JP4465662B2 - Method for producing metal powder and method for producing target material - Google Patents

Method for producing metal powder and method for producing target material Download PDF

Info

Publication number
JP4465662B2
JP4465662B2 JP2005070628A JP2005070628A JP4465662B2 JP 4465662 B2 JP4465662 B2 JP 4465662B2 JP 2005070628 A JP2005070628 A JP 2005070628A JP 2005070628 A JP2005070628 A JP 2005070628A JP 4465662 B2 JP4465662 B2 JP 4465662B2
Authority
JP
Japan
Prior art keywords
hydrogen
powder
containing alloy
thermal plasma
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005070628A
Other languages
Japanese (ja)
Other versions
JP2006249548A (en
Inventor
洋 高島
剛 韓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005070628A priority Critical patent/JP4465662B2/en
Publication of JP2006249548A publication Critical patent/JP2006249548A/en
Application granted granted Critical
Publication of JP4465662B2 publication Critical patent/JP4465662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属粉末の製造方法およびターゲット材の製造方法に関するものである。   The present invention relates to a method for producing a metal powder and a method for producing a target material.

液晶表示装置、半導体集積回路、ハードディスクドライブなどの電子機器にはスパッタリング法により形成された薄膜が用いられている。スパッタリング法はターゲット材と呼ばれる母材の表面に不活性ガスを導入し、グロー放電を発生させ、それに対峙する位置に配置した基板に薄膜を形成する方法である。
特に、半導体集積回路のバリア膜、液晶表示素子の電極膜、ハードディスクドライブの磁気ヘッドの下地膜などには、4a族元素(Ti、Zr、Hf)、5a族元素(V、Nb、Ta)からなるターゲット材が用いられている。これらのターゲット材は溶解圧延法や粉末焼結法により製造されている。
Thin films formed by sputtering are used in electronic devices such as liquid crystal display devices, semiconductor integrated circuits, and hard disk drives. The sputtering method is a method in which an inert gas is introduced into the surface of a base material called a target material, a glow discharge is generated, and a thin film is formed on a substrate disposed at a position facing it.
In particular, for a barrier film of a semiconductor integrated circuit, an electrode film of a liquid crystal display element, a base film of a magnetic head of a hard disk drive, etc., from a group 4a element (Ti, Zr, Hf), a group 5a element (V, Nb, Ta) A target material is used. These target materials are manufactured by a melt rolling method or a powder sintering method.

一般的なスパッタリング装置ではターゲット材の裏面に磁石を配置してターゲット表面に平行な磁界を加え、電界と直交磁界の作用により電子をトラップし、高い密度のプラズマをターゲット表面に集中させるマグネトロンスパッタ法が採用されており、低いガス圧で高い成膜速度で成膜を行うことが可能で、質の高い薄膜が得られることから広く普及している。しかし、マグネトロンスパッタ法に用いられたターゲット材は、密度の高いプラズマ部分が集中的に侵食されるため、ターゲット材のごく一部しか消費されないまま、交換、廃却を余儀なくされる。   In general sputtering equipment, magnetron sputtering is used to place a magnet on the back of the target material, apply a magnetic field parallel to the target surface, trap electrons by the action of an electric field and an orthogonal magnetic field, and concentrate high-density plasma on the target surface. Is used, it is possible to form a film at a low gas pressure and a high film formation rate, and it is widely used because a high-quality thin film can be obtained. However, the target material used in the magnetron sputtering method is intensively eroded by a high-density plasma portion, so that only a small portion of the target material is consumed and must be replaced or discarded.

また、4a族元素、5a族元素からなる板材や棒材など各種形状の素材は、工業的に様々な製品に用いられており、機械加工工程などで発生した端材や屑材などは、一部は鉄鋼材料への添加用原料として再利用されているものの、大半は廃棄物として処分されている。   In addition, materials of various shapes such as plates and bars made of Group 4a elements and Group 5a elements are used in various industrial products, and scraps and scraps generated in machining processes are Part is reused as a raw material for addition to steel materials, but most is disposed of as waste.

金属資源を持たないわが国においてこれらの二次資源の有効活用は至上命題であり、とりわけ、上述の4a族元素(Ti、Zr、Hf)や5a族元素(V、Nb、Ta)のように希少な鉱石を原料とし、コストがかかる複雑な精製工程を経て製造される金属資源を原料とするターゲット材は大きな問題を抱えていると言える。あまつさえ、これらの元素は非常に活性であるため、溶解工程で不純物が混入しやすく、純度を損なわずに工業的に低コストでリサイクルを行うことは困難である。   In Japan, which does not have metal resources, the effective use of these secondary resources is the most prominent issue, especially rare such as the above-mentioned 4a group elements (Ti, Zr, Hf) and 5a group elements (V, Nb, Ta). It can be said that a target material made from a metal resource made from a simple ore and made through a costly complicated refining process has a big problem. Even in the pine, these elements are very active, so impurities are likely to be mixed in the dissolution process, and it is difficult to recycle industrially at low cost without impairing purity.

以上を踏まえ、本発明者らは機械的に粉砕した純度の低い粉末を熱プラズマ炎中に導入することで、高融点金属や貴金属粉末の高純度化が可能であることを見出し、一例として高純度Taターゲットを水素脆化させ粉砕することで粉末とし、この粉末に真空脱水素処理を施し、次に熱プラズマ炎中に通過させて回収し、この粉末を加圧焼結する方法を開示している(特許文献1参照)。
特開2001−342506号公報
Based on the above, the present inventors have found that by introducing a mechanically pulverized low-purity powder into a thermal plasma flame, it is possible to increase the purity of refractory metal or noble metal powder. Disclosed is a method in which a pure Ta target is hydrogen embrittled and pulverized to form a powder, which is subjected to vacuum dehydrogenation treatment, then passed through a thermal plasma flame and recovered, and this powder is pressure sintered. (See Patent Document 1).
JP 2001-342506 A

本発明者らは4a族元素(Ti、Zr、Hf)や5a族元素(V、Nb、Ta)からなる金属材料から高純度な金属粉末を製造し、ターゲット材の原料粉末として利用する方法について鋭意検討を進めているが、上述の特許文献1に開示した方法では、これらの元素は特に酸素との親和力が強いため、真空脱水素処理時に炉内残留酸素により酸化してしまい酸素を十分に低減できない場合があった。
本発明の目的は、上記の課題を解決し、酸素との親和力が強い4a族元素(Ti、Zr、Hf)や5a族元素(V、Nb、Ta)からなる金属材料から、低酸素な金属粉末と、低酸素で緻密な組織を有するターゲット材を製造する新規な方法を提供することである。
The inventors of the present invention manufacture a high-purity metal powder from a metal material composed of a group 4a element (Ti, Zr, Hf) or a group 5a element (V, Nb, Ta) and use it as a raw material powder for a target material. In the method disclosed in Patent Document 1 described above, since these elements have a particularly strong affinity for oxygen, they are oxidized by residual oxygen in the furnace during the vacuum dehydrogenation process, and oxygen is sufficiently absorbed. In some cases, it could not be reduced.
The object of the present invention is to solve the above-mentioned problems, from a metal material composed of a group 4a element (Ti, Zr, Hf) or a group 5a element (V, Nb, Ta) having a strong affinity for oxygen to a low-oxygen metal. It is to provide a novel method for producing a powder and a target material having a dense structure with low oxygen.

本発明者等は上記の問題を鋭意検討した結果、4a族および5a族から選ばれる金属材料を水素雰囲気中で加熱処理して水素含有合金を生成し、粉砕した水素含有合金粉末を、直接不活性ガスを主体とする雰囲気で発生させた熱プラズマ炎に通過させて、脱水素と同時に酸素還元を行うことにより、特に低酸素な金属粉末を製造できることを見出した。さらにこの金属粉末を加圧焼結することにより低酸素で緻密な組織を有するターゲット材を製造できることを見出し、本発明に到達した。   As a result of diligent examination of the above problems, the inventors of the present invention heat-treated a metal material selected from Group 4a and Group 5a in a hydrogen atmosphere to form a hydrogen-containing alloy, and directly pulverized the hydrogen-containing alloy powder. It was found that a particularly low oxygen metal powder can be produced by passing through a thermal plasma flame generated in an atmosphere mainly composed of active gas and performing oxygen reduction simultaneously with dehydrogenation. Furthermore, the present inventors have found that a target material having a dense structure with low oxygen can be produced by pressure sintering this metal powder, and the present invention has been achieved.

すなわち、本発明の金属粉末の製造方法は、4a族および5a族から選ばれる金属材料に水素雰囲気中で加熱処理を施し水素含有合金を生成する工程と、該水素含有合金を粉砕して水素含有合金粉末を作製する工程と、該水素含有合金粉末を不活性ガスを主体とする雰囲気で発生させた熱プラズマ炎に通過させて脱水素と酸素還元と球状化を同時に行う工程を具備する金属粉末の製造方法である。
また、本発明のターゲット材の製造方法は、前記本発明の製造方法により得られた金属粉末を加圧焼結によりターゲット材を製造するターゲット材の製造方法である。
That is, the method for producing a metal powder of the present invention includes a step of heat-treating a metal material selected from Group 4a and Group 5a in a hydrogen atmosphere to form a hydrogen-containing alloy, and pulverizing the hydrogen-containing alloy to contain hydrogen. A metal powder comprising: a step of producing an alloy powder; and a step of passing the hydrogen-containing alloy powder through a thermal plasma flame generated in an atmosphere mainly composed of an inert gas and simultaneously performing dehydrogenation, oxygen reduction, and spheronization. It is a manufacturing method.
Moreover, the manufacturing method of the target material of this invention is a manufacturing method of the target material which manufactures a target material by pressure sintering the metal powder obtained by the manufacturing method of the said invention.

本発明によれば、4a族元素、5a族元素から金属材料を球状粉末として再生し、さらにこの粉末から低酸素で緻密な組織を有するターゲット材の製造が可能になり、希少なこれらの金属資源を有効利用する上で欠く事のできない技術となる。   According to the present invention, it becomes possible to regenerate a metal material from a group 4a element and a group 5a element as a spherical powder, and to produce a target material having a dense structure with low oxygen from this powder. This technology is indispensable for effective use of.

本発明の金属粉末の製造方法の特徴は、4a族および5a族から選ばれる金属材料を水素雰囲気中で加熱処理を施し水素含有合金を生成する工程と、該水素含有合金を粉砕して水素含有合金粉末を作製する工程と、該水素含有合金粉末を不活性ガスを主体とする雰囲気で発生させた熱プラズマ炎に通過させて脱水素と酸素還元と球状化を同時に行う工程からなることにある。   The metal powder production method of the present invention is characterized in that a metal material selected from Group 4a and Group 5a is subjected to heat treatment in a hydrogen atmosphere to form a hydrogen-containing alloy, and the hydrogen-containing alloy is pulverized to contain hydrogen. It consists of a step of producing an alloy powder and a step of passing the hydrogen-containing alloy powder through a thermal plasma flame generated in an atmosphere mainly composed of an inert gas and simultaneously performing dehydrogenation, oxygen reduction and spheronization. .

本発明で用いる4a族(Ti、Zr、Hf)および5a族(V、Nb、Ta)から選ばれる金属材料としては、使用済みのターゲット材、溶解鋳造インゴット、圧延板材、ブリケット、加工端材などあらゆる製造履歴、形状のものを用いることが出来る。但し、表面に付着した汚れ、酸化スケール等は除去し洗浄を施しておくと良い。   Examples of the metal material selected from the group 4a (Ti, Zr, Hf) and the group 5a (V, Nb, Ta) used in the present invention include a used target material, a melt cast ingot, a rolled plate material, a briquette, and a processed end material. Any manufacturing history and shape can be used. However, it is advisable to remove the dirt, oxide scale, etc. adhering to the surface and wash it.

4a族および5a族から選ばれる金属材料は水素との親和力が強いため水素雰囲気で熱処理を施すことによって容易に水素含有合金を生成可能である。水素含有合金には固溶体と水素化物とがあるが、水素化物は固溶体に比べて水素含有量が多く、生成後の体積増加が大きいため、生成時に亀裂が生じ易く、しかも非常に脆弱で効率良く短時間で粉砕可能なため、粉砕工具等による汚染が非常に少ないため特に好ましい。   Since the metal material selected from the 4a group and the 5a group has a strong affinity for hydrogen, a hydrogen-containing alloy can be easily produced by heat treatment in a hydrogen atmosphere. There are solid solutions and hydrides in hydrogen-containing alloys, but hydrides have a higher hydrogen content than solid solutions and a large volume increase after production, so they are prone to cracking during production, and are very fragile and efficient. Since it can be pulverized in a short time, it is particularly preferable since contamination by a pulverizing tool is very small.

水素含有合金の生成は、4a族、5a族元素からなる金属材料を水素ガスを導入した雰囲気において熱処理を施すことによって可能である。この際、0.1MPa(大気圧)以下の圧力においても水素含有合金の生成が可能であるが、より高い圧力に設定することにより、短時間で効率良くしかも低温で水素含有合金を生成することができる。また、圧力一定下においては熱処理温度を高温に設定することで、水素侵入の障害となる表面酸化物を除去し、短時間で効率良く水素含有合金を生成しやすくなる。最適な温度条件は元素や表面状態によって異なるが、好ましくは500℃以上、さらに好ましくは1000℃以上である。   The production of the hydrogen-containing alloy can be performed by heat-treating a metal material composed of the 4a group and 5a group elements in an atmosphere into which hydrogen gas is introduced. At this time, a hydrogen-containing alloy can be produced even at a pressure of 0.1 MPa (atmospheric pressure) or less, but by setting a higher pressure, a hydrogen-containing alloy can be produced efficiently in a short time and at a low temperature. Can do. In addition, by setting the heat treatment temperature to a high temperature under a constant pressure, the surface oxide that hinders hydrogen intrusion is removed, and a hydrogen-containing alloy is easily generated efficiently in a short time. The optimum temperature condition varies depending on the element and the surface state, but is preferably 500 ° C. or higher, more preferably 1000 ° C. or higher.

水素含有合金の粉砕方法としては、衝撃、摩滅、せん断、圧縮などの機械的粉砕方法を適用することが出来る。特に粉砕中の汚染や酸化を防止するため容器内を不活性ガスで置換し、工具には粉砕する水素含有合金と同じ金属材料かもしくはそれを被覆したものを用いると良い。粉砕装置としては、例えばジョークラッシャー、インパクトミル、ロッドミル、ボールミル、ジェットミルなどが挙げられる。
粉砕粉である水素含有合金粉末の粒径が大き過ぎると、後述する熱プラズマ炎での溶融が困難となるため、100メッシュ(150μm)以下に調整すると良い。また、粒径が小さ過ぎると、熱プラズマ炎で蒸発した際に超微細粉が生成され、他の粉末に付着して酸素含有量が増加する原因となる場合があるので、適切な粒度のふるいにより微細な粉末を予め分級除去しても良い。
As a method for pulverizing the hydrogen-containing alloy, mechanical pulverization methods such as impact, abrasion, shearing, and compression can be applied. In particular, in order to prevent contamination and oxidation during pulverization, the inside of the container is replaced with an inert gas, and the tool may be the same metal material as the hydrogen-containing alloy to be pulverized or a material coated with it. Examples of the pulverizer include a jaw crusher, an impact mill, a rod mill, a ball mill, and a jet mill.
If the particle size of the hydrogen-containing alloy powder, which is a pulverized powder, is too large, melting with a thermal plasma flame, which will be described later, becomes difficult. In addition, if the particle size is too small, ultrafine powder is generated when evaporated with a thermal plasma flame, which may cause adhesion to other powders and increase the oxygen content. Thus, fine powder may be classified and removed in advance.

また、本発明の金属粉末の製造方法において、水素含有合金粉末が熱プラズマ炎を通過する際の脱水素と酸素還元機構については不明な部分が多いが、以下の機構により進行すると考えられる。
まず、高温(5000〜20000K)の熱プラズマ炎に曝された水素含有合金粉末の粒子は瞬時に脱水素反応もしくは溶融に伴う分解により水素を熱プラズマ炎に放出する。この際水素含有合金が含有している水素は完全に放出されるため後工程で脱水素処理を行う必要はない。
Further, in the method for producing metal powder of the present invention, there are many unclear parts about the dehydrogenation and oxygen reduction mechanism when the hydrogen-containing alloy powder passes through the thermal plasma flame, but it is considered that the process proceeds by the following mechanism.
First, hydrogen-containing alloy powder particles exposed to a high-temperature (5000 to 20000 K) thermal plasma flame instantaneously release hydrogen into the thermal plasma flame by dehydrogenation reaction or decomposition accompanying melting. At this time, since the hydrogen contained in the hydrogen-containing alloy is completely released, it is not necessary to perform a dehydrogenation process in a later step.

放出された水素は熱プラズマ炎中で乖離、電離して水素イオンへと変化し、粒子の近傍は強い還元作用を持つ雰囲気となる。この際の粒子近傍の水素イオン濃度が非常に高くなるため強い脱酸効果が得られると考えられる。
そして、水素含有合金粉末の粒子に含まれている酸素はこの水素イオンにより還元されて排気され、水素含有合金粉末の粒子は熱プラズマ炎を通過した後は表面張力により球状に凝固した金属粉末の粒子として回収される。
尚、水素含有合金粉末の粒子が熱プラズマ炎中で溶融した際には、酸素以外の低沸点不純物元素が粉末粒子表面から蒸発するため、酸素以外の不純物の低減も同時に可能である。
The released hydrogen is dissociated and ionized in the thermal plasma flame to change into hydrogen ions, and the vicinity of the particles becomes an atmosphere having a strong reducing action. It is considered that a strong deoxidation effect can be obtained because the hydrogen ion concentration in the vicinity of the particles at this time becomes very high.
The oxygen contained in the particles of the hydrogen-containing alloy powder is reduced by the hydrogen ions and exhausted. The particles of the hydrogen-containing alloy powder pass through the thermal plasma flame, and then the metal powder solidified spherically by the surface tension. Collected as particles.
When the particles of the hydrogen-containing alloy powder are melted in the thermal plasma flame, low-boiling impurity elements other than oxygen are evaporated from the surface of the powder particles, so that impurities other than oxygen can be simultaneously reduced.

熱プラズマ炎を発生させる装置としては、直流熱プラズマ発生装置、交流熱プラズマ発生装置、いずれも選択可能である。尚、熱プラズマ炎を発生させる雰囲気に作動ガスとして導入する不活性ガスにはHe、Ne、Ar、Kr、Xe、Rnなどの希ガスから選択できる。中でもArは商業ベースで安価で流通していることから特に好ましい。また、水素、窒素などの二原子分子ガスを添加することで熱プラズマ炎の広がりを制御することができ、熱プラズマ炎のエンタルピーを高め、熱プラズマのエネルギー効率を上げることが出来る。特に水素を添加した場合は酸素還元作用を付与することもできる。但し、二原子分子ガスを含有する場合は熱プラズマ炎が不安定となる場合があるため、熱プラズマ炎を発生させる雰囲気の作動ガスの合計流量に占める不活性ガスの流量の比率は70%以上とすることが好ましい。   As a device for generating a thermal plasma flame, either a direct-current thermal plasma generator or an alternating-current thermal plasma generator can be selected. The inert gas introduced as the working gas into the atmosphere that generates the thermal plasma flame can be selected from rare gases such as He, Ne, Ar, Kr, Xe, and Rn. Among these, Ar is particularly preferable because it is commercially available and inexpensive. Further, by adding a diatomic molecular gas such as hydrogen or nitrogen, the spread of the thermal plasma flame can be controlled, the enthalpy of the thermal plasma flame can be increased, and the energy efficiency of the thermal plasma can be increased. In particular, when hydrogen is added, an oxygen reduction action can be imparted. However, since the thermal plasma flame may become unstable when it contains diatomic molecular gas, the ratio of the flow rate of the inert gas to the total flow rate of the working gas in the atmosphere that generates the thermal plasma flame is 70% or more. It is preferable that

また、もう一方の本発明の特徴は、上記の方法によって作製された金属粉末を原料として、加圧焼結によりターゲット材とする点にある。ターゲット材の製造方法において、上述した金属粉末を加圧焼結する理由は、加圧焼結は通常の無加圧による焼結に比べ加熱と加圧を同時に付加するために、緻密化がより可能となり、ターゲット材に求められる高い密度を得るための焼結手段として最も適しているためである。加圧焼結の方法としては熱間静水圧プレス、ホットプレス、放電プラズマ焼結などの方法が挙げられ、いずれの方法も選択可能である。   Another feature of the present invention is that the metal powder produced by the above method is used as a raw material to be a target material by pressure sintering. In the method for producing the target material, the reason why the above-described metal powder is subjected to pressure sintering is that pressure sintering is applied more simultaneously with heating and pressurization compared to ordinary sintering without pressure, so that densification is more effective. This is because it is possible and is most suitable as a sintering means for obtaining a high density required for the target material. Examples of the pressure sintering method include hot isostatic pressing, hot pressing, and discharge plasma sintering, and any method can be selected.

以下の実施例で本発明を更に詳しく説明する。
図1は熱プラズマ処理装置の一例を示す構成図である。実施例においては、熱プラズマ装置には図1に示す構造のものを用いた。本装置は交流熱プラズマ装置である誘導結合型RFプラズマトーチから構成されるもので、冷却壁1で仕切られたプラズマ発生空間2を有し、その外側に設けた高周波コイル3と、高周波コイル3の軸方向の一方から作動ガスを供給する作動ガス供給部4と、高周波コイルの内側に発生させた熱プラズマ炎5中にキャリアガスとともに粉末原料を供給する粉末供給ノズル6と、プラズマ炎の下流側に設けたチャンバー7と、チャンバーからの排気を行う排気装置8を具備する粉末の熱プラズマ処理装置である。
The following examples further illustrate the present invention.
FIG. 1 is a block diagram showing an example of a thermal plasma processing apparatus. In the example, the thermal plasma apparatus having the structure shown in FIG. 1 was used. This apparatus is composed of an inductively coupled RF plasma torch which is an AC thermal plasma apparatus, and has a plasma generation space 2 partitioned by a cooling wall 1, a high frequency coil 3 provided outside thereof, and a high frequency coil 3. A working gas supply unit 4 for supplying a working gas from one of the axial directions, a powder supply nozzle 6 for supplying a powder raw material together with a carrier gas into a thermal plasma flame 5 generated inside the high frequency coil, and a downstream of the plasma flame This is a powder thermal plasma processing apparatus comprising a chamber 7 provided on the side and an exhaust device 8 for exhausting air from the chamber.

この装置はφ70mmの円筒形のプラズマ発生空間を有しており、処理時のプラズマ動作条件は出力30kW、圧力80kPa、作動ガスとして不活性ガスのArガスを合計90L/min(nor)、水素ガスを合計20L/min(nor)、キャリアガスとして不活性ガスのArガス4L/min(nor)の設定とした。また、熱プラズマ炎への処理粉末の供給速度は0.5kg/hで設定した。
尚、水素ガスは主に熱プラズマ炎の広がり制御と酸素還元作用を意図して添加したものである。
This apparatus has a cylindrical plasma generation space of φ70 mm, plasma operating conditions at the time of processing are an output of 30 kW, a pressure of 80 kPa, a total of 90 L / min (nor) of inert Ar gas as working gas, hydrogen gas Was set to 20 L / min (nor) in total, and an inert gas Ar gas of 4 L / min (nor) as a carrier gas. Moreover, the supply rate of the processing powder to the thermal plasma flame was set at 0.5 kg / h.
The hydrogen gas is added mainly for the purpose of controlling the spread of the thermal plasma flame and the oxygen reduction action.

使用済みのTaターゲット(純度99.99%、酸素420ppm)を切断し、エタノール中で5分間超音波洗浄を行ったのち乾燥させた。次にこのTa塊を熱処理炉に入れ、炉内の水素圧力を0.02MPaとし、1200℃で4時間保持する水素雰囲気熱処理を行ったところ、著しく脆化し、自己粉砕してばらばらに細片化していた。
次にこの水素含有合金の細片をポットに入れ、内部をArガス置換してボールミルにより粉砕して粉末とし、さらに分級を行い粒径45〜74μm(200メッシュ以下、325メッシュ以上、平均粒径59μm)のTa水素含有合金粉末を作製した。この粉末についてX線回折による相同定を行ったところ、図2中に示す通りTaH水素化物相の回折ピークが確認された。さらに、このTa水素含有合金粉末を上記の熱プラズマ装置を使用して、上記条件の下で熱プラズマ炎に通過させて回収した。
A used Ta target (purity 99.99%, oxygen 420 ppm) was cut and subjected to ultrasonic cleaning in ethanol for 5 minutes and then dried. Next, this Ta lump was put into a heat treatment furnace, and the hydrogen pressure in the furnace was set to 0.02 MPa, and a hydrogen atmosphere heat treatment was carried out at 1200 ° C. for 4 hours. It was.
Next, this hydrogen-containing alloy strip is put into a pot, the inside is replaced with Ar gas, and is pulverized by a ball mill to form a powder, and further classified to have a particle size of 45 to 74 μm (200 mesh or less, 325 mesh or more, average particle size) 59 μm) Ta hydrogen-containing alloy powder was prepared. When this powder was subjected to phase identification by X-ray diffraction, a diffraction peak of the Ta 2 H hydride phase was confirmed as shown in FIG. Further, this Ta hydrogen-containing alloy powder was recovered by passing it through a thermal plasma flame under the above conditions using the above thermal plasma apparatus.

また、比較例として、上記と同様に作製した上記Ta水素含有合金粉末を1Pa以下に排気した真空炉で800℃で1時間の熱処理を行うことで脱水素処理を施してTa粉末を作製し、上記の熱プラズマ装置を使用して、上記と同様の条件下で熱プラズマ炎に通過させて熱プラズマ処理を施して回収した。   Further, as a comparative example, a Ta powder was produced by performing a dehydrogenation treatment by performing a heat treatment at 800 ° C. for 1 hour in a vacuum furnace in which the Ta hydrogen-containing alloy powder produced in the same manner as above was exhausted to 1 Pa or less. Using the above-mentioned thermal plasma apparatus, it was passed through a thermal plasma flame under the same conditions as described above and subjected to thermal plasma treatment to be recovered.

Ta水素含有合金粉末を熱プラズマ処理して回収した粉末は、図4に示すように球状の形態を呈していた。さらに、X線回折による相同定を行ったところ、Ta水素含有合金粉末を熱プラズマ処理したものは図2中に示す通りTaH水素化物の回折ピークが消失し、Ta相の回折ピークのみが見られた。一方、比較例のTa粉末は熱プラズマ処理前後ともTa相の回折ピークのみであった。以上より、特にTa水素含有合金粒子は水素を放出してTa粒子に相変化していることがわかる。 The powder recovered by thermal plasma treatment of the Ta hydrogen-containing alloy powder had a spherical form as shown in FIG. Furthermore, as a result of phase identification by X-ray diffraction, the Ta 2 H hydride diffraction peak disappears as shown in FIG. It was seen. On the other hand, the Ta powder of the comparative example had only a Ta phase diffraction peak before and after the thermal plasma treatment. From the above, it can be seen that especially the Ta hydrogen-containing alloy particles release hydrogen and phase change to Ta particles.

Ta水素含有合金を熱プラズマ処理した金属粉末および脱水素処理を施したTa粉末を熱プラズマ処理した金属粉末を不活性ガス融解熱伝導度法によって酸素、水素含有量を分析した分析値を表1に示す。この表よりプラズマ処理後の水素は、Ta水素含有合金粉、Ta粉ともに低い水準にあることがわかる一方で、熱プラズマ処理後の酸素は、水素含有合金粉末を熱プラズマ処理した方が大きく低下しており、水素を多量に含有したTa水素含有合金粉末の方が酸素低減効果が大きいことがわかる。   Table 1 shows analytical values obtained by analyzing oxygen and hydrogen contents of metal powder obtained by thermal plasma treatment of Ta hydrogen-containing alloy and metal powder obtained by thermal plasma treatment of Ta powder subjected to dehydrogenation treatment by inert gas melting thermal conductivity method. Shown in From this table, it can be seen that hydrogen after plasma treatment is at a low level for both Ta hydrogen-containing alloy powder and Ta powder, while oxygen after thermal plasma treatment is greatly reduced when hydrogen-containing alloy powder is subjected to thermal plasma treatment. It can be seen that the Ta hydrogen-containing alloy powder containing a large amount of hydrogen has a larger oxygen reduction effect.

Ta水素含有合金粉を熱プラズマ処理して得られたTa粉末を軟鉄製のカプセルに充填し、脱気封止した後、熱間静水圧プレスにより、温度1300℃、圧力145MPa、保持時間3hの条件にて焼結を行った。得られた焼結体を円板形状に加工しターゲット材とした。このターゲット材の相対密度(実測密度/理論密度×100)と酸素値とを測定したところ、相対密度は99.1%と非常に高い水準にあり、酸素は370ppmと低い水準にあった。また、図5に示すこのターゲットのミクロ組織には介在物や欠陥が見られず、清浄で均質な組織を有していることがわかる。   Ta powder obtained by thermal plasma treatment of Ta hydrogen-containing alloy powder is filled in soft iron capsules, degassed and sealed, and then subjected to hot isostatic pressing at a temperature of 1300 ° C., a pressure of 145 MPa, and a holding time of 3 hours. Sintering was performed under the conditions. The obtained sintered body was processed into a disk shape to obtain a target material. When the relative density (measured density / theoretical density × 100) and the oxygen value of this target material were measured, the relative density was as high as 99.1% and oxygen was as low as 370 ppm. It can also be seen that the target microstructure shown in FIG. 5 has no inclusions or defects, and has a clean and homogeneous structure.

本発明で用いる熱プラズマ処理装置の一例を示す構成図である。It is a block diagram which shows an example of the thermal plasma processing apparatus used by this invention. 実施例1におけるTa水素含有合金粉末と熱プラズマ処理後の粉末のX線回折パターンを示す図である。It is a figure which shows the X-ray diffraction pattern of the Ta hydrogen containing alloy powder in Example 1, and the powder after a thermal plasma process. 実施例1におけるTa水素含有合金粉末の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of Ta hydrogen-containing alloy powder in Example 1. FIG. 実施例1における熱プラズマ処理後のTa粉末の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of Ta powder after thermal plasma treatment in Example 1. FIG. 本発明例2におけるTaターゲットのミクロ組織写真である。It is a microstructure picture of Ta target in example 2 of the present invention.

符号の説明Explanation of symbols

1 冷却壁、2 プラズマ発生空間、3 高周波コイル、4 作動ガス供給部、
5 熱プラズマ炎、6 粉末供給ノズル、7 チャンバー、8 排気装置
1 cooling wall, 2 plasma generation space, 3 high frequency coil, 4 working gas supply unit,
5 Thermal plasma flame, 6 Powder supply nozzle, 7 Chamber, 8 Exhaust device

Claims (2)

4a族および5a族から選ばれる金属材料を水素雰囲気中で加熱処理を施し水素含有合金を生成する工程と、該水素含有合金を粉砕して水素含有合金粉末を作製する工程と、該水素含有合金粉末を不活性ガスを主体とする雰囲気中で発生させた熱プラズマ炎に通過させて脱水素と酸素還元と球状化を同時に行う工程とを具備することを特徴とする金属粉末の製造方法。 A step of heat-treating a metal material selected from Group 4a and Group 5a in a hydrogen atmosphere to form a hydrogen-containing alloy, a step of pulverizing the hydrogen-containing alloy to produce a hydrogen-containing alloy powder, and the hydrogen-containing alloy. A method for producing a metal powder, comprising: a step of simultaneously performing dehydrogenation, oxygen reduction, and spheronization by passing the powder through a thermal plasma flame generated in an atmosphere mainly containing an inert gas. 請求項1に記載の金属粉末の製造方法により得られた金属粉末を原料として、加圧焼結によりターゲット材を製造することを特徴とするターゲット材の製造方法。 A method for producing a target material, comprising producing a target material by pressure sintering using the metal powder obtained by the method for producing a metal powder according to claim 1 as a raw material.
JP2005070628A 2005-03-14 2005-03-14 Method for producing metal powder and method for producing target material Active JP4465662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005070628A JP4465662B2 (en) 2005-03-14 2005-03-14 Method for producing metal powder and method for producing target material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070628A JP4465662B2 (en) 2005-03-14 2005-03-14 Method for producing metal powder and method for producing target material

Publications (2)

Publication Number Publication Date
JP2006249548A JP2006249548A (en) 2006-09-21
JP4465662B2 true JP4465662B2 (en) 2010-05-19

Family

ID=37090343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070628A Active JP4465662B2 (en) 2005-03-14 2005-03-14 Method for producing metal powder and method for producing target material

Country Status (1)

Country Link
JP (1) JP4465662B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200088162A (en) 2019-01-14 2020-07-22 (주)엠티아이지 Method for manufacturing tantalum sintered body

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154975B1 (en) * 2010-04-07 2012-06-14 희성금속 주식회사 Tantallum powder and manufacturing method thereof
KR101190270B1 (en) * 2010-04-07 2012-10-12 희성금속 주식회사 Refining method of tantallum powder using rf plasma and tantallum powder thereof
KR101284598B1 (en) 2011-04-14 2013-07-10 희성금속 주식회사 Tantallum powder and manufacturing method thereof
KR102029687B1 (en) * 2017-12-12 2019-10-10 한국생산기술연구원 Method of manufacturing high purity sintered body
US20200360992A1 (en) * 2017-12-18 2020-11-19 Hitachi Metals, Ltd. Spherical ti-based powder and manufacturing method therefor
CN110340369A (en) * 2019-08-08 2019-10-18 南昌大学 A kind of Ultra Low Cost spherical shape vanadium powder preparation method
WO2023076055A1 (en) * 2021-10-27 2023-05-04 The Penn State Research Foundation Enhanced nanoenergetic metals via in situ reduction of native oxide layer
CN113981390A (en) * 2021-10-29 2022-01-28 宁波江丰半导体科技有限公司 Preparation method of high-purity low-oxygen tantalum target material
CN114309621B (en) * 2021-12-28 2023-11-10 云航时代(重庆)科技有限公司 Preparation method of fine TiAl alloy spherical powder containing refractory metal elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200088162A (en) 2019-01-14 2020-07-22 (주)엠티아이지 Method for manufacturing tantalum sintered body

Also Published As

Publication number Publication date
JP2006249548A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4465662B2 (en) Method for producing metal powder and method for producing target material
EP1066899B1 (en) Method of making a sputtering target
JP5746207B2 (en) Method for producing high-purity copper powder using thermal plasma
JP2005336617A (en) Target for sputtering, its production method and high melting point metal powder material
JP2009221603A (en) Method for producing spherical titanium alloy powder
JP2005336617A5 (en)
JP6083673B2 (en) Sputtering target made of high purity lanthanum
JP5733732B2 (en) Ruthenium powder production method for ruthenium (Ru) target production
JP2001342506A (en) Method for production of powder material and method for producing target material
KR20120113290A (en) Sputtering target
WO2007122684A1 (en) Process for producing low-oxygen metal powder
JP4609763B2 (en) Method for producing low oxygen metal powder
JP5099287B2 (en) Method for producing spherical molybdenum metal particles
JP4042095B2 (en) High purity metal powder manufacturing method and high purity metal powder manufacturing apparatus
JP2009287105A (en) Method for producing spherical titanium based powder
JP5577454B2 (en) Method for producing tantalum (Ta) powder using eutectic alloy
JPWO2010055615A1 (en) High purity silicon and thermoelectric conversion materials
JP2007277671A (en) METHOD FOR PRODUCING Mo ALLOY POWDER AND METHOD FOR PRODUCING SPUTTERING TARGET MATERIAL
JP2954711B2 (en) W-Ti alloy target and manufacturing method
JPH04362105A (en) Production of fine intermetallic compound powder
JP4023282B2 (en) Iridium sputtering target manufacturing method and target obtained by the method
JPH07331301A (en) Treatment of mechanically alloyed powder and device therefor
KR20150049884A (en) Method for regenerating a spent precious metal sputtering target and a precious metal sputtering target regenerated thereby
JP2006274399A (en) Method for manufacturing fine powder of alloy, and fine powder of alloy
JPH1161392A (en) Production of sputtering target for forming ru thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100211

R150 Certificate of patent or registration of utility model

Ref document number: 4465662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350