JP7133666B2 - Soft magnetic flat powder - Google Patents

Soft magnetic flat powder Download PDF

Info

Publication number
JP7133666B2
JP7133666B2 JP2021019506A JP2021019506A JP7133666B2 JP 7133666 B2 JP7133666 B2 JP 7133666B2 JP 2021019506 A JP2021019506 A JP 2021019506A JP 2021019506 A JP2021019506 A JP 2021019506A JP 7133666 B2 JP7133666 B2 JP 7133666B2
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
magnetic
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021019506A
Other languages
Japanese (ja)
Other versions
JP2022122349A (en
Inventor
滉大 三浦
俊之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2021019506A priority Critical patent/JP7133666B2/en
Priority to PCT/JP2021/042108 priority patent/WO2022172543A1/en
Priority to KR1020237014021A priority patent/KR20230144518A/en
Publication of JP2022122349A publication Critical patent/JP2022122349A/en
Application granted granted Critical
Publication of JP7133666B2 publication Critical patent/JP7133666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Description

本発明は、軟磁性扁平粉末に関する。詳細には、本発明は、ノイズ抑制用磁性シートに用いる軟磁性扁平粉末に関する。 The present invention relates to soft magnetic flat powder. More specifically, the present invention relates to soft magnetic flat powder used for noise suppression magnetic sheets.

携帯電話機、ノート型パーソナルコンピュータ、タブレット型パーソナルコンピュータ等の携帯用電子機器が、近年普及している。最近では、これらの機器の小型化及び高性能化が進んでいる。機器の小型化に伴い、機器内の回路部品にも、小型化及び高性能化の要求が高まっている。小型化及び高性能化された機器では、回路に装着される電子部品の密度が高い。従って、この電子部品から放射される電波ノイズに起因して、電子部品同士間の電波干渉、及び電子回路同士間の電波干渉が生じやすい。電波干渉は、電子機器の誤動作を招来する。 2. Description of the Related Art Portable electronic devices such as mobile phones, notebook personal computers, and tablet personal computers have become popular in recent years. Recently, these devices are becoming smaller and higher in performance. Along with the miniaturization of devices, there is an increasing demand for miniaturization and high performance of circuit components in the devices. Devices with smaller size and higher performance have a high density of electronic components mounted on circuits. Therefore, due to the radio wave noise radiated from these electronic components, radio wave interference between electronic components and between electronic circuits are likely to occur. Radio wave interference causes malfunction of electronic equipment.

電波干渉の抑制の目的で、電子機器にノイズ抑制シートが挿入されることがある。このノイズ抑制シートは、放出された放射電波(ノイズ)を磁力に変換し、電子回路外への電波放出を防ぐ。ノイズ抑制シートには、高い透磁率が求められる。 Noise suppression sheets are sometimes inserted into electronic devices for the purpose of suppressing radio wave interference. This noise suppression sheet converts emitted radio waves (noise) into magnetic force and prevents radio waves from being emitted outside the electronic circuit. A noise suppression sheet is required to have a high magnetic permeability.

特許文献1には、絶縁性軟磁性体層を有する電磁波干渉抑制体が開示されている。この絶縁性軟磁性体層は、樹脂等の有機結合剤と、金属磁性フィラーとしての軟磁性体粉末を含んでいる。この軟磁性体粉末として、Fe-Si-Al合金からなる扁平状微粉末が用いられている。このような金属磁性フィラーには、ノイズ抑制シート等の磁性シートにおいて、高い複素透磁率の実部μ’及び虚部μ’’を実現することが要求される。所謂Ollendorffの式からわかるように、磁性シートにおける高い実部μ’及び虚部μ’’を達成するためには、磁性シート中に軟磁性粉末を高充填すること、透磁率の高い軟磁性粉末を用いること、及び、反磁界を下げるため磁化方向に高いアスペクト比を持つ扁平粉末を用いることが重要である。 Patent Literature 1 discloses an electromagnetic interference suppressor having an insulating soft magnetic layer. This insulating soft magnetic layer contains an organic binder such as a resin and soft magnetic powder as a metal magnetic filler. As this soft magnetic powder, a flat fine powder made of an Fe--Si--Al alloy is used. Such a metallic magnetic filler is required to realize a real part μ′ and an imaginary part μ″ of high complex magnetic permeability in a magnetic sheet such as a noise suppression sheet. As can be seen from the so-called Ollendorff equation, in order to achieve high real part μ′ and imaginary part μ″ in the magnetic sheet, it is necessary to fill the magnetic sheet with a large amount of soft magnetic powder, and flattened powder with a high aspect ratio in the direction of magnetization to reduce the demagnetizing field.

特許文献2は、50%粒子径D50(メジアン径)、保磁力Hc及び嵩密度BDが所定の関係を満たす扁平状軟磁性材料を開示している。特許文献2では、アトマイズ法で作製された軟磁性粉末のポロシティを低減することで、メジアン径を増加させ、これにより高いアスペクト比を得ることにより、高いμ’を達成している。 Patent Document 2 discloses a flat soft magnetic material in which a 50% particle size D50 (median size), a coercive force Hc, and a bulk density BD satisfy a predetermined relationship. In Patent Document 2, by reducing the porosity of the soft magnetic powder produced by the atomization method, the median diameter is increased, thereby obtaining a high aspect ratio, thereby achieving a high μ′.

特許文献3には、組成が質量%で、Feが84.0%以上96.0%以下、Siが3.0%以上8.5%以下、Alが1.0%以上13.0%以下であり、アスペクト比が15以上の軟磁性扁平粉末が提案されている。特許文献3では、Fe-Si-Al合金の組成を調節することで、扁平加工後の粉末のメジアン径D50を増加させる技術が開示されている。 In Patent Document 3, the composition is mass%, Fe is 84.0% or more and 96.0% or less, Si is 3.0% or more and 8.5% or less, and Al is 1.0% or more and 13.0% or less and a flat soft magnetic powder having an aspect ratio of 15 or more has been proposed. Patent Document 3 discloses a technique for increasing the median diameter D50 of powder after flattening by adjusting the composition of the Fe—Si—Al alloy.

特許第3401650号Patent No. 3401650 特開2009-266960号公報JP 2009-266960 A 特開2017-118114号公報JP 2017-118114 A

近年の電子機器に用いられるノイズ抑制シート等の磁性シートには、さらなる性能向上の要請がある。この要請に応えて、磁性シートのより高い透磁率を達成しうる軟磁性粉末が求められている。 Magnetic sheets such as noise suppression sheets used in electronic devices in recent years are required to further improve their performance. In response to this demand, there is a demand for a soft magnetic powder that can achieve a higher magnetic permeability of the magnetic sheet.

従来、Fe-Si-Al合金からなる軟磁性粉末において、大きなメジアン径を達成するためには、合金組成の大きな変更が必要であった。しかし、特許文献3に記載の通り、合金組成のごくわずかな変化によって、磁気性能は著しく変化する。そのため、合金組成の変更により大きなメジアン径D50が得られたとしても、磁歪定数の増加又は結晶磁気異方性の変化によって透磁率の向上が見込めない場合がある。 Conventionally, in order to achieve a large median diameter in soft magnetic powders made of Fe--Si--Al alloys, it has been necessary to greatly change the alloy composition. However, as described in Patent Document 3, even a slight change in the alloy composition significantly changes the magnetic performance. Therefore, even if a large median diameter D50 is obtained by changing the alloy composition, it may not be possible to expect an improvement in the magnetic permeability due to an increase in the magnetostriction constant or a change in the magnetocrystalline anisotropy.

また、アトマイズ法で作製された軟磁性粉末を原料として用いる場合、特許文献2に開示された技術によるポロシティのさらなる低減は期待できない。 Further, when soft magnetic powder produced by the atomization method is used as a raw material, further reduction of porosity by the technique disclosed in Patent Document 2 cannot be expected.

本発明の目的は、高い透磁率を有する高性能磁性シートの製造に適した軟磁性扁平粉末の提供にある。 An object of the present invention is to provide a soft magnetic flat powder suitable for producing a high-performance magnetic sheet having a high magnetic permeability.

本発明に係る軟磁性扁平粉末の材質は、添加元素としてBを含むFe-Si-Al系合金である。この合金中のBの含有率は、0.002質量%以上0.015質量%以下である。 The material of the flat soft magnetic powder according to the present invention is an Fe--Si--Al alloy containing B as an additive element. The content of B in this alloy is 0.002% by mass or more and 0.015% by mass or less.

好ましくは、この軟磁性扁平粉末の体積基準のメジアン径D50は、30μm以上80μm以下である。 Preferably, the soft magnetic flat powder has a volume-based median diameter D50 of 30 μm or more and 80 μm or less.

好ましくは、この軟磁性扁平粉末のタップ密度TDは、1.25g/cm以下である。 Preferably, the soft magnetic flat powder has a tap density TD of 1.25 g/cm 3 or less.

好ましくは、この軟磁性扁平粉末の長手方向に磁場を印加して測定した保磁力Hcは、400A/m以下である。 Preferably, the coercive force Hc measured by applying a magnetic field in the longitudinal direction of the flat soft magnetic powder is 400 A/m or less.

本発明に係る軟磁性扁平粉末は、微量のBを添加元素として含むFe-Si-Al系合金から形成されることにより、磁歪定数の増加及び結晶磁気異方性の過大な変化を伴うことなく、高い透磁率が得られる。この軟磁性粉末をフィラーとして配合することにより、ノイズ抑制効果に優れた磁性シートが得られる。 The soft magnetic flat powder according to the present invention is formed from an Fe—Si—Al alloy containing a small amount of B as an additive element, so that the magnetostriction constant does not increase and the magnetocrystalline anisotropy does not change excessively. , high permeability can be obtained. By blending this soft magnetic powder as a filler, a magnetic sheet having an excellent noise suppressing effect can be obtained.

図1は、実施例及び比較例の軟磁性扁平粉末を含む磁性シートの実部μ’の、B含有率による変化が示されたグラフである。FIG. 1 is a graph showing changes in the real part μ′ of magnetic sheets containing soft magnetic flat powders of Examples and Comparative Examples depending on the B content. 図2は、実施例及び比較例の軟磁性扁平粉末のメジアン径D50の、B含有率による変化が示されたグラフである。FIG. 2 is a graph showing changes in the median diameter D50 of soft magnetic flat powders of Examples and Comparative Examples depending on the B content. 図3は、実施例及び比較例の軟磁性扁平粉末の保磁力Hcの、B含有率による変化が示されたグラフである。FIG. 3 is a graph showing changes in the coercive force Hc of flat soft magnetic powders of Examples and Comparative Examples depending on the B content.

以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。本発明は、以下の実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。複数の実施形態についてそれぞれ開示された技術的手段を、適宜組み合わせて得られる他の実施形態についても、本発明の技術的範囲に含まれる。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail based on preferred embodiments with appropriate reference to the drawings. The present invention is not limited to the following embodiments, and various modifications are possible within the scope of the claims. Other embodiments obtained by appropriately combining technical means disclosed for multiple embodiments are also included in the technical scope of the present invention.

なお、本願明細書において、範囲を示す「X~Y」は「X以上Y以下」の意味であり、「mass%」と「質量%」とは同義として扱う。また、特に注釈のない限り、試験温度は全て室温である。 In the specification of the present application, "X to Y" indicating a range means "X or more and Y or less", and "mass%" and "mass%" are treated as synonymous. Also, all test temperatures are room temperature unless otherwise noted.

本発明の一実施形態に係る軟磁性扁平粉末の材質は、添加元素としてB(ホウ素)を含むFe―Si―Al系合金である。通常、Fe―Si―Al合金では、Fe(鉄)へのSi(ケイ素)及びAl(アルミニウム)の添加により、D03構造と称される規則格子が形成される。この規則格子を有することで、Fe―Si―Al合金からなる軟磁性扁平粉末では、低い磁歪定数及び結晶磁気異方性定数が同時に達成され、透磁率が向上する。 The material of the flat soft magnetic powder according to one embodiment of the present invention is an Fe—Si—Al alloy containing B (boron) as an additive element. Usually, in Fe--Si--Al alloys, the addition of Si (silicon) and Al (aluminum) to Fe (iron) forms an ordered lattice called D03 structure. By having this ordered lattice, the soft magnetic flat powder made of the Fe—Si—Al alloy achieves a low magnetostriction constant and a magnetocrystalline anisotropy constant at the same time, and improves the magnetic permeability.

[B(ホウ素)]
Bは、本発明において最も重要な添加元素である。このBをFe-Si-Al合金に微量添加するだけで、扁平化後の粉末のメジアン径D50を大きく増加させることができる。さらに、Bの微量添加による磁歪定数及び結晶磁気異方性定数の増加はわずかであるため、メジアン径D50の増加に伴う粉末のアスペクト比の増加により、透磁率が向上することを見出した。これは、Bの添加によって、わずかにFe-Si-Al合金のD03構造が低減されることにより生じる効果であると考えられる。
[B (boron)]
B is the most important additive element in the present invention. The median diameter D50 of the flattened powder can be greatly increased only by adding a small amount of B to the Fe--Si--Al alloy. Furthermore, since the magnetostriction constant and magnetocrystalline anisotropy constant are slightly increased by adding a small amount of B, it was found that the magnetic permeability is improved by increasing the aspect ratio of the powder as the median diameter D50 is increased. This is considered to be an effect caused by the fact that the addition of B slightly reduces the D03 structure of the Fe--Si--Al alloy.

B添加による透磁率向上効果を得る観点から、Fe-Si-Al系合金中のBの含有率は、0.002質量%以上0.015質量%以下であり、0.002質量%以上0.01質量%以下が好ましい。 From the viewpoint of obtaining the effect of improving the magnetic permeability by adding B, the content of B in the Fe—Si—Al alloy is 0.002% by mass or more and 0.015% by mass or less, and 0.002% by mass or more and 0.002% by mass or more. 01% by mass or less is preferable.

[Fe(鉄)、Si(ケイ素)及びAl(アルミニウム)]
Feは、合金の基材である。Feは、軟磁性扁平粉末の磁気特性を高める。本発明において、前述のBを含んでいる限り、Si及びAlの含有率に特に限定はない。
[Fe (iron), Si (silicon) and Al (aluminum)]
Fe is the base material of the alloy. Fe enhances the magnetic properties of the soft magnetic flat powder. In the present invention, the Si and Al contents are not particularly limited as long as the above B is included.

透磁率向上の観点から、Siの含有率は3.0質量%以上が好ましく、4.0質量%以上がより好ましい。Siが過剰であると、飽和磁束密度が低下して透磁率が低下する。高い透磁率の観点から、Siの含有率は12.0質量%以下が好ましく、10.0質量%以下が特に好ましい。 From the viewpoint of improving magnetic permeability, the Si content is preferably 3.0% by mass or more, more preferably 4.0% by mass or more. When Si is excessive, the saturation magnetic flux density is lowered and the magnetic permeability is lowered. From the viewpoint of high magnetic permeability, the Si content is preferably 12.0% by mass or less, and particularly preferably 10.0% by mass or less.

透磁率向上の観点から、Alの含有率は2.0質量%以上が好ましく、3.0質量%以上が特に好ましい。Alが過剰であると、飽和磁束密度が低下して透磁率が低下する。高い透磁率の観点から、Alの含有率は10.0質量%以下が好ましく、7.0質量%以下が特に好ましい。 From the viewpoint of improving magnetic permeability, the Al content is preferably 2.0% by mass or more, and particularly preferably 3.0% by mass or more. When Al is excessive, the saturation magnetic flux density is lowered and the magnetic permeability is lowered. From the viewpoint of high magnetic permeability, the Al content is preferably 10.0% by mass or less, particularly preferably 7.0% by mass or less.

好ましい態様によれば、Fe-Si-Al系合金は、
Si:3.0質量%以上12.0質量%以下
Al:2.0質量%以上10.0質量%以下
及び
B:0.002質量%以上0.015質量%
を含む。残部は、Fe及び不可避的不純物である。
According to a preferred embodiment, the Fe—Si—Al alloy is
Si: 3.0% by mass or more and 12.0% by mass or less Al: 2.0% by mass or more and 10.0% by mass or less and B: 0.002% by mass or more and 0.015% by mass
including. The balance is Fe and unavoidable impurities.

[メジアン径D50]
均質でかつ表面が平滑な磁性シートが得られうるとの観点から、軟磁性扁平粉末のメジアン径D50は、80μm以下が好ましく、70μm以下がより好ましい。アスペクト比の観点から、メジアン径D50は30μ以上が好ましく、40μm以上がより好ましい。
[Median diameter D50]
The median diameter D50 of the flat soft magnetic powder is preferably 80 μm or less, more preferably 70 μm or less, from the viewpoint of obtaining a magnetic sheet that is uniform and has a smooth surface. From the viewpoint of the aspect ratio, the median diameter D50 is preferably 30 μm or more, more preferably 40 μm or more.

メジアン径D50は、粉末の全体積を100%として累積カーブが求められたとき、その累積カーブが50%となる点の粒子の直径である。即ち、本願明細書におけるメジアン径は、体積基準のメジアン径D50である。メジアン径D50は、例えば、日機装社のレーザー回折・散乱式粒子径分布測定装置「マイクロトラックMT3000」により測定される。この装置のセル内に、粉末が純水と共に流し込まれ、粉末をなす各粒子の光散乱情報に基づいて、メジアン径D50が検出される。 The median diameter D50 is the particle diameter at the point where the cumulative curve is 50% when the cumulative curve is obtained with the total volume of the powder as 100%. That is, the median diameter in the specification of the present application is the volume-based median diameter D50. The median diameter D50 is measured by, for example, a Nikkiso laser diffraction/scattering particle size distribution analyzer “Microtrac MT3000”. Powder is poured into the cell of this device together with pure water, and the median diameter D50 is detected based on the light scattering information of each particle forming the powder.

[アスペクト比]
軟磁性扁平粉末は、多数の扁平粒子からなる。扁平粒子は、形状異方性を有する。この異方性は、磁性部材の実部透磁率μ’を高める。透磁率向上の観点から、軟磁性扁平粉末のアスペクト比は、1.5以上が好ましく、5以上がより好ましく、8.0以上が特に好ましい。好ましくは、この扁平粉末のアスペクト比は100以下である。
[aspect ratio]
A soft magnetic flat powder consists of a large number of flat particles. Flattened particles have shape anisotropy. This anisotropy enhances the real permeability μ′ of the magnetic member. From the viewpoint of improving magnetic permeability, the soft magnetic flat powder preferably has an aspect ratio of 1.5 or more, more preferably 5 or more, and particularly preferably 8.0 or more. Preferably, the flattened powder has an aspect ratio of 100 or less.

アスペクト比の測定には、扁平粒子の厚さ方向が観察できる樹脂埋め試料が用いられる。この試料が研磨され、研磨面が走査型電子顕微鏡(SEM)によって観察される。観察時の画像の倍率は、1000倍である。この画像の解析では、画像データが2値化される。2値化画像が楕円に近似されたとき、この楕円の短軸の長さに対する長軸の長さの比が、この粒子のアスペクト比である。4つの視野で得られる多数の2値化粒子のアスペクト比が相加平均されて、軟磁性粉末のアスペクト比が算出される。 For the measurement of the aspect ratio, a resin-embedded sample is used in which the thickness direction of the flattened particles can be observed. This sample is polished and the polished surface is observed with a scanning electron microscope (SEM). The magnification of the image during observation is 1000 times. In this image analysis, the image data is binarized. When the binarized image is approximated to an ellipse, the ratio of the length of the major axis to the length of the minor axis of the ellipse is the aspect ratio of the particle. The aspect ratio of the soft magnetic powder is calculated by arithmetically averaging the aspect ratios of a large number of binarized particles obtained in the four fields of view.

[タップ密度TD]
均質でかつ表面が平滑な磁性シートが得られうるとの観点から、軟磁性扁平粉末のタップ密度TDは、1.25g/cm以下が好ましく、1.00g/cm以下がより好ましく、0.90g/cm以下が特に好ましい。タップ密度TDの下限値は特に限定されないが、好ましくは0.3g/cm以上である。
[Tap density TD]
From the viewpoint of obtaining a homogeneous magnetic sheet with a smooth surface, the tap density TD of the flat soft magnetic powder is preferably 1.25 g/cm 3 or less, more preferably 1.00 g/cm 3 or less, and 0 0.90 g/cm 3 or less is particularly preferred. Although the lower limit of the tap density TD is not particularly limited, it is preferably 0.3 g/cm 3 or more.

タップ密度測定では、約20gの粉末が、容積が100cmであるシリンダーに充填される。測定条件は、以下の通りである。
落下高さ:10mm
タップ回数:200
For tap density measurements, approximately 20 g of powder are packed into a cylinder with a volume of 100 cm 3 . The measurement conditions are as follows.
Drop height: 10mm
Number of taps: 200

[保磁力Hc]
保磁力Hcが高い場合は実部μ’が低く、保磁力Hcが低い場合は実部μ’が高くなる。高い透磁率を達成するとの観点から、保磁力Hcは、400A/m以下が好ましく、300A/m以下がより好ましく、200A/m以下が特に好ましい。
[Coercivity Hc]
When the coercive force Hc is high, the real part μ' is low, and when the coercive force Hc is low, the real part μ' is high. From the viewpoint of achieving high magnetic permeability, the coercive force Hc is preferably 400 A/m or less, more preferably 300 A/m or less, and particularly preferably 200 A/m or less.

保磁力Hcは、磁化された磁性体を磁化されていない状態に戻すために必要な外部磁場の強さである。保磁力Hcの測定には、例えば、電子磁気工業の保磁力計「HC―1031」が用いられうる。具体的には、樹脂製容器に扁平粉末を充填し、この容器の直径方向に磁化した場合の値を、扁平粉末の長手方向の保磁力Hcとして測定した。測定時の最大印加磁場は、239kA/mである。 The coercive force Hc is the strength of the external magnetic field required to return the magnetized magnetic material to the non-magnetized state. For measuring the coercive force Hc, for example, a coercive force meter "HC-1031" manufactured by Denshi Jiki Kogyo Co., Ltd. can be used. Specifically, the flat powder was filled in a resin container, and the value when the container was magnetized in the diameter direction was measured as the longitudinal coercive force Hc of the flat powder. The maximum applied magnetic field during measurement is 239 kA/m.

[軟磁性扁平粉末の製造方法]
本発明に係る軟磁性扁平粉末は、原料粉末に扁平加工が施されることで得られる。原料粉末は、ガスアトマイズ法、水アトマイズ法、ディスクアトマイズ法、粉砕法等によって得られうる。ガスアトマイズ法及びディスクアトマイズ法が、好ましい。
[Method for producing flat soft magnetic powder]
The flat soft magnetic powder according to the present invention is obtained by flattening raw material powder. The raw material powder can be obtained by a gas atomization method, a water atomization method, a disc atomization method, a pulverization method, or the like. Gas atomization and disc atomization are preferred.

例えば、ガスアトマイズ法では、原料金属が加熱されて溶解し、溶湯が得られる。この溶湯が、ノズルから流れ出る。この溶湯に、ガス(アルゴンガス、窒素ガス等)が吹き付けられる。このガスのエネルギーにより、溶湯は粉化して液滴となり、落下されつつ冷却される。この液滴が凝固し、粒子が形成される。このガスアトマイズ法では、溶湯が瞬間的に液滴化し、これと同時に冷却されるので、均一な微細組織が得られる。しかも、連続的に液滴が形成されるので、粒子間の組成差がきわめて小さい。 For example, in the gas atomization method, raw metal is heated and melted to obtain molten metal. This molten metal flows out of the nozzle. A gas (eg, argon gas, nitrogen gas, etc.) is sprayed onto this molten metal. The energy of this gas pulverizes the molten metal into droplets, which are cooled while falling. The droplets solidify to form particles. In this gas atomization method, the molten metal is instantaneously turned into droplets and cooled at the same time, so that a uniform microstructure can be obtained. Moreover, since droplets are continuously formed, the difference in composition between particles is extremely small.

ディスクアトマイズ法では、原料金属が加熱されて溶解し、溶湯が得られる。この溶湯が、ノズルから流れ出る。この溶湯が、高速で回転するディスクの上に落とされる。溶湯は急冷されて凝固し、粉末が得られる。 In the disc atomization method, the raw metal is heated and melted to obtain a molten metal. This molten metal flows out of the nozzle. This molten metal is dropped onto a disk rotating at high speed. The molten metal is quenched and solidified to obtain a powder.

この原料粉末に、扁平加工が施される。典型的な扁平加工は、アトライタによってなされる。乾式加工でもよく、湿式加工でもよい。湿式加工の場合、加工中の酸化を抑制できる有機溶媒を用いることが好ましいが、有機溶媒の種類については特に限定されない。有機溶媒の添加量にも特に限定はなく、原料粉末の種類等に応じて適宜調整される。 This raw material powder is flattened. A typical flattening process is done by an attritor. Dry processing or wet processing may be used. In the case of wet processing, it is preferable to use an organic solvent capable of suppressing oxidation during processing, but the type of organic solvent is not particularly limited. The amount of the organic solvent to be added is also not particularly limited, and is appropriately adjusted according to the type of raw material powder and the like.

扁平加工後の粉末には、必要に応じて、熱処理、分級等の処理が施される。扁平加工前の原料粉末に、必要に応じて、分級及び/又は熱処理が施されてもよい。 After flattening, the powder is subjected to heat treatment, classification, or the like, if necessary. The raw material powder before flattening may be subjected to classification and/or heat treatment, if necessary.

熱処理条件について特に制限は無いが、透磁率向上の観点から、好ましい熱処理温度は500℃~900℃である。熱処理時間は、粉末の処理量、生産性等に応じて適宜調整される。真空中又は不活性ガス中での熱処理が好ましい。 Although there are no particular restrictions on the heat treatment conditions, the heat treatment temperature is preferably 500° C. to 900° C. from the viewpoint of improving the magnetic permeability. The heat treatment time is appropriately adjusted according to the throughput of the powder, productivity and the like. Heat treatment in vacuum or inert gas is preferred.

以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。 The effects of the present invention will be clarified by examples below, but the present invention should not be construed in a limited manner based on the description of these examples.

[実施例1]
ガスアトマイズ及び分級により、原料粉末(組成:Fe-9Si-6Al、B量0.0024質量%)を得た。この原料粉末250g(加工条件A)を、アトライタに投入した。このアトライタには、ナフテン系溶媒も投入した。粉末メディアとして、4.8mmのSUJ2を用いた。このアトライタによって粉末に扁平加工を施すことにより、扁平粉末を得た。この扁平粉末を800℃のアルゴンガス雰囲気で粉末を1時間保持し、徐冷することにより、最終的な評価粉末として、実施例1の軟磁性扁平粉末を得た。
[Example 1]
Raw material powder (composition: Fe-9Si-6Al, B content: 0.0024% by mass) was obtained by gas atomization and classification. 250 g of this raw material powder (processing condition A) was put into an attritor. The attritor was also charged with a naphthenic solvent. SUJ2 of 4.8 mm was used as powder media. A flat powder was obtained by flattening the powder with this attritor. The flattened powder was held in an argon gas atmosphere at 800° C. for 1 hour and then slowly cooled to obtain the soft magnetic flattened powder of Example 1 as the final evaluation powder.

[実施例2-4及び17-18並びに比較例12-13及び19-20]
組成を下表1に示される通りとした他は実施例1と同様にして、実施例2-4及び17-18並びに比較例12-13及び19-20の軟磁性扁平粉末を得た。
[Examples 2-4 and 17-18 and Comparative Examples 12-13 and 19-20]
Soft magnetic flat powders of Examples 2-4 and 17-18 and Comparative Examples 12-13 and 19-20 were obtained in the same manner as in Example 1 except that the compositions were as shown in Table 1 below.

[実施例5-8及び比較例14-15]
組成を下表2に示される通りとし、アトライタへの原料粉末の投入量を500g(加工条件B)とした以外は実施例1と同様にして、実施例5-8及び比較例14-15の軟磁性扁平粉末を得た。投入量の増加に併せて、加工条件を適宜調整した。
[Examples 5-8 and Comparative Examples 14-15]
The compositions of Examples 5-8 and Comparative Examples 14-15 were obtained in the same manner as in Example 1, except that the composition was as shown in Table 2 below, and the amount of raw material powder fed to the attritor was 500 g (processing condition B). A soft magnetic flat powder was obtained. The processing conditions were appropriately adjusted according to the increase in the input amount.

[実施例9-11並びに比較例16及び21]
組成を下表3に示される通りとし、アトライタへの原料粉末の投入量を1000g(加工条件C)とした以外は実施例1と同様にして、実施例9-11並びに比較例16及び21の軟磁性扁平粉末を得た。投入量の増加に併せて、加工条件を適宜調整した。
[Examples 9-11 and Comparative Examples 16 and 21]
Examples 9 to 11 and Comparative Examples 16 and 21 were prepared in the same manner as in Example 1, except that the composition was as shown in Table 3 below, and the amount of raw material powder fed to the attritor was 1000 g (processing condition C). A soft magnetic flat powder was obtained. The processing conditions were appropriately adjusted according to the increase in the input amount.

[評価粉末の組成及び物性]
実施例及び比較例の各軟磁性扁平粉末の組成、メジアン径D50、タップ密度TD及び保磁力Hcを測定した。組成分析には、ICP(Inductive Coupled Plasma)発光分光分析装置を用いた。メジアン径D50、タップ密度TD及び保磁力Hcは、前述した方法により測定した。得られた結果が下表1-3に示されている。メジアン径D50(μm)及び保磁力Hc(A/m)のB含有率(mass%)による変化が、それぞれ図2及び3に示されている。なお、図2-3中、比較例21のデータは省略されている。
[Composition and physical properties of evaluation powder]
The composition, median diameter D50, tap density TD and coercive force Hc of each soft magnetic flat powder of Examples and Comparative Examples were measured. An ICP (Inductive Coupled Plasma) emission spectrometer was used for the composition analysis. The median diameter D50, tap density TD and coercive force Hc were measured by the methods described above. The results obtained are shown in Tables 1-3 below. Changes in median diameter D50 (μm) and coercive force Hc (A/m) with B content (mass%) are shown in FIGS. 2 and 3, respectively. The data of Comparative Example 21 are omitted in FIG. 2-3.

[磁性シートの作製及び評価]
実施例及び比較例の各軟磁性扁平粉末とアクリル樹脂とを混練してスラリーを作製し、ドクターブレード法によりシート状に成形した。その後、60℃、50MPaでプレス加工して、磁性シートを得た。得られた磁性シート中の扁平粉末の体積充填率はいずれも約35%であった。各磁性シートの複素透磁率を、インピーダンスアナライザ(Keysight Technology社の製品名「E4991B」)を用いて測定した。測定は、1MHz~1GHzでおこない、2~5MHzの範囲の実部μ’の平均値が、下表1-3に示されている。複素透磁率の実部μ’の、B含有率(mass%)による変化が図1に示されている。なお、図1中、比較例21のデータは省略されている。
[Preparation and Evaluation of Magnetic Sheet]
The flat soft magnetic powders of Examples and Comparative Examples were kneaded with an acrylic resin to prepare a slurry, which was formed into a sheet by a doctor blade method. After that, it was pressed at 60° C. and 50 MPa to obtain a magnetic sheet. The volume filling rate of the flat powder in the obtained magnetic sheets was about 35%. The complex magnetic permeability of each magnetic sheet was measured using an impedance analyzer (product name "E4991B" manufactured by Keysight Technology). Measurements were made from 1 MHz to 1 GHz and the average values of the real part μ′ over the range 2-5 MHz are given in Tables 1-3 below. FIG. 1 shows the change in the real part μ′ of the complex permeability depending on the B content (mass%). In addition, the data of the comparative example 21 are abbreviate|omitted in FIG.

Figure 0007133666000001
Figure 0007133666000001

Figure 0007133666000002
Figure 0007133666000002

Figure 0007133666000003
Figure 0007133666000003

表1-3に示される通り、いずれの加工条件においても、実施例の軟磁性扁平粉末によれば、比較例の粉末と比較して、透磁率の高い磁性シートを作製できることを確認した。 As shown in Tables 1-3, it was confirmed that the flat soft magnetic powders of Examples could produce magnetic sheets with higher magnetic permeability than the powders of Comparative Examples under any processing conditions.

図2から、いずれの加工条件においても、B含有率が0.002質量%以上の領域で、扁平粉末のメジアン径D50が増加していることがわかる。図3から、B含有率が0.015%を超えると、保磁力Hcが過度に増加することがわかる。これらの結果として、B含有率が0.002質量%以上0.015質量%以下の範囲にある実施例の扁平粉末では、B含有率が0.002質量%未満又は0.025質量%を超える比較例と比べて、透磁率が向上したものと考えられる。 From FIG. 2, it can be seen that the median diameter D50 of the flat powder increases in the region where the B content is 0.002% by mass or more under any processing conditions. It can be seen from FIG. 3 that the coercive force Hc excessively increases when the B content exceeds 0.015%. As a result of these, in the flat powder of the example in which the B content is in the range of 0.002% by mass or more and 0.015% by mass or less, the B content is less than 0.002% by mass or more than 0.025% by mass It is considered that the magnetic permeability is improved as compared with the comparative example.

以上の評価結果から、本発明の優位性は明らかである。 From the above evaluation results, the superiority of the present invention is clear.

以上説明された軟磁性扁平粉末は、種々の磁性部材の製造にも適用されうる。 The soft magnetic flat powder described above can also be applied to the production of various magnetic members.

Claims (4)

扁平粉末であって、
上記扁平粉末の材質が、添加元素としてBを含むFe-Si-Al系合金であり、
上記合金中のBの含有率が0.002質量%以上0.015質量%以下であり、
上記扁平粉末の長手方向に磁場を印加して測定した保磁力Hcが400A/m以下である、軟磁性扁平粉末。
flat powder,
The material of the flat powder is an Fe—Si—Al alloy containing B as an additive element,
The content of B in the alloy is 0.002% by mass or more and 0.015% by mass or less ,
A soft magnetic flat powder having a coercive force Hc of 400 A/m or less as measured by applying a magnetic field in the longitudinal direction of the flat powder.
体積基準のメジアン径D50が30μm以上80μm以下である、請求項1に記載の軟磁性扁平粉末。 2. The soft magnetic flat powder according to claim 1, having a volume-based median diameter D50 of 30 μm or more and 80 μm or less. タップ密度TDが1.25g/cm3以下である、請求項1又は2に記載の軟磁性扁平粉末。 3. The soft magnetic flat powder according to claim 1, having a tap density TD of 1.25 g/cm<3> or less. 上記扁平粉末のアスペクト比が1.5以上100以下である、請求項1から3のいずれかに記載の軟磁性扁平粉末。The soft magnetic flat powder according to any one of claims 1 to 3, wherein the flat powder has an aspect ratio of 1.5 or more and 100 or less.
JP2021019506A 2021-02-10 2021-02-10 Soft magnetic flat powder Active JP7133666B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021019506A JP7133666B2 (en) 2021-02-10 2021-02-10 Soft magnetic flat powder
PCT/JP2021/042108 WO2022172543A1 (en) 2021-02-10 2021-11-16 Soft-magnetic flat powder
KR1020237014021A KR20230144518A (en) 2021-02-10 2021-11-16 Soft magnetic flat powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021019506A JP7133666B2 (en) 2021-02-10 2021-02-10 Soft magnetic flat powder

Publications (2)

Publication Number Publication Date
JP2022122349A JP2022122349A (en) 2022-08-23
JP7133666B2 true JP7133666B2 (en) 2022-09-08

Family

ID=82838629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021019506A Active JP7133666B2 (en) 2021-02-10 2021-02-10 Soft magnetic flat powder

Country Status (3)

Country Link
JP (1) JP7133666B2 (en)
KR (1) KR20230144518A (en)
WO (1) WO2022172543A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052498A1 (en) 2014-10-02 2016-04-07 山陽特殊製鋼株式会社 Soft-magnetic flat powder and process for producing same
WO2016147943A1 (en) 2015-03-17 2016-09-22 山陽特殊製鋼株式会社 Flat soft magnetic powder and production method therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439596B2 (en) * 1972-03-22 1979-11-28
JPS5214516A (en) * 1975-07-26 1977-02-03 Furukawa Electric Co Ltd:The Wear resistant alloys with a high permeability
JPS5357118A (en) * 1976-11-02 1978-05-24 Nippon Musical Instruments Mfg Magnetic material
JPS5447817A (en) * 1977-09-26 1979-04-14 Hitachi Metals Ltd High permeability alloy
JPS5531138A (en) * 1978-08-25 1980-03-05 Nippon Gakki Seizo Kk Production of feea si base magnetic material
JP4636113B2 (en) 2008-04-23 2011-02-23 Tdk株式会社 Flat soft magnetic material and method for producing the same
JP6592424B2 (en) 2016-12-22 2019-10-16 山陽特殊製鋼株式会社 Soft magnetic flat powder and magnetic sheet using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052498A1 (en) 2014-10-02 2016-04-07 山陽特殊製鋼株式会社 Soft-magnetic flat powder and process for producing same
WO2016147943A1 (en) 2015-03-17 2016-09-22 山陽特殊製鋼株式会社 Flat soft magnetic powder and production method therefor

Also Published As

Publication number Publication date
JP2022122349A (en) 2022-08-23
WO2022172543A1 (en) 2022-08-18
KR20230144518A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
TWI577809B (en) Soft magnetic powder, dust core, and magnetic device
JP4636113B2 (en) Flat soft magnetic material and method for producing the same
JP5617173B2 (en) Method for producing flat soft magnetic powder and electromagnetic wave absorber
JP6788328B2 (en) Flat soft magnetic powder and its manufacturing method
JP6757117B2 (en) Soft magnetic flat powder and its manufacturing method
JP7045905B2 (en) Soft magnetic powder and its manufacturing method
JP6712655B2 (en) Soft magnetic powder, soft magnetic material, and method for manufacturing dust core
JP2017157658A (en) Soft magnetic flattened powder and production method thereof
KR102369149B1 (en) Magnetic flat powder and magnetic sheet containing same
JP2018178254A (en) Fe-Ni-BASED ALLOY POWDER AND MANUFACTURING METHOD THEREFOR
WO2020195968A1 (en) Alloy powder for magnetic member
JP2017054910A (en) Soft magnetic metal powder compact core
JP7133666B2 (en) Soft magnetic flat powder
JP7318218B2 (en) Soft magnetic powders, dust cores, magnetic elements and electronic devices
JP2018073947A (en) Soft magnetic alloy, soft magnetic alloy powder and magnetic part
JP6882905B2 (en) Soft magnetic flat powder
KR102393236B1 (en) soft magnetic flat powder
JP6744534B2 (en) Composite magnetic particles and magnetic parts
WO2018079498A1 (en) Flat powder for high frequency applications and magnetic sheet
JP7318219B2 (en) Soft magnetic powders, dust cores, magnetic elements and electronic devices
JP2022121260A (en) Soft magnetic powder, compact magnetic core, magnetic element and electronic appliance
JP2010024479A (en) Flat fine particle of iron alloy and method for producing the same
JP7257150B2 (en) Flame-retardant powder for magnetic components
JP7165690B2 (en) Method for producing flat soft magnetic powder
JP7318217B2 (en) Soft magnetic powders, dust cores, magnetic elements and electronic devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220316

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R150 Certificate of patent or registration of utility model

Ref document number: 7133666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150