JP2006292674A - 光パワーモニタ方法、光パワーモニタ装置及び光デバイス - Google Patents

光パワーモニタ方法、光パワーモニタ装置及び光デバイス Download PDF

Info

Publication number
JP2006292674A
JP2006292674A JP2005117032A JP2005117032A JP2006292674A JP 2006292674 A JP2006292674 A JP 2006292674A JP 2005117032 A JP2005117032 A JP 2005117032A JP 2005117032 A JP2005117032 A JP 2005117032A JP 2006292674 A JP2006292674 A JP 2006292674A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
monitoring
power
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005117032A
Other languages
English (en)
Inventor
Karai Ga
嘉磊 賀
Kazuhiro Kitabayashi
和大 北林
Tetsuya Sakai
哲弥 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005117032A priority Critical patent/JP2006292674A/ja
Publication of JP2006292674A publication Critical patent/JP2006292674A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】 部品点数が少なく、融着接続点を少なくしてシステム全体としての損失を低減可能な光パワーモニタ方法とその装置及び該装置を組み込んだ光デバイスの提供。
【解決手段】 被測定光ファイバの融着接続点の近傍にモニタ用光ファイバを、該融着接続点から発する散乱光を入射可能に配置し、該光モニタ用光ファイバを通して前記散乱光パワーを測定することで、被測定光ファイバの入出力光パワーをモニタすることを特徴とする光パワーモニタ方法。被測定光ファイバの融着接続点の近傍に、該融着接続点から発する散乱光を入射可能に配置されたモニタ用光ファイバと、該モニタ用光ファイバを通して前記散乱光パワーを測定する光検出手段とを有することを特徴とする光パワーモニタ装置。
【選択図】 図1

Description

本発明は、被測定光ファイバの光パワーを測定するための光パワーモニタ方法及び装置に関し、特に、部品点数を少なくし、かつ融着接続点を少なくすることによりシステム全体としての損失を低減することが可能な光パワーモニタ方法と光パワーモニタ装置及び該装置を組み込んだ光デバイスに関する。
光デバイス、特に光増幅作用又は非線形光学効果を高める機能性材料がドープされている光増幅特性のある光ファイバを用いた光デバイスにあっては、励起光、出射光、反射光の各光パワーが装置性能の重要なパラメータとなるため、これらの光が伝搬する光ファイバ、すなわち被測定光ファイバの伝搬光パワー(入射光(入力)、出射光(出力)及び反射光(反射戻り光))をモニタするのが一般的である(例えば、特許文献1参照。)。
従来の光パワーモニタ方法では、入力光、出力光及び反射光のそれぞれの一部をファイバカプラにより所定の分岐比で分岐し、この分岐光を光信号として、或いはフォトダイオード(以下、PDと記す。)で電気信号に変換してモニタするのが殆どである。
図2に従来の光パワーモニタ装置を例示する。この従来装置は、被測定光ファイバ1の接続部に光ファイバカプラ2を挿入、接続して、被測定光ファイバ1から所定の分岐比で光を取り出し可能とし、取り出される分岐光を図示していないPDに導いて光強度を測定するように構成されている。この図2中、符号3と4は融着接続点(以下、接続点と記す。)である。
特開平5−264344号公報
入出力側に光ファイバを用いる光デバイスは、各モジュール間を接続する場合に光ファイバ同士を融着接続することにより簡単に接続することができる。例えば、希土類添加光ファイバの光増幅特性を利用したファイバレーザの場合、励起光を希土類添加光ファイバに入射するためには励起光源の出力側ファイバと希土類添加光ファイバの入力側とを融着接続すれば良く、簡単に接続することができる。しかしながら、この種の光デバイスにおいて、被測定光ファイバ1の励起光パワー等をモニタする必要がある場合には、図2に示したように、光ファイバカプラ2を励起光の出射側と希土類添加光ファイバの入射側の間に挿入しなければならないため、2つの接続点3,4が必要となる。従って、モニタしなくても良い時に比べて、接続点が1つ増えるため、接続損失も2箇所で発生してしまう。
本発明は前記事情に鑑みてなされ、部品点数を少なくし、かつ融着接続点を少なくすることによりシステム全体としての損失を低減することが可能な光パワーモニタ方法と光パワーモニタ装置及び該装置を組み込んだ光デバイスの提供を目的とする。
前記目的を達成するため、被測定光ファイバの融着接続点の近傍に、該融着接続点から発する散乱光を入射可能にモニタ用光ファイバを配置し、該光モニタ用光ファイバを通して前記散乱光パワーを測定することによって被測定光ファイバの伝搬光パワーをモニタすることを特徴とする光パワーモニタ方法を提供する。
本発明の光パワーモニタ方法において、モニタ用光ファイバの受光パワーが適切になるように、前記融着接続点と前記モニタ用光ファイバの先端との距離を調整することが好ましい。
また本発明は、被測定光ファイバの融着接続点の近傍に、該融着接続点から発する散乱光を入射可能に配置されたモニタ用光ファイバと、該モニタ用光ファイバを通して送られる散乱光パワーを測定する光検出手段とを有することを特徴とする光パワーモニタ装置を提供する。
本発明の光パワーモニタ装置において、前記モニタ用光ファイバの先端部が、前記被測定光ファイバの融着接続点と共に前記被測定光ファイバのクラッド屈折率より高い屈折率の接着剤で固定され、且つ該接着剤が熱収縮した補強スリーブで覆われて固定されていることが好ましい。
本発明の光パワーモニタ装置において、前記モニタ用光ファイバの先端部が、前記被測定光ファイバの融着接続点と共に、補強ロッドで覆われ、且つ該補強ロッドの内部で前記被測定光ファイバのクラッド屈折率より高い屈折率の接着剤によって固定されていることが好ましい。
本発明の光パワーモニタ装置において、前記光検出手段が、モニタ用光ファイバを通して送られる光を電気信号に変換するPDであることが好ましい。
また本発明は、光増幅作用又は非線形光学効果を有する光デバイスであって、請求項3〜6のいずれかに記載の光パワーモニタ装置を有し、被測定光ファイバの伝搬光パワーを測定可能に構成されていることを特徴とする光デバイスを提供する。
本発明の光デバイスにおいて、光増幅作用を高める機能性材料がドープされている光増幅用光ファイバを含むことが好ましい。
また、前記機能性材料が、エルビウム、イッテルビウム、ランタン、セリウム、プラセオジム、ネオジム等の希土類イオンからなる群から選択される少なくとも1種であることが好ましい。
本発明の光パワーモニタ方法は、従来の分岐手段と異なって、被測定光ファイバに存在する接続点から漏れ出す接続損失に起因して生じた散乱光をモニタ用光ファイバで受光し、該光を光検出手段に導いて測定することによって、被測定光ファイバの入出力の光パワーをモニタすることができるので、光ファイバカプラを使わず、無駄な接続損失が発生することなく、安価且つ作業性の良い光パワーモニタ方法を提供することができる。
本発明は特に、入出力光パワーの高い光増幅特性のある光ファイバを用いた光ファイバレーザなどの光デバイスへの適用性が高い。
以下、図面を参照して本発明の実施形態を説明する。
図1は、本発明に係る光パワーモニタ装置の一実施形態を示し、図1(a)は光パワーモニタ装置11の構成図、(b)はその要部拡大断面図である。本実施形態の光パワーモニタ装置11は、被測定光ファイバ10A,10Bの融着接続点12(以下、接続点と略記する。)の近傍に、接続点12から発する散乱光18を入射可能に配置されたモニタ用光ファイバ13と、このモニタ用光ファイバ13を通して送られた散乱光パワーを測定する光検出手段としてのPD16とを備えて構成されている。
被測定光ファイバ10A,10Bは、接続点12において2本の光ファイバが融着接続され、該光ファイバに信号光、励起光、増幅された光などが伝搬され、且つその部分の光パワーのモニタが必要とされる光ファイバ部分であればよく、特に限定されない。例えば、ファイバレーザや光ファイバ増幅器などにおいて、励起光源からの出力用光ファイバと、増幅用の希土類添加光ファイバの入力側との接続部などが想定される。被測定光ファイバ10A,10Bの接続点12は、それぞれの光ファイバ端部の被覆を除去し、石英ガラスからなる光ファイバ裸線の端面同士を突き合わせ、光軸合わせした後に融着接続機を用いて融着接続して形成されている。
図1に示す例示では、被測定光ファイバ10A,10Bのうち、一方の被測定光ファイバ10Aが、励起光源であるレーザダイオード17(以下、LDと記す。)の出力側光ファイバであり、他方の被測定光ファイバ10Bが光増幅作用を有する希土類添加光ファイバなどの入力側光ファイバであり、LD17から他方の被測定光ファイバ10Bへの入力光の光パワーをモニタする場合を示している。
この光パワーモニタ装置11においては、モニタ用光ファイバ13の先端部を、被測定光ファイバ10A,10Bの接続点12に隣接配置し、該接続点12近傍部分とモニタ用光ファイバ13の先端部とを被測定光ファイバ10A,10Bのクラッド屈折率より高い屈折率を有する接着剤15で包囲固定し、さらにその接着剤15に熱収縮性の補強スリーブを被せ、これを熱収縮することによって覆うことによって固定されている。
光デバイスにおいて、各モジュールの接続は、光ファイバ同士の融着接続により行われている。従来の技術では、融着接続条件を調整し、接続損失を一定値まで下げることができるが、接続損失を避けることはできない。その接続損失による光が伝搬方向に向かって漏れ光の形で散乱し、接続部12から散乱光18が放出される。被測定光ファイバ10A,10Bの光学特性及び融着接続条件が一定であれば、散乱光18の光パワー分布も一定である。
本発明は、その避けられない接続損失を利用し、モニタしようとする被測定光ファイバ10A,10Bの接続点12近傍に、光の伝搬方向に向けてモニタ用光ファイバ13の先端を設置し、接続損失に起因する散乱光18を受光する。前述した通り、接続損失に起因する散乱光パワーの分布が一定であるため、接続点12近傍の所定位置に設置したモニタ用光ファイバ13の受光パワーも一定となる。すなわちモニタ用光ファイバ13で受光された散乱光パワーと、被測定光ファイバ10A,10Bを伝搬する光パワー(以下、伝搬光パワーと記す。)との相関が一定であるので、モニタ用光ファイバ13で受光された散乱光パワーをPD16で測定することで、簡単に伝搬光パワーを推定することができ、伝搬光パワーを簡単にモニタすることができる。
前記モニタ用ファイバ13の固定方法としては、次の2つの方法が挙げられる。
1)モニタ用光ファイバ13を所定位置に設置した後、モニタ用光ファイバ13の先端部及び被測定光ファイバ10A,10Bの接続点12近傍部とともに、接着剤15を内設した補強スリーブ14で覆い、熱収縮することによって固定する。
2)モニタ用光ファイバ13を所定位置に設置した後、モニタ用光ファイバの先端部及び被測定光ファイバ10A,10Bの接続点12近傍部とともに補強ロッドで覆い、補強ロッドの両端から接着剤を注入し、硬化させる。
なお、前記1)、2)において使用する接着剤15は、被測定光ファイバ10A,10Bのクラッド屈折率より高い屈折率を持つ接着剤が好ましい。
接続点12の付近では、空間位置によって散乱光18のパワー分布が異なるので、モニタ用光ファイバ13の先端を所定位置に設置後、その位置を変えずに固定することが本発明にとって重要な課題である。言い換えれば、モニタ用光ファイバ13の先端位置が一定であれば、その受光パワーと、モニタしようとする伝搬光パワーとの相関が一定となり、モニタ用光ファイバ13の受光パワーによって伝搬光パワーを間接的にモニタすることができる。
通常光ファイバ同士の融着接続は、前処理と言われる光ファイバの先端被覆を除去する工程がある。すなわち、接続点12の付近では、光ファイバが石英ガラスからなる裸線の状態のままである。その接続部12を保護するため、通常、予め光ファイバに通しておいた、熱溶融接着剤を内設した補強スリーブ(熱収縮チューブとも言う)で接続部12を再被覆し、補強している。
そこで、本発明では、モニタ用光ファイバ13を所定位置に設置した後、モニタ用光ファイバ13の先端部と被測定光ファイバ10A,10Bの接続部12近傍部とを一緒に補強スリーブ14で被覆することで、追加の設備や工程なく、通常必要となる補強工程の手順によって接続部13の補強と同時にモニタ用光ファイバ13を設置、固定することができる。
また、本発明では、前記の接着剤の屈折率が、入出力側の光ファイバのクラッド屈折率より高いことが好ましい。本発明では、接続点12近傍にて接続損失に起因する散乱光パワーを受光することで被測定光ファイバ10A,10Bの伝搬光パワーをモニタしている。そのため、接続点12近傍にて接続損失に起因する散乱光18を外部空間に漏出させることが前提となる。しかし、接続点12近傍を覆う接着剤15の屈折率が被測定光ファイバ10A,10Bのクラッドの屈折率より低い場合には、一度コアから放射された散乱光18が屈折率の低い接着剤で反射され、再び光ファイバに戻り、光ファイバのクラッドを経由し、クラッドモードの形で伝搬されてしまう。従って、接続点12近傍にて接続損失を外部空間に散乱させるためには、本発明で用いた接着剤15の屈折率が被測定光ファイバ10A,10Bのクラッド屈折率より高いことが望ましい。
一方、市販補強スリーブの内設熱溶融接着剤の種類は限られている。接着剤の選択(例えば、屈折率の選択)が必要となる場合、前記熱収縮方式の補強スリーブ14に代えて、ガラスロッドなどの補強ロッドで、モニタ用光ファイバ13の先端部及び被測定光ファイバ10A,10Bの接続点12近傍部を一括被覆し、該ロッドの両端から所定の接着剤を注入し、硬化させることで固定する方法が有効である。また、このときに使用する接着剤は熱溶融接着剤に限定されることなく、例えば、市販の紫外線硬化型樹脂を使用しても良い。
前述の接着剤は、被測定光ファイバ10A,10Bの伝搬光の波長帯域で吸収の少ない接着剤を使用することが好ましい。前述の2つの固定方法のいずれにも、接着剤15を補強スリーブ14内に充填する必要があるため、モニタしようとする伝搬光の波長にもよるが、この接着剤が接続損失に起因する散乱光18を吸収してしまう可能性もある。モニタしようとする伝搬光の波長帯域において吸収の大きい接着剤を使用した場合には、モニタ用光ファイバ13の受光パワーの絶対値が接着剤による吸収によって検出下限まで小さくなり、検出・応答できなくなる恐れがあるだけでなく、吸収された光パワーが熱エネルギーになり、大量の熱が発生する可能性があり、接続部分の補強用樹脂自体が燃えてしまう恐れもある。従って、本発明に使用する接着剤は、モニタしようとする伝搬光の波長帯域にて吸収の少ない接着剤を使用することが好ましい。
本発明において、モニタ用光ファイバ13からの光信号をPD16で受け、電気信号に変換することが好ましい。
また、モニタ用光ファイバの受光パワーが適切になるように、接続点12とモニタ用光ファイバ13の先端との距離を調整することが好ましい。
この光パワーモニタ装置11において、モニタ用光ファイバ13からの光信号を直接モニタすることでも良いが、光デバイスの制御回路が電気回路である場合、光信号を直接モニタより、PDチップなどの受光素子で光信号を電気信号に変換してからモニタすることが一般的である。本発明でも、光デバイスの制御回路が電気回路適用の場合、前記のモニタ用光ファイバ13からの光信号をPD16で電気信号に変換することが望ましい。また、PD16で受光した光パワーが弱い場合には、PD16の制御回路上に電気増幅回路を設置することが好ましい。
また、PDなどの素子は許容最大パワーがあり、それ以上になると素子を破壊する恐れがある。PD16の受光パワーが許容最大パワー以上になる恐れがある場合には、PD16の受光前の部分に通常の減衰用光ファイバを入れても勿論良いのであるが、本発明ではPD16の受光パワーが適切な量となるように、モニタ用光ファイバ13先端の設置位置、すなわちモニタ用光ファイバ13の先端と接続点12との距離を調整することが望ましい。基本的には、モニタ用光ファイバ13の先端が接続点12より遠いほど受光パワーが小さくなる(後述する実施例1参照)。
この光パワーモニタ装置11は、原理的には全ての入出力側に光ファイバを用いる光デバイスに適用可能であるが、特に光増幅作用又は非線形光学効果を高める機能性材料がドープされている光増幅特性のある光ファイバを用いたファイバレーザ、光ファイバ増幅器などの光デバイスなどに適用することが望ましい。
高い入出力光パワーを持つ光増幅特性のあるファイバレーザなどの光デバイスでは、入出力光パワーの絶対値が大きいため、接続損失も大きい。例えば、ハイパワーのファイバレーザの場合、出力側の光パワーが10W以上のケースが多い。その場合、出力側の接続損失がわずか0.1dBとしても、絶対パワーは200mW以上になる。その接続損失の0.01%を受光しても−16dBの光パワーとなり、十分検出できるレベルである。
また、前記の光増幅作用を高める機能性材料については、希土類元素であるエルビウム(Er)、イッテルビウム(Yb)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)などの希土類イオンを少なくとも1種類含んでいることが望ましい。
[実施例1]
図1に示す装置を作製し、LDからの入力光パワーのモニタを行った。
光源は中心波長980nm、最大出力500mWのLDを用いた。被測定光ファイバである入力側、出力側の光ファイバは、カットオフ波長940nm、モードフィールド径6.7μmのシングルモード光ファイバを用いた。また、入・出力側光ファイバ間の接続点の接続損失は0.1dB(約11.4mW)になるように調整した。
モニタ用光ファイバは、コア径50μm、クラッド径125μm、開口数(NA)0.2のマルチモード光ファイバを用い、これを出力光ファイバに沿わせ、接続点近傍に先端を設置した後、市販の熱溶融接着剤を内設した補強スリーブで固定した。
前記の装置を用いて、光源のLDのパワーを500mWで一定とし、接続点からモニタ用光ファイバ先端までの距離を変えてモニタ用光ファイバの受光パワーをパワーメータでモニタした。その結果を図3に示す。
図3の横軸は接続点からモニタ用光ファイバ先端までの距離であって、縦軸はモニタ用光ファイバの受光パワーである。モニタ用光ファイバ先端の設置位置によって、受光できる散乱光パワーが異なることが分かる。
また、受光パワー最大となっている位置は、接続点の直近ではなく一定の距離で離れている位置にある。これは、接続損失に起因して生じた散乱光が角度(NAによって変化する)を持って放射され、接続点より斜め方向に出てくるため、接続点の直近ではパワーの分布が最大ではない。
[実施例2]
図1に示した装置において、接続点からモニタ用光ファイバ先端までの距離を2mmと一定にし、光源のLDのパワーを100mW〜500mWに変え、モニタ用光ファイバの受光をモニタした。その結果を図4に示す。但し、比較するため、横軸の光源のLD出力パワー単位はmWからdBmに変換している。
図4の横軸は、光源であるLDの出力パワーであり、縦軸はモニタ用光ファイバの受光パワーである。図4の結果から、一定位置に設置したモニタ用光ファイバの受光パワーより出力パワーをモニタすることが可能であることが分かる。
本発明に係る光パワーモニタ装置の一実施形態を示し、(a)は光パワーモニタ装置の構成図、(b)は要部拡大断面図である。 従来の光パワーモニタ装置を示す構成図である。 実施例1で測定した接続点からモニタ用光ファイバ先端までの距離と受光パワーとの関係を示すグラフである。 実施例2で測定した光源の出力パワーとモニタ用光ファイバの受光パワーとの関係を示すグラフである。
符号の説明
10A,10B…被測定光ファイバ、11…光パワーモニタ装置、12…接続点(融着接続点)、13…モニタ用光ファイバ、14…補強スリーブ、15…接着剤、16…PD(光検出手段)、17…LD、18…散乱光。

Claims (9)

  1. 被測定光ファイバの融着接続点の近傍に、該融着接続点から発する散乱光を入射可能にモニタ用光ファイバを配置し、該光モニタ用光ファイバを通して前記散乱光パワーを測定することによって被測定光ファイバの伝搬光パワーをモニタすることを特徴とする光パワーモニタ方法。
  2. モニタ用光ファイバの受光パワーが適切になるように、前記融着接続点と前記モニタ用光ファイバの先端との距離を調整することを特徴とする請求項1に記載の光パワーモニタ方法。
  3. 被測定光ファイバの融着接続点の近傍に、該融着接続点から発する散乱光を入射可能に配置されたモニタ用光ファイバと、該モニタ用光ファイバを通して送られる散乱光パワーを測定する光検出手段とを有することを特徴とする光パワーモニタ装置。
  4. 前記モニタ用光ファイバの先端部が、前記被測定光ファイバの融着接続点と共に前記被測定光ファイバのクラッド屈折率より高い屈折率の接着剤で固定され、且つ該接着剤が熱収縮した補強スリーブで覆われて固定されていることを特徴とする請求項3に記載の光パワーモニタ装置。
  5. 前記モニタ用光ファイバの先端部が、前記被測定光ファイバの融着接続点と共に、補強ロッドで覆われ、且つ該補強ロッドの内部で前記被測定光ファイバのクラッド屈折率より高い屈折率の接着剤によって固定されていることを特徴とする請求項3に記載の光パワーモニタ装置。
  6. 前記光検出手段が、モニタ用光ファイバを通して送られる光を電気信号に変換するフォトダイオードであることを特徴とする請求項3〜5のいずれかに記載の光パワーモニタ装置。
  7. 光増幅作用又は非線形光学効果を有する光デバイスであって、請求項3〜6のいずれかに記載の光パワーモニタ装置を有し、被測定光ファイバの伝搬光パワーを測定可能に構成されていることを特徴とする光デバイス。
  8. 光増幅作用を高める機能性材料がドープされている光増幅用光ファイバを含むことを特徴とする請求項7に記載の光デバイス。
  9. 前記機能性材料が、エルビウム、イッテルビウム、ランタン、セリウム、プラセオジム、ネオジム等の希土類イオンからなる群から選択される少なくとも1種であることを特徴とする請求項8に記載の光デバイス。
JP2005117032A 2005-04-14 2005-04-14 光パワーモニタ方法、光パワーモニタ装置及び光デバイス Pending JP2006292674A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117032A JP2006292674A (ja) 2005-04-14 2005-04-14 光パワーモニタ方法、光パワーモニタ装置及び光デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117032A JP2006292674A (ja) 2005-04-14 2005-04-14 光パワーモニタ方法、光パワーモニタ装置及び光デバイス

Publications (1)

Publication Number Publication Date
JP2006292674A true JP2006292674A (ja) 2006-10-26

Family

ID=37413383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117032A Pending JP2006292674A (ja) 2005-04-14 2005-04-14 光パワーモニタ方法、光パワーモニタ装置及び光デバイス

Country Status (1)

Country Link
JP (1) JP2006292674A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122566A1 (ja) 2010-03-30 2011-10-06 株式会社フジクラ 光強度モニタ回路、およびファイバレーザシステム
WO2011125746A1 (ja) * 2010-03-31 2011-10-13 株式会社フジクラ 光モジュールおよび光検出方法
WO2014034596A1 (ja) * 2012-08-31 2014-03-06 株式会社オーク製作所 照明モニタ装置およびそれを備えた露光装置
JP5690018B1 (ja) * 2014-09-30 2015-03-25 株式会社フジクラ 光ファイバ再被覆装置
CN104713643A (zh) * 2015-01-08 2015-06-17 中国工程物理研究院应用电子学研究所 一种高功率全光纤激光器在线功率监测装置及其封装方法
JP2015159208A (ja) * 2014-02-25 2015-09-03 株式会社フジクラ ファイバレーザ装置及びその異常検出方法
JP2017183622A (ja) * 2016-03-31 2017-10-05 株式会社フジクラ 光モニタ装置及びレーザ装置
CN107370013A (zh) * 2017-08-04 2017-11-21 南京理工大学 一种高功率光纤激光器功率实时反馈的装置
CN109974851A (zh) * 2019-04-29 2019-07-05 中国工程物理研究院激光聚变研究中心 激光检测装置、光纤激光器及激光检测方法
CN114046962A (zh) * 2021-10-29 2022-02-15 广东利元亨智能装备股份有限公司 一种光纤熔接点的质量检测方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023A (ja) * 1987-10-23 1990-01-05 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ回線のアクセス方法及びそのコネクタプラグ
JPH05264344A (ja) * 1992-03-17 1993-10-12 Fujitsu Ltd 光増幅器の入出力光パワーのモニタ方法
JPH10224304A (ja) * 1997-02-03 1998-08-21 Sumitomo Electric Ind Ltd 光信号授受装置、光通信装置、光通信方法および光ファイバ判別方法
WO2005103779A1 (ja) * 2004-04-22 2005-11-03 Fujitsu Limited 光ファイバ接続部構造及び光モニタ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023A (ja) * 1987-10-23 1990-01-05 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ回線のアクセス方法及びそのコネクタプラグ
JPH05264344A (ja) * 1992-03-17 1993-10-12 Fujitsu Ltd 光増幅器の入出力光パワーのモニタ方法
JPH10224304A (ja) * 1997-02-03 1998-08-21 Sumitomo Electric Ind Ltd 光信号授受装置、光通信装置、光通信方法および光ファイバ判別方法
WO2005103779A1 (ja) * 2004-04-22 2005-11-03 Fujitsu Limited 光ファイバ接続部構造及び光モニタ装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122566A1 (ja) 2010-03-30 2011-10-06 株式会社フジクラ 光強度モニタ回路、およびファイバレーザシステム
CN102844942A (zh) * 2010-03-30 2012-12-26 株式会社藤仓 光强度监控电路以及光纤激光器***
JP5276749B2 (ja) * 2010-03-30 2013-08-28 株式会社フジクラ 光強度モニタ回路、およびファイバレーザシステム
US9234792B2 (en) 2010-03-30 2016-01-12 Fujikura Ltd. Light intensity monitor capable of detecting light intensity and fiber breaking
WO2011125746A1 (ja) * 2010-03-31 2011-10-13 株式会社フジクラ 光モジュールおよび光検出方法
JP2011215410A (ja) * 2010-03-31 2011-10-27 Fujikura Ltd 光モジュールおよび光検出方法
WO2014034596A1 (ja) * 2012-08-31 2014-03-06 株式会社オーク製作所 照明モニタ装置およびそれを備えた露光装置
JP2014049611A (ja) * 2012-08-31 2014-03-17 Orc Manufacturing Co Ltd 照明モニタ装置およびそれを備えた露光装置
WO2015129097A1 (ja) * 2014-02-25 2015-09-03 株式会社フジクラ ファイバレーザ装置及びその異常検出方法
JP2015159208A (ja) * 2014-02-25 2015-09-03 株式会社フジクラ ファイバレーザ装置及びその異常検出方法
US9985407B2 (en) 2014-02-25 2018-05-29 Fujikura Ltd. Fiber laser apparatus and method of detecting failure of fiber laser apparatus
JP5690018B1 (ja) * 2014-09-30 2015-03-25 株式会社フジクラ 光ファイバ再被覆装置
WO2016051598A1 (ja) * 2014-09-30 2016-04-07 株式会社フジクラ 光ファイバ再被覆装置
US10532503B2 (en) 2014-09-30 2020-01-14 Fujikura Ltd. Optical fiber re-coating device
CN104713643A (zh) * 2015-01-08 2015-06-17 中国工程物理研究院应用电子学研究所 一种高功率全光纤激光器在线功率监测装置及其封装方法
JP2017183622A (ja) * 2016-03-31 2017-10-05 株式会社フジクラ 光モニタ装置及びレーザ装置
CN107370013A (zh) * 2017-08-04 2017-11-21 南京理工大学 一种高功率光纤激光器功率实时反馈的装置
CN109974851A (zh) * 2019-04-29 2019-07-05 中国工程物理研究院激光聚变研究中心 激光检测装置、光纤激光器及激光检测方法
CN109974851B (zh) * 2019-04-29 2024-01-26 中国工程物理研究院激光聚变研究中心 激光检测装置、光纤激光器及激光检测方法
CN114046962A (zh) * 2021-10-29 2022-02-15 广东利元亨智能装备股份有限公司 一种光纤熔接点的质量检测方法及装置

Similar Documents

Publication Publication Date Title
JP2006292674A (ja) 光パワーモニタ方法、光パワーモニタ装置及び光デバイス
US8274732B2 (en) Optical module
US20190089113A1 (en) Fiber Laser Apparatus
US20210373348A1 (en) Splice with cladding mode light stripping
US7371019B2 (en) Method and apparatus for sensing light
JP6534999B2 (ja) 光ファイバレーザ装置
JP4954737B2 (ja) 光増幅システム、これを用いた光ファイバレーザ及び光ファイバ増幅器
EP2100349B1 (en) Cladding pumped fibre laser with a high degree of pump isolation
KR102217718B1 (ko) 멀티 모드-멀티 모드 광섬유 컴바이너를 갖는 초고출력 광섬유 레이저 시스템
US7058267B2 (en) Method for manufacturing of an optical fiber with a decoupling interface for scattered light, use of an optical fiber and device for monitoring of the light power guided through an optical fiber
WO2014014068A1 (ja) 光ファイバレーザ装置
CN105723576A (zh) 光纤激光装置
Wetter et al. High power cladding light strippers
JP5378861B2 (ja) 光ファイバレーザ
JP4855429B2 (ja) ダブルクラッドファイバの接続方法
JP2014060251A (ja) 光パワー監視装置、光パワー監視方法および光パワー監視装置を用いたレーザ発生装置
JP2011192670A (ja) レーザダイオードモニタ装置及びレーザダイオードモニタ方法
CN110364919B (zh) 光纤激光装置
CN109844588B (zh) 剥离包层模式光的接头
JP2014029548A (ja) 光ファイバの被覆部端部の保護構造、レーザ光源装置、および光ファイバの被覆部端部の保護方法
JP7288394B2 (ja) ファイバヒューズ検出装置、及びこれを用いたレーザ装置
Wetter et al. High core and cladding isolation termination for high-power lasers and amplifiers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601