JP2006336125A - Bulky sheath-core conjugated filaments and method for producing the same - Google Patents

Bulky sheath-core conjugated filaments and method for producing the same Download PDF

Info

Publication number
JP2006336125A
JP2006336125A JP2005159356A JP2005159356A JP2006336125A JP 2006336125 A JP2006336125 A JP 2006336125A JP 2005159356 A JP2005159356 A JP 2005159356A JP 2005159356 A JP2005159356 A JP 2005159356A JP 2006336125 A JP2006336125 A JP 2006336125A
Authority
JP
Japan
Prior art keywords
core
sheath
multifilament
polylactic acid
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005159356A
Other languages
Japanese (ja)
Inventor
Futoshi Yamada
太志 山田
Hiroyuki Tsugawa
浩之 津川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Fibers Ltd
Original Assignee
Unitika Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Fibers Ltd filed Critical Unitika Fibers Ltd
Priority to JP2005159356A priority Critical patent/JP2006336125A/en
Publication of JP2006336125A publication Critical patent/JP2006336125A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide bulky sheath-core conjugated filaments which use a biodegradable polylactic acid-based resin of non-petroleum raw material as a component for constituting the filaments to reduce environmental loads, have high strength, excellent abrasion resistance and excellent durability, and are suitable for car mats or carpets, and to provide a method for producing the same. <P>SOLUTION: The bulky sheath-core conjugated filaments comprising a multifilament whose single filament cross section has a sheath-core structure whose core component consists mainly of the polylactic acid-based resin and whose sheath component comprises a polyamide are characterized in that the single filaments are bent in random directions, respectively, or are interlaced with each other to form loops or slackness, and the crimp percent of the multifilament is 5 to 25%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、繊維の構成成分にポリ乳酸系樹脂を用いた、カーマットやカーペット用として好適な嵩高性を有する芯鞘複合繊維とその製造方法に関するものである。   The present invention relates to a core-sheath composite fiber having a bulkiness suitable for car mats and carpets using a polylactic acid resin as a constituent component of the fiber, and a method for producing the same.

従来より、ポリエステル繊維、ポリアミド繊維、ポリオレフィン繊維等の合成繊維を、加熱流体を用いて嵩高加工し、捲縮を付与した嵩高性合成繊維は、カーマットやカーペット分野で幅広く利用され、様々な技術が開発されてきた。例えば、特許文献1には、ポリアミド、ポリプロピレン、ポリエステル等の熱可塑性合成繊維の交絡嵩高糸が、特許文献2には、ポリアミド、ポリエステル等の熱可塑性合成繊維のマルチローバル捲縮糸が記載されており、また、特許文献3には、ポリアミド、ポリプロピレン、ポリエステル等の熱可塑性合成繊維の顕在捲縮糸の製造方法が、特許文献4には、合成繊維のベロア調捲縮加工糸の製造方法が記載されている。   Conventionally, bulky synthetic fibers such as polyester fiber, polyamide fiber, polyolefin fiber, etc., which have been bulk-processed using heated fluid and have been crimped, have been widely used in the car mat and carpet fields, and various technologies have been developed. Has been developed. For example, Patent Document 1 describes entangled bulky yarns of thermoplastic synthetic fibers such as polyamide, polypropylene, and polyester, and Patent Document 2 describes multi-loval crimped yarns of thermoplastic synthetic fibers such as polyamide and polyester. Patent Document 3 discloses a method for producing an actual crimped yarn of a thermoplastic synthetic fiber such as polyamide, polypropylene, and polyester. Patent Document 4 discloses a method for producing a velor crimped yarn of a synthetic fiber. Are listed.

しかしながら、これらのポリエステル繊維、ポリアミド繊維、ポリオレフィン繊維等の合成繊維は自然環境下でほとんど分解せず、また石油資源から製造するため環境負荷、ゴミ問題の観点から環境対応材料への代替えが求められている。   However, these synthetic fibers such as polyester fiber, polyamide fiber, and polyolefin fiber are hardly decomposed in the natural environment, and since they are manufactured from petroleum resources, an alternative to environmentally friendly materials is required from the viewpoint of environmental load and dust problems. ing.

このため、特許文献5では、自然環境下で微生物等の作用によって水や二酸化炭素へ分解される生分解性繊維としてポリ乳酸繊維が、特許文献6では、生分解性の短繊維が提案されている。また、特許文献7では、ポリ乳酸を主成分とする嵩高捲縮糸が提案されている。   Therefore, in Patent Document 5, polylactic acid fibers are proposed as biodegradable fibers that are decomposed into water and carbon dioxide by the action of microorganisms and the like in a natural environment, and in Patent Document 6, biodegradable short fibers are proposed. Yes. Patent Document 7 proposes a bulky crimped yarn mainly composed of polylactic acid.

これらの繊維を使用すれば、使用後の廃棄処理においても環境性に優れた製品を提供することができる。
特開昭62−177251号公報 特開平9−310240号公報 特開昭58−109640号公報 特開昭63−182432号公報 特開平11−293517号公報 特開平11−293518号公報 特開2002−105752号広報
If these fibers are used, a product excellent in environmental performance can be provided even in disposal after use.
JP-A-62-177251 JP 9-310240 A JP 58-109640 A JP 63-182432 A JP 11-293517 A JP 11-293518 A JP 2002-105752 PR

しかしながら、カーマットやカーペット等の用途では耐摩耗性や耐久性が必要となるため、ポリ乳酸繊維100%使いでは繊維の脱落や車中での脆化等の問題が発生し、実用上問題があった。   However, in applications such as car mats and carpets, wear resistance and durability are required, so using 100% polylactic acid fibers causes problems such as fiber dropout and embrittlement in the car, and there are practical problems. It was.

本発明は、上記のような現状に鑑み、非石油系原料であり、生分解性を有するポリ乳酸系樹脂を繊維の構成成分に用いることで環境負荷が少なく、かつ、高強度で耐摩耗性と耐久性に優れ、カーマットやカーペット用として好適な嵩高性を有する芯鞘複合繊維とその製造方法を提供することを技術的な課題とするものである。   In view of the current situation as described above, the present invention is a non-petroleum-based raw material, uses a biodegradable polylactic acid resin as a component of the fiber, has a low environmental impact, and has high strength and wear resistance. It is a technical problem to provide a core-sheath composite fiber excellent in durability and having a bulkiness suitable for car mats and carpets and a method for producing the same.

本発明者らは、上記の課題を解決するために鋭意検討した結果、本発明に到達した。   As a result of intensive studies to solve the above problems, the present inventors have reached the present invention.

すなわち、本発明は、次の構成を有するものである。
(1)単フィラメントの断面が、芯部分はポリ乳酸系樹脂を主成分とし、鞘部分はポリアミドからなる芯鞘構造を有するマルチフィラメントであって、各単フィラメントがランダム方向に屈曲、あるいは互いに絡み合い、ループやタルミを有し、かつマルチフィラメントの捲縮率が5〜25%であることを特徴とする嵩高性を有する芯鞘複合繊維。
(2)ポリアミドがナイロン6である上記(1)記載の嵩高性を有する芯鞘複合繊維。
(3)単フィラメントの断面が、芯部分はポリ乳酸系樹脂を主成分とし、鞘部分はポリアミドからなる芯鞘構造を有する未延伸マルチフィラメントを2.5〜5.0倍に延伸した後、加熱流体噴射ノズルへ供給し、引き続いて、放射状に配列した羽根板によって取り囲まれた圧縮室に温度130〜280℃の加熱流体とともにオーバーフィードの状態で押し込み、各単フィラメントをランダム方向に屈曲、あるいは互いに絡み合わせ、各単フィラメントにループやタルミを形成し、捲縮を付与した後、通気性を有する衝突壁に衝突させ、冷却して捲き取ることを特徴とする嵩高性を有する芯鞘複合繊維の製造方法。
(4)ポリアミドがナイロン6である上記(3)記載の嵩高性を有する芯鞘複合繊維の製造方法。
That is, the present invention has the following configuration.
(1) The cross-section of a single filament is a multifilament having a core-sheath structure in which the core portion is made of polylactic acid resin and the sheath portion is made of polyamide, and each single filament is bent in a random direction or entangled with each other A core-sheath composite fiber having bulkiness, characterized by having a loop or a tarmi and having a multifilament crimp ratio of 5 to 25%.
(2) The core-sheath conjugate fiber having bulkiness according to the above (1), wherein the polyamide is nylon 6.
(3) After the cross-section of the single filament, the core portion is composed mainly of a polylactic acid-based resin, and the sheath portion is stretched 2.5 to 5.0 times an unstretched multifilament having a core-sheath structure made of polyamide, Supplied to the heated fluid injection nozzle, and subsequently pushed into the compression chamber surrounded by the radially arranged vanes with the heated fluid at a temperature of 130 to 280 ° C. in an overfeed state, bending each single filament in a random direction, or Bulky core-sheath composite fiber characterized by being intertwined with each other, forming a loop or a talmi on each single filament, imparting crimps, then colliding with a colliding wall having air permeability, cooling and scavenging Manufacturing method.
(4) The method for producing a core-sheath composite fiber having bulkiness according to (3), wherein the polyamide is nylon 6.

本発明の嵩高性を有する芯鞘複合繊維は、単フィラメントの芯部分が植物由来のポリ乳酸で構成されているので環境負荷が少なく、また、単フィラメントの鞘部分がポリアミドで構成されているので高強度で耐摩耗性と耐久性に優れ、カーマットやカーペット用として好適な繊維であり、この繊維を用いれば、使用上の物性等においても現状使用されているものと遜色のないカーペットを作製することが可能となる。   The bulky core-sheath composite fiber of the present invention has a small environmental load because the core part of the single filament is composed of plant-derived polylactic acid, and the sheath part of the single filament is composed of polyamide. High strength, excellent wear resistance and durability, and is a suitable fiber for car mats and carpets. Using this fiber, a carpet that is inferior to that currently used in terms of physical properties in use can be produced. It becomes possible.

また、本発明の嵩高性を有する芯鞘複合繊維の製造方法によれば、上記の利点を有する芯鞘複合繊維を安定して容易に製造することが可能となる。   Moreover, according to the manufacturing method of the core-sheath composite fiber which has the bulkiness of this invention, it becomes possible to manufacture the core-sheath composite fiber which has said advantage stably and easily.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の嵩高性を有する芯鞘複合繊維(以下、単に芯鞘複合繊維と称することがある。)は、単フィラメントの断面が、芯部分はポリ乳酸系樹脂を主成分とし、鞘部分はポリアミドからなる芯鞘構造を有するマルチフィラメントである。   The bulky core-sheath composite fiber of the present invention (hereinafter sometimes simply referred to as “core-sheath composite fiber”) has a cross-section of a single filament, the core part is composed mainly of a polylactic acid resin, and the sheath part is a polyamide. A multifilament having a core-sheath structure.

本発明において、単フィラメント断面の芯部分を形成するポリ乳酸系樹脂とは、ポリ乳酸、ポリ乳酸を主体とする共重合物又はそれらの混合物をいう。   In the present invention, the polylactic acid-based resin forming the core portion of the single filament cross section refers to polylactic acid, a copolymer mainly composed of polylactic acid, or a mixture thereof.

本発明で用いるポリ乳酸とは、モノマーの乳酸を重合することによって得られる高分子化合物である。乳酸にはL体とD体の光学異性体があり、D体のみ、L体のみ、あるいはD体とL体が各々50モル%で形成されたステレオコンプレックス等がある。L体を主体とする場合、融点の低下を防ぐためL体の比率が94モル%以上のものが好ましい。L体の比率が94モル%より小さいと低融点のポリマーとなり、繊維としては好ましくない場合がある。また、本発明で用いるポリ乳酸の数平均分子量(Mn)は、繊維としての必要強力を出すために7万以上が好ましい。   The polylactic acid used in the present invention is a polymer compound obtained by polymerizing lactic acid as a monomer. Lactic acid has L-form and D-form optical isomers, including D-form alone, L-form alone, or stereocomplexes in which D-form and L-form are each formed at 50 mol%. When the L form is a main component, the ratio of the L form is preferably 94 mol% or more in order to prevent the melting point from being lowered. When the ratio of L-form is less than 94 mol%, it becomes a low melting point polymer, which is not preferable as a fiber. Further, the number average molecular weight (Mn) of the polylactic acid used in the present invention is preferably 70,000 or more in order to obtain the necessary strength as a fiber.

本発明において、ポリ乳酸は、D体及びL体を含めて乳酸100%からなるホモポリマーに限定されず、繊維としての性能と環境負荷性を損なわない範囲での、他の脂肪族ポリエステルの原料であるモノマー類との共重合体も含まれ、また繊維としての性能を損なわない範囲で、乳酸ホモポリマーと他の脂肪族ポリエステル類又はその他の重合体とのブレンド物も含まれる。   In the present invention, polylactic acid is not limited to a homopolymer composed of 100% lactic acid including D-form and L-form, and is a raw material for other aliphatic polyesters within a range that does not impair fiber performance and environmental load. And a blend of a lactic acid homopolymer with other aliphatic polyesters or other polymers as long as the performance as a fiber is not impaired.

生分解性脂肪族ポリエステルとしては、ポリエチレンアジペート、ポリエチレンスベレート、ポリエチレンアゼレート、ポリエチレンセバケート、ポリエチレンデカメチレート、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリテトラメチレンサクシネート、ポリテトラメチレンアジペート、ポリテトラメチレンセバケート、ポリヘキサメチレンセバケート等の合成脂肪族ポリエステル、ポリ−ε−カプロラクトンやポリ−β−プロピオラクトンのようなポリ−ω−ヒドロキシアルカノエートからなる合成脂肪族ポリエステル、ポリグリコール酸、ポリ乳酸、ポリリンゴ酸のようなポリ−α−オキシ酸等が挙げられる。また、共重合又はブレンドする他の成分としては、溶融紡糸可能なポリマーとして、芳香族ポリエステル系、ポリアミド系、ポリオレフィン系ポリマー等が挙げられる。   Examples of biodegradable aliphatic polyesters include polyethylene adipate, polyethylene suberate, polyethylene azelate, polyethylene sebacate, polyethylene decamethylate, polyethylene succinate, polybutylene succinate, polytetramethylene succinate, polytetramethylene adipate, poly Synthetic aliphatic polyesters such as tetramethylene sebacate and polyhexamethylene sebacate, synthetic aliphatic polyesters comprising poly-ω-hydroxyalkanoates such as poly-ε-caprolactone and poly-β-propiolactone, polyglycolic acid And poly-α-oxy acids such as polylactic acid and polymalic acid. Examples of other components to be copolymerized or blended include aromatic polyester-based, polyamide-based, and polyolefin-based polymers as melt-spinnable polymers.

さらに、各種の添加剤、紫外線吸収剤、制電剤、顔料、酸化チタン、二酸化珪素等を添加したものでもよい。   Further, various additives, ultraviolet absorbers, antistatic agents, pigments, titanium oxide, silicon dioxide and the like may be added.

次に、本発明において、単フィラメント断面の鞘部分を形成するポリアミドとしては、公知のものを任意に使用することができる。例えば、ナイロン6,ナイロン66,これらを構成する単量体を使用して得られる共重合体,又はこれらの混合物を使用することができるが、ナイロン6を使用するのが好ましい。これは、ナイロン6の融点が、ポリ乳酸の融点と最も近く、かつナイロン6が熱的安定性に優れているからである。なお、使用するポリアミドは、その相対粘度(96%硫酸を溶媒とし、濃度1g/dl、温度25℃で測定)が2.0〜4.0の範囲のものが好ましい。   Next, in the present invention, any known polyamide can be used as the polyamide that forms the sheath portion of the single filament cross section. For example, nylon 6, nylon 66, a copolymer obtained using monomers constituting them, or a mixture thereof can be used, but nylon 6 is preferably used. This is because the melting point of nylon 6 is closest to the melting point of polylactic acid, and nylon 6 is excellent in thermal stability. The polyamide used preferably has a relative viscosity (measured at a concentration of 1 g / dl and a temperature of 25 ° C. using 96% sulfuric acid as a solvent) in the range of 2.0 to 4.0.

本発明において、単フィラメントにおける芯成分(ポリ乳酸系樹脂)と鞘部分(ポリアミド)との芯鞘比率は、環境負荷低減を図るために断面積比率で90/10〜50/50が好ましい。鞘成分が50%を超えると石油由来部分が半分以上となり、素材としての価値が低くなる。また、鞘成分が10%未満になると耐摩耗性等の物性が悪くなり、カーマットやカーペット用の嵩高捲縮糸として不向きなものとなる。   In the present invention, the core-sheath ratio between the core component (polylactic acid resin) and the sheath part (polyamide) in the single filament is preferably 90/10 to 50/50 in terms of the cross-sectional area in order to reduce the environmental load. If the sheath component exceeds 50%, the petroleum-derived portion becomes more than half, and the value as a material is lowered. On the other hand, when the sheath component is less than 10%, physical properties such as abrasion resistance are deteriorated, and the sheath component becomes unsuitable as a bulky crimped yarn for a car mat or a carpet.

また、本発明の芯鞘複合繊維は、嵩高性を有するものである。嵩高性は、各単フィラメントがランダム方向に屈曲、あるいは2本以上の単フィラメントが互いに絡み合い、ループやタルミを有する構造を有することにより発現される。   Moreover, the core-sheath conjugate fiber of the present invention has bulkiness. Bulkiness is manifested by having a structure in which each single filament is bent in a random direction, or two or more single filaments are entangled with each other and have a loop or a talmi.

嵩高性の度合いは捲縮率によって表すことができるが、本発明の芯鞘複合繊維の捲縮率は5〜25%、特に10〜22%であることが好ましい。捲縮率が5%未満になると、カーペットへ適用した時、十分な嵩高性を発揮することができない。また、捲縮率が25%を超えると、カーペットにした場合、品位が悪く、商品としての価値が低下する。なお、本発明でいう捲縮率とは、顕在捲縮と潜在捲縮の和であり、次式により算出するものである。
捲縮率(%)=〔(A−B)/A〕×100
A:繊維を沸水中で30分間処理した後、繊度(dtex)/11.1gの荷重を吊るした時の試料長
B:繊維を沸水中で30分間処理した後、繊度(dtex)×1.82mgの荷重を吊るした時の試料長
The degree of bulkiness can be expressed by the crimp rate, but the crimp rate of the core-sheath composite fiber of the present invention is preferably 5 to 25%, particularly preferably 10 to 22%. When the crimp rate is less than 5%, sufficient bulkiness cannot be exhibited when applied to a carpet. On the other hand, if the crimp rate exceeds 25%, the quality of the product is poor when the carpet is used, and the value of the product is lowered. The crimp rate referred to in the present invention is the sum of actual crimp and latent crimp, and is calculated by the following equation.
Crimp rate (%) = [(A−B) / A] × 100
A: Sample length when the fiber is treated in boiling water for 30 minutes and then a load of fineness (dtex) /11.1 g is suspended. B: Fineness (dtex) of the fiber after treatment in boiling water for 30 minutes. Sample length when 82mg load is suspended

本発明の芯鞘複合繊維は、繊度、フィラメント数は特に限定されるものではないが、カーマットやカーペット用としては、繊度は500〜2500dtex、フィラメント数は20〜150本が好ましい。また、単フィラメントの断面は、丸断面、Y型やT型等の異型断面、中空部を有する断面形状等のいずれでもよい。   The fineness and the number of filaments of the core-sheath conjugate fiber of the present invention are not particularly limited, but for car mats and carpets, the fineness is preferably 500 to 2500 dtex and the number of filaments is preferably 20 to 150. Further, the cross section of the single filament may be any of a round cross section, a different cross section such as Y-type or T-type, or a cross-sectional shape having a hollow portion.

次に、本発明の芯鞘複合繊維の製造方法について説明する。   Next, the manufacturing method of the core-sheath composite fiber of this invention is demonstrated.

まず、それぞれ芯部用と鞘部用のエクストルーダーで、芯部用についてはポリ乳酸系樹脂の融点より40℃以上高く、280℃より低い紡糸温度で、鞘部用は、ポリアミドが例えばナイロン6の場合は240〜280℃の紡糸温度で混練・溶融し、一定孔径のノズルから押し出して芯鞘複合紡糸を行う。芯部の紡糸温度が(ポリ乳酸樹脂の融点+40)℃未満になると、ポリマー内に未溶融物が発生して糸切れが起こり、製糸性に問題が生じることがある。また、紡糸温度が280℃を超えると、ポリマーの熱分解や熱劣化などによって芯部のポリ乳酸系樹脂の溶融ポリマー粘度が低下し、繊維の品質が低下することがある。   First, it is an extruder for a core part and a sheath part. For the core part, polyamide is made of, for example, nylon 6 at a spinning temperature that is 40 ° C. or more higher than the melting point of the polylactic acid resin and lower than 280 ° C. In this case, the mixture is kneaded and melted at a spinning temperature of 240 to 280 ° C. and extruded from a nozzle having a constant pore diameter to perform core-sheath composite spinning. When the spinning temperature of the core is lower than (melting point of polylactic acid resin + 40) ° C., an unmelted product is generated in the polymer, and yarn breakage may occur, which may cause a problem in yarn production. On the other hand, when the spinning temperature exceeds 280 ° C., the melt polymer viscosity of the polylactic acid-based resin in the core part may decrease due to thermal decomposition or thermal deterioration of the polymer, and the quality of the fiber may decrease.

紡糸された繊維は冷風で冷却固化されるが、冷風の温度は特に限定されるものではない。このとき、紡糸油剤を公知のローラ法又はスリットノズル法で付与する。ここでいう紡糸油剤とは、繊維に平滑性や帯電防止性を付与するものであり、鉱物油、有機酸、エーテル類等を含む公知のものが挙げられる。紡糸油剤の付与量は特に限定されものではないが、繊維質量に対し0.5〜1.0質量%とすることが好ましい。   The spun fiber is cooled and solidified with cold air, but the temperature of the cold air is not particularly limited. At this time, the spinning oil is applied by a known roller method or slit nozzle method. As used herein, the spinning oil agent imparts smoothness and antistatic properties to the fiber, and includes known ones including mineral oil, organic acids, ethers and the like. The application amount of the spinning oil is not particularly limited, but is preferably 0.5 to 1.0% by mass with respect to the mass of the fiber.

次に、繊維はワインダーに捲き取られ、未延伸マルチフィラメントを得る。捲取速度は、500〜1500m/分の範囲が好ましい。
このとき、未延伸マルチフィラメントの配向度は、最大延伸倍率(110℃)が2.5〜5.0となる程度が好ましく、さらに好ましくは3.0〜4.5である。なお、本発明でいう最大延伸倍率(110℃)とは、直径10mmの加熱ローラ(温度110℃)と直径10mmの延伸ローラ(常温)の2個のローラ間で、未延伸マルチフィラメントを速度50m/分で延伸したとき、マルチフィラメントが切断するときの倍率をいう。
The fiber is then scraped off by a winder to obtain unstretched multifilaments. The scraping speed is preferably in the range of 500 to 1500 m / min.
At this time, the degree of orientation of the unstretched multifilament is preferably such that the maximum draw ratio (110 ° C.) is 2.5 to 5.0, more preferably 3.0 to 4.5. The maximum draw ratio (110 ° C.) referred to in the present invention means that a non-stretched multifilament has a speed of 50 m between two rollers, a heating roller having a diameter of 10 mm (temperature 110 ° C.) and a drawing roller having a diameter of 10 mm (room temperature). This refers to the magnification at which the multifilament cuts when stretched at / min.

未延伸マルチフィラメントの最大延伸倍率が5.0を超える場合、ポリ乳酸の配向度が低く、強度が弱いため、わずかな張力変動で糸切れが発生することがある。一方、最大延伸倍率(110℃)が2.5より小さい場合、次工程で糸切れが発生しやすくなることがある。   When the maximum draw ratio of the undrawn multifilament exceeds 5.0, the degree of orientation of polylactic acid is low and the strength is weak, so that yarn breakage may occur due to slight tension fluctuations. On the other hand, when the maximum draw ratio (110 ° C.) is less than 2.5, yarn breakage may easily occur in the next step.

次に、得られた未延伸マルチフィラメントに、下記の条件で延伸処理を実施する。まず、未延伸マルチフィラメントを予熱ローラに供給し、続いて予熱ローラと加熱ローラとの間で2.5〜5.0倍に延伸する。このとき、予熱ローラの温度は70〜(芯部のポリ乳酸系樹脂の融点−20)℃、さらには75〜(芯部のポリ乳酸系樹脂の融点−20)℃が好ましい。予熱ローラ温度が70℃より低いとフィラメント切れが発生することがあり、(芯部のポリ乳酸系樹脂の融点−20)℃を超えるとローラ上での糸揺れが激しくなり、操業上の問題が発生することがある。また、加熱ローラの温度は90℃〜芯部のポリ乳酸系樹脂の融点、さらには100℃〜芯部のポリ乳酸系樹脂の融点が好ましい。加熱ローラ温度がこの範囲から外れると、フィラメント切れが発生することがある。   Next, the obtained unstretched multifilament is stretched under the following conditions. First, an unstretched multifilament is supplied to a preheating roller, and then stretched 2.5 to 5.0 times between the preheating roller and the heating roller. At this time, the temperature of the preheating roller is preferably 70 to (melting point of the polylactic acid resin in the core portion-20) ° C, and more preferably 75 to (melting point of the polylactic acid resin in the core portion-20) ° C. When the preheating roller temperature is lower than 70 ° C, filament breakage may occur. When the preheating roller temperature exceeds (melting point of polylactic acid resin in the core-20) ° C, yarn swaying on the roller becomes severe, causing operational problems. May occur. The temperature of the heating roller is preferably 90 ° C. to the melting point of the polylactic acid resin in the core, and more preferably 100 ° C. to the melting point of the polylactic acid resin in the core. If the heating roller temperature is out of this range, filament breakage may occur.

引き続き、延伸されたマルチフィラメントを、嵩高加工処理機の加熱流体噴射処理ノズルへ供給し、続いて、放射状に配列した羽根板によって取り囲まれた圧縮室に加熱流体とともにオーバーフィードの状態で押し込み、各単フィラメントをランダム方向に屈曲、あるいは互いに絡み合わせ、各単フィラメントにループやタルミを形成し、マルチフィラメントに捲縮を付与した後、通気性を有する衝突壁に衝突させ、冷却して目的とする芯鞘複合繊維を捲き取る。   Subsequently, the stretched multifilament is supplied to the heating fluid jet processing nozzle of the bulky processing machine, and then pushed into the compression chamber surrounded by the radially arranged blades in an overfeed state together with the heating fluid. Single filaments are bent in a random direction or entangled with each other, loops and talmi are formed on each single filament, crimp is applied to the multifilament, and then collided with a collision wall having air permeability, and then cooled for the purpose. Scatter the core-sheath composite fiber.

ここでいう加熱流体とは、高温に加熱された圧縮空気をいい、加熱流体の温度は130〜280℃、好ましくは140〜270℃とする。加熱流体の温度が280℃を超えると、フィラメント切れや融着が発生する。また、130℃より低いと、繊維に十分な捲縮を付与することができない。加熱流体の圧力は加熱流体の温度によって決定されるが、加熱流体の温度が130〜280℃の場合、0.5〜0.8MPaとすることが好ましい。   The heating fluid here refers to compressed air heated to a high temperature, and the temperature of the heating fluid is 130 to 280 ° C, preferably 140 to 270 ° C. When the temperature of the heating fluid exceeds 280 ° C., filament breakage or fusion occurs. If it is lower than 130 ° C., sufficient crimp cannot be imparted to the fiber. The pressure of the heating fluid is determined by the temperature of the heating fluid, but when the temperature of the heating fluid is 130 to 280 ° C., the pressure is preferably 0.5 to 0.8 MPa.

また、前記したように、加熱流体処理の際、マルチフィラメントを圧縮室に加熱流体とともにオーバーフィードの状態で押し込むために、マルチフィラメントは、オーバーフィード状態で加熱流体噴射処理ノズルに供給される。そのオーバーフィード率は、得ようとする繊維の捲縮率や加熱流体の温度、加熱流体の圧力によって決定されるが、本発明においては、オーバーフィード率を15〜35%、さらには20〜30%とすることが好ましい。オーバーフィード率が35%を超えると、マルチフィラメントが冷却ドラム上に巻き付き、操業上問題を生じることがある。また、オーバーフィード率が15%より低いと、十分な捲縮率が得られないばかりか、糸切れを発生することがある。   In addition, as described above, in order to push the multifilament into the compression chamber together with the heating fluid in the overfeed state during the heating fluid treatment, the multifilament is supplied to the heating fluid ejection processing nozzle in the overfeed state. The overfeed rate is determined by the crimp rate of the fiber to be obtained, the temperature of the heating fluid, and the pressure of the heating fluid. In the present invention, the overfeed rate is 15 to 35%, and further 20 to 30. % Is preferable. If the overfeed rate exceeds 35%, the multifilament may be wound around the cooling drum, causing operational problems. On the other hand, if the overfeed rate is lower than 15%, not only a sufficient crimp rate cannot be obtained, but also yarn breakage may occur.

次に、本発明を実施例によって具体的に説明する。なお、実施例における芯鞘複合繊維とカーペットの性能評価は、次の方法で行った。
(1)耐摩耗性
JIS L−1023に準じて行った。すなわち、試料片を回転摩耗(摩耗回数5000回)する前後の質量(mg)を測定し、その減少率(%)を算出して次の3段階で評価した。
○:減少率が0.3%未満のもの
△:減少率が0.3〜0.5%のもの
×:減少率が0.5%を超えるもの
Next, the present invention will be specifically described with reference to examples. In addition, the performance evaluation of the core-sheath composite fiber and carpet in an Example was performed with the following method.
(1) Abrasion resistance It carried out according to JIS L-1023. That is, the mass (mg) before and after the sample piece was rotationally worn (the number of wear times of 5000) was measured, and the reduction rate (%) was calculated and evaluated in the following three stages.
○: Reduction rate of less than 0.3% △: Reduction rate of 0.3-0.5% ×: Reduction rate of more than 0.5%

(2)耐久性
試料(繊維)を、温度60℃、湿度90%中の恒温湿機内で10日間放置した後の引張強度を測定し、次式により強度保持率(%)を求め、下記のように評価した。
強度保持率(%)=(10日後の引張強度/初期引張強度)×100
◎:強度保持率が90%以上
○:強度保持率が60〜90%未満
△:強度保持率が40〜60%未満
×:強度保持率が40未満
(3)圧縮率、圧縮弾性率
JISL−1022に準じて評価した。
(4)相対粘度
フェノールと四塩化エタンの等質量混合物を溶媒として、濃度0.5g/dl、温度20℃で測定した。(ウベローデ型粘度管使用)
(2) Durability Measure the tensile strength of the sample (fiber) after standing for 10 days in a constant temperature and humidity chamber at 60 ° C. and 90% humidity, and obtain the strength retention rate (%) by the following formula. It was evaluated as follows.
Strength retention (%) = (Tensile strength after 10 days / Initial tensile strength) × 100
◎: Strength retention 90% or more ○: Strength retention 60 to less than 90% △: Strength retention 40 to less than 60% ×: Strength retention less than 40 (3) Compression rate, compression modulus JISL- Evaluation was performed according to 1022.
(4) Relative viscosity Measured at a concentration of 0.5 g / dl and a temperature of 20 ° C. using an equal mass mixture of phenol and ethane tetrachloride as a solvent. (Uses Ubbelohde viscosity tube)

(実施例1)
数平均分子量(Mn)が97000、相対粘度2.07、L体%の比率98.8モル%のポリ乳酸チップを、水分率0.01質量%に調整した後、エクストルーダー型溶融押出機に供給し、紡糸温度235℃で溶融し、スリット巾0.25mm、1辺の長さ0.6mmのY字型断面形状の紡糸孔を15個有する芯鞘型紡糸口金より吐出量37.4g/分で芯側に吐出し、鞘側はナイロン6チップをエクストルーダー型溶融押出機に供給し、紡糸温度250℃で溶融し、吐出量37.4g/分で吐出した芯鞘型繊維を、冷却装置より冷却風を吹き付けて冷却、固化させ、オイリングローラで油剤を付与した後、速度900m/分で巻き取り、1600dtex/15fのY字型断面形状の芯鞘複合未延伸マルチフィラメントを得た。この未延伸マルチフィラメントの最大延伸倍率(110℃)は、3.78であった。
Example 1
A polylactic acid chip having a number average molecular weight (Mn) of 97,000, a relative viscosity of 2.07, and a ratio of 98.8 mol% of L-form is adjusted to a moisture content of 0.01% by mass, and then placed in an extruder type melt extruder. Supplied, melted at a spinning temperature of 235 ° C., and discharged from a core-sheath type spinneret having 15 Y-shaped cross-sectional shape spinning holes having a slit width of 0.25 mm and a side length of 0.6 mm. The core side is discharged to the core side, the nylon side is fed to the extruder type melt extruder, the core side fiber is melted at a spinning temperature of 250 ° C., and the core-sheath type fiber discharged at a discharge rate of 37.4 g / min is cooled. Cooling air was blown from the apparatus to cool and solidify, and an oil agent was applied with an oiling roller, and then wound at a speed of 900 m / min to obtain a Y-shaped cross-sectional core-sheath composite unstretched multifilament of 1600 dtex / 15f. The maximum draw ratio (110 ° C.) of this undrawn multifilament was 3.78.

この未延伸マルチフィラメントを4本引き揃え、温度90℃の予熱ローラと温度110℃の加熱ローラ間で、速度1200m/分で3.7倍に延伸した後、加熱流体噴射処理ノズルに供給し、温度190℃、圧力0.65Mpaの加熱流体とともに放射状に配列した18枚の羽根板によって取り囲まれた圧縮室にオーバーフィード率24%で押し込んだ。   Four of these unstretched multifilaments are aligned, stretched 3.7 times at a speed of 1200 m / min between a preheating roller at a temperature of 90 ° C. and a heating roller at a temperature of 110 ° C., and then supplied to a heated fluid jet processing nozzle. It was pushed at a overfeed rate of 24% into a compression chamber surrounded by 18 blades arranged radially with a heating fluid at a temperature of 190 ° C. and a pressure of 0.65 Mpa.

引き続きこのマルチフィラメントを連接する冷却ドラム上の通気性を有する衝突壁に衝突させて冷却した後、ワインダーに巻き取り、芯部分がポリ乳酸樹脂、鞘部分がナイロン6の芯鞘複合繊維(1100dtex/60f)を得た。この時の芯鞘比率は断面積比率で1:1であった。また、得られた繊維の強度は、2.0cN/dtexであった。   Subsequently, the multifilament is cooled by colliding with a collision wall having air permeability on a cooling drum connected to the multifilament, and wound around a winder, and a core-sheath composite fiber (1100 dtex / core) having a core part made of polylactic acid resin and a sheath part made of nylon 6. 60f) was obtained. The core-sheath ratio at this time was 1: 1 in terms of the cross-sectional area ratio. Moreover, the strength of the obtained fiber was 2.0 cN / dtex.

次いで、得られた1100dtex/60fの芯鞘複合繊維2本を、フォルクマン社製ダイレクトケブラー撚糸機を用いて、上撚200T/M、下撚200T/Mの諸撚糸とし、スペルバ社製スチームセット機で撚り止めを120℃×1分間の条件で行った。得られた諸撚加工糸をチーズ染色機を用いて酸性染料で染色し、得られた染色糸をタフティング機を用いて、スパンボンド基布に1/8ゲージ、パイル長10mm、パイル目付1200g/mの規格でタフトした後、裏面にゴム張り仕上げを行って、カットパイルカーペットを得た。 Subsequently, the two 1100 dtex / 60 f core-sheath composite fibers thus obtained were made into twisted yarns having an upper twist of 200 T / M and a lower twist of 200 T / M using a Volkman direct kevlar twisting machine, and a steam set made by Sperva The machine was twisted at 120 ° C. for 1 minute. The twisted yarn obtained was dyed with an acid dye using a cheese dyeing machine, and the dyed yarn obtained was applied to a spunbond base fabric using a tufting machine with 1/8 gauge, a pile length of 10 mm, and a pile basis weight of 1200 g. After tufting with the standard of / m 2 , the back surface was rubberized to obtain a cut pile carpet.

(比較例1)
数平均分子量(Mn)が97000、相対粘度2.07、L体%の比率98.8モル%のポリ乳酸チップを、水分率0.01質量%に調整した後、エクストルーダー型溶融押出機に供給し、紡糸温度235℃で溶融し、スリット巾0.25mm、1辺の長さ0.6mmのY字型断面形状の紡糸孔を15個有する紡糸口金より吐出量74.8g/分で吐出した。冷却装置より冷却風を吹き付けて繊維を冷却、固化させ、オイリングローラで油剤を付与した後、速度900m/分で巻き取り、1600dtex/15fのY字型断面形状の生分解性未延伸マルチフィラメントを得た。この未延伸マルチフィラメントの最大延伸倍率(110℃)は、3.92であった。
(Comparative Example 1)
A polylactic acid chip having a number average molecular weight (Mn) of 97,000, a relative viscosity of 2.07, and a ratio of 98.8 mol% of L-form is adjusted to a moisture content of 0.01% by mass, and then placed in an extruder type melt extruder. Supplied, melted at a spinning temperature of 235 ° C., and discharged at a discharge rate of 74.8 g / min from a spinneret having 15 Y-shaped cross-sectional shape spinning holes with a slit width of 0.25 mm and a side length of 0.6 mm. did. Cooling air is blown from a cooling device to cool and solidify the fibers, and an oil agent is applied with an oiling roller, and then wound up at a speed of 900 m / min, and a biodegradable unstretched multifilament having a Y-shaped cross section of 1600 dtex / 15f Obtained. The maximum draw ratio (110 ° C.) of this undrawn multifilament was 3.92.

この未延伸マルチフィラメントを4本引き揃え、温度90℃の予熱ローラと温度90℃の加熱ローラ間で、速度1200m/分で3.7倍に延伸した後、加熱流体噴射処理ノズルに供給し、温度145℃、圧力0.65Mpaの加熱流体とともに放射状に配列した18枚の羽根板によって取り囲まれた圧縮室にオーバーフィード率24%で押し込んだ
引き続き、このマルチフィラメントを連接する冷却ドラム上の通気性を有する衝突壁に衝突させて冷却した後、ワインダーに巻き取り、ポリ乳酸100%繊維(1100dtex/60f)を得た。得られた繊維の強度は、1.8cN/dtexであった。
Four of these unstretched multifilaments are aligned, stretched 3.7 times at a speed of 1200 m / min between a preheating roller at a temperature of 90 ° C. and a heating roller at a temperature of 90 ° C., and then supplied to a heated fluid jet processing nozzle. Pressed into a compression chamber surrounded by 18 blades arranged radially with a heated fluid at a temperature of 145 ° C. and a pressure of 0.65 Mpa at an overfeed rate of 24%. Subsequently, the air permeability on the cooling drum connecting the multifilaments It was made to collide with the collision wall which has, and was cooled, Then, it wound up by the winder, and obtained the polylactic acid 100% fiber (1100 dtex / 60f). The strength of the obtained fiber was 1.8 cN / dtex.

次いで、撚り止め条件を110℃×1分間に、染料を分散染料に変更した以外は実施例1と同様にして加工を行い、比較用カットパイルカーペットを得た。   Next, processing was carried out in the same manner as in Example 1 except that the twisting condition was changed to 110 ° C. for 1 minute and the dye was changed to a disperse dye, and a cut pile carpet for comparison was obtained.

(比較例2)
ナイロン6チップをエクストルーダー型溶融押出機に供給し、紡糸温度260℃で溶融し、スリット巾0.25mm、1辺の長さ0.6mmのY字型断面形状の紡糸孔を15個有する紡糸口金より吐出量74.8g/分で吐出した。冷却装置より冷却風を吹き付けて繊維を冷却、固化させ、オイリングローラで油剤を付与した後、速度900m/分で巻き取り、1600dtex/15fのY字型断面形状のナイロン6未延伸マルチフィラメントを得た。この未延伸マルチフィラメントの最大延伸倍率(110℃)は、3.95であった。
(Comparative Example 2)
Nylon 6 chips are fed to an extruder type melt extruder, melted at a spinning temperature of 260 ° C., and spinning having 15 Y-shaped cross-sectional shape spinning holes with a slit width of 0.25 mm and a side length of 0.6 mm. It discharged from the die at a discharge rate of 74.8 g / min. Cooling air is blown from a cooling device to cool and solidify the fiber, and after applying an oil agent with an oiling roller, it is wound at a speed of 900 m / min and a nylon 6 unstretched multifilament with a Y-shaped cross section of 1600 dtex / 15f is obtained. It was. The maximum draw ratio (110 ° C.) of this undrawn multifilament was 3.95.

この未延伸マルチフィラメントを4本引き揃え、温度90℃の予熱ローラと温度130℃の加熱ローラ間で、速度1200m/分で3.7倍に延伸した後、加熱流体噴射処理ノズルに供給し、温度235℃、圧力0.65Mpaの加熱流体とともに放射状に配列した18枚の羽根板によって取り囲まれた圧縮室にオーバーフィード率24%で押し込んだ。引き続き、このマルチフィラメントを連接する冷却ドラム上の通気性を有する衝突壁に衝突させて冷却した後、ワインダーに巻き取り、ナイロン6100%繊維(1100dtex/60f)を得た。得られた繊維の強度は、2.4cN/dtexであった。   Four of these unstretched multifilaments are aligned, stretched 3.7 times at a speed of 1200 m / min between a preheating roller at a temperature of 90 ° C. and a heating roller at a temperature of 130 ° C., and then supplied to a heated fluid jet processing nozzle. It was pushed at a overfeed rate of 24% into a compression chamber surrounded by 18 blades arranged radially with a heating fluid at a temperature of 235 ° C. and a pressure of 0.65 Mpa. Subsequently, the multifilament was cooled by colliding with a collision wall having air permeability on a cooling drum connected to the multifilament, and wound around a winder to obtain nylon 6100% fiber (1100 dtex / 60f). The strength of the obtained fiber was 2.4 cN / dtex.

次いで、撚り止め条件を130℃×1分間に変更した以外は実施例1と同様にして加工を行い、比較用カットパイルカーペットを得た。   Next, processing was carried out in the same manner as in Example 1 except that the twist stopping condition was changed to 130 ° C. × 1 minute, and a cut pile carpet for comparison was obtained.

実施例1と比較例1〜2で得られた繊維とカットパイルカーペットの評価結果を、表1に示す。   Table 1 shows the evaluation results of the fibers and cut pile carpets obtained in Example 1 and Comparative Examples 1-2.

表1から明らかなように、実施例1のカーペットは、鞘成分としてナイロン6を使用した複合繊維を用いているので、ポリ乳酸使いの繊維を用いた比較例1のカーペットより圧縮率、圧縮弾性率、耐摩耗性、耐久性の全てにおいて優れており、ナイロン6使いの比較例2のカーペットとほぼ同等の優れた性能を有している。また、実施例1のカーペットを形成する複合繊維は、生分解性を有するポリ乳酸が芯成分を構成しているので、比較例2のカーペットより環境負荷が少ないものである。
As is clear from Table 1, the carpet of Example 1 uses a composite fiber using nylon 6 as a sheath component, so that the compression ratio and compression elasticity are higher than those of the carpet of Comparative Example 1 using a fiber using polylactic acid. It has excellent performance, wear resistance, and durability, and has almost the same performance as the carpet of Comparative Example 2 using nylon 6. Further, the composite fiber forming the carpet of Example 1 has less environmental burden than the carpet of Comparative Example 2 because polylactic acid having biodegradability constitutes the core component.

Claims (4)

単フィラメントの断面が、芯部分はポリ乳酸系樹脂を主成分とし、鞘部分はポリアミドからなる芯鞘構造を有するマルチフィラメントであって、各単フィラメントがランダム方向に屈曲、あるいは互いに絡み合い、ループやタルミを有し、かつマルチフィラメントの捲縮率が5〜25%であることを特徴とする嵩高性を有する芯鞘複合繊維。   The cross-section of the single filament is a multifilament having a core-sheath structure in which the core portion is composed mainly of polylactic acid resin and the sheath portion is made of polyamide, and each single filament is bent in a random direction or entangled with each other, A core-sheath composite fiber having bulkiness, characterized by having tarmi and a crimp rate of multifilament of 5 to 25%. ポリアミドがナイロン6である請求項1記載の嵩高性を有する芯鞘複合繊維。   2. The core-sheath composite fiber according to claim 1, wherein the polyamide is nylon 6. 単フィラメントの断面が、芯部分はポリ乳酸系樹脂を主成分とし、鞘部分はポリアミドからなる芯鞘構造を有する未延伸マルチフィラメントを2.5〜5.0倍に延伸した後、加熱流体噴射ノズルへ供給し、引き続いて、放射状に配列した羽根板によって取り囲まれた圧縮室に温度130〜280℃の加熱流体とともにオーバーフィードの状態で押し込み、各単フィラメントをランダム方向に屈曲、あるいは互いに絡み合わせ、各単フィラメントにループやタルミを形成し、捲縮を付与した後、通気性を有する衝突壁に衝突させ、冷却して捲き取ることを特徴とする嵩高性を有する芯鞘複合繊維の製造方法。 Single filament cross section, core part is made of polylactic acid resin as the main component, sheath part is stretched unstretched multifilament having core-sheath structure made of polyamide 2.5-5.0 times, then heated fluid injection Supply to the nozzle, and then push it into the compression chamber surrounded by the radially arranged vanes with overheated fluid at a temperature of 130-280 ° C in an overfeed state, and bend each single filament in a random direction or entangle each other A method for producing a core-sheath composite fiber having bulkiness, characterized by forming a loop or a talmi on each single filament, applying a crimp, then colliding with a collision wall having air permeability, cooling and scraping . ポリアミドがナイロン6である請求項3記載の嵩高性を有する芯鞘複合繊維の製造方法。
The method for producing a core-sheath composite fiber having bulkiness according to claim 3, wherein the polyamide is nylon 6.
JP2005159356A 2005-05-31 2005-05-31 Bulky sheath-core conjugated filaments and method for producing the same Withdrawn JP2006336125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159356A JP2006336125A (en) 2005-05-31 2005-05-31 Bulky sheath-core conjugated filaments and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159356A JP2006336125A (en) 2005-05-31 2005-05-31 Bulky sheath-core conjugated filaments and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006336125A true JP2006336125A (en) 2006-12-14

Family

ID=37556928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159356A Withdrawn JP2006336125A (en) 2005-05-31 2005-05-31 Bulky sheath-core conjugated filaments and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006336125A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056378A (en) * 2005-08-22 2007-03-08 Toray Ind Inc Crimped yarn for carpet, and carpet
WO2007046397A1 (en) * 2005-10-19 2007-04-26 Toray Industries, Inc. Crimped yarn, method for manufacture thereof, and fiber structure
JP2007169849A (en) * 2005-12-26 2007-07-05 Toray Ind Inc Core-sheath type conjugate fiber, crimped yarn, and fiber structure using them
JP2008280665A (en) * 2007-04-10 2008-11-20 Mitsubishi Rayon Co Ltd Core-sheath conjugated fiber
JP2008297680A (en) * 2007-06-01 2008-12-11 Unitica Fibers Ltd Crimped yarn and interior product
JP2010070858A (en) * 2008-09-16 2010-04-02 Unitika Ltd Bulky polyamide fiber and method for producing bulky polyamide fiber
WO2010137301A1 (en) * 2009-05-26 2010-12-02 泉工医科工業株式会社 Stent graft, artificial blood vessel, biological implant material, compound thread, and method for manufacturing a compound thread and biological implant material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105752A (en) * 2000-09-26 2002-04-10 Unitica Fibers Ltd Bulky biodegradable yarn and method for producing the same
JP2004036035A (en) * 2002-07-03 2004-02-05 Toray Ind Inc Conjugate fiber and textile structure
JP2004197276A (en) * 2002-12-19 2004-07-15 Toray Ind Inc Core-sheath conjugated fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105752A (en) * 2000-09-26 2002-04-10 Unitica Fibers Ltd Bulky biodegradable yarn and method for producing the same
JP2004036035A (en) * 2002-07-03 2004-02-05 Toray Ind Inc Conjugate fiber and textile structure
JP2004197276A (en) * 2002-12-19 2004-07-15 Toray Ind Inc Core-sheath conjugated fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056378A (en) * 2005-08-22 2007-03-08 Toray Ind Inc Crimped yarn for carpet, and carpet
WO2007046397A1 (en) * 2005-10-19 2007-04-26 Toray Industries, Inc. Crimped yarn, method for manufacture thereof, and fiber structure
JP2007169849A (en) * 2005-12-26 2007-07-05 Toray Ind Inc Core-sheath type conjugate fiber, crimped yarn, and fiber structure using them
JP2008280665A (en) * 2007-04-10 2008-11-20 Mitsubishi Rayon Co Ltd Core-sheath conjugated fiber
JP2008297680A (en) * 2007-06-01 2008-12-11 Unitica Fibers Ltd Crimped yarn and interior product
JP2010070858A (en) * 2008-09-16 2010-04-02 Unitika Ltd Bulky polyamide fiber and method for producing bulky polyamide fiber
WO2010137301A1 (en) * 2009-05-26 2010-12-02 泉工医科工業株式会社 Stent graft, artificial blood vessel, biological implant material, compound thread, and method for manufacturing a compound thread and biological implant material

Similar Documents

Publication Publication Date Title
EP3011086B1 (en) Process for the preparation of a fiber, a fiber and a yarn made from such a fiber
KR101918049B1 (en) Polyamide fiber and method for producing same
EP1956120A1 (en) Spun-dyed, crimped polylactic acid fiber, method for manufacture thereof, and carpet
JP4872339B2 (en) Core-sheath type composite fiber, crimped yarn, and fiber structure using them
CN1662686B (en) Poly(trimethylene dicarboxylate) multifilament and monofilament manufacture method and silk, fabric or carpet prepared therefor
JP2006336125A (en) Bulky sheath-core conjugated filaments and method for producing the same
JPWO2003025269A1 (en) Polyester-based composite fiber pan and method for producing the same
US6630087B1 (en) Process of making low surface energy fibers
MXPA04012280A (en) Poly(trimethylene terephthalate) fibers, their manufacture and use.
JP4270734B2 (en) Method for producing biodegradable fiber having bulkiness
JP4100063B2 (en) Composite fibers and fiber structures
JP2010106423A (en) Flexing abrasion-resistant fiber
JP2006283033A (en) Polyester resin composition
KR101989529B1 (en) Tufted carpet including polyethyleneterephthalate bulked continuous filament
JP2008297680A (en) Crimped yarn and interior product
JP2002227036A (en) Aliphatic polyester yarn for carpet and carpet
JP4481907B2 (en) Original polylactic acid crimped yarn, method for producing the same, and carpet
JP4783105B2 (en) carpet
JP5306754B2 (en) Bulky polyamide multifilament and method for producing bulky polyamide multifilament
JP4835287B2 (en) Buckled crimp and carpet
CN109563646B (en) Tufted carpet comprising bulked continuous polyethylene terephthalate filaments
JP2007056382A (en) Method for producing high specific gravity composite fiber
JP4791212B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP2007297733A (en) Dope-dyed polylactic acid false-twisted yarn, method for producing the same, and carpet
JP2012211423A (en) Composite drawn false twisted yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101126

A131 Notification of reasons for refusal

Effective date: 20101130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110329

Free format text: JAPANESE INTERMEDIATE CODE: A02

A761 Written withdrawal of application

Effective date: 20110401

Free format text: JAPANESE INTERMEDIATE CODE: A761