JP2006303298A - Magnetic material and magnetic device - Google Patents

Magnetic material and magnetic device Download PDF

Info

Publication number
JP2006303298A
JP2006303298A JP2005124946A JP2005124946A JP2006303298A JP 2006303298 A JP2006303298 A JP 2006303298A JP 2005124946 A JP2005124946 A JP 2005124946A JP 2005124946 A JP2005124946 A JP 2005124946A JP 2006303298 A JP2006303298 A JP 2006303298A
Authority
JP
Japan
Prior art keywords
magnetic
fine particles
magnetic material
material according
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005124946A
Other languages
Japanese (ja)
Inventor
Ken Takahashi
高橋  研
Daiji Hasegawa
大二 長谷川
Hajime Shinohara
肇 篠原
Tomoyuki Ogawa
智之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INST OF FUNCTIONAL MATERIALS S
INSTITUTE OF FUNCTIONAL MATERIALS SCIENCE Inc
Original Assignee
INST OF FUNCTIONAL MATERIALS S
INSTITUTE OF FUNCTIONAL MATERIALS SCIENCE Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INST OF FUNCTIONAL MATERIALS S, INSTITUTE OF FUNCTIONAL MATERIALS SCIENCE Inc filed Critical INST OF FUNCTIONAL MATERIALS S
Priority to JP2005124946A priority Critical patent/JP2006303298A/en
Publication of JP2006303298A publication Critical patent/JP2006303298A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic material high in saturation magnetization and having a high permeability in a high frequency region, and a magnetic device employing the magnetic material. <P>SOLUTION: The magnetic material employed in the magnetic device for high frequency band is so specified that the material consists of the magnetic fine particles of metal having the size of 2 nm-100 nm. Further, the magnetic anisotropic constant (Ku) is negative and the value of residual magnetization (Mr) is zero substantially. The magnetic fine particles are constituted of an alloy whose principal constituent is bcc-Fe or Fe, an alloy whose principal constituent is fcc-Co or Co, an alloy whose principal constituent is fcc-Ni or Ni, or dhcp-CoFe. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、通信、放送、IT機器などの高周波部品や回路等に用いられる高周波用の磁性材料、並びに前記磁性材料を用いた磁気デバイスに関する。   The present invention relates to a high-frequency magnetic material used for high-frequency components and circuits such as communication, broadcasting, and IT equipment, and a magnetic device using the magnetic material.

近年、個人用携帯機器や移動通信の発展に伴い、これらの機器に用いられる磁気デバイスの一層の小型化および低価格化とGHzを超える高帯域化が技術潮流になっており、画期的な高周波用の磁性材料の出現が期待されている。   In recent years, with the development of personal portable devices and mobile communications, the technological trend has been to further reduce the size and price of magnetic devices used in these devices and to increase the bandwidth beyond GHz. The appearance of magnetic materials for high frequencies is expected.

高周波用磁性材料としては、従来、Mn-ZnフェライトやNi-Znフェライト等が用いられていたが、これらの材料の使用周波数範囲は、せいぜい数MHzから数100MHz程度であった。しかしながら、最近の携帯電話を初めとする各種通信機器に用いられる周波数は、1GHz前後と高くなっており、それらに用いる磁性材料も、1GHzもしくはそれ以上まで使用できる材料が求められている。   Conventionally, Mn—Zn ferrite, Ni—Zn ferrite, and the like have been used as high-frequency magnetic materials. However, the frequency range of use of these materials is at most about several MHz to several hundred MHz. However, the frequency used for various communication devices such as recent cellular phones is as high as around 1 GHz, and a magnetic material used for them is required to be a material that can be used up to 1 GHz or more.

また、従来用いられていた前記フェライト材料は酸化物磁性材料であり、飽和磁化の値が金属材料と比べて小さいという欠点がある。特に、磁性材料をトランスに適用する場合には、飽和磁化の大きさは出力の大きさに関係してくる。さらに前述のように、高周波用磁性材料は高周波数帯域において透磁率が大きいことが要求される。飽和磁化が小さいフェライトでも比較的高い透磁率を示すもの、例えば、フェロックスプレーナがあるが実用性に乏しい。また、特許文献1に記載されたように、多層構造を有する磁性微粒子の分散媒体を用いて、透磁率の向上を図ったものも提案されている。特許文献1に記載された多層構造を有する磁性微粒子は、例えば、磁性多層粒子の中心核としてフェライトや金属の強磁性粒子を用い、この中心核をフェライトでめっき被覆したものである。   Further, the ferrite material conventionally used is an oxide magnetic material and has a drawback that the value of saturation magnetization is smaller than that of a metal material. In particular, when applying a magnetic material to a transformer, the magnitude of saturation magnetization is related to the magnitude of output. Furthermore, as described above, the magnetic material for high frequency is required to have a high magnetic permeability in a high frequency band. There is a ferrite having a small saturation magnetization, which has a relatively high magnetic permeability, for example, a Ferroc sprayer, but its practicality is poor. In addition, as described in Patent Document 1, there has been proposed a magnetic medium in which a magnetic fine particle dispersion medium is used to improve the magnetic permeability. The magnetic fine particles having a multilayer structure described in Patent Document 1 are obtained, for example, by using ferrite or metal ferromagnetic particles as the central core of the magnetic multilayer particle and plating the central core with ferrite.

図5は、特許文献1に記載された磁性材料の複素透磁率の周波数スペクトルを示す図である。図5において、「本発明」と付記された曲線は、特許文献1に係る発明の材料の周波数スペクトルであり、従来の立方晶フェライト(Mn-ZnフェライトやNi-Znフェライト等)と比較して示されている。図5において、破線で示された右下がりの直線は、よく知られたSnoekの限界であり、特許文献1に係る発明の材料は、Snoekの限界を超える材料であることが示されている。なお、図5の縦軸に示された複素透磁率(μ)は、磁束密度と磁界に位相遅れがなければ、普通の意味の(直流的)透磁率μ´と等しい、即ち、μ=μ´である。   FIG. 5 is a diagram showing a frequency spectrum of the complex permeability of the magnetic material described in Patent Document 1. In FIG. 5, the curve labeled “present invention” is the frequency spectrum of the material of the invention according to Patent Document 1, and is compared with conventional cubic ferrite (Mn—Zn ferrite, Ni—Zn ferrite, etc.). It is shown. In FIG. 5, the right-downward straight line indicated by a broken line is a well-known Snoek limit, and the material of the invention according to Patent Document 1 is a material that exceeds the Snoek limit. Note that the complex permeability (μ) shown on the vertical axis in FIG. 5 is equal to the ordinary (DC) permeability μ ′ unless there is a phase lag between the magnetic flux density and the magnetic field, that is, μ = μ. '.

しかしながら、特許文献1のような材料であっても、周波数1GHzで、透磁率(μ)の値は10未満であり、さらに高周波帯域における透磁率の向上が望まれる。特に、携帯電話のような通信機器の場合、現在、周波数1GHz前後(0.8〜1.8GHz)が主流であり、1GHz前後における透磁率(μ)の大幅な向上が望まれている。
特開2002−93607号公報
However, even a material such as Patent Document 1 has a frequency of 1 GHz and a permeability (μ) value of less than 10, and further improvement of the permeability in the high frequency band is desired. In particular, in the case of a communication device such as a mobile phone, a frequency around 1 GHz (0.8 to 1.8 GHz) is currently mainstream, and a significant improvement in permeability (μ) around 1 GHz is desired.
JP 2002-93607 A

この発明は、上記の点に鑑みてなされたもので、この発明の課題は、飽和磁化が高く、かつ高い周波数帯域において高い透磁率を有する磁性材料並びに前記磁性材料を用いた磁気デバイスを提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a magnetic material having high saturation magnetization and high magnetic permeability in a high frequency band, and a magnetic device using the magnetic material. There is.

上記課題は、以下により達成される。即ち、金属の磁性微粒子からなり、その微粒子の大きさは2nm〜100nmで、さらに、磁気異方性定数(Ku)が負であり、かつ、残留磁化(Mr)の値が、実質的にゼロであることを特徴とする(請求項1)。   The above-mentioned subject is achieved by the following. That is, it consists of metal magnetic fine particles, the size of the fine particles is 2 nm to 100 nm, the magnetic anisotropy constant (Ku) is negative, and the remanent magnetization (Mr) value is substantially zero. (Claim 1).

また、前記請求項1に記載の磁性材料において、前記磁性微粒子は球形の粒子形状を有し、その結晶磁気異方性定数(Kugrain)が負であることを特徴とする(請求項2)。さらに、前記請求項1に記載の磁性材料において、前記磁性微粒子は回転楕円体形状、円盤状、棒状等の扁平状の粒子形状を有し、その形状磁気異方性定数(Kushape)が負であることを特徴とする(請求項3)。 Further, in the magnetic material according to claim 1, the magnetic fine particles have a spherical particle shape, and the magnetocrystalline anisotropy constant (Ku grain ) is negative (claim 2). . Furthermore, in the magnetic material according to claim 1, the magnetic fine particles have a flat particle shape such as a spheroid shape, a disk shape, or a rod shape, and the shape magnetic anisotropy constant (Ku shape ) is negative. (Claim 3).

なお、前記請求項において、「残留磁化(Mr)の値が、実質的にゼロ」とは、測定装置の測定限界に基づき、限りなくゼロに近いことを意味する。また、微粒子の大きさの上下限の値は臨界的なものではなく微粒子のサイズレベルを示し、さらに、例えば微粒子が回転楕円体形状の場合、回転楕円体の長軸の長さ、または短軸の長さのいずれかを限定的に示すものではない。   In the above claims, “the value of the residual magnetization (Mr) is substantially zero” means that it is close to zero based on the measurement limit of the measuring device. The upper and lower limit values of the size of the fine particles are not critical and indicate the size level of the fine particles. Further, for example, when the fine particles have a spheroid shape, the major axis length or minor axis of the spheroid It does not limit one of the lengths.

また、前記請求項1に記載の磁性材料において、前記磁性微粒子のゼロ磁場冷却後の透磁率の温度依存特性において透磁率極大となる温度が、磁気デバイスの使用温度範囲条件の下限値としての−20℃より低い温度であることを特徴とする(請求項4)。   Further, in the magnetic material according to claim 1, the temperature at which the magnetic permeability becomes maximum in the temperature-dependent characteristics of the magnetic fine particles after cooling by zero magnetic field is − as the lower limit value of the operating temperature range condition of the magnetic device. The temperature is lower than 20 ° C. (Claim 4).

磁性微粒子のゼロ磁場冷却後の透磁率の温度依存特性において、透磁率極大となる温度(所謂、ブロッキング温度)が存在し、透磁率は、通常この温度以下で、急激に低下する。一般に、通信機器等で用いられる磁気デバイスの使用温度範囲は、−20℃〜80℃程度の範囲であり、前記透磁率が急激に低下する範囲が上記使用温度範囲に重なることは好ましくない。この観点から上記請求項4の発明が好ましい。   In the temperature-dependent characteristics of magnetic permeability after magnetic field cooling of the magnetic fine particles, there is a temperature at which the magnetic permeability becomes maximum (so-called blocking temperature), and the magnetic permeability usually decreases rapidly below this temperature. Generally, the operating temperature range of a magnetic device used in communication equipment or the like is in the range of about −20 ° C. to 80 ° C., and it is not preferable that the range in which the magnetic permeability rapidly decreases overlaps the above operating temperature range. From this viewpoint, the invention of claim 4 is preferable.

さらに、前記請求項1の磁性材料の実施態様としては、下記請求項5ないし9の発明が好ましい。即ち、前記磁性微粒子は、体心立方構造を有するFe(bcc−Fe)および、Feを主成分とするFe合金からなるものとする(請求項5)。また、前記磁性微粒子は、面心立方構造を有するCo(fcc−Co)および、Coを主成分とするCo合金からなるものとする(請求項6)。さらに、前記磁性微粒子は、面心立方構造を有するNi(fcc−Ni)および、Niを主成分とするNi合金からなるものとする(請求項7)。   Further, as an embodiment of the magnetic material according to claim 1, the inventions according to claims 5 to 9 are preferable. That is, the magnetic fine particles are composed of Fe (bcc-Fe) having a body-centered cubic structure and an Fe alloy containing Fe as a main component. The magnetic fine particles are made of Co (fcc-Co) having a face-centered cubic structure and a Co alloy containing Co as a main component. Further, the magnetic fine particles are made of Ni (fcc-Ni) having a face-centered cubic structure and a Ni alloy containing Ni as a main component (Claim 7).

また、前記磁性微粒子は、二重最密充填構造を有するCoFe(dhcp−CoFe)からなるものとする(請求項8)。さらに、前記請求項5ないし8のいずれか1項に記載の磁性材料において、前記磁性微粒子は、添加元素としてB,CまたはNを含むものとする(請求項9)。   The magnetic fine particles are made of CoFe (dhcp-CoFe) having a double closest packing structure (claim 8). Furthermore, in the magnetic material according to any one of claims 5 to 8, the magnetic fine particles include B, C, or N as an additive element (claim 9).

また、磁気デバイスの発明としては、前記請求項1ないし9のいずれか1項に記載の磁性材料を、誘電体材料中に分散したものとする(請求項10)。磁気デバイスとして、例えば配線基板を考えた場合、高い透磁率と共に、低い誘電率を備える必要がある。この場合、低い誘電率を備えた誘電体、例えば、ポリテトラフルオロエチレンやポリプロピレン、ポリエステル、ポリイミド、エポキシ樹脂等の電機絶縁性の樹脂中に、前記磁性材料を分散させた磁気デバイスとすることが好ましい。誘電体としては、樹脂材料の他に各種のセラミックが使用できる。   As an invention of a magnetic device, the magnetic material according to any one of claims 1 to 9 is dispersed in a dielectric material (claim 10). For example, when considering a wiring board as a magnetic device, it is necessary to provide a low dielectric constant with a high magnetic permeability. In this case, a magnetic device in which the magnetic material is dispersed in a dielectric having a low dielectric constant, for example, an electrical insulating resin such as polytetrafluoroethylene, polypropylene, polyester, polyimide, or epoxy resin. preferable. As the dielectric, various ceramics can be used in addition to the resin material.

この発明によれば、飽和磁化が高く、かつ高い周波数帯域において高い透磁率を有する磁性材料が提供できる。例えば、周波数1GHzで、透磁率(μ)の値は各磁性材料によって異なるが、35〜1700となり、前記特許文献1に記載のものに比較して、約4〜200倍程度の高い透磁率が得られる。後述するように、本発明に係る各磁性材料中、比較的透磁率(μ)が高い材料は、共鳴周波数が比較的低いが、前記のような磁気デバイスに適用した場合の実用上の効果は極めて大きい。   According to the present invention, a magnetic material having high saturation magnetization and high magnetic permeability in a high frequency band can be provided. For example, at a frequency of 1 GHz, the value of magnetic permeability (μ) varies depending on each magnetic material, but is 35 to 1700, which is about 4 to 200 times higher than that described in Patent Document 1. can get. As will be described later, among the magnetic materials according to the present invention, a material having a relatively high magnetic permeability (μ) has a relatively low resonance frequency, but the practical effect when applied to a magnetic device as described above is Very large.

なお、後述する飽和磁化の単位emu/ccをSI単位に変換する場合には、1emu/cc=0.0012566Wb/m2により換算すればよい。また、後述する磁気異方性定数は、erg/ccの単位で表記するが、これをSI単位に変換する場合には、erg/cc=10-1J/m3により換算すればよい。 In addition, when converting the unit of saturation magnetization emu / cc, which will be described later, into an SI unit, it may be converted by 1 emu / cc = 0.0012566 Wb / m 2 . Moreover, although the magnetic anisotropy constant described later is expressed in units of erg / cc, when this is converted into SI units, it may be converted by erg / cc = 10 −1 J / m 3 .

次に、この発明の実施形態に関して、実施例に基いて説明する。   Next, embodiments of the present invention will be described based on examples.

(実施例1:bcc−Fe)
容量100ml のフラスコに、50mlのオルトジクロロベンゼンに8.7gのトリオクチルフォスフィンオキサイド(TOPO)および6.3gのオレイン酸を溶解させ、マントルヒータにて182℃に加熱する。この溶媒に、8.8g のFe(CO)5を溶解させた10mlのオルトジクロロベンゼンを注射器にて投入する。投入直後、Fe微粒子が生成され反応溶液は黒色化する。Fe微粒子の酸化を防止するために、Pt(acac)(白金アセチルアセトネート)を2.1g加え、160℃で1時間保持した後、60秒後マントルヒータを除去し、自然冷却する。冷却後、Fe微粒子表面がPtでコートされていることを確認した。さらに、未反応物および副生成物を除去するため、反応溶液に100mlのエタノールを加え遠心分離(3000rpm×20分)を行いFe微粒子を沈殿させた。上澄みを除去後、沈殿物にトルエン10mlを加えFe微粒子を再分散させた。
(Example 1: bcc-Fe)
In a 100 ml flask, 8.7 g of trioctylphosphine oxide (TOPO) and 6.3 g of oleic acid are dissolved in 50 ml of orthodichlorobenzene and heated to 182 ° C. with a mantle heater. Into this solvent, 10 ml of orthodichlorobenzene in which 8.8 g of Fe (CO) 5 is dissolved is charged with a syringe. Immediately after the addition, Fe fine particles are generated and the reaction solution is blackened. In order to prevent oxidation of the Fe fine particles, 2.1 g of Pt (acac) (platinum acetylacetonate) is added and held at 160 ° C. for 1 hour, and after 60 seconds, the mantle heater is removed and naturally cooled. After cooling, it was confirmed that the Fe fine particle surface was coated with Pt. Furthermore, in order to remove unreacted substances and by-products, 100 ml of ethanol was added to the reaction solution, and centrifugation (3000 rpm × 20 minutes) was performed to precipitate Fe fine particles. After removing the supernatant, 10 ml of toluene was added to the precipitate to redisperse the Fe fine particles.

得られた試料をX線回折法にて構造解析した結果、bcc(体心立法格子型結晶)のFeであることを確認した。   As a result of structural analysis of the obtained sample by an X-ray diffraction method, it was confirmed that it was Fe of a body-centered cubic lattice (bcc).

試料の粒径測定は微粒子分散溶液をTEMグリッドに滴下し、日本分光社製透過型電子顕微鏡 (TEM3010型)で、300kVの加速電圧で明視野像を観測し粒径を測定した。長軸(a軸)方向の粒径10.5nm, 短軸(c軸)方向の粒径が3.5nmの回転楕円体微粒子試料が得られたことを確認した。   The particle size of the sample was measured by dropping a fine particle dispersion solution onto a TEM grid and observing a bright-field image at an acceleration voltage of 300 kV with a transmission electron microscope (TEM 3010 type) manufactured by JASCO Corporation. It was confirmed that a spheroidal fine particle sample having a particle size of 10.5 nm in the major axis (a-axis) direction and a particle size in the minor axis (c-axis) direction of 3.5 nm was obtained.

この再分散溶液に、クロロフォルム4mlおよびポリビニルピロリドン(PVP)を220mg加え、スピンコーターを用いてガラス基板上にFe微粒子・PVP複合膜(膜厚50μm)を形成した。複合膜中のFe微粒子の体積分率は、60%であった。   To this redispersed solution, 4 ml of chloroform and 220 mg of polyvinylpyrrolidone (PVP) were added, and an Fe fine particle / PVP composite film (film thickness 50 μm) was formed on a glass substrate using a spin coater. The volume fraction of Fe fine particles in the composite film was 60%.

飽和磁化(Ms)およびゼロ磁場冷却後の透磁率μ及びその温度依存はカンタム・デザイン社製超伝導量子干渉素子磁束計(SQUID:MPMS−5)にて測定した。飽和磁化Msは1700emu/ccであり、残留磁化(Mr)は実質的にゼロであった。   The saturation magnetization (Ms), the permeability μ after cooling with zero magnetic field, and the temperature dependence thereof were measured with a superconducting quantum interference device magnetometer (SQUID: MPMS-5) manufactured by Quantum Design. The saturation magnetization Ms was 1700 emu / cc, and the remanent magnetization (Mr) was substantially zero.

次に、前記回転楕円体微粒子の形状磁気異方性定数(Kushape)について述べる。微粒子磁性材料の形状磁気異方性定数(Kushape)は直接評価することは出来ない。そこで、b.c.c.-Feと同じ組成・結晶構造の単結晶をブリッジマン法(1500℃)で作製し、Fe微粒子と同じアスペクト比(c/a)を持つ図1のような回転楕円体(a = b = 6mm, c = 2mm, c/a = 1/3)を飽和トルク法にて磁気異方性を測定した。 Next, the shape magnetic anisotropy constant (Ku shape ) of the spheroid fine particles will be described. The shape magnetic anisotropy constant (Ku shape ) of a fine particle magnetic material cannot be directly evaluated. Therefore, a single crystal having the same composition and crystal structure as bcc-Fe was prepared by the Bridgman method (1500 ° C), and a spheroidal body (a = The magnetic anisotropy was measured by the saturation torque method for b = 6 mm, c = 2 mm, c / a = 1/3).

Kushapeの評価は、図1のaとcを含む面に磁界を印加し、飽和トルクを測定しその値からKushapeを求めた。この試料の形状磁気異方性定数Kushapeの値を求めた結果、負の値を示し、−8.2×106 erg/ccであった。 Ku shape was evaluated by applying a magnetic field to the surface including a and c in FIG. 1, measuring saturation torque, and obtaining Ku shape from the measured value. As a result of obtaining the value of the shape magnetic anisotropy constant Ku shape of this sample, it showed a negative value and was −8.2 × 10 6 erg / cc.

次に、透磁率μの測定結果について述べる。透磁率の測定は、金属微粒子・PVP複合膜を凌和電子社製(PMM-9G1)にて行った。この測定装置はワンターンコイル法を用いており、1MHzから9GHzまでの周波数で透磁率を測定することが出来る。測定試料は、ガラス基板(厚さ0.5mm)上に形成された金属微粒子・PVP複合膜(膜厚50μm)を4×4mmに切り出したものを用いた。図2に前記bcc−Fe粒子の透磁率μと周波数との関係、即ち透磁率の周波数依存特性を示す。1MHzから1.0GHzで、透磁率は54でほぼ一定であった。2GHzで急激に減少し、ほぼ1となり、その後強磁性共鳴が観測された。強磁性自然共鳴周波数(fr)は6.5GHzであった。   Next, the measurement result of the magnetic permeability μ will be described. The permeability was measured with a fine metal particle / PVP composite film (PMM-9G1) manufactured by Ryowa Denshi. This measuring device uses a one-turn coil method and can measure magnetic permeability at frequencies from 1 MHz to 9 GHz. As the measurement sample, a metal fine particle / PVP composite film (film thickness 50 μm) formed on a glass substrate (thickness 0.5 mm) was cut into 4 × 4 mm. FIG. 2 shows the relationship between the magnetic permeability μ and the frequency of the bcc-Fe particles, that is, the frequency dependence characteristics of the magnetic permeability. From 1 MHz to 1.0 GHz, the magnetic permeability was 54 and almost constant. It decreased rapidly at 2 GHz and became almost 1, after which ferromagnetic resonance was observed. The ferromagnetic natural resonance frequency (fr) was 6.5 GHz.

次に、bcc−Fe粒子の透磁率μの温度依存に関し、-20〜80℃で測定した。この関係を図3に示す。その結果、透磁率は、−20℃で64であった。温度を増加してゆくと、透磁率は減少し、20℃では54となり、80℃では49となった。   Next, the temperature dependence of the magnetic permeability μ of the bcc-Fe particles was measured at −20 to 80 ° C. This relationship is shown in FIG. As a result, the magnetic permeability was 64 at −20 ° C. As the temperature was increased, the permeability decreased to 54 at 20 ° C and 49 at 80 ° C.

次に、図4について述べる。図4は、bcc−Fe粒子のゼロ磁場冷却後の透磁率の温度依存特性を示す図である。透磁率μは36K(-237℃)で極大値を示し、極大値の前後の温度において透磁率は低下するが、透磁率が急激に低下する範囲は、磁気デバイスの通常の使用温度範囲−20℃〜80℃に対して、十分に遠い温度範囲にあることが確認された。   Next, FIG. 4 will be described. FIG. 4 is a diagram showing the temperature dependence characteristics of the magnetic permeability of the bcc-Fe particles after cooling with zero magnetic field. The magnetic permeability μ shows a maximum value at 36 K (−237 ° C.), and the magnetic permeability decreases at temperatures around the maximum value. It was confirmed that it was in a temperature range far enough from -80 ° C.

(実施例2:bcc−Fe70Co30
次に、磁性材料がbcc−Fe70Co30の場合の実施例について述べる。
(Example 2: bcc-Fe 70 Co 30 )
Next, an example in which the magnetic material is bcc-Fe 70 Co 30 will be described.

容量100ml のフラスコにて、50mlのオルトジクロロベンゼンに7gのトリオクチルフォスフィンオキサイド(TOPO)および5gのオレイン酸を溶解させ、マントルヒータにて182℃に加熱する。この溶媒に、6g のFe(CO)5 および2.24gのCo2(CO)8を溶解させた10mlのオルトジクロロベンゼンを注射器にて投入する。投入直後、FeCo微粒子が生成され反応溶液は黒色化する。FeCo微粒子の酸化を防止するために、Pt(acac)を1.43g加えFeCo微粒子表面をPtでコートした。60秒後マントルヒータを除去し自然冷却する。 In a 100 ml flask, 7 g of trioctylphosphine oxide (TOPO) and 5 g of oleic acid are dissolved in 50 ml of orthodichlorobenzene and heated to 182 ° C. with a mantle heater. Into this solvent, 10 ml of orthodichlorobenzene in which 6 g of Fe (CO) 5 and 2.24 g of Co 2 (CO) 8 are dissolved is introduced by a syringe. Immediately after the addition, FeCo fine particles are generated and the reaction solution is blackened. In order to prevent oxidation of FeCo fine particles, 1.43 g of Pt (acac) was added and the FeCo fine particle surface was coated with Pt. After 60 seconds, remove the mantle heater and let it cool naturally.

試料は冷却後、未反応物および副生成物を除去するため、反応溶液に36mlのエタノールを加え遠心分離(3000rpm×20分)を行い、微粒子を沈殿させる。上澄みを除去後、沈殿物にトルエン10mlを加え微粒子を再分散させる。   After the sample is cooled, in order to remove unreacted substances and by-products, 36 ml of ethanol is added to the reaction solution and centrifuged (3000 rpm × 20 minutes) to precipitate fine particles. After removing the supernatant, 10 ml of toluene is added to the precipitate to redisperse the fine particles.

得られた試料のX線回折を行い、さらに組成の分析を結果、結晶系がbcc(体心立法格子)Fe70Co30であることが明らかになった。 The obtained sample was subjected to X-ray diffraction, and the composition was further analyzed. As a result, it was found that the crystal system was bcc (body-centered cubic) Fe 70 Co 30 .

粒径の測定は実施例1と同様に行った。a軸方向の粒径15.1nm,c軸方向の粒径が5.0nmの回転楕円体微粒子試料が得られたことを確認した。   The particle size was measured in the same manner as in Example 1. It was confirmed that a spheroidal fine particle sample having a particle size of 15.1 nm in the a-axis direction and 5.0 nm in the c-axis direction was obtained.

金属微粒子・PVP複合膜(膜厚50μm)の形成方法は実施例1と同様である。複合膜中のFe70Co30微粒子の体積分率は60%であった。飽和磁化の測定、ゼロ磁場冷却後の透磁率の温度依存、磁気異方性および透磁率μの測定は実施例1と同様である。飽和磁化の値は、1950emu/ccであった。透磁率μが極大をとる温度は36K(-237℃)であった。 The formation method of the metal fine particle / PVP composite film (thickness: 50 μm) is the same as in Example 1. The volume fraction of Fe 70 Co 30 fine particles in the composite film was 60%. Measurement of saturation magnetization, temperature dependence of permeability after cooling with zero magnetic field, measurement of magnetic anisotropy and permeability μ are the same as in the first embodiment. The value of saturation magnetization was 1950 emu / cc. The temperature at which the magnetic permeability μ reached a maximum was 36K (−237 ° C.).

実施例1と同様にbcc結晶構造をもつFe70Co30の単結晶を作成し、形状磁気異方性を測定した。その結果、Kushapeは−1×107erg/ccであった。また、試料の1GHzでの透磁率は207であった。さらに、自然共鳴周波数は3.6GHzであった。 A single crystal of Fe 70 Co 30 having a bcc crystal structure was prepared in the same manner as in Example 1, and the shape magnetic anisotropy was measured. As a result, Ku shape was −1 × 10 7 erg / cc. Further, the permeability of the sample at 1 GHz was 207. Furthermore, the natural resonance frequency was 3.6 GHz.

(実施例3:fcc−Co)
次に、磁性材料がfcc−Coの場合の実施例について述べる。
(Example 3: fcc-Co)
Next, an example in which the magnetic material is fcc-Co will be described.

容量100ml のフラスコにて、50mlのオルトジクロロベンゼンに4.6gのトリオクチルフォスフィンオキサイド(TOPO)および3.4g のオレイン酸を溶解させ、マントルヒータにて182℃に加熱する。この溶媒に、8.2g のジコバルトオクタカルボニルCo2(CO)8を溶解させた10mlのオルトジクロロベンゼンを注射器にて投入する。投入直後、Co微粒子が生成され反応溶液は黒色化する。Co微粒子の酸化を防止するために、Pt(acac)を2.1g加え実施例1と同様にCo微粒子表面をPtでコートした。60秒後マントルヒータを除去し自然冷却する。 In a 100 ml flask, 4.6 g of trioctylphosphine oxide (TOPO) and 3.4 g of oleic acid are dissolved in 50 ml of orthodichlorobenzene and heated to 182 ° C. with a mantle heater. Into this solvent, 10 ml of orthodichlorobenzene in which 8.2 g of dicobalt octacarbonyl Co 2 (CO) 8 is dissolved is charged by a syringe. Immediately after the addition, Co fine particles are generated and the reaction solution becomes black. In order to prevent oxidation of the Co fine particles, 2.1 g of Pt (acac) was added and the surface of the Co fine particles was coated with Pt in the same manner as in Example 1. After 60 seconds, remove the mantle heater and let it cool naturally.

試料は冷却後、未反応物および副生成物を除去するため、反応溶液に100mlのエタノールを加え遠心分離(3000rpm×20分)を行いCo微粒子を沈殿させる。上澄みを除去後、沈殿物にトルエン10mlを加えCo微粒子を再分散させた。   After the sample is cooled, in order to remove unreacted substances and by-products, 100 ml of ethanol is added to the reaction solution and centrifuged (3000 rpm × 20 minutes) to precipitate Co fine particles. After removing the supernatant, 10 ml of toluene was added to the precipitate to redisperse the Co fine particles.

得られた試料をX線回折を行った結果、結晶系がfcc(面心立法格子)Coであることが明らかになった。粒径の測定は実施例1と同様に行った。a軸方向の粒径10.3nm,c軸方向の粒径が3.4nmの回転楕円体微粒子試料が得られたことを確認した。   As a result of X-ray diffraction of the obtained sample, it was revealed that the crystal system was fcc (face centered cubic) Co. The particle size was measured in the same manner as in Example 1. It was confirmed that a spheroidal fine particle sample having a particle size in the a-axis direction of 10.3 nm and a particle size in the c-axis direction of 3.4 nm was obtained.

金属微粒子・PVP複合膜(膜厚50μm)の形成方法は実施例1と同様である。複合膜中のCo微粒子の体積分率は60%であった。飽和磁化の測定、ゼロ磁場冷却後の透磁率μの温度依存、磁気異方性および透磁率の測定は実施例1と同様である。飽和磁化の値は、1400emu/ccであった。透磁率が極大をとる温度は36K(-237℃)であった。   The formation method of the metal fine particle / PVP composite film (thickness: 50 μm) is the same as in Example 1. The volume fraction of Co fine particles in the composite film was 60%. Measurement of saturation magnetization, temperature dependence of permeability μ after cooling with zero magnetic field, measurement of magnetic anisotropy and permeability are the same as in Example 1. The value of saturation magnetization was 1400 emu / cc. The temperature at which the magnetic permeability reached a maximum was 36K (-237 ° C).

実施例1と同様にf.c.c結晶構造をもつCoの単結晶を作成し、それを元にf.c.c. Co粒子の形状磁気異方性を測定した。その結果、形状異方性定数Kushapeは−5.6×106erg/ccであった。また、試料の1GHzでの透磁率は35であった。さらに、自然共鳴周波数は6.7GHzであった。 A Co single crystal having the fcc crystal structure was prepared in the same manner as in Example 1, and the shape magnetic anisotropy of the fcc Co particles was measured based on the single crystal. As a result, the shape anisotropy constant Ku shape was −5.6 × 10 6 erg / cc. Further, the permeability of the sample at 1 GHz was 35. Furthermore, the natural resonance frequency was 6.7 GHz.

(実施例4:dhcp−CoFe)
次に、磁性材料がdhcp−CoFeの場合の実施例について述べる。
(Example 4: dhcp-CoFe)
Next, an example in which the magnetic material is dhcp-CoFe will be described.

容量100ml のフラスコにて、50mlのジオクチルエーテルに13gのオレイン酸を溶解させ、マントルヒータにて287℃に加熱する。この溶媒に、0.47g のFe(CO)5 および11.35gのコバルトアセテートテトラハイドレートCo(ac)・4H2Oを溶解させた10mlのジオクチルエーテルを注射器にて投入する。投入直後、CoFe微粒子が生成され反応溶液は黒色化する。CoFe微粒子の酸化を防止するために、Pt(acac)を0.8g加えCoFe微粒子表面をPtでコートした。60秒後マントルヒータを除去し自然冷却する。
試料は冷却後、未反応物および副生成物を除去するため、反応溶液に100mlのエタノールを加え遠心分離(3000rpm×20分)を行い微粒子を沈殿させる。上澄みを除去後、沈殿物にトルエン10mlを加え微粒子を再分散させる。
In a 100 ml flask, 13 g of oleic acid is dissolved in 50 ml of dioctyl ether and heated to 287 ° C. with a mantle heater. Into this solvent, 10 ml of dioctyl ether in which 0.47 g of Fe (CO) 5 and 11.35 g of cobalt acetate tetrahydrate Co (ac) · 4H 2 O are dissolved is charged by a syringe. Immediately after the addition, CoFe fine particles are generated and the reaction solution becomes black. In order to prevent oxidation of the CoFe fine particles, 0.8 g of Pt (acac) was added and the surface of the CoFe fine particles was coated with Pt. After 60 seconds, remove the mantle heater and let it cool naturally.
After the sample is cooled, in order to remove unreacted substances and by-products, 100 ml of ethanol is added to the reaction solution and centrifuged (3000 rpm × 20 minutes) to precipitate fine particles. After removing the supernatant, 10 ml of toluene is added to the precipitate to redisperse the fine particles.

得られた試料をX線回折を行い、さらに組成の分析を結果、結晶系がd.h.c.p(二重六方最密構造)で組成がCo95Fe5であることが明らかになった。 The obtained sample was subjected to X-ray diffraction, and further compositional analysis revealed that the crystal system was dhcp (double hexagonal close-packed structure) and the composition was Co 95 Fe 5 .

粒径の測定は実施例1と同様に行った。微粒子の形状は球体であり、その粒径は26.3nmであった。   The particle size was measured in the same manner as in Example 1. The shape of the fine particles was a sphere, and the particle size was 26.3 nm.

金属微粒子・PVP複合膜(膜厚50μm)の形成方法は実施例1と同様である。複合膜中のCo95Fe5微粒子の体積分率は60%であった。試料の飽和磁化の測定、ゼロ磁場冷却後の透磁率μの温度依存、磁気異方性および透磁率μの測定は実施例1と同様である。飽和磁化の値は、1400emu/ccであった。温度に対し透磁率μが極大をとる温度は36K(-237℃)であった。 The formation method of the metal fine particle / PVP composite film (thickness: 50 μm) is the same as in Example 1. The volume fraction of Co 95 Fe 5 fine particles in the composite film was 60%. The measurement of the saturation magnetization of the sample, the temperature dependence of the magnetic permeability μ after cooling with zero magnetic field, the measurement of the magnetic anisotropy and the magnetic permeability μ are the same as in Example 1. The value of saturation magnetization was 1400 emu / cc. The temperature at which the magnetic permeability μ takes a maximum with respect to the temperature was 36 K (−237 ° C.).

実施例1と同様にd.h.c.p.結晶構造をもつCo95Fe5の球状単結晶を作成し、試料を半径6mmの球体に研磨加工したものを用い結晶磁気異方性定数を測定した。その結果を元にd.h.c.p. Co95Fe5粒子の結晶磁気異方性(Kugrain)を算出した。その結果、Kugrainは−9×106erg/ccであった。また、試料の1GHzでの透磁率は1700であった。さらに、自然共鳴周波数は1.2GHzであった。 A Co 95 Fe 5 spherical single crystal having a dhcp crystal structure was prepared in the same manner as in Example 1, and the magnetocrystalline anisotropy constant was measured by polishing a sample into a sphere having a radius of 6 mm. Based on the results, the magnetocrystalline anisotropy (Ku grain ) of dhcp Co 95 Fe 5 particles was calculated. As a result, Kugrain was −9 × 10 6 erg / cc. Further, the permeability of the sample at 1 GHz was 1700. Furthermore, the natural resonance frequency was 1.2 GHz.

以上の実施例について、得られた飽和磁化、透磁率および自然共鳴周波数についてまとめると、下記表1のとおりである。   Table 1 below summarizes the obtained saturation magnetization, magnetic permeability, and natural resonance frequency for the above examples.

Figure 2006303298
Figure 2006303298

本発明に係る回転楕円体の模式的斜視図。The typical perspective view of the spheroid concerning the present invention. 本発明に係るbcc−Fe粒子の透磁率μと周波数との関係を示す図。The figure which shows the relationship between the magnetic permeability (micro | micron | mu) and frequency of the bcc-Fe particle | grains which concern on this invention. 本発明に係るbcc−Fe粒子の透磁率μと温度との関係を示す図。The figure which shows the relationship between magnetic permeability (micro | micron | mu) and temperature of bcc-Fe particle | grains which concern on this invention. 本発明に係るbcc−Fe粒子のゼロ磁場冷却後の透磁率の温度依存特性を示す図。The figure which shows the temperature dependence characteristic of the magnetic permeability after the zero magnetic field cooling of the bcc-Fe particle | grains which concern on this invention. 特許文献1に開示された磁性材料の複素透磁率の周波数スペクトルを示す図。The figure which shows the frequency spectrum of the complex magnetic permeability of the magnetic material disclosed by patent document 1. FIG.

Claims (10)

金属の磁性微粒子からなり、その微粒子の大きさは2nm〜100nmで、さらに、磁気異方性定数(Ku)が負であり、かつ、残留磁化(Mr)の値が、実質的にゼロであることを特徴とする磁性材料。   It consists of metal magnetic fine particles, the size of the fine particles is 2 nm to 100 nm, the magnetic anisotropy constant (Ku) is negative, and the value of remanent magnetization (Mr) is substantially zero. Magnetic material characterized by that. 請求項1に記載の磁性材料において、前記磁性微粒子は球形の粒子形状を有し、その結晶磁気異方性定数(Kugrain)が負であることを特徴とする磁性材料。 The magnetic material according to claim 1, wherein the magnetic fine particles have a spherical particle shape and have a negative magnetocrystalline anisotropy constant (Ku grain ). 請求項1に記載の磁性材料において、前記磁性微粒子は回転楕円体形状、円盤状、棒状等の扁平状の粒子形状を有し、その形状磁気異方性定数(Kushape)が負であることを特徴とする磁性材料。 2. The magnetic material according to claim 1, wherein the magnetic fine particles have a spheroid shape, a disk shape, a flat shape such as a rod shape, and a negative shape magnetic anisotropy constant (Ku shape ). Magnetic material characterized by 請求項1に記載の磁性材料において、前記磁性微粒子のゼロ磁場冷却後の透磁率の温度依存特性において透磁率極大となる温度が、磁気デバイスの使用温度範囲条件の下限値としての−20℃より低い温度であることを特徴とする磁性材料。   2. The magnetic material according to claim 1, wherein a temperature at which the magnetic permeability becomes maximum in the temperature dependency characteristic of the magnetic fine particles after cooling with zero magnetic field is −20 ° C. as a lower limit value of the operating temperature range condition of the magnetic device. A magnetic material characterized by a low temperature. 請求項1に記載の磁性材料において、前記磁性微粒子は、体心立方構造を有するFe(bcc−Fe)および、Feを主成分とするFe合金からなることを特徴とする磁性材料。   2. The magnetic material according to claim 1, wherein the magnetic fine particles are made of Fe (bcc-Fe) having a body-centered cubic structure and an Fe alloy containing Fe as a main component. 請求項1に記載の磁性材料において、前記磁性微粒子は、面心立方構造を有するCo(fcc−Co)および、Coを主成分とするCo合金からなることを特徴とする磁性材料。   2. The magnetic material according to claim 1, wherein the magnetic fine particles are made of Co (fcc-Co) having a face-centered cubic structure and a Co alloy containing Co as a main component. 請求項1に記載の磁性材料において、前記磁性微粒子は、面心立方構造を有するNi(fcc−Ni)および、Niを主成分とするNi合金からなることを特徴とする磁性材料。   2. The magnetic material according to claim 1, wherein the magnetic fine particles are made of Ni (fcc-Ni) having a face-centered cubic structure and a Ni alloy containing Ni as a main component. 請求項1に記載の磁性材料において、前記磁性微粒子は、二重最密充填構造を有するCoFe(dhcp−CoFe)からなることを特徴とする磁性材料。   The magnetic material according to claim 1, wherein the magnetic fine particles are made of CoFe (dhcp-CoFe) having a double closest packing structure. 請求項5ないし8のいずれか1項に記載の磁性材料において、前記磁性微粒子は、添加元素としてB,CまたはNを含むことを特徴とする磁性材料。   9. The magnetic material according to claim 5, wherein the magnetic fine particles contain B, C, or N as an additive element. 前記請求項1ないし9のいずれか1項に記載の磁性材料を、誘電体材料中に分散したことを特徴とする磁気デバイス。

10. A magnetic device comprising the magnetic material according to claim 1 dispersed in a dielectric material.

JP2005124946A 2005-04-22 2005-04-22 Magnetic material and magnetic device Pending JP2006303298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005124946A JP2006303298A (en) 2005-04-22 2005-04-22 Magnetic material and magnetic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005124946A JP2006303298A (en) 2005-04-22 2005-04-22 Magnetic material and magnetic device

Publications (1)

Publication Number Publication Date
JP2006303298A true JP2006303298A (en) 2006-11-02

Family

ID=37471213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005124946A Pending JP2006303298A (en) 2005-04-22 2005-04-22 Magnetic material and magnetic device

Country Status (1)

Country Link
JP (1) JP2006303298A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046125A1 (en) * 2009-10-16 2011-04-21 ミツミ電機株式会社 Magnetic material for high frequency applications and high frequency device
JP2011086788A (en) * 2009-10-16 2011-04-28 Mitsumi Electric Co Ltd Magnetic material for high frequency and high frequency device
WO2011055845A1 (en) * 2009-11-09 2011-05-12 株式会社フェローテック Magnetic member and electronic parts
JP2017120924A (en) * 2011-08-31 2017-07-06 株式会社東芝 Magnetic material, inductor element, magnetic ink, and antenna device
US10090088B2 (en) 2015-09-14 2018-10-02 Kabushiki Kaisha Toshiba Soft magnetic material, rotating electric machine, motor, and generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054012A (en) * 1998-07-31 2000-02-22 Internatl Business Mach Corp <Ibm> Production of transition metal nanograin
JP2001167922A (en) * 1999-12-14 2001-06-22 Nippon Telegr & Teleph Corp <Ntt> Fine particle magnetic body
JP2003092207A (en) * 2001-09-18 2003-03-28 Sony Corp Magnetic-particle producing method, magnetic particle, and magnetic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054012A (en) * 1998-07-31 2000-02-22 Internatl Business Mach Corp <Ibm> Production of transition metal nanograin
JP2001167922A (en) * 1999-12-14 2001-06-22 Nippon Telegr & Teleph Corp <Ntt> Fine particle magnetic body
JP2003092207A (en) * 2001-09-18 2003-03-28 Sony Corp Magnetic-particle producing method, magnetic particle, and magnetic material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046125A1 (en) * 2009-10-16 2011-04-21 ミツミ電機株式会社 Magnetic material for high frequency applications and high frequency device
JP2011086788A (en) * 2009-10-16 2011-04-28 Mitsumi Electric Co Ltd Magnetic material for high frequency and high frequency device
CN102598164A (en) * 2009-10-16 2012-07-18 三美电机株式会社 Magnetic material for high frequency applications and high frequency device
US20120217431A1 (en) * 2009-10-16 2012-08-30 Mitsumi Electric Co. Ltd. Magnetic material for high frequency applications and high frequency device
WO2011055845A1 (en) * 2009-11-09 2011-05-12 株式会社フェローテック Magnetic member and electronic parts
JP2011119661A (en) * 2009-11-09 2011-06-16 Ferrotec Corp Magnetic member, and electronic component
CN102687214A (en) * 2009-11-09 2012-09-19 磁性流体技术株式会社 Magnetic member and electronic parts
US9627111B2 (en) 2009-11-09 2017-04-18 Ferrotec Corporation Magnetic member and electronic component
JP2017120924A (en) * 2011-08-31 2017-07-06 株式会社東芝 Magnetic material, inductor element, magnetic ink, and antenna device
US10090088B2 (en) 2015-09-14 2018-10-02 Kabushiki Kaisha Toshiba Soft magnetic material, rotating electric machine, motor, and generator

Similar Documents

Publication Publication Date Title
EP1339075A1 (en) Magnetic nanomaterials and synthesis method
Zhan et al. Nanocomposite co/sio/sub 2/soft magnetic materials
WO2015166795A1 (en) Sputtering target and process for production thereof
JP6210401B2 (en) High electrical resistance ferromagnetic thin film
JP2006303298A (en) Magnetic material and magnetic device
Kang et al. Synthesis and phase transition of self-assembled FePd and FePdPt nanoparticles
JP2009054709A (en) Dust core and manufacturing method therefor
Markondeya Raj et al. Magnetic losses in metal nanoparticle-insulator nanocomposites
KR101963265B1 (en) Inductor component
JP2013125901A (en) Magnetic nanoparticle
Li et al. Size effect on the static and dynamic magnetic properties of W-type barium ferrite composites: from microparticles to nanoparticles
Yatsugi et al. Composition-controlled synthesis of solid-solution Fe–Ni nanoalloys and their application in screen-printed magnetic films
Kuanr et al. Size dependent microwave properties of ferrite nanoparticles: Application to microwave devices
CN104465005A (en) Magnetic material and equipment
JP7251468B2 (en) Composite magnetic materials, magnetic cores and electronic components
JP3956061B2 (en) Uniaxial magnetic anisotropic film
JP2007081246A (en) Magnetic film and magnetic device
Imaoka et al. Progress with insulating nanocomposites based on ferrite plating of Sm2Fe17N3 micropowders
JP6407252B2 (en) Magnetic materials and devices
JP2005311078A (en) Composite magnetic component and manufacturing method thereof
JPH05251224A (en) Composite magnetic material
JP7338644B2 (en) Sintered compact and its manufacturing method
JP7133666B2 (en) Soft magnetic flat powder
US11842841B2 (en) Coil component
Matsushita et al. High-flux density and low-core losses attained for ferrite/permalloy composite core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118