これにより、図1に示すような単セル1が形成される。   Next, after forming the fuel electrode 4 on one surface of the electrolyte layer 2, the slurry-like material of the air electrode 3 is applied to the other surface of the electrolyte layer 2 by a known method such as screen printing. The air electrode 3 is formed by firing at a higher temperature. Thereby, the single cell 1 as shown in FIG. 1 is formed.

このように形成された単セル1において、空気極3に含まれるセリア系電解質材料は、電解質層2と空気極3との界面に入り込み、空気極3と電解質層2の構成材料であるジルコニアとの反応を阻害する。このため、電解質層2と空気極3との界面付近にパイロクロア相の形成が抑制されるので、パイロクロア相を通電により部分的に取り除くことが容易となり、結果として通電初期化時間を短縮することが可能となる。   In the single cell 1 thus formed, the ceria-based electrolyte material contained in the air electrode 3 enters the interface between the electrolyte layer 2 and the air electrode 3, and zirconia that is a constituent material of the air electrode 3 and the electrolyte layer 2. Inhibits the reaction. For this reason, since the formation of the pyrochlore phase near the interface between the electrolyte layer 2 and the air electrode 3 is suppressed, it becomes easy to remove the pyrochlore phase partially by energization, and as a result, the energization initialization time can be shortened. It becomes possible.

なお、空気極3には、稀土類添加ジルコニア系酸化物を混合するようにしてもよい。セリア系電解質材料は、空気極3の他の構成材料と反応しにくいため、セリア系電解質材料が空気極3内の他の粒子間や電解質層2と空気極3との界面に入り込むと、空気極3の焼成時に空気極3の焼結を抑制し、空気極3の機械的強度を低下させてしまう。このため、稀土類添加ジルコニア系酸化物を空気極3に添加し、空気極3の焼結性を向上させることにより、空気極3の機械的強度が向上するとともに、通電初期化時間を短縮することが可能となる。   The air electrode 3 may be mixed with rare earth-added zirconia oxide. Since the ceria-based electrolyte material does not easily react with other constituent materials of the air electrode 3, if the ceria-based electrolyte material enters between the other particles in the air electrode 3 or the interface between the electrolyte layer 2 and the air electrode 3, Sintering of the air electrode 3 is suppressed when the electrode 3 is fired, and the mechanical strength of the air electrode 3 is reduced. For this reason, the rare earth added zirconia-based oxide is added to the air electrode 3 to improve the sinterability of the air electrode 3, thereby improving the mechanical strength of the air electrode 3 and shortening the energization initialization time. It becomes possible.

ここで、空気極3に混合するセリア系電解質材料の割合は、空気極3全体の重量に対して2〜60wt%、望ましくは5〜50wt%、より望ましくは10〜40wt%に設定する。また、空気極3に稀土類添加ジルコニア系酸化物を混合する場合、セリア系電解質材料Cと稀土類添加ジルコニア系酸化物Zとの混合比は、1/20≦Z/C≦1/2かつ空気極3の重量に対してZ≦20wt%、望ましくは1/10≦Z/C≦1/3、より望ましくは1/10≦Z/C≦1/4に設定する。このとき、セリア系電解質材料Cを空気極3に混合する割合は、空気極3全体の重量に対して、2wt%≦C≦65wt%、望ましくは5wt%≦C≦50wt%、より望ましくは10wt%≦C≦40wt%に設定する。   Here, the ratio of the ceria-based electrolyte material mixed in the air electrode 3 is set to 2 to 60 wt%, desirably 5 to 50 wt%, more desirably 10 to 40 wt% with respect to the total weight of the air electrode 3. When the rare earth-added zirconia-based oxide is mixed with the air electrode 3, the mixing ratio of the ceria-based electrolyte material C and the rare earth-added zirconia-based oxide Z is 1/20 ≦ Z / C ≦ 1/2 and Z ≦ 20 wt% with respect to the weight of the air electrode 3, preferably 1/10 ≦ Z / C ≦ 1/3, more preferably 1/10 ≦ Z / C ≦ 1/4. At this time, the mixing ratio of the ceria-based electrolyte material C to the air electrode 3 is 2 wt% ≦ C ≦ 65 wt%, desirably 5 wt% ≦ C ≦ 50 wt%, more desirably 10 wt. % ≦ C ≦ 40 wt% is set.

[第1の実施の形態]
次に、本発明の第1の実施の形態について詳細に説明する。図2は、本実施の形態にかかる固体酸化物型燃料電池の単セルの構成を模式的に示す断面図である。なお、本実施の形態において、第1の参考例と同等の構成要素には、同じ名称および符号を付し、適宜説明を省略する。
[First Embodiment]
Next, the first embodiment of the present invention will be described in detail. FIG. 2 is a cross-sectional view schematically showing the configuration of a single cell of the solid oxide fuel cell according to the present embodiment. In the present embodiment, the same components as those in the first reference example are denoted by the same names and reference numerals, and description thereof will be omitted as appropriate.

図2において、単セル5は、電解質層2と、この電解質層2の一の面上に中間層6を介して形成された空気極3と、電解質層2の他の面上に形成された燃料極4とを備えている。   In FIG. 2, the single cell 5 is formed on the electrolyte layer 2, the air electrode 3 formed on one surface of the electrolyte layer 2 via the intermediate layer 6, and the other surface of the electrolyte layer 2. A fuel electrode 4 is provided.

空気極3は、Aサイトをランタニド金属が占め、BサイトをFeおよびNiが占めるLaNi0.6Fe0.4などペロブスカイト型構造(ABO)の金属酸化物を含む多孔質から構成される。ここで、ペロブスカイト型構造を有する金属酸化物において、FeとNiの原子比は、Fe:Ni=30:70〜60:40である。 The air electrode 3 is composed of a porous material including a metal oxide having a perovskite structure (ABO 3 ) such as LaNi 0.6 Fe 0.4 O 3 in which the A site is occupied by the lanthanide metal and the B site is occupied by Fe and Ni. The Here, in the metal oxide having a perovskite structure, the atomic ratio of Fe to Ni is Fe: Ni = 30: 70 to 60:40.

中間層6は、Ce0.80.2、Ce0.8Sm0.2、Ce0.8Gd0.2などのセリア系電解質材料から構成される。 The intermediate layer 6 is made of a ceria-based electrolyte material such as Ce 0.8 Y 0.2 O 2 , Ce 0.8 Sm 0.2 O 2 , or Ce 0.8 Gd 0.2 O 2 .

このような単セル1は、次のように形成される。まず、例えばドクターブレード法などの公知の方法により、厚さ20〜100μm程度の電解質層2を形成する。   Such a single cell 1 is formed as follows. First, the electrolyte layer 2 having a thickness of about 20 to 100 μm is formed by a known method such as a doctor blade method.

次いで、電解質層2の一方の面に燃料極4を形成後、電解質層2の他方の面に上記中間層6の構成材料の金属イオンを含む有機金属溶液を塗布し、この溶液を熱処理により乾燥および焼成させる。これにより、セリア系電解質材料からなる中間層6を形成する。   Next, after forming the fuel electrode 4 on one surface of the electrolyte layer 2, an organic metal solution containing metal ions of the constituent material of the intermediate layer 6 is applied to the other surface of the electrolyte layer 2, and this solution is dried by heat treatment. And firing. Thereby, the intermediate layer 6 made of a ceria-based electrolyte material is formed.

次いで、中間層6上にスラリ状の上記空気極3の材料をスクリーン印刷等の公知の方法により塗布し、SOFCの動作温度よりも高い温度で焼成することにより空気極3を形成する。これにより、図2に示すような単セル5が形成される。   Next, a slurry-like material for the air electrode 3 is applied on the intermediate layer 6 by a known method such as screen printing, and the air electrode 3 is formed by baking at a temperature higher than the operating temperature of the SOFC. Thereby, the single cell 5 as shown in FIG. 2 is formed.

このように形成された単セル5においても、中間層6に含まれるセリア系電解質材料は、空気極3と電解質層2の構成材料であるジルコニアとの反応を阻害する。このため、電解質層2と空気極3との界面付近にパイロクロア相の形成が抑制されるので、パイロクロア相を通電により部分的に取り除くことが容易となり、結果として通電初期化時間を短縮することが可能となる。   Also in the single cell 5 formed in this way, the ceria-based electrolyte material contained in the intermediate layer 6 inhibits the reaction between the air electrode 3 and zirconia that is a constituent material of the electrolyte layer 2. For this reason, since the formation of the pyrochlore phase near the interface between the electrolyte layer 2 and the air electrode 3 is suppressed, it becomes easy to remove the pyrochlore phase partially by energization, and as a result, the energization initialization time can be shortened. It becomes possible.

なお、空気極3には、稀土類添加ジルコニア系酸化物を混合するようにしてもよい。セリア系電解質材料は、空気極3の他の構成材料と反応しにくいため、セリア系電解質材料が空気極3内の他の粒子間や電解質層2と空気極3との界面に入り込むと、空気極3の焼成時に空気極3の焼結を抑制し、空気極3の機械的強度を低下させてしまう。このため、稀土類添加ジルコニア系酸化物を空気極3に添加し、空気極3の焼結性を向上させることにより、空気極3の機械的強度が向上するとともに、通電初期化時間を短縮することが可能となる。   The air electrode 3 may be mixed with rare earth-added zirconia oxide. Since the ceria-based electrolyte material does not easily react with other constituent materials of the air electrode 3, if the ceria-based electrolyte material enters between the other particles in the air electrode 3 or the interface between the electrolyte layer 2 and the air electrode 3, Sintering of the air electrode 3 is suppressed when the electrode 3 is fired, and the mechanical strength of the air electrode 3 is reduced. For this reason, the rare earth added zirconia-based oxide is added to the air electrode 3 to improve the sinterability of the air electrode 3, thereby improving the mechanical strength of the air electrode 3 and shortening the energization initialization time. It becomes possible.

ここで、空気極3に添加する稀土類添加ジルコニア系酸化物の添加量は、空気極3の是重量に対して0.1〜5wt%、望ましくは0.2〜3wt%、より望ましくは0.5〜2wt%に設定する。   Here, the addition amount of the rare earth-added zirconia oxide added to the air electrode 3 is 0.1 to 5 wt%, preferably 0.2 to 3 wt%, more preferably 0 with respect to the weight of the air electrode 3. Set to 5 to 2 wt%.

さらに、空気極3には、セリア系電解質材料を添加するようにしてもよい。これにより、中間層6に含まれるセリア系電解質材料のみならず、空気極3に含まれるセリア系電解質材料により空気極3と電解質層2のジルコニアとの反応が阻害される。このため、電解質層2と空気極3との界面付近にパイロクロア相の形成が抑制されるので、パイロクロア相を通電により部分的に取り除くことが容易となり、結果として通電初期化時間を短縮することが可能となる。   Further, a ceria-based electrolyte material may be added to the air electrode 3. Thereby, not only the ceria-based electrolyte material contained in the intermediate layer 6 but also the ceria-based electrolyte material contained in the air electrode 3 inhibits the reaction between the air electrode 3 and the zirconia of the electrolyte layer 2. For this reason, since the formation of the pyrochlore phase near the interface between the electrolyte layer 2 and the air electrode 3 is suppressed, it becomes easy to remove the pyrochlore phase partially by energization, and as a result, the energization initialization time can be shortened. It becomes possible.

[第2の参考例]
次に、本発明にかかる第2の参考例について説明する。図3は、本参考例にかかる固体酸化物型燃料電池の単セルの構成を示す模式図、図4は、図3の単セルを組み込んだ燃料電池の構成を模式的に示す要部断面図、図5は、密着力試験用の単セルの構成を示す模式図である。なお、本参考例は、上述した第1の参考例をより具体的に表すものである。
[Second Reference Example]
Next, a second reference example according to the present invention will be described. FIG. 3 is a schematic diagram showing a configuration of a single cell of a solid oxide fuel cell according to this reference example, and FIG. 4 is a cross-sectional view of a principal part schematically showing a configuration of a fuel cell incorporating the single cell of FIG. FIG. 5 is a schematic diagram showing the configuration of a single cell for adhesion test. This reference example more specifically represents the first reference example described above.

本参考例では、後述する所定の条件の下で図3に示すような単セルを形成し、この単セルを図4に示すような燃料電池に組み込んで発電試験を行った。また、空気極の密着力試験を行うために、図5に示すような単セルを形成した。まず、単セルおよびこの単セルを組み込んだ燃料電池について説明する。   In this reference example, a single cell as shown in FIG. 3 was formed under predetermined conditions described later, and this single cell was incorporated into a fuel cell as shown in FIG. Moreover, in order to perform the adhesion test of an air electrode, the single cell as shown in FIG. 5 was formed. First, a single cell and a fuel cell incorporating the single cell will be described.

単セル10は、図3に示すように、平面視略矩形の板状の形状を有する電解質層11と、この電解質層11の一方の面に形成された平面視略円形の燃料極12と、電解質層11の他方の面に形成された平面視略円形の空気極13と、空気極13が形成された側の面の電解質層11の縁部に形成された参照極15とを有する。なお、燃料極12および空気極13の表面には、それぞれ集電効率を向上させるために白金メッシュ集電体16,17が形成されている。   As shown in FIG. 3, the unit cell 10 includes an electrolyte layer 11 having a plate-like shape having a substantially rectangular shape in plan view, and a fuel electrode 12 having a substantially circular shape in plan view formed on one surface of the electrolyte layer 11. The air electrode 13 having a substantially circular shape in plan view formed on the other surface of the electrolyte layer 11 and a reference electrode 15 formed on the edge of the electrolyte layer 11 on the surface on which the air electrode 13 is formed. Platinum mesh current collectors 16 and 17 are formed on the surfaces of the fuel electrode 12 and the air electrode 13 in order to improve the current collection efficiency.

燃料電池20は、図3に示すように、上述した単セル10と、シール31を介して単セル10の電解質層11の部分を狭持するとともに単セル10を気密保持するセルカバー30と、単セル10の空気極13側に配設され空気やOを供給し余分な空気やOを排気する空気供給部40と、単セル10の燃料極12側に配設されH、H+HO、CH+HO等の燃料ガスを供給し排気ガスを排気する燃料供給部50と、単セル10の両極の白金メッシュ集電体16,17に接続され生成された電力を取り出す白金からなる端子60と、単セル10の参照極15から参照電力を取り出す参照端子70とを有する。 As shown in FIG. 3, the fuel cell 20 includes the unit cell 10 described above, a cell cover 30 that holds the portion of the electrolyte layer 11 of the unit cell 10 through the seal 31 and holds the unit cell 10 in an airtight manner, an air supply unit 40 which is disposed on the air electrode 13 side to exhaust the excess air or O 2 supply air or O 2 of the single cell 10 is disposed in the fuel electrode 12 side of the unit cell 10 H 2, H Electric power generated by being connected to a fuel supply unit 50 that supplies a fuel gas such as 2 + H 2 O and CH 4 + H 2 O and exhausts the exhaust gas, and platinum mesh current collectors 16 and 17 on both sides of the single cell 10 is generated. A terminal 60 made of platinum to be taken out and a reference terminal 70 to take out reference power from the reference electrode 15 of the single cell 10 are provided.

次に、単セル10の製造方法について説明する。まず、ドクターブレード法で焼成した厚さ0.2mmのSc,Al添加ジルコニアSASZ(0.89ZrO−0.10Sc−0.01Al)からなる電解質層11の一方の面にNiO−8YSZ(0.92ZrO−0.08Y)を含むスラリをスクリーン印刷法で塗布し、この上に白金メッシュ集電体16を載せて1400℃で8時間焼成を行い、厚さ60μmの燃料極12を形成した。ここで、上記NiO−YSZのスラリは、平均粒径が約0.6μmの10mol%Y添加ジルコニア粉末と、平均粒径が約0.2μmでスラリの重量に対して60wt%のNiO粉末とが含まれたものからなる。 Next, a method for manufacturing the single cell 10 will be described. First, the electrolyte layer consisting of Sc 2 O thickness 0.2mm firing by a doctor blade method 3, Al 2 O 3 doped zirconia SASZ (0.89ZrO 2 -0.10Sc 2 O 3 -0.01Al 2 O 3) A slurry containing NiO-8YSZ (0.92ZrO 2 -0.08Y 2 O 3 ) was applied to one surface of the substrate 11 by a screen printing method, and a platinum mesh current collector 16 was placed on the slurry and heated at 1400 ° C. for 8 hours. Firing was performed to form a fuel electrode 12 having a thickness of 60 μm. Here, the NiO—YSZ slurry includes 10 mol% Y 2 O 3 -added zirconia powder having an average particle diameter of about 0.6 μm, NiO having an average particle diameter of about 0.2 μm and 60 wt% with respect to the weight of the slurry. It consists of a powder.

次いで、電解質層11の他方の面上に、AサイトがLa、BサイトがNiおよびFeから構成される粒径約1.5μmのLNF(LaNi0.6Fe0.4)と、YDC(Ce0.80.2)を空気極13の全重量に対して2〜65wt%で混合したスラリを塗布し、この上に白金メッシュ集電体17を載せて1000℃で4時間焼成し、厚さ60μmの空気極13を形成した。なお、燃料極12および空気極13は何れも直径10mmに形成した。 Next, on the other surface of the electrolyte layer 11, LNF (LaNi 0.6 Fe 0.4 O 3 ) having a particle diameter of about 1.5 μm composed of La for the A site and Ni and Fe for the B site, and YDC A slurry in which (Ce 0.8 Y 0.2 O 2 ) was mixed in an amount of 2 to 65 wt% with respect to the total weight of the air electrode 13 was applied. The air electrode 13 having a thickness of 60 μm was formed by firing for a time. The fuel electrode 12 and the air electrode 13 were both formed to have a diameter of 10 mm.

このような方法により形成したセリア系電解質材料の混合比が異なる各セルを、それぞれセル#101〜110とする。   Cells having different mixing ratios of ceria-based electrolyte materials formed by such a method are designated as cells # 101 to 110, respectively.

また、上述したのと同様の方法で、セリア系電解質材料をYDCに代えて、SDC(Ce0.8Sm0.2),GDC(Ce0.8Gd0.2)を用いて空気極13を形成したセルを、それぞれセル#121,131とする。 Further, in the same manner as described above, SDC (Ce 0.8 Sm 0.2 O 2 ), GDC (Ce 0.8 Gd 0.2 O 2 ) is used in place of YDC as the ceria-based electrolyte material. The cells in which the air electrode 13 is formed are referred to as cells # 121 and 131, respectively.

また、上述したのと同様の方法で、空気極13にセリア系電解質材料を混合しないものを、参照用のセルとして作製した。このセルを#100とする。   In addition, a cell not mixed with a ceria-based electrolyte material in the air electrode 13 was prepared as a reference cell by the same method as described above. This cell is designated as # 100.

上記セル#100〜131を単セル10として図4に示すような燃料電池20に組み込み、800℃において発電試験を行った。この発電試験では、電極性能の指標である界面抵抗を交流インピーダンス法で測定し、通電前と、200mA/cmで24時間通電後と、200mA/cmで100時間通電後との値を比較し、通電初期化速度を評価した。また、上記セル#100〜131において、図5に示すように、燃料極12と参照極15を設けず、空気極13を1cm角の矩形状に形成したセルも併せて作製し、密着力試験を行った。この密着力試験では、焼成後の空気極13にテープを貼り付け、これを剥がした後の残留率を測定した。これらの試験結果を表1に示す。なお、発電試験において、空気供給部40からはOを供給し、燃料供給部50からは室温加湿水素ガスを供給した。すると、開放起電力として1.14V以上の値が得られた。 The cells # 100 to 131 were incorporated into the fuel cell 20 as shown in FIG. 4 as a single cell 10 and a power generation test was performed at 800 ° C. In this power generation test, the interfacial resistance, which is an index of electrode performance, is measured by an AC impedance method, and the values before energization, after energization at 200 mA / cm 2 for 24 hours, and after energization at 200 mA / cm 2 for 100 hours are compared. The energization initialization speed was evaluated. Further, in the cells # 100 to 131, as shown in FIG. 5, a cell in which the fuel electrode 12 and the reference electrode 15 are not provided and the air electrode 13 is formed in a rectangular shape of 1 cm square is also produced, and an adhesion test is performed. Went. In this adhesion test, a tape was attached to the air electrode 13 after firing, and the residual ratio after peeling the tape was measured. The test results are shown in Table 1. In the power generation test, O 2 was supplied from the air supply unit 40 and room temperature humidified hydrogen gas was supplied from the fuel supply unit 50. Then, a value of 1.14 V or more was obtained as the open electromotive force.

Figure 0005226656
Figure 0005226656

表1に示すように、空気極13にセリア系電解質材料を混合したセル#101〜131は、セリア系電解質材料を混合していないセル#100よりも初期の空気極界面抵抗の値が低く、24時間の通電後の値ではさらに空気極界面抵抗が低下しており、優れた電極特性を有することがわかる。これは、セリア系電解質材料の添加によりパイロクロア相の形成が抑制されたためであると考えられる。なお、YDCについては、添加量を増やすと初期特性が大きく向上するが、添加しすぎると最終的な特性が低下するので、添加量を2〜60wt%程度にするのが望ましい。   As shown in Table 1, the cells # 101 to 131 in which the ceria-based electrolyte material is mixed with the air electrode 13 have a lower initial air electrode interface resistance value than the cell # 100 in which the ceria-based electrolyte material is not mixed, It can be seen that at the value after energization for 24 hours, the air electrode interface resistance is further reduced, and it has excellent electrode characteristics. This is considered to be because the formation of the pyrochlore phase was suppressed by the addition of the ceria-based electrolyte material. As for YDC, when the addition amount is increased, the initial characteristics are greatly improved. However, if the addition amount is excessive, the final characteristics are deteriorated. Therefore, the addition amount is preferably about 2 to 60 wt%.

[第3の参考例]
次に、本発明の第3の参考例について説明する。なお、本実施の形態において、第2の参考例と同等の構成要素には、同じ名称および符号を付し、適宜説明を省略する。
[Third Reference Example]
Next, a third reference example of the present invention will be described. In the present embodiment, components equivalent to those in the second reference example are denoted by the same names and reference numerals, and description thereof will be omitted as appropriate.

本実施の形態は、上述した第2の参考例のセル#100において、空気極13に8YSZ(0.92ZrO−0.08Y)とYDC(Ce0.80.2)とを重量比で1/20≦8YSZ/YDC≦1/2で、かつ、空気極13の重量に対してYDCを2〜65wt%の割合で混合したセルを、それぞれセル#201〜214としたものである。また、セリア系電解質材料をYDCからSDC、GDCに代えたセルをそれぞれセル#221,231とし、稀土類添加ジルコニア系酸化物を8YSZからSASZに代えたセルをセル#241とした。このようなセル#201〜241を用いて、第2の参考例と同様の試験を行った。この試験結果を表2に示す。なお、比較のため、表2には、第2の参考例で参照用のセルとして用いたセル#100を併記する。 In this embodiment, in the cell # 100 of the second reference example described above, 8YSZ (0.92ZrO 2 −0.08Y 2 O 3 ) and YDC (Ce 0.8 Y 0.2 O 2 ) are provided on the air electrode 13. ) In a weight ratio of 1/20 ≦ 8YSZ / YDC ≦ 1/2, and YDC was mixed at a ratio of 2 to 65 wt% with respect to the weight of the air electrode 13 as cells # 201 to 214, respectively. It is a thing. Further, the cells in which the ceria-based electrolyte material was changed from YDC to SDC and GDC were designated as cells # 221 and 231 respectively, and the rare earth-added zirconia-based oxide was designated as cells # 241 from 8YSZ to SASZ. A test similar to the second reference example was performed using such cells # 201-241. The test results are shown in Table 2. For comparison, Table 2 also shows cell # 100 used as a reference cell in the second reference example.

Figure 0005226656
Figure 0005226656

表2に示すように本参考例においても、空気極13にセリア系電解質材料を添加したセル#201〜#241は、セリア系電解質材料を混合していないセル#100よりも初期の空気極界面抵抗の値が低く、24時間および100時間通電後の値でも空気極界面抵抗が低下しており、優れた電極特性を有することがわかる。これは、セリア系電解質材料の添加により初期の通電特性が向上するとともに、ジルコニア系酸化物の添加により空気極13の焼結性および電解質層11と空気極13との密着性が向上したので、通電特性もより向上したと考えられる。また、テープ剥がし試験の結果からも明らかなように、ジルコニア系酸化物を空気極13に添加することにより、空気極13の密着力が向上した。   As shown in Table 2, also in this reference example, the cells # 201 to # 241 in which the ceria-based electrolyte material is added to the air electrode 13 are earlier in the air electrode interface than the cell # 100 in which the ceria-based electrolyte material is not mixed. It can be seen that the resistance value is low, and the air electrode interface resistance is lowered even after the energization for 24 hours and 100 hours. This is because the addition of the ceria-based electrolyte material improves the initial current-carrying characteristics, and the addition of the zirconia-based oxide improves the sinterability of the air electrode 13 and the adhesion between the electrolyte layer 11 and the air electrode 13. It seems that the current-carrying characteristics were also improved. Further, as apparent from the results of the tape peeling test, the adhesion of the air electrode 13 was improved by adding the zirconia-based oxide to the air electrode 13.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。図6は、本実施の形態にかかる固体酸化物型燃料電池の単セルの構成を示す模式図である。なお、本実施の形態は、上述した第1の実施の形態をより具体的に表すものである。また、本実施の形態において、第3の実施の形態と同等の構成要素には、同じ名称および符号を付し、適宜説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 6 is a schematic diagram showing the configuration of a single cell of the solid oxide fuel cell according to the present embodiment. The present embodiment more specifically represents the first embodiment described above. Further, in the present embodiment, the same components as those in the third embodiment are denoted by the same names and reference numerals, and description thereof will be omitted as appropriate.

単セル10は、図6に示すように、平面視略矩形の板状の形状を有する電解質層11と、この電解質層11の一方の面に形成された平面視略円形の燃料極12と、電解質層11の他方の面に形成された平面視略円形の空気極13と、電解質層11および空気極13の間に形成された中間層14と、空気極13が形成された側の面の電解質層11の縁部に形成された参照極15とを有する。なお、燃料極12および空気極13の表面には、それぞれ集電効率を向上させるために白金メッシュ集電体16,17が形成されている。   As shown in FIG. 6, the unit cell 10 includes an electrolyte layer 11 having a plate-like shape that is substantially rectangular in plan view, and a fuel electrode 12 that is substantially circular in plan view formed on one surface of the electrolyte layer 11. A substantially circular air electrode 13 in plan view formed on the other surface of the electrolyte layer 11, an intermediate layer 14 formed between the electrolyte layer 11 and the air electrode 13, and a surface on the side where the air electrode 13 is formed. And a reference electrode 15 formed at the edge of the electrolyte layer 11. Platinum mesh current collectors 16 and 17 are formed on the surfaces of the fuel electrode 12 and the air electrode 13 in order to improve the current collection efficiency.

次に、単セル10の製造方法について説明する。まず、ドクターブレード法で焼成した厚さ0.2mmのSc,Al添加ジルコニアSASZ(0.89ZrO−0.10Sc−0.01Al)からなる電解質層11の一方の面にNiO−8YSZ(0.92ZrO−0.08Y)のスラリをスクリーン印刷法で塗布し、この上に白金メッシュ集電体16を載せて1400℃で8時間焼成を行い、厚さ60μmの燃料極12を形成した。ここで、上記NiO−YSZのスラリは、平均粒径が約0.6μmの10mol%Y添加ジルコニア粉末と平均粒径が約0.2μmのNiO粉末が60wt%含まれたものからなる。 Next, a method for manufacturing the single cell 10 will be described. First, the electrolyte layer consisting of Sc 2 O thickness 0.2mm firing by a doctor blade method 3, Al 2 O 3 doped zirconia SASZ (0.89ZrO 2 -0.10Sc 2 O 3 -0.01Al 2 O 3) 11 is coated with a slurry of NiO-8YSZ (0.92ZrO 2 -0.08Y 2 O 3 ) by screen printing, and a platinum mesh current collector 16 is placed thereon and baked at 1400 ° C. for 8 hours. The fuel electrode 12 having a thickness of 60 μm was formed. Here, the NiO—YSZ slurry is composed of 10 wt% Y 2 O 3 added zirconia powder having an average particle diameter of about 0.6 μm and 60 wt% NiO powder having an average particle diameter of about 0.2 μm. .

次いで、電解質層11の他方の面に、YDC(Ce0.80.2)の組成に対応する金属イオンを含む有機金属溶液を塗布し乾燥させ、900℃で2時間焼成することにより、厚さ約0.1μmの中間層14を形成した。 Next, an organic metal solution containing a metal ion corresponding to the composition of YDC (Ce 0.8 Y 0.2 O 2 ) is applied to the other surface of the electrolyte layer 11 and dried, followed by firing at 900 ° C. for 2 hours. Thus, an intermediate layer 14 having a thickness of about 0.1 μm was formed.

次いで、所定の厚さに形成された中間層14上に、AサイトがLa、BサイトがNiおよびFeから構成される粒径約1.5μmのLNF(LaNi0.6Fe0.4)と、8YSZY(0.92ZrO−0.08Y)を空気極13の全重量に対して0〜5wt%で混合したスラリを塗布し、この上に白金メッシュ集電体17を載せて1000℃で4時間焼成し、厚さ60μmの空気極13を形成した。なお、燃料極12および空気極13は何れも直径10mmに形成した。 Next, on the intermediate layer 14 having a predetermined thickness, LNF (LaNi 0.6 Fe 0.4 O 3) having a particle size of about 1.5 μm composed of La for the A site and Ni and Fe for the B site. ) And 8YSZY (0.92ZrO 2 -0.08Y 2 O 3 ) is applied in a slurry of 0 to 5 wt% with respect to the total weight of the air electrode 13, and a platinum mesh current collector 17 is placed thereon. Was fired at 1000 ° C. for 4 hours to form an air electrode 13 having a thickness of 60 μm. The fuel electrode 12 and the air electrode 13 were both formed to have a diameter of 10 mm.

このような方法により形成したジルコニア系酸化物の混合比が異なる各セルを、それぞれセル#301〜306とする。これらのセル#301〜306を用いて、第2の参考例と同様の試験を行った。この試験結果を表3に示す。なお、比較のため、表3には、第2の参考例で参照用のセルとして用いたセル#100を併記する。   Cells with different mixing ratios of zirconia-based oxides formed by such a method are designated as cells # 301 to 306, respectively. Using these cells # 301 to 306, the same test as in the second reference example was performed. The test results are shown in Table 3. For comparison, Table 3 also shows cell # 100 used as a reference cell in the second reference example.

Figure 0005226656
Figure 0005226656

表3に示すように本実施の形態においても、セリア系電解質材料からなる中間層14を設けたセル#301〜#306は、セリア系電解質材料からなる中間層14を設けていないセル#100よりも初期の空気極界面抵抗の値が低く、24時間および100時間通電後の値でもセル#100と同等または良好な特性が得られ、優れた電極特性を有することがわかる。また、テープ剥がし試験の結果からも明らかなように、ジルコニア系酸化物を空気極13に添加したセル#302〜306は、ジルコニア系酸化物を空気極13に添加してないセル#100,301よりも空気極13の密着力が向上した。   As shown in Table 3, also in the present embodiment, the cells # 301 to # 306 provided with the intermediate layer 14 made of the ceria-based electrolyte material are more than the cell # 100 not provided with the intermediate layer 14 made of the ceria-based electrolyte material. However, the initial value of the air electrode interface resistance is low, and even after 24 hours and 100 hours of energization, the same or better characteristics as those of the cell # 100 are obtained, and it can be seen that the electrode characteristics are excellent. As apparent from the results of the tape peeling test, cells # 302 to 306 in which zirconia-based oxide is added to the air electrode 13 are cells # 100, 301 in which zirconia-based oxide is not added to the air electrode 13. As a result, the adhesion of the air electrode 13 was improved.

[第3の実施の形態]
次に、本発明の第6の実施の形態について説明する。なお、本実施の形態において、第2の実施の形態と同等の構成要素には、同じ名称および符号を付し、適宜説明を省略する。
[Third Embodiment]
Next, a sixth embodiment of the present invention will be described. In the present embodiment, the same components as those in the second embodiment are denoted by the same names and reference numerals, and description thereof will be omitted as appropriate.

本実施の形態は、上述した第2の実施の形態のセル#301において、空気極13にSDC(Ce0.8Sm0.2)と8YSZ(0.92ZrO−0.08Y)とを重量比で1/20≦8YSZ/SDC≦1/2で、かつ、空気極13の重量に対してSDCを2〜65wt%の割合で混合したセルを、それぞれセル#401〜414としたものである。このようなセル#401〜414を用いて、第2の参考例と同様の試験を行った。この試験結果を表4に示す。なお、比較のため、表4には、第2の参考例で参照用のセルとして用いたセル#100を併記する。 In this embodiment, in the cell # 301 of the second embodiment described above, SDC (Ce 0.8 Sm 0.2 O 2 ) and 8YSZ (0.92ZrO 2 −0.08Y 2 O) are applied to the air electrode 13. 3 ) in a weight ratio of 1/20 ≦ 8YSZ / SDC ≦ 1/2, and cells in which SDC is mixed at a ratio of 2 to 65 wt% with respect to the weight of the air electrode 13 are respectively cell # 401 to 414. It is what. Using the cells # 401 to 414, the same test as in the second reference example was performed. The test results are shown in Table 4. For comparison, Table 4 also shows cell # 100 used as a reference cell in the second reference example.

Figure 0005226656
Figure 0005226656

表4に示すように本実施の形態において、セリア系電解質材料を空気極13と中間層14を設けたセル#401〜#414は、セリア系電解質材料からなる中間層14を設けていないセル#100よりも初期の空気極界面抵抗の値が低く、24時間および100時間通電後の値でもセル#100と同等または良好な特性が得られ、優れた電極特性を有することがわかる。また、テープ剥がし試験の結果からも明らかなように、ジルコニア系酸化物を空気極13に添加することにより、空気極13の密着力が向上した。   As shown in Table 4, in the present embodiment, cells # 401 to # 414 in which the ceria-based electrolyte material is provided with the air electrode 13 and the intermediate layer 14 are the cells # in which the intermediate layer 14 made of the ceria-based electrolyte material is not provided. It can be seen that the initial value of the air electrode interface resistance is lower than 100, and the characteristics equal to or better than those of the cell # 100 are obtained even after 24 hours and 100 hours of energization, and it has excellent electrode characteristics. Further, as apparent from the results of the tape peeling test, the adhesion of the air electrode 13 was improved by adding the zirconia-based oxide to the air electrode 13.

1,5…単セル、2…電解質層、3…空気極、4…燃料極、6…中間層、10…単セル、11…電解質層、12…燃料極、13…空気極、14…中間層、15…参照極、16…白金メッシュ集電体、20…燃料電池、30…セルカバー、31…シール、40…空気供給部、50…燃料供給部、60…端子、70…参照端子。   DESCRIPTION OF SYMBOLS 1,5 ... Single cell, 2 ... Electrolyte layer, 3 ... Air electrode, 4 ... Fuel electrode, 6 ... Intermediate | middle layer, 10 ... Single cell, 11 ... Electrolyte layer, 12 ... Fuel electrode, 13 ... Air electrode, 14 ... Middle Reference numeral 16 ... Platinum mesh current collector, 20 ... Fuel cell, 30 ... Cell cover, 31 ... Seal, 40 ... Air supply unit, 50 ... Fuel supply unit, 60 ... Terminal, 70 ... Reference terminal.

Claims (4)

電解質層の両面に空気極と燃料極が設けられ、前記電解質層と前記空気極との間に中間層を有する固体酸化物型燃料電池において、
前記電解質層は、稀土類添加ジルコニア系酸化物から構成され、
前記空気極は、Aサイトを構成するLaからなる第1の金属とBサイトを構成するFeおよびNiからなる第2の金属とを有する前記Aサイトが定比のペロブスカイト構造の金属酸化物から構成され、
前記中間層は、セリア系電解質材料から構成され
前記空気極には、さらに稀土類添加ジルコニア系酸化物が含まれる
ことを特徴とする固体酸化物型燃料電池。
In a solid oxide fuel cell in which an air electrode and a fuel electrode are provided on both surfaces of an electrolyte layer, and an intermediate layer is provided between the electrolyte layer and the air electrode,
The electrolyte layer is composed of rare earth-added zirconia oxide,
The air electrode includes a first metal composed of La constituting the A site and a second metal composed of Fe and Ni constituting the B site, and the A site is composed of a metal oxide having a ratio of perovskite structure. And
The intermediate layer is composed of a ceria-based electrolyte material ,
The air electrode further includes a rare earth-added zirconia-based oxide .
前記稀土類添加ジルコニア系酸化物は、前記空気極に対して0.1〜5wt%の割合で混合される
請求項記載の固体酸化物型燃料電池。
The rare earth-doped zirconia based oxide, solid oxide fuel cell according to claim 1, wherein the mixing ratio of 0.1-5 wt% with respect to the air electrode.
前記空気極には、さらにセリア系電解質材料が含まれる
ことを特徴とする請求項1または2記載の固体酸化物型燃料電池。
The solid oxide fuel cell according to claim 1 or 2 , wherein the air electrode further includes a ceria-based electrolyte material.
電解質層の両面に空気極と燃料極が設けられ、前記電解質層と前記空気極との間に中間層が形成された固体酸化物型燃料電池の製造方法であって、
セリア系電解質材料を含む溶液を、稀土類添加ジルコニア系酸化物からなる前記電解質層上に塗布し、乾燥して中間層を形成する中間層形成ステップと、
前記中間層上に、Aサイトを構成するLaからなる第1の金属とBサイトを構成するFeおよびNiからなる第2の金属とを有する前記Aサイトが定比のペロブスカイト構造の金属酸化物と、希土類添加ジルコニア系電解質材料とを含むスラリを塗布し、焼成して前記空気極を形成する空気極形成ステップと
を有することを特徴とする固体酸化物型燃料電池の製造方法。
A method for producing a solid oxide fuel cell in which an air electrode and a fuel electrode are provided on both surfaces of an electrolyte layer, and an intermediate layer is formed between the electrolyte layer and the air electrode,
An intermediate layer forming step of applying a solution containing a ceria-based electrolyte material onto the electrolyte layer made of a rare earth-added zirconia-based oxide and drying to form an intermediate layer;
A metal oxide having a perovskite structure in which the A site has a ratio of the first metal comprising La constituting the A site and the second metal comprising Fe and Ni constituting the B site on the intermediate layer; the slurry containing the rare earth doped zirconia electrolyte material was coated cloth, solid oxide fuel cell manufacturing method of which is characterized by having a baked to air electrode formation step of forming the air electrode.
JP2009297706A 2009-12-28 2009-12-28 Solid oxide fuel cell and method for producing solid oxide fuel cell Expired - Fee Related JP5226656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297706A JP5226656B2 (en) 2009-12-28 2009-12-28 Solid oxide fuel cell and method for producing solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297706A JP5226656B2 (en) 2009-12-28 2009-12-28 Solid oxide fuel cell and method for producing solid oxide fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005051411A Division JP4559255B2 (en) 2005-02-25 2005-02-25 Solid oxide fuel cell and method for producing solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2010103122A JP2010103122A (en) 2010-05-06
JP5226656B2 true JP5226656B2 (en) 2013-07-03

Family

ID=42293556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297706A Expired - Fee Related JP5226656B2 (en) 2009-12-28 2009-12-28 Solid oxide fuel cell and method for producing solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5226656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028201B (en) * 2015-09-17 2021-06-04 堺显示器制品株式会社 Thin film transistor and method for manufacturing thin film transistor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530771B1 (en) * 2010-01-27 2016-08-10 NGK Insulators, Ltd. Fuel cell
JP5470281B2 (en) * 2011-01-07 2014-04-16 株式会社ノリタケカンパニーリミテド Solid oxide fuel cell and method for producing the same
JP5055463B1 (en) * 2011-07-21 2012-10-24 日本碍子株式会社 Fuel cell
JP6603464B2 (en) * 2015-03-12 2019-11-06 東京瓦斯株式会社 Solid oxide fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3417090B2 (en) * 1994-10-31 2003-06-16 日産自動車株式会社 Electrode material for solid electrolyte
JP3789380B2 (en) * 2002-03-28 2006-06-21 日本電信電話株式会社 Solid oxide fuel cell and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028201B (en) * 2015-09-17 2021-06-04 堺显示器制品株式会社 Thin film transistor and method for manufacturing thin film transistor

Also Published As

Publication number Publication date
JP2010103122A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
Yang et al. Performance evaluation of La0. 4Sr0. 6Co0. 2Fe0. 7Nb0. 1O3− δ as both anode and cathode material in solid oxide fuel cells
JP6018639B2 (en) Solid oxide fuel cell half-cell and solid oxide fuel cell
JP6437821B2 (en) Composite anode for solid oxide fuel cells with improved mechanical integrity and efficiency
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
Ding et al. High performance anode-supported solid oxide fuel cell based on thin-film electrolyte and nanostructured cathode
JP2004055326A (en) Unit cell of solid oxide fuel cell and solid oxide fuel cell using the unit cell
JP6140733B2 (en) Design and manufacturing technology for solid oxide fuel cells with improved output performance in medium and low temperature operation
Rehman et al. Effect of GDC addition method on the properties of LSM–YSZ composite cathode support for solid oxide fuel cells
JP3786402B2 (en) Method for introducing electrode active oxide into air electrode for solid oxide fuel cell
JP4972468B2 (en) Solid oxide fuel cell
JP4796895B2 (en) Ceria buffer layer for air electrode of solid oxide fuel cell and method for producing the same
JP5226656B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
KR20180124919A (en) Alternative anode materials for solid oxide fuel cells
JP2006351406A (en) Air electrode powder for ceria coated sofc, its manufacturing method, and manufacturing method of air electrode
JP5144236B2 (en) Solid oxide fuel cell
JP2011119178A (en) Solid oxide fuel cell
JP5290870B2 (en) Solid oxide fuel cell
JP5336207B2 (en) Solid oxide fuel cell
JP4795701B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP3871903B2 (en) Method for introducing electrode active oxide into fuel electrode for solid oxide fuel cell
JP5005431B2 (en) Solid oxide fuel cell
JP2007335193A (en) Ceria layer for air electrode of solid oxide fuel cell, and its manufacturing method
JP2011210623A (en) Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell having the same
Torres-Garibay et al. Ln0. 6Sr0. 4Co1− yFeyO3− δ (Ln= La and Nd; y= 0 and 0.5) cathodes with thin yttria-stabilized zirconia electrolytes for intermediate temperature solid oxide fuel cells
KR102111859B1 (en) Solid oxide fuel cell and a battery module comprising the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111104

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130314

R151 Written notification of patent or utility model registration

Ref document number: 5226656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees