WO2010137301A1 - Stent graft, artificial blood vessel, biological implant material, compound thread, and method for manufacturing a compound thread and biological implant material - Google Patents

Stent graft, artificial blood vessel, biological implant material, compound thread, and method for manufacturing a compound thread and biological implant material Download PDF

Info

Publication number
WO2010137301A1
WO2010137301A1 PCT/JP2010/003499 JP2010003499W WO2010137301A1 WO 2010137301 A1 WO2010137301 A1 WO 2010137301A1 JP 2010003499 W JP2010003499 W JP 2010003499W WO 2010137301 A1 WO2010137301 A1 WO 2010137301A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite yarn
filament
blood vessel
artificial blood
multifilament
Prior art date
Application number
PCT/JP2010/003499
Other languages
French (fr)
Japanese (ja)
Inventor
加来永一
神谷勝弘
平川公一郎
齋藤充弘
澤芳樹
内村英一郎
Original Assignee
泉工医科工業株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泉工医科工業株式会社, 国立大学法人大阪大学 filed Critical 泉工医科工業株式会社
Publication of WO2010137301A1 publication Critical patent/WO2010137301A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices

Definitions

  • the present invention relates to a stent graft, an artificial blood vessel, a bioimplantable material, a composite yarn, and a method for producing these composite yarn and bioimplantable material used by being implanted in a living body.
  • Polyester fiber artificial blood vessels have been proven to be safer and more practical for long-term clinical use with medium- and large-diameters, but when used as small-diameter artificial blood vessels, they are opened for a long time due to thrombus formation. It is difficult to maintain the existing state, and the practicality as an artificial blood vessel for transplantation is not high.
  • polyester fiber artificial blood vessels have been used as artificial blood vessels for covering stents in stent graft insertion, which is a minimally invasive treatment technique for aneurysms and varicose veins. If the gap is not securely adhered, there may be a phenomenon of end leakage in which blood leaks into the aneurysm and a migration problem that the stent graft moves from the indwelling position.
  • a bioactive agent derived from a protein selected from collagen, thrombin, fibrinogen, elastin, and von Willebrand factor is applied to the outer surface of a polyester artificial blood vessel that covers the stent in order to prevent stent graft endoleak.
  • a bioactive agent derived from a protein selected from collagen, thrombin, fibrinogen, elastin, and von Willebrand factor is applied to the outer surface of a polyester artificial blood vessel that covers the stent in order to prevent stent graft endoleak.
  • the present invention has been made in consideration of such circumstances, and when embedded in a living body as a part of a blood vessel, thrombus formation on the bloodstream side is suppressed, and patency over a long period of time is maintained.
  • the present invention also provides a stent graft, an artificial blood vessel, a biological implant material, a composite yarn, and a method for producing the composite yarn and the bioimplantable material, in which cellular tissue can be efficiently generated between the blood vessels and sufficiently adhered. For the purpose.
  • a first invention according to the present invention is a composite yarn, in which a multifilament including a filament of a non-biodegradable synthetic polymer constitutes a core portion, which is entangled with the filament of the non-biodegradable synthetic polymer, A multifilament including a bioabsorbable polymer filament formed so as to cover the outer periphery constitutes a sheath, and a porosity is formed in the sheath by the bioabsorbable polymer filament.
  • the core portion includes the filament of the non-biodegradable synthetic polymer
  • the filament of the non-biodegradable synthetic polymer in the core portion remains even if the bioabsorbable polymer is degraded in vivo. It remains and can maintain the strength of the composite yarn, the biological implant material, the artificial blood vessel and the like.
  • a large number of porosity (micropores) made of a bioabsorbable polymer is formed on the surface of the sheath, cellular tissue is efficiently generated, and fibers of the bioabsorbable polymer in the core are formed in the living body. Since the cellular tissue is formed in the void formed by absorption, a stable non-degradable synthetic polymer filament and tissue integrated body are formed.
  • the porosity of the bioabsorbable polymer formed on the surface of the composite yarn induces stable thrombus formation as a cell formation origin in the living body, Thereafter, it is presumed that cell tissues corresponding to the environment of the living body are generated from this base.
  • the second invention according to the present invention is a composite yarn according to the first invention, wherein the porosity is constituted by at least one of a loop and a slack of a filament of the bioabsorbable polymer.
  • the porosity is constituted by at least one of the loop of the bioabsorbable polymer filament and the sag, so that the porosity of the bioabsorbable polymer can be easily formed and is efficient.
  • Cellular tissue is generated.
  • a third invention according to the present invention is the composite yarn according to the first or second invention, wherein the non-biodegradable synthetic polymer is polyethylene terephthalate.
  • the non-biodegradable synthetic polymer contained in the core is polyethylene terephthalate, it is possible to ensure flexibility and high tensile strength, and mechanical strength such as tensile strength is increased. It is maintained for a long period in the body, and high durability can be ensured.
  • a fourth invention according to the present invention is the composite yarn according to any one of the first to third inventions, wherein the bioabsorbable polymer is a synthetic polymer that can be spun or a polymer derived from a living body.
  • the sheath portion including the bioabsorbable polymer filament and having the porosity of the bioabsorbable polymer filament is efficiently formed by the composite yarn processing.
  • a bio-implantable material wherein the composite yarn according to any one of the first to fourth aspects is woven by at least one of a woven, knitted and braided method. Formed into a cloth shape.
  • the living body embedding material according to the present invention it is possible to produce efficiently and to stably generate cells in the living body.
  • a sixth invention according to the present invention is an artificial blood vessel, and the composite yarn according to any one of the first to fourth inventions is formed into a tubular shape by at least one of a weaving, knitting, and braiding method. Formed.
  • tissues according to the environment of the living body are respectively generated on the lumen surface and the outer layer surface of the artificial blood vessel, and the blood flow side is covered with the endothelial tissue by inducing the implantation of the endothelial cells. Therefore, a stable action can be achieved as an artificial blood vessel.
  • a seventh invention according to the present invention is a stent graft, comprising a stent and the artificial blood vessel according to the sixth invention, wherein the stent is disposed on the outer periphery or the inner periphery of the artificial blood vessel.
  • the blood flow side of the artificial blood vessel is covered with the endothelial tissue by inducing the implantation of endothelial cells, and the outer layer surface is sufficiently formed between the blood vessel wall and the blood vessel wall. Since the graft fixing force is improved, the occurrence of migration, endoleak, graft deviation, and the like can be suppressed.
  • a core portion comprising a multifilament containing a non-biodegradable synthetic polymer filament, and a multifilament comprising a bioabsorbable polymer filament formed so as to cover the outer periphery of the core portion.
  • the bioabsorbable polymer filament is a method for producing a composite yarn in which at least a part of the filament is entangled with the non-biodegradable synthetic polymer filament and porosity is formed on the surface of the sheath.
  • a composite yarn used for living body embedding can be produced easily and efficiently.
  • a ninth invention according to the present invention is a method for manufacturing a bio-implantable material, wherein the composite yarn according to the eighth is formed into a cloth shape by at least one of a weaving, knitting, and braiding method.
  • the biological implant material can be produced easily and efficiently.
  • the composite yarn, the biological implant material, the artificial blood vessel, and the stent graft according to the present invention when it is embedded in a living body as a part of a blood vessel, thrombus formation on the bloodstream side is suppressed and long-term patency is achieved. While maintaining, cellular tissue can be efficiently generated between blood vessels. Moreover, according to the composite yarn and biological implantable material manufacturing method according to the present invention, a composite yarn and biological implantable material that can stably and efficiently generate a cell tissue can be efficiently manufactured.
  • FIG. 1 is a diagram for explaining an artificial blood vessel, and reference numeral 1 denotes the artificial blood vessel.
  • the artificial blood vessel 1 is composed of, for example, a tube having a hole 3 having a diameter of 2 mm to 5 mm.
  • the wall 2 is flexible, and the hole 3 is within the range of the circumferential length of the wall 2. The shape can be freely changed. Further, the artificial blood vessel 1 can bend the central axis O of the hole 3 within a predetermined curvature range without closing the hole 3.
  • the wall 2 is made of a biological implant material 10 as shown in FIG. 2, and the biological implant material 10 is formed with, for example, cloth-like fibers 11 in which warp yarns 11A and weft yarns 11B are woven into a cloth shape.
  • the warp yarn 11A and the weft yarn 11B are each composed of a composite yarn 12 as shown in FIG. 3, and the composite yarn 12 covers a core portion 13 (inner portion indicated by a broken line) and the outer periphery of the core portion 13. And a sheath portion 14 (a portion indicated by a broken line outside the core portion 12).
  • the core portion 13 is made of a non-biodegradable synthetic polymer multifilament bundled with a plurality of non-biodegradable synthetic polymer filaments
  • the sheath portion 14 is made of a multifilament bundled with a plurality of bioabsorbable polymer filaments and is bioabsorbable. At least a part of the polymer filament is entangled with the filament of the non-biodegradable synthetic polymer in the core portion 13, and porosity is formed on the surface of the sheath portion 14.
  • This porosity is formed by entanglement of bioabsorbable polymer filaments, and specifically, for example, loops of bioabsorbable polymer filaments as shown in the conceptual diagram of FIG. 4A and the electron micrograph (60 times) of FIG. 4B.
  • 16 (electron micrograph (60 times) loop 16 shows one of the many loops 16 highlighted), as shown in the conceptual diagram of FIG. 5A and the electron micrograph (60 times) of FIG. 5B.
  • a slack 17 of a bioabsorbable polymer filament (sag 17 in an electron micrograph (60 times) is shown with one of a number of slacks 17 shown conspicuously) is composed of fine holes 18.
  • the actual porosity of the composite yarn 12 is formed by crossing the loop 16 and the sag 17, but the porosity may be formed by either the loop 16 or the sag 17. Needless to say, a form other than the loop 16 and the slack 17 may be used.
  • the non-biodegradable synthetic polymer is less likely to be decomposed in the living body, and a polymer having a proven record as an embedding material, for example, a polyester resin such as polyethylene terephthalate is preferable.
  • the bioabsorbable polymer is composed of, for example, a clinically proven material that can be decomposed in vivo over time and can be used as an implant material.
  • polyglycolic acid, a copolymer of glycolic acid and lactic acid, and glycolic acid It is composed of a copolymer of caprolactone, a polydioxanone, a polymer derived from a living body such as collagen or silk, or a composite thereof.
  • the bioabsorbable polymer is, for example, a spinnable polymer having a crystal structure.
  • the core 13 is composed of multifilaments including non-biodegradable synthetic polymer filaments
  • the bioabsorbable polymer of the core 13 and the sheath 14 can be decomposed in vivo.
  • Non-biodegradable synthetic polymer filaments remain.
  • the strength of the composite yarn 12, the living body implant material 10, and the artificial blood vessel 1 can be maintained.
  • a stable neointimal is formed by the porosity of the sheath 14 and a cellular tissue is formed in the void formed by the absorption of the bioabsorbable polymer fiber in the core. It has sex and is firmly integrated with the living body.
  • the core portion 13 is formed of a polyethylene terephthalate filament, it is possible to ensure flexibility and high tensile strength, and mechanical strength such as tensile strength is maintained over a long period of time in the living body, resulting in high durability. Sex can be secured.
  • tissues corresponding to the living body environment are generated on the lumen surface and the outer layer surface of the artificial blood vessel 1, respectively, and the blood flow side is covered with the endothelial tissue by inducing the implantation of endothelial cells. Therefore, it can be stably used in the living body as the artificial blood vessel 1.
  • FIG. 6 is a diagram showing a schematic configuration of the stent graft 20.
  • the second embodiment is different from the artificial blood vessel 1 according to the first embodiment in that the stent graft 20 is arranged in addition to the artificial blood vessel 1 and the stent 4 arranged on the inner peripheral side or the outer peripheral side of the artificial blood vessel 1. It is the point which is prepared. Since others are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.
  • the stent graft 20 is composed of a stent 4 and an artificial blood vessel (graft) 1 and is folded at the time of insertion.
  • the stent graft 20 is radially expanded to a predetermined diameter of the artificial blood vessel 1 by a self-expanding ability of the stent 4 or a balloon at the indwelling site. Expanded.
  • the stent 4 is formed, for example, by bending a stainless steel wire 5 into a V shape a plurality of times at both ends 6 and 7 in the longitudinal direction to form a plurality of V shapes. As shown in FIG. It is formed such that these top portions are arranged on the circumference and both ends of the stainless steel wire are connected.
  • the shaft portion of the stainless steel wire 5 constituting the stent 4 is displaced in the crossing angle at the top portion bent in a V shape when an external force is applied.
  • the shaft portion and the axis O constituting the stent 4 are displaced.
  • the outer shape of the stent 4 is restored to its original shape by the shape restoring force of the stent 4.
  • the stent graft 20 is used by being mounted in a blood vessel in which an aneurysm or the like is formed in order to prevent blood pressure from being applied to the aneurysm or the like formed in the blood vessel.
  • the blood flow side of the artificial blood vessel 1 is efficiently covered with endothelial tissue, and the outer layer surface is efficiently formed between the blood vessel wall and sufficiently adhered to the blood vessel wall. Fixing force is improved, and the occurrence of migration, endoleak, graft displacement and the like can be suppressed.
  • the adhesion test by tissue formation between the artificial blood vessel and the blood vessel wall is shown by the peeling test of the artificial blood vessel and the blood vessel wall.
  • the maximum point load is about 7.0 (N). This is almost equivalent to the tensile strength 7.5 (N) of the original blood vessel, and shows a very good adhesion state.
  • the composite yarn manufacturing apparatus shown in FIG. 7 is a diagram showing, for example, an air jet processing machine 50, and includes a first filament supply roller R1, a second filament supply roller R2, and a first converging part J13.
  • the second converging part J14 and the mixed fiber part J12 are provided.
  • a multifilament of a non-biodegradable synthetic polymer filament 13A (hereinafter sometimes referred to as filament 13A) made of polyethylene terephthalate or the like constituting the composite yarn 12 is provided as a second filament.
  • a multifilament of a filament 14A of a bioabsorbable polymer such as polyglycolic acid (hereinafter sometimes referred to as a filament 14A) is wound around the supply roller R2 so as to be capable of being supplied.
  • the first converging part J13 and the second converging part J14 are configured to condense the filament 13A and the filament 14A, respectively, and to supply a supply speed when supplying the air jet J12.
  • the supply speed V14 of the filament 14A is, for example, 1.05 to 1.8 times the winding speed V12.
  • the supplied filament 13A and the filament 14A are entangled and disturbed with a high-pressure fluid, and the resultant composite yarn 12 is wound by a product roller (not shown) at a winding speed V12. It is designed to be wound up.
  • the supply speed V13 is set to a speed of 1.02 to 1.15 of the winding speed V12. That is, the multifilament composed of the filament 14A constituting the sheath portion 14 is supplied at a supply rate of 1.08 to 1.7 times the multifilament composed of the filament 13A constituting the core portion 13. Yes.
  • polyethylene terephthalate filament 13A 75 denier / 36 filament
  • polyglycolic acid filament 14A 70 denier / 20 filament
  • polyethylene terephthalate filament 13A and polyglycolic acid filament 14A are air jet processed.
  • V13 110%)
  • the filament 13A and the filament 14A are integrally composed of the filament 13A and the filament 14A having different lengths depending on the disturbing fluid.
  • the filament 13A and the filament 14A are combined while being intertwined. At that time, the filament 14A is different in supply rate from the filament 13A. Therefore, a lot of porosity composed of loops and slack of the filament 14A is formed on the surface 12A of the composite yarn 12.
  • the composite yarn 12 capable of easily forming the porosity 18 composed of the loop 16 and the deflection 17 on the surface 12A of the composite yarn 12 is efficiently produced. Can be manufactured.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the invention.
  • the core part 13 was formed with the multifilament of a non-biodegradable synthetic polymer
  • the sheath part 14 was formed with the multifilament of a bioabsorbable polymer
  • the core part 13 is formed.
  • the core part 13 demonstrated the case where the polyethylene terephthalate thread
  • the core part may be formed by a non-biodegradable synthetic polymer multifilament made of a polyester resin other than polyethylene terephthalate, or the sheath part 14 may be formed by a multifilament of a bioabsorbable polymer other than polyglycolic acid.
  • the core portion 13 may be formed of a plurality of layers, and the composite yarn may have a triple or more structure.
  • the case where the artificial blood vessel 1 and the stent graft 20 are formed by the composite yarn 12 has been described.
  • a patch for example, a patch in cardiac surgery
  • Blood vessels may be used for partial coating
  • the composite thread 12 may be used for artificial blood vessels or blood vessel sutures.
  • the artificial blood vessel is 2 mm to 5 mm, for example, 2 mm, 3 mm, 4 mm, and 5 mm has been described.
  • the present invention may be applied to artificial blood vessels having other diameters.
  • the porosity is constituted by a loop or deflection.
  • the porosity of the surface 12A of the composite yarn 12 may be constituted by other than the loop and sagging.
  • the composite yarn 12 is manufactured by using the air jet processing machine 50 has been described.
  • the living body to which the composite yarn 12, the living body implant material, the artificial blood vessel 1, and the stent graft 20 are applied may be not only a human but also an animal such as a domestic animal or a pet.
  • the composite yarn according to the present invention it is possible to configure a living body implantable material or the like that can generate a stable cell tissue in a living body.

Abstract

Provided is a compound thread (12) wherein: a core part (13) comprises a multifilament including a non-biodegradable synthetic high-molecular filament; a sheath part (14) comprises a multifilament including a bioabsorbable polymer filament which is intertwined with the non-biodegradable synthetic high-molecular filament and is formed so as to surround the core part (13); and the sheath part (14) is porous due to the bioabsorbable polymer filament. When the provided compound thread is implanted in a living body as a part of blood vessels, thrombus formation is inhibited and cell tissue between the compound thread and blood vessels can be produced efficiently.

Description

ステントグラフト、人工血管、生体埋込材料、複合糸、及び複合糸、生体埋込材料の製造方法Stent graft, artificial blood vessel, bioimplantable material, composite yarn, composite yarn, and method for producing bioimplantable material
 この発明は、生体内に埋め込んで用いられるステントグラフト、人工血管、生体埋込材料、複合糸、及びこれら複合糸、生体埋込材料の製造方法に関する。
 本願は、2009年05月26日に、日本に出願された特願2009-126997号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a stent graft, an artificial blood vessel, a bioimplantable material, a composite yarn, and a method for producing these composite yarn and bioimplantable material used by being implanted in a living body.
This application claims priority based on Japanese Patent Application No. 2009-126997 filed in Japan on May 26, 2009, the contents of which are incorporated herein by reference.
 ポリエステル繊維の人工血管は、中、大口径の場合、長期にわたる臨床により安全かつ実用的であることが実証されているが、小口径の人工血管として用いた場合には、血栓形成によって長期に開存状態を維持することが困難であり移植用人工血管としての実用性が高くない。 Polyester fiber artificial blood vessels have been proven to be safer and more practical for long-term clinical use with medium- and large-diameters, but when used as small-diameter artificial blood vessels, they are opened for a long time due to thrombus formation. It is difficult to maintain the existing state, and the practicality as an artificial blood vessel for transplantation is not high.
 また、近年、かかるポリエステル繊維の人工血管は、動脈瘤、静脈瘤等の低侵襲治療手技であるステントグラフト内挿術においてステントをカバーするための人工血管として用いられ、その場合、人工血管と血管の間が確実に密着されないと瘤内に血液が漏れるエンドリークという現象およびステントグラフトが留置位置から移動するというマイグレーションの問題を発生する可能性がある。 In recent years, such polyester fiber artificial blood vessels have been used as artificial blood vessels for covering stents in stent graft insertion, which is a minimally invasive treatment technique for aneurysms and varicose veins. If the gap is not securely adhered, there may be a phenomenon of end leakage in which blood leaks into the aneurysm and a migration problem that the stent graft moves from the indwelling position.
 このような小口径の人工血管における閉塞を抑制し充分な開存性を確保するために、内腔面に抗血栓性の組織、内皮化を誘導する方法が検討されている。
 その方法として、ヒトの内皮細胞、骨髄由来細胞を播種する方法、細胞の接着物質をコーティングする方法、コラーゲンあるいはゼラチンを含浸させる方法が提案されている(例えば、特許文献1参照。)。
In order to suppress occlusion in such a small-diameter artificial blood vessel and ensure sufficient patency, methods for inducing antithrombotic tissue and endothelialization on the lumen surface have been studied.
As a method therefor, a method of seeding human endothelial cells or bone marrow-derived cells, a method of coating a cell adhesion substance, and a method of impregnating collagen or gelatin have been proposed (see, for example, Patent Document 1).
 また、ステントグラフトのエンドリークを防止するためにステントをカバーするポリエステルの人工血管の外面にコラーゲン、トロンビン、フィブリノゲン、エラスチン、フォンビルブラントファクターから選択されるタンパク質由来の生理活性剤を塗布し、埋め込み初期の人工血管と血管壁との間の血栓形成を促進し、長期的には繊維組織の形成によりエンドリークを抑制する方法が提案されている。 In addition, a bioactive agent derived from a protein selected from collagen, thrombin, fibrinogen, elastin, and von Willebrand factor is applied to the outer surface of a polyester artificial blood vessel that covers the stent in order to prevent stent graft endoleak. Has been proposed that promotes thrombus formation between the artificial blood vessel and the blood vessel wall and suppresses endoleaks by forming fibrous tissue in the long term.
特開平08-33661JP 08-33661 A
 しかしながら、上記特許文献1に記載の人工血管においては、内皮化及び血栓抑制効果は小口径人工血管の実用化には不充分であり、ポリエステルの人工血管が小口径である場合に、実用化のために血栓形成を抑制し長期にわたって開存性を確保することが可能な人工血管が要望されている。
 また、ステントグラフトの人工血管の場合は、人工血管と血管壁の間を密着させてエンドリークを防止することが必要である。
However, in the artificial blood vessel described in Patent Document 1, the effect of endothelialization and thrombus suppression is insufficient for the practical use of a small-diameter artificial blood vessel, and when the polyester artificial blood vessel has a small diameter, the practical use is not possible. Therefore, an artificial blood vessel that can suppress thrombus formation and ensure patency over a long period of time is desired.
In the case of a stent graft artificial blood vessel, it is necessary to prevent endoleak by bringing the artificial blood vessel into close contact with the blood vessel wall.
 本発明は、このような事情を考慮してなされたものであり、血管の一部として生体に埋め込んだ場合に、血流側での血栓形成が抑制されて長期間にわたる開存性を維持しつつ、血管との間で細胞組織が効率的に生成されて充分な密着が可能なステントグラフト、人工血管、生体埋込材料、複合糸、及びこれら複合糸、生体埋込材料の製造方法を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and when embedded in a living body as a part of a blood vessel, thrombus formation on the bloodstream side is suppressed, and patency over a long period of time is maintained. The present invention also provides a stent graft, an artificial blood vessel, a biological implant material, a composite yarn, and a method for producing the composite yarn and the bioimplantable material, in which cellular tissue can be efficiently generated between the blood vessels and sufficiently adhered. For the purpose.
 上記課題を解決するために、この発明は以下の手段を提案している。
 本発明に係る第1の発明は、複合糸であって、非生分解合成高分子のフィラメントを含むマルチフィラメントが芯部を構成し、この非生分解合成高分子のフィラメントと絡み合い、芯部の外周を覆うように形成された生体吸収性ポリマーのフィラメントを含むマルチフィラメントが鞘部を構成し、前記鞘部には前記生体吸収性ポリマーのフィラメントによりポロシティが形成されている。
In order to solve the above problems, the present invention proposes the following means.
A first invention according to the present invention is a composite yarn, in which a multifilament including a filament of a non-biodegradable synthetic polymer constitutes a core portion, which is entangled with the filament of the non-biodegradable synthetic polymer, A multifilament including a bioabsorbable polymer filament formed so as to cover the outer periphery constitutes a sheath, and a porosity is formed in the sheath by the bioabsorbable polymer filament.
 この発明に係る複合糸によれば、芯部が非生分解合成高分子のフィラメントを含んでいるので生体吸収性ポリマーが生体内において分解されても芯部の非生分解合成高分子のフィラメントが残留して、複合糸、生体埋込材料、人工血管等の強度を保持することができる。 According to the composite yarn according to the present invention, since the core portion includes the filament of the non-biodegradable synthetic polymer, the filament of the non-biodegradable synthetic polymer in the core portion remains even if the bioabsorbable polymer is degraded in vivo. It remains and can maintain the strength of the composite yarn, the biological implant material, the artificial blood vessel and the like.
 また、鞘部の表面に生体吸収性ポリマーからなる多数のポロシティ(微細孔)が形成されているので、細胞組織が効率的に生成されるとともに、芯部の生体吸収性ポリマーの繊維が生体に吸収されて出来る空隙部に細胞組織が形成されるため、安定した非分解性合成高分子のフィラメントと組織の統合体が形成される。これは、複合糸の表面に形成された、例えば、生体吸収性ポリマーのポロシティ(例えば、ループ、たるみ等による微細孔)が、生体において細胞の形成起部として安定した血栓の形成を誘導し、その後この基部から生体の環境に応じた細胞組織が生成されるからであると推測される。 In addition, since a large number of porosity (micropores) made of a bioabsorbable polymer is formed on the surface of the sheath, cellular tissue is efficiently generated, and fibers of the bioabsorbable polymer in the core are formed in the living body. Since the cellular tissue is formed in the void formed by absorption, a stable non-degradable synthetic polymer filament and tissue integrated body are formed. This is because, for example, the porosity of the bioabsorbable polymer formed on the surface of the composite yarn (for example, micropores due to loops, sagging, etc.) induces stable thrombus formation as a cell formation origin in the living body, Thereafter, it is presumed that cell tissues corresponding to the environment of the living body are generated from this base.
 本発明に係る第2の発明は、上記第1の発明に係る複合糸であって、前記ポロシティは、前記生体吸収性ポリマーのフィラメントのループとたるみの少なくともいずれか一方により構成される。 The second invention according to the present invention is a composite yarn according to the first invention, wherein the porosity is constituted by at least one of a loop and a slack of a filament of the bioabsorbable polymer.
 この発明に係る複合糸によれば、ポロシティが生体吸収性ポリマーのフィラメントのループとたるみの少なくともいずれか一方により構成されているので、生体吸収性ポリマーのポロシティを容易に形成することができかつ効率的に細胞組織が生成される。 According to the composite yarn according to the present invention, the porosity is constituted by at least one of the loop of the bioabsorbable polymer filament and the sag, so that the porosity of the bioabsorbable polymer can be easily formed and is efficient. Cellular tissue is generated.
 本発明に係る第3の発明は、上記第1又は第2の発明に係る複合糸であって、前記非生分解合成高分子がポリエチレンテレフタレートである。 A third invention according to the present invention is the composite yarn according to the first or second invention, wherein the non-biodegradable synthetic polymer is polyethylene terephthalate.
 この発明に係る複合糸によれば、芯部が含む非生分解合成高分子がポリエチレンテレフタレートであるので、しなやかさ及び高い抗張力を確保することが可能となり、又引張強度等の機械的強度が生体内において長期間にわたって維持され、高い耐久性を確保することができる。 According to the composite yarn according to the present invention, since the non-biodegradable synthetic polymer contained in the core is polyethylene terephthalate, it is possible to ensure flexibility and high tensile strength, and mechanical strength such as tensile strength is increased. It is maintained for a long period in the body, and high durability can be ensured.
 本発明に係る第4の発明は、上記第1から第3のいずれか1つの発明に係る複合糸であって、前記生体吸収性ポリマーが、紡糸可能な合成ポリマーあるいは生体由来のポリマーである。 A fourth invention according to the present invention is the composite yarn according to any one of the first to third inventions, wherein the bioabsorbable polymer is a synthetic polymer that can be spun or a polymer derived from a living body.
 この発明に係る複合糸によれば、生体吸収性ポリマーのフィラメントを含むとともに生体吸収性ポリマーのフィラメントによるポロシティを有する鞘部が複合糸加工により効率的に形成される。 According to the composite yarn according to the present invention, the sheath portion including the bioabsorbable polymer filament and having the porosity of the bioabsorbable polymer filament is efficiently formed by the composite yarn processing.
 本発明に係る第5の発明は、生体埋込材料であって、上記第1から第4のいずれか1つの発明に係る複合糸を、織り、編み、組紐手法の少なくともいずれか一の手法によって布状に形成した。 According to a fifth aspect of the present invention, there is provided a bio-implantable material, wherein the composite yarn according to any one of the first to fourth aspects is woven by at least one of a woven, knitted and braided method. Formed into a cloth shape.
 この発明に係る生体埋込材料によれば、効率的に生産が可能であるとともに生体内において細胞を安定して生成することができる。 According to the living body embedding material according to the present invention, it is possible to produce efficiently and to stably generate cells in the living body.
 本発明に係る第6の発明は、人工血管であって、上記第1から第4のいずれか1つの発明に係る複合糸を、織り、編み、組紐手法の少なくともいずれか一の手法によって管状に形成した。 A sixth invention according to the present invention is an artificial blood vessel, and the composite yarn according to any one of the first to fourth inventions is formed into a tubular shape by at least one of a weaving, knitting, and braiding method. Formed.
 この発明に係る人工血管によれば、人工血管の内腔面、外層面にそれぞれ生体の環境に応じた組織が生成され、血流側は内皮細胞の着床を誘導して内皮組織で被覆されるので、人工血管として安定した作用を奏することができる。 According to the artificial blood vessel according to the present invention, tissues according to the environment of the living body are respectively generated on the lumen surface and the outer layer surface of the artificial blood vessel, and the blood flow side is covered with the endothelial tissue by inducing the implantation of the endothelial cells. Therefore, a stable action can be achieved as an artificial blood vessel.
 本発明に係る第7の発明は、ステントグラフトであって、ステントと、上記第6の発明に係る人工血管と、を備え、前記ステントが前記人工血管の外周又は内周に配置されている。 A seventh invention according to the present invention is a stent graft, comprising a stent and the artificial blood vessel according to the sixth invention, wherein the stent is disposed on the outer periphery or the inner periphery of the artificial blood vessel.
 この発明に係るステントグラフトによれば、人工血管の血流側は内皮細胞の着床を誘導して内皮組織で被覆され、外層面は血管壁との間に組織が形成されて血管壁部と充分に密着するのでグラフト固定力が向上し、マイグレーション、エンドリーク、グラフトずれ等の発生を抑制することができる。 According to the stent graft according to the present invention, the blood flow side of the artificial blood vessel is covered with the endothelial tissue by inducing the implantation of endothelial cells, and the outer layer surface is sufficiently formed between the blood vessel wall and the blood vessel wall. Since the graft fixing force is improved, the occurrence of migration, endoleak, graft deviation, and the like can be suppressed.
 本発明に係る第8の発明は、非生分解合成高分子のフィラメントを含むマルチフィラメントからなる芯部と、この芯部の外周を覆うように形成され生体吸収性ポリマーのフィラメントを含むマルチフィラメントからなる鞘部とを備え、前記生体吸収性ポリマーのフィラメントは、少なくとも一部が前記非生分解合成高分子のフィラメントと絡み合いかつ前記鞘部の表面にポロシティが形成された複合糸の製造方法であって、前記芯部を構成するマルチフィラメントと、前記鞘部を構成するマルチフィラメントとを複合化する場合に、前記鞘部を構成するマルチフィラメントを、芯部を構成するマルチフィラメントに対して、1.08から1.7倍の供給速度で供給する。 According to an eighth aspect of the present invention, there is provided a core portion comprising a multifilament containing a non-biodegradable synthetic polymer filament, and a multifilament comprising a bioabsorbable polymer filament formed so as to cover the outer periphery of the core portion. The bioabsorbable polymer filament is a method for producing a composite yarn in which at least a part of the filament is entangled with the non-biodegradable synthetic polymer filament and porosity is formed on the surface of the sheath. When the multifilament constituting the core portion and the multifilament constituting the sheath portion are combined, the multifilament constituting the sheath portion is 1 with respect to the multifilament constituting the core portion. Supply at a supply rate of 0.08 to 1.7 times.
 この発明に係る複合糸の製造方法によれば、容易かつ効率的に生体埋め込みに用いる複合糸を生産することができる。 According to the composite yarn manufacturing method of the present invention, a composite yarn used for living body embedding can be produced easily and efficiently.
 本発明に係る第9の発明は、生体埋込材料の製造方法であって、上記第8に係る複合糸を、織り、編み、組紐手法の少なくともいずれか一の手法によって布状に形成する。 A ninth invention according to the present invention is a method for manufacturing a bio-implantable material, wherein the composite yarn according to the eighth is formed into a cloth shape by at least one of a weaving, knitting, and braiding method.
 この発明に係る生体埋込材料の製造方法によれば、容易かつ効率的に生体埋込材料を生産することができる。 According to the method for manufacturing a biological implant material according to the present invention, the biological implant material can be produced easily and efficiently.
 本発明に係る複合糸、生体埋込材料、人工血管及びステントグラフトによれば、血管の一部として生体に埋め込んだ場合に、血流側での血栓形成が抑制されて長期間にわたる開存性を維持しつつ、血管との間で細胞組織が効率的に生成することができる。
 また、この発明に係る複合糸、生体埋込材料の製造方法によれば、細胞組織を安定かつ効率的に生成可能な複合糸、生体埋込材料を効率的に製造することができる。
According to the composite yarn, the biological implant material, the artificial blood vessel, and the stent graft according to the present invention, when it is embedded in a living body as a part of a blood vessel, thrombus formation on the bloodstream side is suppressed and long-term patency is achieved. While maintaining, cellular tissue can be efficiently generated between blood vessels.
Moreover, according to the composite yarn and biological implantable material manufacturing method according to the present invention, a composite yarn and biological implantable material that can stably and efficiently generate a cell tissue can be efficiently manufactured.
本発明の第1の実施形態に係る人工血管を説明する斜視図である。It is a perspective view explaining the artificial blood vessel which concerns on the 1st Embodiment of this invention. 本発明に係る生体埋込材料及び複合糸の一例を説明する電子顕微鏡写真である。It is an electron micrograph explaining an example of the biological implant material and composite yarn according to the present invention. 本発明に係る生体埋込材料及び複合糸の一例を説明する電子顕微鏡写真である。It is an electron micrograph explaining an example of the biological implant material and composite yarn according to the present invention. 本発明に係る複合糸の表面構造を説明する図であり、フィラメントのループを示す概念図である。It is a figure explaining the surface structure of the composite yarn concerning this invention, and is a conceptual diagram which shows the loop of a filament. 本発明に係る複合糸の表面構造を説明する図であり、フィラメントのループを示す電子顕微鏡写真である。It is a figure explaining the surface structure of the composite yarn based on this invention, and is an electron micrograph which shows the loop of a filament. 本発明に係る複合糸の表面構造を説明する図であり、フィラメントのたるみを示す概念図である。It is a figure explaining the surface structure of the composite yarn concerning this invention, and is a conceptual diagram which shows the slack of a filament. 本発明に係る複合糸の表面構造を説明する図であり、フィラメントのたるみを示す電子顕微鏡写真である。It is a figure explaining the surface structure of the composite yarn based on this invention, and is an electron micrograph which shows the slack of a filament. 本発明の第2の実施形態に係るステントグラフトを示す斜視図である。It is a perspective view which shows the stent graft which concerns on the 2nd Embodiment of this invention. 本発明に係る複合糸の製造方法を説明する図である。It is a figure explaining the manufacturing method of the composite yarn concerning this invention.
 以下、図1から図5Bを参照して、この発明の第1の実施形態について説明する。
 図1は、人工血管を説明する図であり、符号1は人工血管を示している。
 人工血管1は、例えば、口径が2mmから5mmの孔部3を有するチューブからなり、壁部2は可撓性を有していて壁部2の周方向長さの範囲内において孔部3の形状を自在に変形可能とされている。
 また、人工血管1は、孔部3を閉塞させずに孔部3の中心軸Oを所定の曲率の範囲内で曲げることが可能とされている。
A first embodiment of the present invention will be described below with reference to FIGS. 1 to 5B.
FIG. 1 is a diagram for explaining an artificial blood vessel, and reference numeral 1 denotes the artificial blood vessel.
The artificial blood vessel 1 is composed of, for example, a tube having a hole 3 having a diameter of 2 mm to 5 mm. The wall 2 is flexible, and the hole 3 is within the range of the circumferential length of the wall 2. The shape can be freely changed.
Further, the artificial blood vessel 1 can bend the central axis O of the hole 3 within a predetermined curvature range without closing the hole 3.
 壁部2は、図2に示すような生体埋込材料10からなり、生体埋込材料10は、例えば、縦糸11Aと横糸11Bとを布状に織った布状繊維11が形成されている。 The wall 2 is made of a biological implant material 10 as shown in FIG. 2, and the biological implant material 10 is formed with, for example, cloth-like fibers 11 in which warp yarns 11A and weft yarns 11B are woven into a cloth shape.
 縦糸11A、横糸11Bは、それぞれ、図3に示すような複合糸12により構成されており、複合糸12は、芯部13(破線で示す内側の部分)と、この芯部13の外周を覆うように配置された鞘部14(芯部12の外側に破線で示した部分)とを備えている。
 芯部13は複数の非生分解合成高分子フィラメントを束ねた非生分解合成高分子マルチフィラメントからなり、鞘部14は複数の生体吸収性ポリマーフィラメントを束ねたマルチフィラメントからなるとともに、生体吸収性ポリマーのフィラメントの少なくとも一部は、芯部13の非生分解合成高分子のフィラメントに絡み合い、かつ鞘部14の表面にポロシティが形成されている。
The warp yarn 11A and the weft yarn 11B are each composed of a composite yarn 12 as shown in FIG. 3, and the composite yarn 12 covers a core portion 13 (inner portion indicated by a broken line) and the outer periphery of the core portion 13. And a sheath portion 14 (a portion indicated by a broken line outside the core portion 12).
The core portion 13 is made of a non-biodegradable synthetic polymer multifilament bundled with a plurality of non-biodegradable synthetic polymer filaments, and the sheath portion 14 is made of a multifilament bundled with a plurality of bioabsorbable polymer filaments and is bioabsorbable. At least a part of the polymer filament is entangled with the filament of the non-biodegradable synthetic polymer in the core portion 13, and porosity is formed on the surface of the sheath portion 14.
 このポロシティは、生体吸収性ポリマーフィラメントのもつれ等により形成され、具体的には、例えば、図4Aの概念図及び図4Bの電子顕微鏡写真(60倍)に示すような生体吸収性ポリマーフィラメントのループ16(電子顕微鏡写真(60倍)のループ16は、多数のループ16のうちのひとつを目立たせて示した)や、図5Aの概念図及び図5Bの電子顕微鏡写真(60倍)に示すような生体吸収性ポリマーフィラメントのたるみ17(電子顕微鏡写真(60倍)のたるみ17は、多数のたるみ17のうちのひとつを目立たせて示した)による微細孔18から構成されている。 This porosity is formed by entanglement of bioabsorbable polymer filaments, and specifically, for example, loops of bioabsorbable polymer filaments as shown in the conceptual diagram of FIG. 4A and the electron micrograph (60 times) of FIG. 4B. 16 (electron micrograph (60 times) loop 16 shows one of the many loops 16 highlighted), as shown in the conceptual diagram of FIG. 5A and the electron micrograph (60 times) of FIG. 5B. A slack 17 of a bioabsorbable polymer filament (sag 17 in an electron micrograph (60 times) is shown with one of a number of slacks 17 shown conspicuously) is composed of fine holes 18.
 実際の複合糸12におけるポロシティは、図4B、図5Bに示すようにループ16とたるみ17とが交錯して形成されているが、ループ16又はたるみ17のいずれか一方によりポロシティが形成されてもよいことはいうまでもなく、ループ16、たるみ17以外の形態であってもよい。 As shown in FIGS. 4B and 5B, the actual porosity of the composite yarn 12 is formed by crossing the loop 16 and the sag 17, but the porosity may be formed by either the loop 16 or the sag 17. Needless to say, a form other than the loop 16 and the slack 17 may be used.
 非生分解合成高分子は、生体内において分解されることが少なく、埋め込み材料として実績のあるポリマー、例えば、ポリエチレンテレフタレート等のポリエステル樹脂等が好適である。
 生体吸収性ポリマーは、生体内において経時的に分解が可能かつ埋め込み材料として使用可能な、例えば臨床実績のある材料からなり、例えば、ポリグリコール酸、グリコール酸と乳酸の共重合体、グリコール酸とカプロラクトンの共重合体及びポリディオキサノン及びコラーゲン、シルクなどの生体由来の高分子のいずれか又はこれらを複合したものから構成されている。なお、生体吸収性ポリマーは、例えば、結晶構造を有するような紡糸可能なポリマーである。
The non-biodegradable synthetic polymer is less likely to be decomposed in the living body, and a polymer having a proven record as an embedding material, for example, a polyester resin such as polyethylene terephthalate is preferable.
The bioabsorbable polymer is composed of, for example, a clinically proven material that can be decomposed in vivo over time and can be used as an implant material. For example, polyglycolic acid, a copolymer of glycolic acid and lactic acid, and glycolic acid It is composed of a copolymer of caprolactone, a polydioxanone, a polymer derived from a living body such as collagen or silk, or a composite thereof. The bioabsorbable polymer is, for example, a spinnable polymer having a crystal structure.
 複合糸12によれば、芯部13が非生分解合成高分子のフィラメントを含むマルチフィラメントから構成されているので、芯部13および鞘部14の生体吸収性ポリマーが生体内において分解されても非生分解合成高分子のフィラメントが残留する。その結果、複合糸12、生体埋込材料10、人工血管1の強度を保持することができる。
 また、鞘部14のポロシティにより安定した新生内膜が形成され、芯部の生体吸収性ポリマー繊維が吸収されて形成される空隙部に細胞組織が形成されるため、生体に対して優れた親和性を有していて生体としっかりと一体化される。
According to the composite yarn 12, since the core 13 is composed of multifilaments including non-biodegradable synthetic polymer filaments, the bioabsorbable polymer of the core 13 and the sheath 14 can be decomposed in vivo. Non-biodegradable synthetic polymer filaments remain. As a result, the strength of the composite yarn 12, the living body implant material 10, and the artificial blood vessel 1 can be maintained.
In addition, a stable neointimal is formed by the porosity of the sheath 14 and a cellular tissue is formed in the void formed by the absorption of the bioabsorbable polymer fiber in the core. It has sex and is firmly integrated with the living body.
 また、芯部13がポリエチレンテレフタレートのフィラメントにより形成されているので、しなやかさ及び高い抗張力を確保することが可能となり、又引張強度等の機械的強度が生体内において長期間にわたって維持され、高い耐久性を確保することができる。 Further, since the core portion 13 is formed of a polyethylene terephthalate filament, it is possible to ensure flexibility and high tensile strength, and mechanical strength such as tensile strength is maintained over a long period of time in the living body, resulting in high durability. Sex can be secured.
 また、人工血管1によれば、人工血管1の内腔面、外層面にそれぞれ生体の環境に応じた組織が生成され、血流側は内皮細胞の着床を誘導して内皮組織で被覆されるので、人工血管1として生体内で安定して用いることができる。 Further, according to the artificial blood vessel 1, tissues corresponding to the living body environment are generated on the lumen surface and the outer layer surface of the artificial blood vessel 1, respectively, and the blood flow side is covered with the endothelial tissue by inducing the implantation of endothelial cells. Therefore, it can be stably used in the living body as the artificial blood vessel 1.
 次に、図6を参照して、この発明の第2の実施形態について説明する。
 図6は、ステントグラフト20の概略構成を示す図である。
 第2の実施形態が、第1の実施形態に係る人工血管1と異なるのは、ステントグラフト20が、人工血管1に加えて、人工血管1の内周側又は外周側に配置されるステント4を備えて構成されている点である。その他は、第1の実施形態と同様であるので、同じ符号を付して説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIG.
FIG. 6 is a diagram showing a schematic configuration of the stent graft 20.
The second embodiment is different from the artificial blood vessel 1 according to the first embodiment in that the stent graft 20 is arranged in addition to the artificial blood vessel 1 and the stent 4 arranged on the inner peripheral side or the outer peripheral side of the artificial blood vessel 1. It is the point which is prepared. Since others are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.
 ステントグラフト20は、ステント4と人工血管(グラフト)1から構成され、挿入時には小さく折りたたまれているが、留置部位でステント4の自己拡張能あるいはバルーンによって人工血管1の所定の径までが径方向に拡張される。 The stent graft 20 is composed of a stent 4 and an artificial blood vessel (graft) 1 and is folded at the time of insertion. The stent graft 20 is radially expanded to a predetermined diameter of the artificial blood vessel 1 by a self-expanding ability of the stent 4 or a balloon at the indwelling site. Expanded.
 ステント4は、例えば、ステンレス製の針金5を長手方向の両端側6、7で複数回V字形に屈曲して複数のV字形を形成し、図6に示すように、軸線Oを中心とする円周上にこれら頂部が配列されるように成形するとともにステンレス製針金の両端部を接続して構成されている。 The stent 4 is formed, for example, by bending a stainless steel wire 5 into a V shape a plurality of times at both ends 6 and 7 in the longitudinal direction to form a plurality of V shapes. As shown in FIG. It is formed such that these top portions are arranged on the circumference and both ends of the stainless steel wire are connected.
 かかる構成により、ステント4を構成するステンレス針金5の軸部は、外力が加わった場合にV字形に屈曲された頂部における交差角が変位し、その結果、ステント4を構成する軸部と軸線Oとの距離が変位可能とされるとともに、ステント4の形状復元力によってステント4の外形が元の形状に復元するようになっている。 With this configuration, the shaft portion of the stainless steel wire 5 constituting the stent 4 is displaced in the crossing angle at the top portion bent in a V shape when an external force is applied. As a result, the shaft portion and the axis O constituting the stent 4 are displaced. The outer shape of the stent 4 is restored to its original shape by the shape restoring force of the stent 4.
 ステントグラフト20は、血管に形成された動脈瘤等に血圧が印加されるのを防止するために、動脈瘤等が形成された血管内に装着して用いられる。 The stent graft 20 is used by being mounted in a blood vessel in which an aneurysm or the like is formed in order to prevent blood pressure from being applied to the aneurysm or the like formed in the blood vessel.
 ステントグラフト20によれば、人工血管1の血流側は内皮組織が効率的に被覆され、外層面は血管壁との間に組織が効率的に形成されて血管壁部と充分に密着するのでグラフト固定力が向上し、マイグレーション、エンドリーク、グラフトずれ等の発生を抑制することができる。
 人工血管と血管壁の剥離試験により、人工血管と血管壁の間の組織形成による密着度を示すと、従来のポリエチレンテレフタレートの人工血管が最大点荷重約4.0(N)であるのに対してステントグラフト20では最大点荷重約7.0(N)である。これは本来の血管の引張り強度7.5(N)とほぼ同等であり、非常に良好な密着状態を示している。
According to the stent graft 20, the blood flow side of the artificial blood vessel 1 is efficiently covered with endothelial tissue, and the outer layer surface is efficiently formed between the blood vessel wall and sufficiently adhered to the blood vessel wall. Fixing force is improved, and the occurrence of migration, endoleak, graft displacement and the like can be suppressed.
The adhesion test by tissue formation between the artificial blood vessel and the blood vessel wall is shown by the peeling test of the artificial blood vessel and the blood vessel wall. In the stent graft 20, the maximum point load is about 7.0 (N). This is almost equivalent to the tensile strength 7.5 (N) of the original blood vessel, and shows a very good adhesion state.
 次に、図7を参照して、複合糸12の製造方法の一例について説明する。
 図7に示した複合糸の製造装置は、例えば、エアージェット加工機50を示す図であり、第1のフィラメント供給ローラR1と、第2のフィラメント供給ローラR2と、第1の集束部J13と、第2の集束部J14と、混繊部J12とを備えている。
Next, an example of a method for manufacturing the composite yarn 12 will be described with reference to FIG.
The composite yarn manufacturing apparatus shown in FIG. 7 is a diagram showing, for example, an air jet processing machine 50, and includes a first filament supply roller R1, a second filament supply roller R2, and a first converging part J13. The second converging part J14 and the mixed fiber part J12 are provided.
 第1のフィラメント供給ローラR1には、複合糸12を構成するポリエチレンテレフタレート等からなる非生分解合成高分子のフィラメント13A(以下、フィラメント13Aと表す場合がある)のマルチフィラメントが、第2のフィラメント供給ローラR2にはポリグリコール酸等の生体吸収性ポリマーのフィラメント14A(以下、フィラメント14Aと表す場合がある)のマルチフィラメントがそれぞれ供給可能に巻回されている。 In the first filament supply roller R1, a multifilament of a non-biodegradable synthetic polymer filament 13A (hereinafter sometimes referred to as filament 13A) made of polyethylene terephthalate or the like constituting the composite yarn 12 is provided as a second filament. A multifilament of a filament 14A of a bioabsorbable polymer such as polyglycolic acid (hereinafter sometimes referred to as a filament 14A) is wound around the supply roller R2 so as to be capable of being supplied.
 第1の集束部J13、第2の集束部J14は、それぞれフィラメント13A、及びフィラメント14Aを集束するとともにエアージェットJ12に供給する際の供給速度を付与するように構成されていて、この実施形態において、フィラメント14Aの供給速度V14は、巻き取り速度V12に対して、例えば、1.05~1.8倍とされている。 The first converging part J13 and the second converging part J14 are configured to condense the filament 13A and the filament 14A, respectively, and to supply a supply speed when supplying the air jet J12. In this embodiment, The supply speed V14 of the filament 14A is, for example, 1.05 to 1.8 times the winding speed V12.
 エアージェットJ12は、供給されたフィラメント13Aと、フィラメント14Aとを高圧流体によって交絡・撹乱処理するようになっており、その結果形成された複合糸12は、巻き取り速度V12で図示しない製品ローラによって巻き取られるようになっている。ここで、供給速度V13は巻き取り速度V12の1.02~1.15の速度に設定されている。
 すなわち、鞘部14を構成するフィラメント14Aからなるマルチフィラメントは、芯部13を構成するフィラメント13Aからなるマルチフィラメントに対して、1.08から1.7倍の供給速度で供給するようになっている。
In the air jet J12, the supplied filament 13A and the filament 14A are entangled and disturbed with a high-pressure fluid, and the resultant composite yarn 12 is wound by a product roller (not shown) at a winding speed V12. It is designed to be wound up. Here, the supply speed V13 is set to a speed of 1.02 to 1.15 of the winding speed V12.
That is, the multifilament composed of the filament 14A constituting the sheath portion 14 is supplied at a supply rate of 1.08 to 1.7 times the multifilament composed of the filament 13A constituting the core portion 13. Yes.
 例えば、ポリエチレンテレフタレートフィラメント13A(75デニール/36フィラメント)とポリグリコール酸フィラメント14A(70デニール/20フィラメント)をエアージェット加工する場合に、ポリエチレンテレフタレートフィラメント13A、ポリグリコール酸フィラメント14Aを、エアージェット加工域に、巻き取り速度V12(=200m/min)に対してそれぞれV13(=110%)、V14(=150%)の速度で供給して撚糸する。 For example, when polyethylene terephthalate filament 13A (75 denier / 36 filament) and polyglycolic acid filament 14A (70 denier / 20 filament) are air jet processed, polyethylene terephthalate filament 13A and polyglycolic acid filament 14A are air jet processed. Are fed at a speed of V13 (= 110%) and V14 (= 150%) with respect to the winding speed V12 (= 200 m / min), respectively, and twisted.
 また、エアージェットJ12において、フィラメント13Aとフィラメント14Aとは撹乱流体により異なる長さのフィラメント13Aとフィラメント14Aとが一体に複合されるようになっている。 Further, in the air jet J12, the filament 13A and the filament 14A are integrally composed of the filament 13A and the filament 14A having different lengths depending on the disturbing fluid.
 エアージェット加工機50を用いた複合糸12の製造方法によれば、エアージェットJ12において、フィラメント13Aとフィラメント14Aとが絡み合いながら複合され、その際、フィラメント14Aがフィラメント13Aに対して供給速度の差に相当する長さだけ長く供給されているので、複合糸12の表面12Aにフィラメント14Aのループ、たるみ等により構成されるポロシティが多数形成される。 According to the manufacturing method of the composite yarn 12 using the air jet processing machine 50, in the air jet J12, the filament 13A and the filament 14A are combined while being intertwined. At that time, the filament 14A is different in supply rate from the filament 13A. Therefore, a lot of porosity composed of loops and slack of the filament 14A is formed on the surface 12A of the composite yarn 12.
 エアージェット加工機50を用いた複合糸12の製造方法によれば、複合糸12の表面12Aにループ16及びたわみ17からなるポロシティ18を容易に形成することが可能な複合糸12を効率的に製造することができる。 According to the method of manufacturing the composite yarn 12 using the air jet processing machine 50, the composite yarn 12 capable of easily forming the porosity 18 composed of the loop 16 and the deflection 17 on the surface 12A of the composite yarn 12 is efficiently produced. Can be manufactured.
 なお、この発明は上記実施の形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において、種々の変更をすることが可能である。
 上記実施の形態においては、芯部13を非生分解合成高分子のマルチフィラメントにより形成し、鞘部14を生体吸収性ポリマーのマルチフィラメントにより形成する場合について説明したが、例えば、芯部13を構成するマルチフィラメントの一部を生体吸収性ポリマーのフィラメント14Aとし、又は鞘部14を構成するマルチフィラメントの一部を非生分解合成高分子のフィラメント13Aとし、あるいはこれら双方の構成を採用したものであってもよい。
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the invention.
In the said embodiment, although the core part 13 was formed with the multifilament of a non-biodegradable synthetic polymer, and the sheath part 14 was formed with the multifilament of a bioabsorbable polymer, for example, the core part 13 is formed. A part of the multifilament constituting the filament 14A of the bioabsorbable polymer, or a part of the multifilament constituting the sheath part 14 as the non-biodegradable synthetic polymer filament 13A, or a configuration employing both of them. It may be.
 上記実施の形態においては、芯部13がポリエチレンテレフタレート糸(非生分解合成高分子マルチフィラメント)およびポリグリコール酸、鞘部14がポリグリコール酸である場合について説明したが、上記以外の、例えば、ポリエチレンテレフタレート以外のポリエステル樹脂からなる非生分解合成高分子マルチフィラメントにより芯部を形成してもよいし、ポリグリコール酸以外の生体吸収性ポリマーのマルチフィラメントにより鞘部14を形成してもよい。 In the said embodiment, although the core part 13 demonstrated the case where the polyethylene terephthalate thread | yarn (non-biodegradable synthetic polymer multifilament) and polyglycolic acid and the sheath part 14 were polyglycolic acid, except for the above, for example, The core part may be formed by a non-biodegradable synthetic polymer multifilament made of a polyester resin other than polyethylene terephthalate, or the sheath part 14 may be formed by a multifilament of a bioabsorbable polymer other than polyglycolic acid.
 また、上記実施の形態においては、二重構造である場合について説明したが、例えば、芯部13が複数の層から形成され複合糸が三重以上の構造とされてもよい。 In the above embodiment, the case of a double structure has been described. For example, the core portion 13 may be formed of a plurality of layers, and the composite yarn may have a triple or more structure.
 また、上記実施の形態においては、複合糸12により人工血管1、ステントグラフト20が形成されている場合について説明したが、布状に形成した生体埋込材料を、例えば、心臓外科手術におけるパッチ(例えば、血管を部分的な被覆)に用いてもよい。
 また、複合糸12を人工血管や血管の縫合に用いてもよい。
In the above-described embodiment, the case where the artificial blood vessel 1 and the stent graft 20 are formed by the composite yarn 12 has been described. However, for example, a patch (for example, a patch in cardiac surgery) , Blood vessels may be used for partial coating).
The composite thread 12 may be used for artificial blood vessels or blood vessel sutures.
 上記実施の形態においては、人工血管が2mmから5mm、例えば、2mm、3mm、4mm、5mmである場合について説明したが、これ以外の口径の人工血管に適用してもよい。 In the above embodiment, the case where the artificial blood vessel is 2 mm to 5 mm, for example, 2 mm, 3 mm, 4 mm, and 5 mm has been described. However, the present invention may be applied to artificial blood vessels having other diameters.
 また、上記実施の形態においては、ポロシティがループ又はたわみにより構成される場合について説明したが、ループ、たるみ以外によって複合糸12の表面12Aのポロシティが構成されてもよい。 In the above embodiment, the case where the porosity is constituted by a loop or deflection has been described. However, the porosity of the surface 12A of the composite yarn 12 may be constituted by other than the loop and sagging.
 上記実施の形態においては、エアージェット加工機50を用いて複合糸12を製造する場合について説明したが、エアージェット加工域に2種類又はそれ以上の糸を供給して複合糸とすることが可能な撚糸装置、仮燃装置等を用いてもよい。 In the above embodiment, the case where the composite yarn 12 is manufactured by using the air jet processing machine 50 has been described. However, it is possible to supply two or more types of yarn to the air jet processing area to obtain a composite yarn. You may use a twisting apparatus, a temporary combustion apparatus, etc.
 また、複合糸12、生体埋込材料、人工血管1、ステントグラフト20を適用する生体は、人のみならず、家畜、ペット等の動物でもよいことはいうまでもない。 Needless to say, the living body to which the composite yarn 12, the living body implant material, the artificial blood vessel 1, and the stent graft 20 are applied may be not only a human but also an animal such as a domestic animal or a pet.
 本発明に係る複合糸を用いることにより、生体内において安定した細胞組織の生成が可能な生体埋込材料等を構成することができる。 By using the composite yarn according to the present invention, it is possible to configure a living body implantable material or the like that can generate a stable cell tissue in a living body.
 1 人工血管(グラフト)
 4 ステント
 10 生体埋込材料
 12 複合糸
 12A 複合糸の表面
 13 芯部
 14 鞘部
 16 ループ
 17 たるみ
 18 微細孔(ポロシティ)
 20 ステントグラフト
1 Artificial blood vessel (graft)
4 Stent 10 Bioimplantable Material 12 Composite Yarn 12A Composite Yarn Surface 13 Core 14 Sheath 16 Loop 17 Sag 18 Micropore (Porosity)
20 Stent graft

Claims (9)

  1.  非生分解合成高分子のフィラメントを含むマルチフィラメントが芯部を構成し、この非生分解合成高分子のフィラメントと絡み合い、芯部の外周を覆うように形成された生体吸収性ポリマーのフィラメントを含むマルチフィラメントが鞘部を構成し、前記鞘部には前記生体吸収性ポリマーのフィラメントによりポロシティが形成されている複合糸。 A multifilament including a non-biodegradable synthetic polymer filament forms a core, and includes a bioabsorbable polymer filament formed so as to be intertwined with the non-biodegradable synthetic polymer filament and cover the outer periphery of the core. A composite yarn in which a multifilament constitutes a sheath portion, and a porosity is formed in the sheath portion by a filament of the bioabsorbable polymer.
  2.  請求項1に記載の複合糸であって、
     前記ポロシティは、
     前記生体吸収性ポリマーのフィラメントのループとたるみの少なくともいずれか一方により構成される複合糸。
    The composite yarn according to claim 1,
    The porosity is
    A composite yarn comprising at least one of a loop and a slack of a filament of the bioabsorbable polymer.
  3.  請求項1又は請求項2に記載の複合糸であって、
     前記非生分解合成高分子がポリエチレンテレフタレートである複合糸。
    The composite yarn according to claim 1 or claim 2,
    A composite yarn in which the non-biodegradable synthetic polymer is polyethylene terephthalate.
  4.  請求項1から請求項3のいずれか1項に記載の複合糸であって、
     前記生体吸収性ポリマーが、紡糸可能な合成ポリマーあるいは生体由来のポリマーである複合糸。
    The composite yarn according to any one of claims 1 to 3,
    A composite yarn in which the bioabsorbable polymer is a spinnable synthetic polymer or a bio-derived polymer.
  5.  請求項1から請求項4のいずれか1項に記載の複合糸を、織り、編み、組紐手法の少なくともいずれか一の手法によって布状に形成した生体埋込材料。 A living body embedding material in which the composite yarn according to any one of claims 1 to 4 is formed into a cloth shape by at least one of a weaving, knitting, and braiding method.
  6.  請求項1から請求項4のいずれか1項に記載の複合糸を、織り、編み、組紐手法の少なくともいずれか一の手法によって管状に形成した人工血管。 An artificial blood vessel in which the composite yarn according to any one of claims 1 to 4 is formed into a tubular shape by at least one of a weaving, knitting, and braiding method.
  7.  ステントと、請求項6に記載の人工血管と、を備え、前記ステントが前記人工血管の外周又は内周に配置されているステントグラフト。 A stent graft comprising a stent and the artificial blood vessel according to claim 6, wherein the stent is disposed on an outer periphery or an inner periphery of the artificial blood vessel.
  8.  非生分解合成高分子のフィラメントを含むマルチフィラメントからなる芯部と、この芯部の外周を覆うように形成され生体吸収性ポリマーのフィラメントを含むマルチフィラメントからなる鞘部とを備え、前記生体吸収性ポリマーのフィラメントは、少なくとも一部が前記非生分解合成高分子のフィラメントと絡み合いかつ前記鞘部の表面にポロシティが形成された複合糸の製造方法であって、
     前記芯部を構成するマルチフィラメントと、前記鞘部を構成するマルチフィラメントとを複合化する場合に、前記鞘部を構成するマルチフィラメントを、芯部を構成するマルチフィラメントに対して、1.08から1.7倍の供給速度で供給する複合糸の製造方法。
    A bioresorbable core comprising a multifilament containing a non-biodegradable synthetic polymer filament and a sheath made of a multifilament formed so as to cover the outer periphery of the bioresorbable polymer. The filament of the conductive polymer is a method for producing a composite yarn in which at least a portion is intertwined with the filament of the non-biodegradable synthetic polymer and porosity is formed on the surface of the sheath portion,
    When the multifilament constituting the core part and the multifilament constituting the sheath part are combined, the multifilament constituting the sheath part is 1.08 relative to the multifilament constituting the core part. To produce a composite yarn fed at a feed rate 1.7 times higher than
  9.  請求項8に記載の複合糸を、織り、編み、組紐手法の少なくともいずれか一の手法によって布状に形成する生体埋込材料の製造方法。 A method for producing a bio-implantable material, wherein the composite yarn according to claim 8 is formed into a cloth shape by at least one of a weaving, knitting, and braiding method.
PCT/JP2010/003499 2009-05-26 2010-05-25 Stent graft, artificial blood vessel, biological implant material, compound thread, and method for manufacturing a compound thread and biological implant material WO2010137301A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009126997A JP2010273734A (en) 2009-05-26 2009-05-26 Stent graft, artificial blood vessel, biological implant material, composite yarn, and methods of manufacturing composite yarn and biological implant material
JP2009-126997 2009-05-26

Publications (1)

Publication Number Publication Date
WO2010137301A1 true WO2010137301A1 (en) 2010-12-02

Family

ID=43222428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003499 WO2010137301A1 (en) 2009-05-26 2010-05-25 Stent graft, artificial blood vessel, biological implant material, compound thread, and method for manufacturing a compound thread and biological implant material

Country Status (2)

Country Link
JP (1) JP2010273734A (en)
WO (1) WO2010137301A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103607977A (en) * 2011-06-07 2014-02-26 刘青 Hybrid polymer stent fabricated by a non-laser cut fabrication method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576258A (en) * 1991-09-20 1993-03-30 Unitika Ltd Fiber for underwater material
JPH06335486A (en) * 1993-05-31 1994-12-06 Toray Ind Inc Expandable artificial blood vessel and production thereof
JPH07299084A (en) * 1994-05-10 1995-11-14 Terumo Corp Artificial prosthesis
JP2006336125A (en) * 2005-05-31 2006-12-14 Unitica Fibers Ltd Bulky sheath-core conjugated filaments and method for producing the same
JP2007270371A (en) * 2006-03-31 2007-10-18 Unitika Ltd Polylactic acid-based nonwoven fabric and method for producing the same
JP2008069467A (en) * 2006-09-12 2008-03-27 Unitica Fibers Ltd Polyester conjugated fiber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3165166B2 (en) * 1991-02-27 2001-05-14 セーレン株式会社 Artificial blood vessel and method for producing the same
US6547820B1 (en) * 2000-10-03 2003-04-15 Scimed Life Systems, Inc. High profile fabric graft for arteriovenous access
US20070196420A1 (en) * 2006-02-17 2007-08-23 Dwyer Clifford J Fibers and yarns useful for constructing graft materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576258A (en) * 1991-09-20 1993-03-30 Unitika Ltd Fiber for underwater material
JPH06335486A (en) * 1993-05-31 1994-12-06 Toray Ind Inc Expandable artificial blood vessel and production thereof
JPH07299084A (en) * 1994-05-10 1995-11-14 Terumo Corp Artificial prosthesis
JP2006336125A (en) * 2005-05-31 2006-12-14 Unitica Fibers Ltd Bulky sheath-core conjugated filaments and method for producing the same
JP2007270371A (en) * 2006-03-31 2007-10-18 Unitika Ltd Polylactic acid-based nonwoven fabric and method for producing the same
JP2008069467A (en) * 2006-09-12 2008-03-27 Unitica Fibers Ltd Polyester conjugated fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103607977A (en) * 2011-06-07 2014-02-26 刘青 Hybrid polymer stent fabricated by a non-laser cut fabrication method

Also Published As

Publication number Publication date
JP2010273734A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
US20210282915A1 (en) Composite lumen with reinforcing textile and matrix
JP4381827B2 (en) Embeddable woven prosthesis with PTFE cold-drawn yarn
EP0923912B1 (en) Stent-graft with bioabsorbable structural support
JP2749447B2 (en) Artificial blood vessel
JP5369187B2 (en) Tubular implantable cord
US7083644B1 (en) Implantable prostheses with improved mechanical and chemical properties
EP0501890B1 (en) Method for production of a vascular prosthesis
US20190231512A1 (en) Ultra-low profile woven, knitted, and braided textiles and textile composites made with high tenacity yarn
US20220008190A1 (en) Flexible hollow lumen composite
US20210059807A1 (en) Strong, flexible, and thrombus-free woven nanotextile based vascular grafts, and method of production thereof
JP2022509834A (en) Medical textiles with low denier yarn per filament
WO2010137301A1 (en) Stent graft, artificial blood vessel, biological implant material, compound thread, and method for manufacturing a compound thread and biological implant material
US10292809B2 (en) Thoracic graft having yarn modifications
RU2670671C2 (en) Vascular prosthesis
JP2023512211A (en) braided surgical implant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780261

Country of ref document: EP

Kind code of ref document: A1