JP2006248856A - Transparent conductive fine powder and its manufacturing method, dispersion liquid, and paint - Google Patents

Transparent conductive fine powder and its manufacturing method, dispersion liquid, and paint Download PDF

Info

Publication number
JP2006248856A
JP2006248856A JP2005069343A JP2005069343A JP2006248856A JP 2006248856 A JP2006248856 A JP 2006248856A JP 2005069343 A JP2005069343 A JP 2005069343A JP 2005069343 A JP2005069343 A JP 2005069343A JP 2006248856 A JP2006248856 A JP 2006248856A
Authority
JP
Japan
Prior art keywords
fine powder
powder
transparent conductive
conductive fine
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005069343A
Other languages
Japanese (ja)
Other versions
JP5051566B2 (en
Inventor
Masamichi Murota
正道 室田
Hiroshi Ikeda
洋 池田
Kunio Omura
邦夫 大村
Suzuo Sasaki
鈴夫 佐々木
Motohiko Yoshizumi
素彦 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2005069343A priority Critical patent/JP5051566B2/en
Publication of JP2006248856A publication Critical patent/JP2006248856A/en
Application granted granted Critical
Publication of JP5051566B2 publication Critical patent/JP5051566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent fine powder excellent in conductivity having high stability for conductivity with time and less bluish color and its manufacturing method, and a dispersion liquid and a paint containing the powder. <P>SOLUTION: The transparent conductive fine powder is composed of a metal oxide fine powder which contains nitrogen of 1-50,000 ppm and preferably has BET specific surface area of 1-200 m<SP>2</SP>/g or the diameter of a primary particle of 1-500 nm, L value of powder of 50 to 83, a value of -2 to +2, b value of -6 to +7, and powder volumetric resistivity of 10<SP>-1</SP>-10<SP>4</SP>Ω cm, e.g. a tin oxide powder, and has the amount of carbon of 0.01-10% on the surface of the fine powder and a variation of the powder volumetric resistivity measured by the environmental accelerated test of not more than 50 times, preferably not more than 10 times. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性に優れた透明微粉末とその製造方法、および該粉末を含む分散液および塗料に関する。より詳しくは、本発明の透明導電性微粉末は金属酸化物微粉末を部分的に窒化することによって電気的な接触を良好にして粉末抵抗を小さくした金属酸化物微粉末であり、高い導電性を有し、この導電性微粉末を表面処理したものは導電性の経時安定性に優れるので、帯電防止・帯電制御・静電防止・防塵などの各分野に広く用いることができる。また、本発明の透明導電性微粉末はアンチモンを含有しないので、その毒性が問題視される分野においても使用することができる。さらに、従来よりも青味の少ない粉末であり、より透明性を求める最近の傾向に対応することができる。 The present invention relates to a transparent fine powder excellent in conductivity, a method for producing the same, and a dispersion and a coating material containing the powder. In more detail, the transparent conductive fine powder of the present invention is a metal oxide fine powder in which the metal oxide fine powder is partially nitrided to improve electrical contact and reduce the powder resistance. Since the conductive fine powder surface-treated is excellent in electrical stability over time, it can be widely used in various fields such as antistatic, charge control, antistatic and dustproof. Further, since the transparent conductive fine powder of the present invention does not contain antimony, it can be used in fields where toxicity is regarded as a problem. Furthermore, it is a powder with less bluish tint than before, and can cope with the recent tendency to demand more transparency.

従来、透明導電性粉末を水系媒体や有機化合物、樹脂などに分散させた分散液が知られており、この透明導電性粉末として、アンチモンをドープした酸化錫粉末(ATO)や、該ATOによって表面コーティングした酸化チタン粉末などが用いられている。アンチモンを含有するものは低い導電性を有し、かつ導電性の経時安定性が優れると云う利点を有するが、アンチモンの毒性が懸念されるため使用分野が限られると云う実状がある。また、ATOでは、成膜したときに透明性に青味が生じており、これを低減したいという実情もあり、成膜時の分散等の制御のみならず、従来は問題視されなかった粉末時での色味のコントロールも最近は重要視されている。 Conventionally, a dispersion liquid in which a transparent conductive powder is dispersed in an aqueous medium, an organic compound, a resin, or the like is known. As the transparent conductive powder, antimony-doped tin oxide powder (ATO) or a surface formed by the ATO is used. Coated titanium oxide powder is used. Those containing antimony have the advantage that they have low electrical conductivity and excellent temporal stability of electrical conductivity, but there is a reality that the field of use is limited because of the concern about the toxicity of antimony. In addition, in ATO, the film has a bluish transparency when it is deposited, and there is the actual situation that it is desired to reduce this. In recent years, the control of color tone has also been emphasized.

一方、比表面積5〜100m2/g、体積抵抗率10-1〜104Ω・cmであって、アンチモンを含有しない酸化スズ粉末が従来知られている(特許文献1、2)。しかし、この酸化スズ粉末の導電性は温度や湿度に対する依存性が高く、これらの環境要因によって導電性が大きく変化し、経時安定性が低いという問題がある。また、非晶質酸化スズ粒子を含む酸化スズゾルが知られているが(特許文献3、4)、この非晶質酸化スズの体積抵抗は概ね105Ω・cm程度であるため、これより高い導電性を必要する分野には用いることができない。さらに、陰イオンやアルカリ金属イオンを含有させることによって溶液の安定性を高めた酸化スズコロイド溶液が知られているが(特許文献5)、導電性が低いため使用分野が限られると云う問題がある。また、高透明性を得るために、酸化スズの表面を予め有機金属カップリング剤で被覆することによって分散剤を可及的に減らし、透明性を向上させようという試みもなされてはいるが(特許文献6)、透明性は十分ではなかった。
特開平6−345429号公報 特開2003−300727号公報 特開平10−59720号公報 特開2001−72421号公報 特開2003−89523号公報 特開2001−148207号公報
On the other hand, a tin oxide powder having a specific surface area of 5 to 100 m 2 / g and a volume resistivity of 10 −1 to 10 4 Ω · cm and containing no antimony is conventionally known (Patent Documents 1 and 2). However, the conductivity of this tin oxide powder is highly dependent on temperature and humidity, and there is a problem that the conductivity changes greatly due to these environmental factors and the stability over time is low. Further, although tin oxide sols containing amorphous tin oxide particles are known (Patent Documents 3 and 4), the volume resistance of this amorphous tin oxide is approximately 10 5 Ω · cm, which is higher than this. It cannot be used in fields that require electrical conductivity. Furthermore, although a tin oxide colloidal solution is known in which the stability of the solution is enhanced by containing an anion or an alkali metal ion (Patent Document 5), there is a problem that the field of use is limited due to low conductivity. . In addition, in order to obtain high transparency, attempts have been made to improve the transparency by reducing the dispersant as much as possible by previously coating the surface of tin oxide with an organometallic coupling agent ( Patent Document 6), transparency was not sufficient.
JP-A-6-345429 Japanese Patent Laid-Open No. 2003-300727 JP 10-59720 A JP 2001-72421 A JP 2003-89523 A JP 2001-148207 A

本発明は、従来の導電性酸化スズ粉末、およびその分散液における上記問題を解決したものであり、アンチモン等を含有せずに、金属酸化物微粉末を部分的に窒化することによって電気的な接触を良好にして導電性を高め、さらに表面処理することによって導電性の経時安定性を高めた透明導電性微粉末とその製造方法、および分散液、塗料を提供する。 The present invention solves the above-mentioned problems in the conventional conductive tin oxide powder and its dispersion liquid, and is obtained by partially nitriding metal oxide fine powder without containing antimony or the like. Provided are a transparent conductive fine powder, a method for producing the same, a dispersion, and a coating material, which have improved contact and improved conductivity, and further surface-treated to improve conductivity stability over time.

本発明は、以下の透明導電性微粉末に関する。
(1)窒素を1〜50000ppm含有する金属酸化物微粉末からなることを特徴とする透明導電性微粉末。
(2)BET比表面積が1〜200m2/gであり、または一次粒子径が1〜500nmである上記(1)に記載する透明導電性微粉末。
(3)粉末のL値が50〜83、a値が−2〜+2、b値が−6〜+7である上記(1)または(2)に記載する透明導電性微粉末。
(4)体積粉体抵抗率が10-1〜104Ω・cmである上記(1)〜(3)の何れかに記載する透明導電性微粉末。
(5)粉末が酸化スズであり、アンチモンおよび金属スズの含有量が熱分析による検出限界以下である上記(1)〜(4)の何れかに記載する透明導電性微粉末。
(6)金属水酸化物を、窒素ガス雰囲気下、100〜1100℃で、窒素を1〜50000ppm含有するまで加熱焼成して得た金属酸化物微粉末からなる上記(1)〜(5)の何れかに記載する透明導電性微粉末。
(7)窒素を1〜50000ppm含有する表面処理された金属酸化物微粉末からなり、微粉末表面に0.01〜10%のカーボン量を有する上記(1)〜(5)の何れかに記載する透明導電性微粉末。
(8)環境加速試験において体積粉体抵抗率の変化量(加速比)が50倍以下である上記(1)〜(3)、(5)の何れかに記載する透明導電性微粉末。
(9)金属水酸化物を、窒素ガス雰囲気下、100〜1100℃で、窒素を1〜50000ppm含有するまで加熱焼成して金属酸化物微粉末にし、この金属酸化物微粉末を不活性雰囲気下、および有機表面処理剤の存在下、100〜450℃の温度で加熱して表面処理した、微粉末表面に0.01〜10%のカーボン量を有する金属酸化物微粉末からなる上記(7)または(8)に記載する透明導電性微粉末。
The present invention relates to the following transparent conductive fine powder.
(1) A transparent conductive fine powder comprising a metal oxide fine powder containing 1 to 50000 ppm of nitrogen.
(2) The transparent conductive fine powder described in the above (1) having a BET specific surface area of 1 to 200 m 2 / g or a primary particle diameter of 1 to 500 nm.
(3) The transparent conductive fine powder according to (1) or (2) above, wherein the powder has an L value of 50 to 83, an a value of −2 to +2, and a b value of −6 to +7.
(4) The transparent conductive fine powder described in any one of (1) to (3) above, having a volume powder resistivity of 10 −1 to 10 4 Ω · cm.
(5) The transparent conductive fine powder according to any one of the above (1) to (4), wherein the powder is tin oxide and the content of antimony and metal tin is not more than a detection limit by thermal analysis.
(6) The above-mentioned (1) to (5) comprising a metal hydroxide fine powder obtained by heating and baking a metal hydroxide at 100 to 1100 ° C. in a nitrogen gas atmosphere until it contains 1 to 50000 ppm of nitrogen. The transparent conductive fine powder described in any one.
(7) The surface-treated metal oxide fine powder containing 1 to 50000 ppm of nitrogen and having a carbon amount of 0.01 to 10% on the surface of the fine powder according to any one of (1) to (5) Transparent conductive fine powder.
(8) The transparent conductive fine powder according to any one of (1) to (3) and (5) above, wherein a change amount (acceleration ratio) of the volume powder resistivity is 50 times or less in an environmental acceleration test.
(9) A metal hydroxide is heated and fired at 100 to 1100 ° C. in a nitrogen gas atmosphere until it contains 1 to 50000 ppm of nitrogen, to form a metal oxide fine powder, and the metal oxide fine powder is subjected to an inert atmosphere. And (7) comprising a metal oxide fine powder having a carbon content of 0.01 to 10% on the surface of the fine powder, which is heated and treated at a temperature of 100 to 450 ° C. in the presence of an organic surface treating agent. Or the transparent conductive fine powder as described in (8).

さらに、本発明は以下の透明導電性微粉末の製造方法、および分散液、塗料に関する。
(10)金属水酸化物を、窒素ガス雰囲気下、100〜1100℃で、窒素を1〜50000ppm含有するまで加熱焼成して金属酸化物微粉末にする上記(1)〜(5)の何れかに記載する透明導電性微粉末を製造する方法。
(11)金属水酸化物を、窒素ガス雰囲気下、100〜1100℃で、窒素を1〜50000ppm含有するまで加熱焼成して金属酸化物微粉末にし、この金属酸化物微粉末を不活性雰囲気下、および有機表面処理剤の存在下、100〜450℃の温度で加熱して表面処理し、微粉末表面に0.01〜10%のカーボン量を有する金属酸化物微粉末からなる上記(7)または(8)に記載する透明導電性微粉末を製造する方法。
(12)ケイ酸をシリカ換算で10%以下含有する金属水酸化物を用いる上記(10)または(11)の製造方法。
(13)上記(1)〜(9)の何れかに記載する透明導電性微粉末を媒体に分散させたことを特徴とする透明導電性微粉末の分散液。
(14)媒体に分散する前の粉末と分散した後の粉末について、BET比表面積の比が1.1〜2.0である上記(13)に記載する透明導電性微粉末の分散液。
(15)上記(1)〜(9)の何れかに記載する透明導電性微粉末を含有し、または上記(13)もしくは(14)の分散液を用いて形成されたことを特徴とする塗料。
(16)上記(15)の塗料によって形成された、表面抵抗104〜1012Ω/□、全光透過率80%以上、ヘーズ10%以下であることを特徴とする成膜。
Furthermore, this invention relates to the manufacturing method of the following transparent conductive fine powder, a dispersion liquid, and a coating material.
(10) Any of (1) to (5) above, wherein the metal hydroxide is heated and fired at 100 to 1100 ° C. in a nitrogen gas atmosphere to contain 1 to 50000 ppm of nitrogen to form a metal oxide fine powder. A method for producing the transparent conductive fine powder described in 1.
(11) A metal hydroxide is heated and fired at 100 to 1100 ° C. in a nitrogen gas atmosphere to contain 1 to 50000 ppm of nitrogen to form a metal oxide fine powder, and the metal oxide fine powder is subjected to an inert atmosphere. And (7) comprising a metal oxide fine powder having a surface treated by heating at a temperature of 100 to 450 ° C. in the presence of an organic surface treating agent and having a carbon content of 0.01 to 10% on the fine powder surface. Or the method of manufacturing the transparent conductive fine powder as described in (8).
(12) The method according to (10) or (11) above, wherein a metal hydroxide containing 10% or less of silicic acid in terms of silica is used.
(13) A transparent conductive fine powder dispersion, wherein the transparent conductive fine powder according to any one of (1) to (9) is dispersed in a medium.
(14) The dispersion liquid of the transparent conductive fine powder according to the above (13), wherein the ratio of the BET specific surface area is 1.1 to 2.0 with respect to the powder before being dispersed in the medium and the powder after being dispersed.
(15) A paint containing the transparent conductive fine powder according to any one of (1) to (9) or formed using the dispersion liquid of (13) or (14) .
(16) A film formed by the paint of (15) above, having a surface resistance of 10 4 to 10 12 Ω / □, a total light transmittance of 80% or more and a haze of 10% or less.

〔具体的な説明〕
本発明を具体的に説明する。なお、%は特に示さない限り重量%である。
本発明の透明導電性微粉末は、窒素を1〜50000ppm含有する金属酸化物微粉末からなることを特徴とする透明導電性微粉末である。
[Specific description]
The present invention will be specifically described. % Is% by weight unless otherwise specified.
The transparent conductive fine powder of the present invention is a transparent conductive fine powder comprising a metal oxide fine powder containing 1 to 50000 ppm of nitrogen.

金属酸化物微粉末について、粉末を部分的に窒化することによって粉末相互の電気的な接触が良好になり、粉末抵抗が低下する。また、窒素を含有することによって粉末の色味が制御され、青味や黄味、緑味や赤味を有しない粉末を得ることができる。 As for the metal oxide fine powder, by partially nitriding the powder, the electrical contact between the powders is improved and the powder resistance is lowered. Moreover, the color of powder is controlled by containing nitrogen, and the powder which does not have blueness, yellowishness, greenness, or redness can be obtained.

粉末の窒素含有量は1〜50000ppmが好ましい。窒素を含有せず、または窒素含有量が1ppmより少なくと粉末相互の電気的な接触を向上する効果が不十分であり、体積粉体抵抗が高くなり、該粉末を含む成膜を形成したときに十分な導電性が得られない。一方、粉末の窒素含有量が50000ppmを上回ると透明性に不具合を生じる。 The nitrogen content of the powder is preferably 1 to 50000 ppm. When nitrogen is not contained or the nitrogen content is less than 1 ppm, the effect of improving the electrical contact between the powders is insufficient, the volume powder resistance is increased, and a film containing the powder is formed. Therefore, sufficient conductivity cannot be obtained. On the other hand, when the nitrogen content of the powder exceeds 50000 ppm, a defect occurs in transparency.

窒素を1〜50000ppm含有する金属酸化物微粉末からなる透明導電性微粉末を得るには、金属水酸化物を、窒素ガス雰囲気下、100〜1100℃で、窒素を1〜50000ppm含有するまで加熱焼成して金属酸化物の微粉末にすれば良い。 To obtain a transparent conductive fine powder comprising a metal oxide fine powder containing 1 to 50000 ppm of nitrogen, heat the metal hydroxide at 100 to 1100 ° C. in a nitrogen gas atmosphere until it contains 1 to 50000 ppm of nitrogen. What is necessary is just to make it the metal oxide fine powder by baking.

本発明の透明導電性微粉末は、窒素を1〜50000ppm含有すると共に、好ましくは、BET比表面積が1〜200m2/gであり、または一次粒子径が1〜500nmである。BET比表面積が上記範囲よりも小さく、または一次粒子径が上記範囲よりも大きいと、粒子径が大きすぎて透明性が損なわれる。一方、粉末のBET比表面積が上記範囲よりも大きく、または一次粒子径が上記範囲よりも小さいと、粉末粒子が凝集しやすくなり、媒体への分散が困難になる。さらに、本発明の表面処理した透明導電性微粉末においては、粉末のBET比表面積が上記範囲よりも大きく、または一次粒子径が上記範囲よりも小さいと、粉末表面に付着するカーボン量が適正な範囲より多くなるので好ましくない。 The transparent conductive fine powder of the present invention contains 1 to 50000 ppm of nitrogen and preferably has a BET specific surface area of 1 to 200 m 2 / g or a primary particle diameter of 1 to 500 nm. When the BET specific surface area is smaller than the above range or the primary particle size is larger than the above range, the particle size is too large and the transparency is impaired. On the other hand, if the BET specific surface area of the powder is larger than the above range or the primary particle diameter is smaller than the above range, the powder particles are likely to aggregate and it is difficult to disperse in the medium. Furthermore, in the surface-treated transparent conductive fine powder of the present invention, when the BET specific surface area of the powder is larger than the above range or the primary particle diameter is smaller than the above range, the amount of carbon adhering to the powder surface is appropriate. Since it becomes more than the range, it is not preferable.

本発明の透明導電性微粉末は、好ましくは粉末のL値が50〜83、a値が−2〜+2、b値が−6〜+7である。粉末のL,a,bの各値が上記範囲外であると、この粉末を含む成膜を形成したときに、膜の透明性および色味に不具合が生じるので好ましくない。 The transparent conductive fine powder of the present invention preferably has an L value of 50 to 83, an a value of −2 to +2, and a b value of −6 to +7. When the values of L, a, and b of the powder are out of the above ranges, it is not preferable because when the film containing the powder is formed, defects in the transparency and color of the film occur.

本発明の透明導電性微粉末は酸化スズ微粉末を用いることができる。酸化スズ微粉末は、例えば、pH10以上のアルカリ溶液に塩化スズ溶液を滴下して水酸化スズを沈殿させ、この水酸化スズ沈殿物を高温下で焼成して得ることができる。この酸化スズはアンチモンを含有しないので、アンチモンの毒性を懸念する虞が無い。 Tin oxide fine powder can be used for the transparent conductive fine powder of the present invention. The tin oxide fine powder can be obtained, for example, by dropping a tin chloride solution into an alkaline solution having a pH of 10 or more to precipitate tin hydroxide, and firing the tin hydroxide precipitate at a high temperature. Since this tin oxide does not contain antimony, there is no fear of antimony toxicity.

なお、二酸化スズ微粉末を製造する際に、ケイ酸ソーダ、アルミノケイ酸塩、ウォルフラモケイ酸、コロイドケイ酸、ホウケイ酸塩、ヘキサフルオロケイ酸塩などのケイ酸塩化合物を原料の塩化スズ溶液に添加することによって、沈澱物の粒径を制御することが知られている。具体的には、ケイ酸塩を添加することによってBET比表面積が大きく、分散性の良い二酸化スズ粉末を得ることができる。また、ケイ酸を含有する水酸化スズは、窒素ガス雰囲気下で焼成して二酸化スズ微粉末にする際に、窒素を均一に含有するので好ましい。一方、ケイ酸塩を添加して製造した二酸化スズは体積抵抗率が高くなるので、二酸化スズ粉末のケイ酸含有量は10%以下が適当である。 When manufacturing tin dioxide fine powder, tin chloride solution made from silicate compounds such as sodium silicate, aluminosilicate, wolframosilicate, colloidal silicate, borosilicate and hexafluorosilicate. It is known to control the particle size of the precipitate by adding to the. Specifically, tin dioxide powder having a large BET specific surface area and good dispersibility can be obtained by adding silicate. Further, tin hydroxide containing silicic acid is preferable because it contains nitrogen uniformly when fired in a nitrogen gas atmosphere to form tin dioxide fine powder. On the other hand, tin dioxide produced by adding silicate has a high volume resistivity, so that the silicic acid content of the tin dioxide powder is suitably 10% or less.

上記水酸化スズ沈殿を、窒素ガス雰囲気下、100〜1100℃で、窒素を1〜50000ppm含有するまで加熱焼成して二酸化スズ微粉末にすることによって本発明の透明導電性酸化スズ微粉末を得ることができる。このように製造した二酸化スズ粉末の体積抵抗率は概ね10-1〜104Ω・cm、好ましくは10-1〜102Ω・cmである。窒素ガス雰囲気下で焼成することによって、二酸化スズ微粉末に部分的に窒素を含有させることができ、上記所定量の窒素を含有した二酸化スズ微粉末は粉末相互の電気的な接触が良好になり、また青味や黄味、緑味や赤味を有しない粉末を得ることができる。窒素雰囲気下にするには、窒素ガスによって十分な置換を行なうか、もしくは真空にした後に窒素雰囲気にしても良い。 The tin hydroxide precipitate is heated and fired at 100 to 1100 ° C. in a nitrogen gas atmosphere to contain 1 to 50000 ppm of nitrogen to obtain a fine powder of tin dioxide, thereby obtaining the transparent conductive tin oxide fine powder of the present invention. be able to. The volume resistivity of the tin dioxide powder thus produced is generally 10 −1 to 10 4 Ω · cm, preferably 10 −1 to 10 2 Ω · cm. By firing in a nitrogen gas atmosphere, the fine powder of tin dioxide can partially contain nitrogen, and the fine powder of tin dioxide containing the predetermined amount of nitrogen improves the electrical contact between the powders. In addition, a powder having no blueness, yellowness, greenness or redness can be obtained. In order to obtain a nitrogen atmosphere, sufficient replacement with nitrogen gas may be performed, or a nitrogen atmosphere may be obtained after evacuation.

なお、空気雰囲気下で焼成すると、体積抵抗率が105Ω・cm以上の高抵抗粉末になり、一時的に104Ω・cm以下の粉末が得られても経時変化によって105Ω・cm以上の高抵抗粉末になる傾向がある。また、空気雰囲気下で焼成した二酸化スズを水素やアンモニアや窒素で還元したものは、還元状態を制御するのが難しく、例えば、金属錫にまで還元され、あるいは還元不十分のため高抵抗のまま止まり、また粉末粒子相互の接触が悪いため体積抵抗が安定しない等の問題がある。 Incidentally, when fired in an air atmosphere, the volume resistivity becomes high resistance powder above 10 5 Omega · cm, temporarily 10 by 10 4 Omega · cm even change over time following powder was obtained 5 Omega · cm There exists a tendency to become the above high resistance powder. In addition, tin dioxide calcined in an air atmosphere reduced with hydrogen, ammonia, or nitrogen is difficult to control the reduction state. For example, it is reduced to metallic tin, or remains high resistance due to insufficient reduction. There is a problem that the volume resistance does not stabilize because the powder particles do not contact each other and the contact between the powder particles is poor.

本発明の透明導電性微粉末は、好ましくは、窒素を1〜50000ppm含有すると共に表面処理された金属酸化物微粉末であって、粉末表面に0.01〜10%のカーボン量を有するものである。粉末表面に上記カーボン量を有することによって、環境加速試験による体積粉体抵抗率の変化量を抑制することができる。粉末のカーボン量が0.01%より少ないと表面改質効果が不十分であり、一方、カーボン量が10%を上回ると金属酸化物微粉末が凝集してむしろ粉体体積抵抗率や表面抵抗率が高くなり、しかもこれらの抵抗率の経時変化が大きく、かつ分散液の透明性が低下する傾向がある。 The transparent conductive fine powder of the present invention is preferably a metal oxide fine powder that contains 1 to 50000 ppm of nitrogen and is surface-treated, and has a carbon content of 0.01 to 10% on the powder surface. is there. By having the above carbon amount on the powder surface, it is possible to suppress the amount of change in the volume powder resistivity due to the environmental acceleration test. If the amount of carbon in the powder is less than 0.01%, the surface modification effect is insufficient. On the other hand, if the amount of carbon exceeds 10%, the metal oxide fine powder aggregates, and rather the powder volume resistivity and surface resistance. However, the resistivity tends to change with time and the transparency of the dispersion tends to decrease.

なお、上記環境加速試験による体積粉体抵抗率の変化量とは、本発明の透明導電性微粉末を100℃で2時間加熱したときに、加速試験後の体積粉体抵抗率[R1]と加速試験前の体積粉体抵抗率[R0]の比〔R1/R0〕を云う。この値が1に近いものほど環境による変動が少なく、環境や経時変化による変動がないことを意味する。 The amount of change in the volume powder resistivity by the environmental acceleration test is the volume powder resistivity [R1] after the acceleration test when the transparent conductive fine powder of the present invention is heated at 100 ° C. for 2 hours. The ratio [R1 / R0] of the volume powder resistivity [R0] before the acceleration test. A value closer to 1 means that there is less variation due to the environment, and there is no variation due to the environment or changes over time.

本発明の透明導電性微粉末は、粉末表面に0.01〜10%のカーボン量を有することによって、具体的には、環境加速試験による体積粉体抵抗率の変化量(加速比)を50倍以下、好ましくは10倍以下に抑制することができる。 The transparent conductive fine powder of the present invention has a carbon amount of 0.01 to 10% on the powder surface, and specifically, the volume powder resistivity change amount (acceleration ratio) by the environmental acceleration test is 50. It can be suppressed to less than double, preferably less than 10 times.

上記カーボン量を含有する透明導電性微粉末は、窒素を所定量含有する金属酸化物微粉末を、不活性ガス雰囲気下、および有機表面処理剤の存在下、100〜450℃で、上記カーボン量を有するように表面処理して得ることができる。有機表面処理剤としては低級アルコールおよびその誘導体、ケトン、アミン、カルボン酸、またはオキシカルボン酸などが好ましい。シラザンは目的の表面改質効果が十分ではない。これらの有機表面処理剤は一般の水溶液法、有機溶媒法、スプレー法等によって用いることができる。例えば、予め酸化スズ微粉末をこれらの溶液に浸漬しても良いし、これらの有機化合物をガス化して金属酸化物微粉末と接触させても良い。または上記有機表面処理剤の溶液またはガスを金属酸化物微粉末に噴霧しても良い。さらに上記複数の方法を組み合わせても良い。また上記有機表面処理剤は高純度品を用いてもよいが、水等を添加して希釈したものを用いても良い。 The transparent conductive fine powder containing the carbon amount is obtained by changing the metal oxide fine powder containing a predetermined amount of nitrogen at 100 to 450 ° C. in an inert gas atmosphere and in the presence of an organic surface treatment agent. It can be obtained by surface treatment so as to have As the organic surface treating agent, lower alcohols and derivatives thereof, ketones, amines, carboxylic acids, or oxycarboxylic acids are preferable. Silazane does not have the desired surface modification effect. These organic surface treatment agents can be used by a general aqueous solution method, an organic solvent method, a spray method, or the like. For example, tin oxide fine powder may be immersed in these solutions in advance, or these organic compounds may be gasified and brought into contact with the metal oxide fine powder. Alternatively, the solution or gas of the organic surface treatment agent may be sprayed onto the metal oxide fine powder. Furthermore, you may combine the said several method. The organic surface treatment agent may be a high-purity product or may be diluted with water or the like.

上記表面処理は、不活性ガス雰囲気下および有機表面処理剤の存在下、100〜450℃で行うと良い。処理温度がこれより低いと有機表面処理剤が金属酸化物微粉末表面に十分に固定されず、表面処理が不十分になる。一方、処理温度が高すぎると金属酸化物微粉末が焼結して粗粒化するので好ましくない。加熱時間は30分以上、好ましくは1時間以上行なえばよい。なお、大気下または酸化雰囲気下では、酸素の存在により表面処理が阻害されるので好ましくない。不活性ガスは窒素ガスが好ましい。 The surface treatment is preferably performed at 100 to 450 ° C. in an inert gas atmosphere and in the presence of an organic surface treatment agent. When the treatment temperature is lower than this, the organic surface treatment agent is not sufficiently fixed on the surface of the metal oxide fine powder, and the surface treatment becomes insufficient. On the other hand, if the treatment temperature is too high, the metal oxide fine powder is sintered and coarsened, which is not preferable. The heating time may be 30 minutes or longer, preferably 1 hour or longer. Note that, in the air or in an oxidizing atmosphere, the surface treatment is hindered by the presence of oxygen, which is not preferable. The inert gas is preferably nitrogen gas.

因みに、水素ガス雰囲気やアンモニアガス雰囲気で表面処理を行うと、前述の窒素化処理と同様に、還元状態を制御するのが難しく、例えば、金属状態の粉末が混在したり、あるいは還元不十分のために高抵抗のままになる。本発明の表面改質処理はこのような水素ガス等による強い還元処理を避けたものであり、従って、例えば、本発明の透明導電性酸化スズ粉末は実質的に金属スズを含まず、熱分析において金属スズが検出限界以下のものである。 Incidentally, when the surface treatment is performed in a hydrogen gas atmosphere or an ammonia gas atmosphere, it is difficult to control the reduction state, as in the case of the above-mentioned nitrogenation treatment. Because of it remains high resistance. The surface modification treatment of the present invention avoids such a strong reduction treatment with hydrogen gas or the like. Therefore, for example, the transparent conductive tin oxide powder of the present invention does not substantially contain metallic tin, and is subjected to thermal analysis. In this case, metal tin is below the detection limit.

本発明の上記透明導電性酸微粉末を媒体に分散させた透明分散液を得ることができる。媒体としては、水、有機化合物、樹脂、もしくはこれら2種類以上の混合物などを用いることができる。分散液中の透明導電性微粉末の量は通常の用途では概ね0.1%〜80%である。 A transparent dispersion in which the transparent conductive acid fine powder of the present invention is dispersed in a medium can be obtained. As the medium, water, an organic compound, a resin, or a mixture of two or more of these can be used. The amount of the transparent conductive fine powder in the dispersion is generally 0.1% to 80% in a normal use.

本発明の上記透明分散液は、好ましくは、媒体に分散する前の粉末と分散した後の粉末について、BET比表面積の比が1.1〜2.0であって、分散後のメジアン径が1〜200nmであり、分散後の凝集が極めて少ない分散性に優れた分散液である。上記表面処理した粉末を用いることによって、このような高分散性の分散液を得ることができる。 The transparent dispersion of the present invention preferably has a BET specific surface area ratio of 1.1 to 2.0 with respect to the powder before being dispersed in the medium and the powder after being dispersed, and the median diameter after dispersion is preferably It is 1 to 200 nm and is a dispersion excellent in dispersibility with very little aggregation after dispersion. By using the surface-treated powder, such a highly dispersible dispersion can be obtained.

本発明の上記透明導電性微粉末を含有した塗料、または上記分散液を用いた塗料によって、表面抵抗104〜1012Ω/□、全光透過率80%以上、ヘーズ10%以下、好ましくは表面抵抗109Ω/□以下、全光透過率84%以上、ヘーズ3.5%以下の成膜を得ることができる。 Surface resistance of 10 4 to 10 12 Ω / □, total light transmittance of 80% or more, haze of 10% or less, preferably by paint containing the transparent conductive fine powder of the present invention or paint using the dispersion liquid, A film having a surface resistance of 10 9 Ω / □ or less, a total light transmittance of 84% or more, and a haze of 3.5% or less can be obtained.

本発明の透明導電性微粉末、例えば酸化スズ微粉末は、アンチモンを含有しなくとも高い導電性を有し、かつ導電性の経時安定性が優れている。従って、本発明の透明導電性微粉末、あるいはこれを媒体に分散させた分散液は各種の導電材料、帯電防止・帯電制御・静電防止・防塵などの材料として各分野に広く用いることができる。例えば、静電記録材料として荷電制御が要求されるプリンタ、複写機関連の帯電ローラー、感光ドラム、トナー、静電ブラシ等の分野、ガスセンサー用焼結体原料粉末としての分野、埃付着防止が要求されるCRT、ブラウン管等の分野、光ディスク、FD、テープ等の磁気記録媒体分野、薄膜塗料分野、太陽電池、液晶ディスプレイ等の内部電極、更には電極改質剤として電池分野等に利用することができる。 The transparent conductive fine powder of the present invention, for example, tin oxide fine powder, has high conductivity even if it does not contain antimony, and is excellent in electrical stability over time. Therefore, the transparent conductive fine powder of the present invention or the dispersion liquid in which the transparent conductive fine powder is dispersed in a medium can be widely used in various fields as various conductive materials and materials for antistatic, charge control, antistatic and dustproof. . For example, in fields such as printers that require charge control as electrostatic recording materials, charging rollers related to copiers, photosensitive drums, toners, electrostatic brushes, fields as sintered material powders for gas sensors, dust adhesion prevention Use in the fields of CRT, CRT, etc., magnetic recording media such as optical discs, FDs, tapes, etc., thin film paints, internal electrodes of solar cells, liquid crystal displays, etc., as well as battery modifiers as electrode modifiers. Can do.

また、本発明の透明導電性微粉末、あるいはこれを媒体に分散させた分散液は塗料、インク、エマルジョン、繊維その他のポリマー中に容易に分散混練でき、塗料に添加してコーテングした場合に透明性が高く、かつ導電性に優れた被膜を得ることができる。その他、熱線遮蔽、蓄熱効果に利用できる。さらに、アンチモンを含有しないので、その毒性が懸念される用途においても使用することができる。具体的には、食品包装材や各種の梱包材として用いることができる。 Further, the transparent conductive fine powder of the present invention or a dispersion in which this is dispersed in a medium can be easily dispersed and kneaded in a paint, ink, emulsion, fiber or other polymer, and is transparent when added to the paint and coated. It is possible to obtain a film having high conductivity and excellent conductivity. In addition, it can be used for heat ray shielding and heat storage effect. Furthermore, since it does not contain antimony, it can be used in applications where its toxicity is a concern. Specifically, it can be used as a food packaging material or various packaging materials.

以下、本発明の実施例を比較例と共に示す。なお、以下の各例において、窒素量はヘリウムガス融解−熱伝導法を用いて測定し、粉末のL、a、b値はスガ試験機(SM-7)を用い測定し、炭素量は堀場製作所製測定装置(EMIA-110)を用いて測定し、粉体体積抵抗率は横河電機製測定装置(DM-7561)を用い、試料5gで100kg/cm2加圧にて測定した。熱分析はエスアイアイ・ナノテクノロジー社製の示差熱熱重量同時測定装置(EXSTAR6000 TG/DTA6300)を用いた。アクリル樹脂は市販品(製品名アクリディックA-168、樹脂分50%)を用いた。また、分散液は透明導電性微粉末をダイノーミルでビーズ分散して製造した。成膜のベースフィルムはPETフィルムを用い、市販の自動アプリケータ(ROD No.3)で分散液を塗布し、風乾した後に成膜の表面抵抗、全光線透過率、ヘーズを測定した。なお、何れもベースフイルムの全光線透過率は89%、ヘーズは2.0%である。実施例および比較例の結果を表1に示した。 Examples of the present invention are shown below together with comparative examples. In each of the following examples, the nitrogen amount is measured using a helium gas melting-heat conduction method, the L, a, and b values of the powder are measured using a Suga Test Machine (SM-7), and the carbon amount is Horiba. Measurement was performed using a measuring device (EMIA-110) manufactured by Seisakusho, and the powder volume resistivity was measured using a measuring device (DM-7561) manufactured by Yokogawa Electric Corporation at a pressure of 100 kg / cm 2 with a sample 5 g. For thermal analysis, a differential thermothermal gravimetric simultaneous measurement apparatus (EXSTAR6000 TG / DTA6300) manufactured by SII Nano Technology was used. As the acrylic resin, a commercially available product (product name: Acridic A-168, resin content: 50%) was used. The dispersion was prepared by dispersing beads with transparent conductive fine powder using a dyno mill. The base film for film formation was a PET film, and the dispersion was applied with a commercially available automatic applicator (ROD No. 3) and air-dried, and then the surface resistance, total light transmittance, and haze of the film formation were measured. In all cases, the total light transmittance of the base film is 89%, and the haze is 2.0%. The results of Examples and Comparative Examples are shown in Table 1.

珪酸をシリカ換算で0.0002%含有した水酸化錫を窒素雰囲気下、500℃に加熱し、2時間保持した後に冷却したところ、N量10ppm、BET比表面積40m2/g、粉末のL、a、b値がそれぞれ70,−1,−1、炭素量が0の酸化スズ粉末を得た。この粉体の体積抵抗は250Ω・cmであった。また熱分析によって金属Snは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は10であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.6であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ1×109Ω/□であり、全光線透過率は89%、ヘーズは2.4%であった。目視にて透明性を確認したところ、凝集物は確認されず、透明で色味にも問題はなかった。 When tin hydroxide containing 0.0002% silicic acid in terms of silica was heated to 500 ° C. in a nitrogen atmosphere, held for 2 hours and then cooled, the N amount was 10 ppm, the BET specific surface area was 40 m 2 / g, the powder L, A tin oxide powder having a, b values of 70, -1, -1, and a carbon amount of 0 was obtained. The volume resistance of this powder was 250 Ω · cm. Further, metal Sn was not confirmed by thermal analysis. The change amount (acceleration ratio) of the volume powder resistivity in the environmental acceleration test of this powder was 10. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area (BET ratio) before dispersion were 1.6. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film, air-dried for 1 hour, and then the surface resistance was measured. As a result, it was 1 × 10 9 Ω / □, the total light transmittance was 89%, and the haze was 2.4%. When the transparency was confirmed by visual observation, no aggregates were confirmed, and there was no problem with the color and transparency.

珪酸をシリカ換算で0.6%含有した水酸化錫を窒素雰囲気下、500℃に加熱し、2時間保持した後に冷却したところ、N量100ppm、BET比表面積40m2/g、粉末のL、a、b値がそれぞれ71,−1,2、炭素量が0の酸化スズ粉末を得た。この粉体の体積抵抗は32Ω・cmであった。また熱分析によって金属Snは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は5.5であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.6であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ8×108Ω/□であり、全光線透過率は88%、ヘーズは2.5%であった。目視にて透明性を確認したところ、凝集物は確認されず、透明で色味にも問題はなかった。 When tin hydroxide containing 0.6% silicic acid in terms of silica was heated to 500 ° C. in a nitrogen atmosphere, held for 2 hours and then cooled, the N amount was 100 ppm, the BET specific surface area was 40 m 2 / g, the powder L, Tin oxide powders having a and b values of 71, -1, 2 and carbon amount of 0 were obtained. The volume resistance of this powder was 32 Ω · cm. Further, metal Sn was not confirmed by thermal analysis. The amount of change in volume powder resistivity (acceleration ratio) in the environmental acceleration test of this powder was 5.5. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area (BET ratio) before dispersion were 1.6. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film, air-dried for 1 hour, and then the surface resistance was measured. As a result, it was 8 × 10 8 Ω / □, the total light transmittance was 88%, and the haze was 2.5%. When the transparency was confirmed by visual observation, no aggregates were confirmed, and there was no problem with the color and transparency.

珪酸をシリカ換算で1.6%含有した水酸化錫を窒素雰囲気下、800℃に加熱し、2時間保持した後に冷却したところ、N量1000ppm、BET比表面積40m2/g、粉末のL、a、b値がそれぞれ72,−2,6、炭素量が0の酸化スズ粉末を得た。この粉体の体積抵抗は1.3Ω・cmであった。また熱分析によって金属Snは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は3.0であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.7であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ5×108Ω/□であり、全光線透過率は88%、ヘーズは2.5%であった。目視にて透明性を確認したところ、凝集物は確認されず、透明で色味にも問題はなかった。 When tin hydroxide containing 1.6% of silicic acid in terms of silica was heated to 800 ° C. in a nitrogen atmosphere, held for 2 hours and then cooled, the N amount was 1000 ppm, the BET specific surface area was 40 m 2 / g, the powder L, Tin oxide powders having a and b values of 72, -2, 6 and carbon amount of 0 were obtained. This powder had a volume resistance of 1.3 Ω · cm. Further, metal Sn was not confirmed by thermal analysis. The amount of change in volume resistivity (acceleration ratio) in the environmental acceleration test of this powder was 3.0. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area before dispersion (BET ratio) were 1.7. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film, air-dried for 1 hour, and then the surface resistance was measured. As a result, it was 5 × 10 8 Ω / □, the total light transmittance was 88%, and the haze was 2.5%. When the transparency was confirmed by visual observation, no aggregates were confirmed, and there was no problem with the color and transparency.

珪酸をシリカ換算で1.6%含有した水酸化錫を窒素雰囲気下、450℃に加熱し、4時間保持した後に冷却したところ、N量3000ppm、BET比表面積100m2/g、粉末のL、a、b値がそれぞれ63,1,−3、炭素量が0の酸化スズ粉末を得た。この粉体の体積抵抗は10Ω・cmであった。また熱分析によって金属Snは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は1.2であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.5であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ1×107Ω/□であり、全光線透過率は89%、ヘーズは2.4%であった。目視にて透明性を確認したところ、凝集物は確認されず、透明で色味にも問題はなかった。 When tin hydroxide containing 1.6% silicic acid in terms of silica was heated to 450 ° C. in a nitrogen atmosphere, held for 4 hours and then cooled, the N amount was 3000 ppm, the BET specific surface area was 100 m 2 / g, the powder L, A tin oxide powder having a and b values of 63, 1, and -3 and a carbon amount of 0 was obtained. The volume resistance of this powder was 10 Ω · cm. Further, metal Sn was not confirmed by thermal analysis. The change amount (acceleration ratio) of the volume powder resistivity in the environmental acceleration test of this powder was 1.2. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area (BET ratio) before dispersion were 1.5. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film, air-dried for 1 hour, and then the surface resistance was measured. As a result, it was 1 × 10 7 Ω / □, the total light transmittance was 89%, and the haze was 2.4%. When the transparency was confirmed by visual observation, no aggregates were confirmed, and there was no problem with the color and transparency.

珪酸をシリカ換算で0.2%含有した水酸化錫と塩化カリウム10%を十分混合した後、窒素雰囲気下、1100℃に加熱し、2時間保持した後に冷却し、洗浄を10回繰り返した後、乾燥し粉砕したところ、N量10ppm、BET比表面積10m2/g、粉末のL、a、b値がそれぞれ80,―1,−5、炭素量が0の棒状タイプの酸化スズ粉末を得た。この粉体の体積抵抗は0.5Ω・cmであった。また熱分析によって金属Snは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は0.9であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.9であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ1×106Ω/□であり、全光線透過率は86%、ヘーズは3.0%であった。目視にて透明性を確認したところ、凝集物は確認されず透明で色味にも問題はなかった。 After sufficiently mixing tin hydroxide containing 0.2% of silicic acid in silica and 10% potassium chloride, heating to 1100 ° C. in a nitrogen atmosphere, holding for 2 hours, cooling, and repeating washing 10 times When dried and pulverized, a rod-shaped tin oxide powder having an N amount of 10 ppm, a BET specific surface area of 10 m 2 / g, a powder L, a, b value of 80, -1, -5, and a carbon amount of 0 is obtained. It was. The volume resistance of this powder was 0.5 Ω · cm. Further, metal Sn was not confirmed by thermal analysis. The amount of change (acceleration ratio) in the volume powder resistivity by the environmental acceleration test of this powder was 0.9. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area before dispersion (BET ratio) were 1.9. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film, air-dried for 1 hour, and then the surface resistance was measured. As a result, it was 1 × 10 6 Ω / □, the total light transmittance was 86%, and the haze was 3.0%. When the transparency was confirmed by visual observation, no agglomerates were confirmed, and there was no problem with the color and transparency.

珪酸をシリカ換算で0.6%含有した水酸化錫を窒素雰囲気下、500℃に加熱し、2時間保持した後に冷却したところ、N量10ppm、BET比表面積100m2/g、粉末のL、a、b値がそれぞれ81,―1,−5、炭素量が0の酸化スズ粉末を得た。この粉体の体積抵抗は330Ω・cmであった。また熱分析によって金属Snは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は25であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.5であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ5×109Ω/□であり、全光線透過率は89%、ヘーズは2.3%であった。目視にて透明性を確認したところ、凝集物は確認されず、透明で色味にも問題はなかった。 When tin hydroxide containing 0.6% of silicic acid was heated to 500 ° C. in a nitrogen atmosphere and held for 2 hours and then cooled, the N amount was 10 ppm, the BET specific surface area was 100 m 2 / g, the powder L, A tin oxide powder having a, b values of 81, -1, 1, -5 and a carbon content of 0 was obtained. The volume resistance of this powder was 330 Ω · cm. Further, metal Sn was not confirmed by thermal analysis. The change amount (acceleration ratio) of the volume powder resistivity in the environmental acceleration test of this powder was 25. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area (BET ratio) before dispersion were 1.5. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film, air-dried for 1 hour, and then the surface resistance was measured. As a result, it was 5 × 10 9 Ω / □, the total light transmittance was 89%, and the haze was 2.3%. When the transparency was confirmed by visual observation, no aggregates were confirmed, and there was no problem with the color and transparency.

珪酸をシリカ換算で3.0%含有した水酸化錫を窒素雰囲気下、500℃に加熱し、2時間保持した後に冷却したところ、N量10ppm、BET比表面積200m2/g、粉末のL、a、b値がそれぞれ83,―1,−6、炭素量が0の酸化スズ粉末を得た。この粉体の体積抵抗は640Ω・cmであった。また熱分析によって金属Snは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は47であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.4であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ7×109Ω/□であり、全光線透過率は89%、ヘーズは2.3%であった。目視にて透明性を確認したところ、凝集物は確認されず、透明で色味にも問題はなかった。 When tin hydroxide containing 3.0% silicic acid in terms of silica was heated to 500 ° C. in a nitrogen atmosphere, held for 2 hours and then cooled, the N amount was 10 ppm, the BET specific surface area was 200 m 2 / g, the powder L, Tin oxide powders having a and b values of 83, -1, and -6, respectively, and a carbon content of 0 were obtained. The volume resistance of this powder was 640 Ω · cm. Further, metal Sn was not confirmed by thermal analysis. The change amount (acceleration ratio) of the volume powder resistivity in the environmental acceleration test of this powder was 47. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area (BET ratio) before dispersion were 1.4. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film, air-dried for 1 hour, and then the surface resistance was measured. The result was 7 × 10 9 Ω / □, the total light transmittance was 89%, and the haze was 2.3%. When the transparency was confirmed by visual observation, no aggregates were confirmed, and there was no problem with the color and transparency.

実施例2の粉末を不活性ガス雰囲気下、エタノールをガス化しながら接触させて、200℃に加熱して1時間保持した後に冷却したところ、N量100ppm、BET比表面積40m2/g、粉末のL、a、b値がそれぞれ64,1,2、炭素量が0.5%の酸化スズ粉末を得た。この粉体の体積抵抗は15Ω・cmであった。また熱分析によって金属Snは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は4.0であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.6であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ2×108Ω/□であり、全光線透過率は86%、ヘーズは3.5%であった。目視にて透明性を確認したところ、凝集物は確認されず、透明で色味にも問題はなかった。 The powder of Example 2 was brought into contact with gasifying ethanol in an inert gas atmosphere, heated to 200 ° C. and held for 1 hour, and then cooled. As a result, the N amount was 100 ppm, the BET specific surface area was 40 m 2 / g, A tin oxide powder having L, a, b values of 64, 1, 2 and a carbon content of 0.5% was obtained. The volume resistance of this powder was 15 Ω · cm. Further, metal Sn was not confirmed by thermal analysis. The change amount (acceleration ratio) of the volume powder resistivity in the environmental acceleration test of this powder was 4.0. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area (BET ratio) before dispersion were 1.6. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film, air-dried for 1 hour, and then the surface resistance was measured. As a result, it was 2 × 10 8 Ω / □, the total light transmittance was 86%, and the haze was 3.5%. When the transparency was confirmed by visual observation, no aggregates were confirmed, and there was no problem with the color and transparency.

実施例2の粉末を不活性ガス雰囲気下、エタノールをガス化しながら接触させて、250℃に加熱して2時間保持した後に冷却したところ、N量100ppm、BET比表面積40m2/g、粉末のL、a、b値がそれぞれ62,1,4、炭素量が1.0%の酸化スズ粉末を得た。この粉体の体積抵抗は10Ω・cmであった。また熱分析によって金属Snは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は3.0であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.6であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ1×107Ω/□であり、全光線透過率は84%、ヘーズは4.0%であった。目視にて透明性を確認したところ、凝集物は確認されず、透明で色味にも問題はなかった。 The powder of Example 2 was brought into contact with an ethanol gasified in an inert gas atmosphere, heated to 250 ° C. and held for 2 hours, and then cooled. As a result, the N amount was 100 ppm, the BET specific surface area was 40 m 2 / g, A tin oxide powder having L, a, and b values of 62, 1, 4 and a carbon content of 1.0% was obtained. The volume resistance of this powder was 10 Ω · cm. Further, metal Sn was not confirmed by thermal analysis. The change amount (acceleration ratio) of the volume powder resistivity in the environmental acceleration test of this powder was 3.0. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area (BET ratio) before dispersion were 1.6. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film, air-dried for 1 hour, and then the surface resistance was measured. As a result, it was 1 × 10 7 Ω / □, the total light transmittance was 84%, and the haze was 4.0%. When the transparency was confirmed by visual observation, no aggregates were confirmed, and there was no problem with the color and transparency.

珪酸をシリカ換算で0.002%含有した水酸化錫を窒素雰囲気下、400℃に加熱し、5時間保持した後に冷却し、不活性ガス雰囲気下、エタノールをガス化しながら接触させて、250℃に加熱して1時間保持した後に冷却したところ、N量40000ppm、BET比表面積200m2/g、粉末のL、a、b値がそれぞれ56,1,5、炭素量が1.0%の酸化スズ粉末を得た。この粉体の体積抵抗は30Ω・cmであった。また熱分析によって金属Snは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は4.0であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.3であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ3×107Ω/□であり、全光線透過率は87%、ヘーズは3.0%であった。目視にて透明性を確認したところ、凝集物は確認されず、透明で色味にも問題はなかった。 A tin hydroxide containing 0.002% of silicic acid in terms of silica was heated to 400 ° C. in a nitrogen atmosphere, held for 5 hours, then cooled, and brought into contact with an inert gas atmosphere while gasifying ethanol. When heated for 1 hour and then cooled, the amount of N was 40000 ppm, the BET specific surface area was 200 m 2 / g, the powder L, a and b values were 56, 1, 5 and the carbon content was 1.0%, respectively. Tin powder was obtained. The volume resistance of this powder was 30 Ω · cm. Further, metal Sn was not confirmed by thermal analysis. The change amount (acceleration ratio) of the volume powder resistivity in the environmental acceleration test of this powder was 4.0. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area (BET ratio) before dispersion were 1.3. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film, air-dried for 1 hour, and then the surface resistance was measured. As a result, it was 3 × 10 7 Ω / □, the total light transmittance was 87%, and the haze was 3.0%. When the transparency was confirmed by visual observation, no aggregates were confirmed, and there was no problem with the color and transparency.

比較例Comparative example

〔比較例1〕
実施例3で窒素雰囲気下を空気雰囲気下にする以外は、同じ方法で処理し、N量0ppm、BET比表面積40m2/g、粉末のL、a、b値がそれぞれ85,−1,2、炭素量が0の酸化スズ粉末を得た。この粉体の体積抵抗は1400000Ω・cmであった。また熱分析によって金属Snは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は80であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.5であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ9×1012Ω/□であり、全光線透過率は81%、ヘーズは4.5%であった。目視にて透明性を確認したところ、凝集物は確認されなかったが、透明性において白味がかっており色味に問題が生じた。
[Comparative Example 1]
Except for changing the nitrogen atmosphere to an air atmosphere in Example 3, the same method was used, and the N amount was 0 ppm, the BET specific surface area was 40 m 2 / g, and the powder L, a, and b values were 85, -1, 2, respectively. A tin oxide powder having a carbon content of 0 was obtained. The volume resistance of this powder was 1400000 Ω · cm. Further, metal Sn was not confirmed by thermal analysis. The change amount (acceleration ratio) of the volume powder resistivity in the environmental acceleration test of this powder was 80. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area (BET ratio) before dispersion were 1.5. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film, air-dried for 1 hour, and then the surface resistance was measured. As a result, it was 9 × 10 12 Ω / □, the total light transmittance was 81%, and the haze was 4.5%. When the transparency was confirmed by visual observation, no agglomerates were confirmed, but there was a problem in color due to the whiteness in transparency.

〔比較例2〕
実施例6で窒素雰囲気下を空気雰囲気下にする以外は、同じ方法で処理し、N量0ppm、BET比表面積100m2/g、粉末のL、a、b値がそれぞれ91,0,4、炭素量が0の酸化スズ粉末を得た。この粉体の体積抵抗は4600000Ω・cmであった。また熱分析によって金属Snは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は88であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.5であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ1013Ω/□以上であり、全光線透過率は79%、ヘーズは5.3%であった。目視にて透明性を確認したところ、凝集物は確認されなかったが、透明性において黄味がかっており色味に問題が生じた。
[Comparative Example 2]
Except for changing the nitrogen atmosphere to the air atmosphere in Example 6, the same method was applied, and the N amount was 0 ppm, the BET specific surface area was 100 m 2 / g, and the powder L, a, and b values were 91, 0, 4, respectively. A tin oxide powder having a carbon content of 0 was obtained. The volume resistance of this powder was 4600000 Ω · cm. Further, metal Sn was not confirmed by thermal analysis. The change amount (acceleration ratio) of the volume powder resistivity in the environmental acceleration test of this powder was 88. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area (BET ratio) before dispersion were 1.5. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film, air-dried for 1 hour, and then the surface resistance was measured. As a result, it was 10 13 Ω / □ or more, the total light transmittance was 79%, and the haze was 5.3%. When the transparency was confirmed by visual observation, no aggregates were confirmed, but the transparency was yellowish and a problem occurred in color.

〔比較例3〕
珪酸をシリカ換算で4.0%含有した水酸化錫を窒素雰囲気下、300℃に加熱し、10時間保持した後に冷却し、さらに不活性ガス雰囲気下、エタノールをガス化しながら接触させて、250℃に加熱して1時間保持した後に冷却したところ、N量80000ppm、BET比表面積300m2/g、粉末のL、a、b値がそれぞれ53,2,8、炭素量が10%の酸化スズ粉末を得た。この粉体の体積抵抗は5Ω・cmであった。また熱分析によって金属Snは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は15であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.0であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ3×107Ω/□であり、全光線透過率は78%、ヘーズは4.7%であった。目視にて透明性を確認したところ、凝集物は確認されなかったが、透明性において黄味がかっており色味に問題が生じた。
[Comparative Example 3]
A tin hydroxide containing 4.0% silicic acid in terms of silica was heated to 300 ° C. in a nitrogen atmosphere, held for 10 hours, then cooled, and further brought into contact with an ethanol gasified in an inert gas atmosphere. When heated to ℃ and held for 1 hour and then cooled, tin oxide with N content of 80000 ppm, BET specific surface area of 300 m 2 / g, powder L, a, b values of 53, 2, 8 and carbon content of 10%, respectively A powder was obtained. The volume resistance of this powder was 5 Ω · cm. Further, metal Sn was not confirmed by thermal analysis. The amount of change (acceleration ratio) in the volume powder resistivity by the environmental acceleration test of this powder was 15. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area (BET ratio) before dispersion were 1.0. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film and air-dried for 1 hour, and then the surface resistance was measured. The result was 3 × 10 7 Ω / □, the total light transmittance was 78%, and the haze was 4.7%. When the transparency was confirmed by visual observation, no aggregates were confirmed, but the transparency was yellowish and a problem occurred in color.

〔比較例4〕
珪酸をシリカ換算で1.6%含有した水酸化アンチモンと水酸化錫とを窒素雰囲気下、500℃に加熱し、2時間保持した後に冷却したところ、N量10ppm、BET比表面積70m2/g、粉末のL、a、b値がそれぞれ38,−1,−9、炭素量が0のアンチモンドープ酸化スズ粉末を得た。この粉体の体積抵抗は1.0Ω・cmであった。また熱分析によって金属Snは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は1.2であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.5であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ6×106Ω/□であり、全光線透過率は81%、ヘーズは3.5%であった。目視にて透明性を確認したところ、凝集物は確認されなかったが、透明性において青味がかっており色味に問題が生じた。
[Comparative Example 4]
Antimony hydroxide and tin hydroxide containing 1.6% silicic acid in terms of silica were heated to 500 ° C. in a nitrogen atmosphere, held for 2 hours, and then cooled. As a result, the N content was 10 ppm and the BET specific surface area was 70 m 2 / g. An antimony-doped tin oxide powder having L, a, and b values of 38, -1, and -9 and a carbon content of 0 was obtained. The volume resistance of this powder was 1.0 Ω · cm. Further, metal Sn was not confirmed by thermal analysis. The change amount (acceleration ratio) of the volume powder resistivity in the environmental acceleration test of this powder was 1.2. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area (BET ratio) before dispersion were 1.5. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film, air-dried for 1 hour, and then the surface resistance was measured. As a result, it was 6 × 10 6 Ω / □, the total light transmittance was 81%, and the haze was 3.5%. When the transparency was confirmed by visual observation, no agglomerates were confirmed, but the transparency was bluish and a problem occurred in color.

〔比較例5〕
アルミニウムがドープした水酸化亜鉛をアルゴン雰囲気下、600℃に加熱し、2時間保持した後に冷却したところ、N量0ppm、BET比表面積30m2/g、L,a,b値がそれぞれ60,−3,−3、カーボン量が0のAZO粉末を得た。この粉体の体積抵抗は1000Ω・cmであった。また熱分析によって金属Znは確認されなかった。この粉体の環境加速試験による体積粉体抵抗率の変化量(加速比)は100であった。この透明導電性微粉末300gを1200gのトルエンに分散した分散液を作成した。この分散後の分散液を乾燥した時のBET比表面積と分散前のBET比表面積(BET比)は1.7であった。この分散液に市販のアクリル樹脂200g、キシレン1200gとを混合した塗料を作成した。この塗料をPETフィルムに塗布し、1時間風乾した後、表面抵抗を測定したところ1×1011Ω/□であり、全光線透過率は79%、ヘーズは3.9%であった。目視にて透明性を確認したところ、凝集物は確認されなかったが、透明性において白緑味がかっており色味に問題が生じた。
[Comparative Example 5]
When aluminum hydroxide-doped zinc hydroxide was heated to 600 ° C. in an argon atmosphere, held for 2 hours and then cooled, the N amount was 0 ppm, the BET specific surface area was 30 m 2 / g, and the L, a, b values were 60, − AZO powder with 3, 3 and 0 carbon content was obtained. The volume resistance of this powder was 1000 Ω · cm. Moreover, metal Zn was not confirmed by thermal analysis. The amount of change in volume powder resistivity (acceleration ratio) by the environmental acceleration test of this powder was 100. A dispersion was prepared by dispersing 300 g of this transparent conductive fine powder in 1200 g of toluene. The BET specific surface area when the dispersion after dispersion was dried and the BET specific surface area before dispersion (BET ratio) were 1.7. A paint was prepared by mixing 200 g of a commercially available acrylic resin and 1200 g of xylene with this dispersion. This paint was applied to a PET film and air-dried for 1 hour. The surface resistance was measured and found to be 1 × 10 11 Ω / □, the total light transmittance was 79%, and the haze was 3.9%. When the transparency was confirmed with the naked eye, no aggregate was confirmed, but the transparency was white-greenish and a problem with the color occurred.

実施例1〜7と比較例1〜2とを比較すると、BET比表面積が同一範囲であるとき、酸化スズ粉末の窒素含有量が多いほど粉体体積抵抗値が低下している。なお、窒素含有量が過剰な比較例3は透過率が低いので、窒素含有量は1〜50000ppmが適当である。また、BET比表面積が大きいほど粉体体積抵抗値が増大するが、実施例5〜6に示すように、窒素を含有する酸化スズ粉末の粉体体積抵抗値は比較例1〜2に比べて大幅に低く、窒素を含有する酸化スズ粉末のBET比表面積は1〜200m2/g程度でもよい。さらに実施例8〜10に示すように、表面処理して所定量の炭素を含有するものは、環境加速試験による体積粉体抵抗率の変化量(加速比)が低下しており、導電性が経時安定性に優れている。また、実施例1〜10はBET比が何れも2.0以下であり、凝集性が少なく、さらに、成膜の全光線透過率は84%以上、ヘーズは3.5以下であり、透過性および透明性に優れている。 When Examples 1-7 are compared with Comparative Examples 1-2, when the BET specific surface area is in the same range, the powder volume resistance value decreases as the nitrogen content of the tin oxide powder increases. Since Comparative Example 3 having an excessive nitrogen content has a low transmittance, the nitrogen content is suitably 1 to 50000 ppm. Moreover, although a powder volume resistance value increases, so that a BET specific surface area is large, as shown in Examples 5-6, the powder volume resistance value of the tin oxide powder containing nitrogen is compared with Comparative Examples 1-2. The BET specific surface area of the tin oxide powder containing nitrogen that is significantly lower may be about 1 to 200 m 2 / g. Further, as shown in Examples 8 to 10, the surface treatment and containing a predetermined amount of carbon have a reduced volume powder resistivity change rate (acceleration ratio) by the environmental acceleration test, and the conductivity is low. Excellent stability over time. In Examples 1 to 10, the BET ratio is 2.0 or less, and the cohesiveness is small. Further, the total light transmittance of the film formation is 84% or more, and the haze is 3.5 or less. And excellent transparency.

Figure 2006248856
Figure 2006248856

Claims (16)

窒素を1〜50000ppm含有する金属酸化物微粉末からなることを特徴とする透明導電性微粉末。
A transparent conductive fine powder comprising a metal oxide fine powder containing 1 to 50000 ppm of nitrogen.
BET比表面積が1〜200m2/gであり、または一次粒子径が1〜500nmである請求項1に記載する透明導電性微粉末。
The transparent conductive fine powder according to claim 1, wherein the BET specific surface area is 1 to 200 m 2 / g, or the primary particle diameter is 1 to 500 nm.
粉末のL値が50〜83、a値が−2〜+2、b値が−6〜+7である請求項1または2に記載する透明導電性微粉末。
The transparent conductive fine powder according to claim 1 or 2, wherein the powder has an L value of 50 to 83, an a value of -2 to +2, and a b value of -6 to +7.
体積粉体抵抗率が10-1〜104Ω・cmである請求項1〜3の何れかに記載する透明導電性微粉末。
The transparent conductive fine powder according to any one of claims 1 to 3, which has a volume powder resistivity of 10 -1 to 10 4 Ω · cm.
粉末が酸化スズであり、アンチモンおよび金属スズの含有量が熱分析による検出限界以下である請求項1〜4の何れかに記載する透明導電性微粉末。
The transparent conductive fine powder according to any one of claims 1 to 4, wherein the powder is tin oxide, and the contents of antimony and metal tin are below the detection limit by thermal analysis.
金属水酸化物を、窒素ガス雰囲気下、100〜1100℃で、窒素を1〜50000ppm含有するまで加熱焼成して得た金属酸化物微粉末からなる請求項1〜5の何れかに記載する透明導電性微粉末。
The transparent according to any one of claims 1 to 5, comprising a metal oxide fine powder obtained by heating and baking a metal hydroxide at 100 to 1100 ° C in a nitrogen gas atmosphere until it contains 1 to 50000 ppm of nitrogen. Conductive fine powder.
窒素を1〜50000ppm含有する表面処理された金属酸化物微粉末からなり、微粉末表面に0.01〜10%のカーボン量を有する請求項1〜5の何れかに記載する透明導電性微粉末。
The transparent conductive fine powder according to any one of claims 1 to 5, comprising a surface-treated fine metal oxide powder containing 1 to 50000 ppm of nitrogen and having a carbon content of 0.01 to 10% on the fine powder surface. .
環境加速試験において体積粉体抵抗率の変化量(加速比)が50倍以下である請求項7に記載する透明導電性微粉末。
The transparent conductive fine powder according to claim 7, wherein a change amount (acceleration ratio) of the volume powder resistivity is 50 times or less in an environmental acceleration test.
金属水酸化物を、窒素ガス雰囲気下、100〜1100℃で、窒素を1〜50000ppm含有するまで加熱焼成して金属酸化物微粉末にし、この金属酸化物微粉末を不活性雰囲気下、および有機表面処理剤の存在下、100〜450℃の温度で加熱して表面処理した、微粉末表面に0.01〜10%のカーボン量を有する金属酸化物微粉末からなる請求項7または8に記載する透明導電性微粉末。
A metal hydroxide is heated and fired at 100 to 1100 ° C. in a nitrogen gas atmosphere to contain 1 to 50000 ppm of nitrogen to form a metal oxide fine powder, and the metal oxide fine powder is obtained under an inert atmosphere and organically. The metal oxide fine powder having a carbon content of 0.01 to 10% on the surface of the fine powder, which has been surface-treated by heating at a temperature of 100 to 450 ° C in the presence of a surface treatment agent. Transparent conductive fine powder.
金属水酸化物を、窒素ガス雰囲気下、100〜1100℃で、窒素を1〜50000ppm含有するまで加熱焼成して金属酸化物微粉末にする請求項1〜5の何れかに記載する透明導電性微粉末を製造する方法。
The transparent conductivity according to any one of claims 1 to 5, wherein the metal hydroxide is heated and fired at 100 to 1100 ° C in a nitrogen gas atmosphere to contain 1 to 50000 ppm of nitrogen to form a metal oxide fine powder. A method for producing fine powder.
金属水酸化物を、窒素ガス雰囲気下、100〜1100℃で、窒素を1〜50000ppm含有するまで加熱焼成して金属酸化物微粉末にし、この金属酸化物微粉末を不活性雰囲気下、および有機表面処理剤の存在下、100〜450℃の温度で加熱して表面処理し、微粉末表面に0.01〜10%のカーボン量を有する金属酸化物微粉末からなる請求項7または8に記載する透明導電性微粉末を製造する方法。
A metal hydroxide is heated and fired at 100 to 1100 ° C. in a nitrogen gas atmosphere to contain 1 to 50000 ppm of nitrogen to form a metal oxide fine powder, and the metal oxide fine powder is obtained under an inert atmosphere and organically. 9. The metal oxide fine powder comprising a metal oxide fine powder having a surface treatment by heating at a temperature of 100 to 450 ° C. in the presence of a surface treatment agent and having a carbon content of 0.01 to 10% on the fine powder surface. A method for producing transparent conductive fine powder.
ケイ酸をシリカ換算で10%以下含有する金属水酸化物を用いる請求項10または11の製造方法。
The manufacturing method of Claim 10 or 11 using the metal hydroxide which contains a silicic acid 10% or less in conversion of a silica.
請求項1〜9の何れかに記載する透明導電性微粉末を媒体に分散させたことを特徴とする透明導電性微粉末の分散液。
A dispersion of transparent conductive fine powder, wherein the transparent conductive fine powder according to any one of claims 1 to 9 is dispersed in a medium.
媒体に分散する前の粉末と分散した後の粉末について、BET比表面積の比が1.1〜2.0である請求項13に記載する透明導電性微粉末の分散液。
The dispersion liquid of the transparent conductive fine powder according to claim 13, wherein the ratio of the BET specific surface area of the powder before being dispersed in the medium and the powder after being dispersed is 1.1 to 2.0.
請求項1〜9の何れかに記載する透明導電性微粉末を含有し、または請求項13もしくは14の分散液を用いて形成されたことを特徴とする塗料。
A paint comprising the transparent conductive fine powder according to any one of claims 1 to 9, or formed using the dispersion liquid according to claim 13 or 14.
請求項15の塗料によって形成された、表面抵抗104〜1012Ω/□、全光透過率80%以上、ヘーズ10%以下であることを特徴とする成膜。

A film having a surface resistance of 10 4 to 10 12 Ω / □, a total light transmittance of 80% or more, and a haze of 10% or less, formed by the paint of claim 15.

JP2005069343A 2005-03-11 2005-03-11 Transparent conductive fine powder, method for producing the same, dispersion, and paint Active JP5051566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005069343A JP5051566B2 (en) 2005-03-11 2005-03-11 Transparent conductive fine powder, method for producing the same, dispersion, and paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005069343A JP5051566B2 (en) 2005-03-11 2005-03-11 Transparent conductive fine powder, method for producing the same, dispersion, and paint

Publications (2)

Publication Number Publication Date
JP2006248856A true JP2006248856A (en) 2006-09-21
JP5051566B2 JP5051566B2 (en) 2012-10-17

Family

ID=37089733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005069343A Active JP5051566B2 (en) 2005-03-11 2005-03-11 Transparent conductive fine powder, method for producing the same, dispersion, and paint

Country Status (1)

Country Link
JP (1) JP5051566B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140605A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp Conductive fine powder of high dispersibility, and its application
JP2010056047A (en) * 2008-08-29 2010-03-11 Mitsubishi Materials Corp Conductive tin oxide powder and manufacturing method therefor
JP2013006707A (en) * 2011-06-22 2013-01-10 Mitsubishi Materials Corp Silicon oxide-containing conductive tin oxide powder containing silicon oxide
JP2015071539A (en) * 2010-02-17 2015-04-16 石原産業株式会社 Conductive oxide particle, method of processing oxide particle to obtain the conductive oxide particle, electrode active material containing the conductive oxide particle and electricity storage device using the electrode active material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046925A (en) * 1983-08-25 1985-03-14 Mitsubishi Metal Corp Production of fine powder of tin oxide having low electrical resistance
JPH04213463A (en) * 1990-02-05 1992-08-04 Oce Nederland Bv Toner powder comprising particle having coating of fluorine-doped tin oxide particle
JPH06345429A (en) * 1993-06-14 1994-12-20 Mitsui Mining & Smelting Co Ltd Electrically conductive ultrafine-powdered tin dioxide and production thereof
JP2003300727A (en) * 2003-03-24 2003-10-21 Mitsui Mining & Smelting Co Ltd Conductive tin dioxide superfine powder
JP2005015324A (en) * 2002-12-03 2005-01-20 Nissan Chem Ind Ltd Denatured stannic oxide sol, stannic oxide-zirconium oxide multiple sol, and production method therefor
WO2005076291A1 (en) * 2004-02-06 2005-08-18 Mitsui Mining & Smelting Co., Ltd. Electroconductive tin oxide powder and method for production thereof
JP2005330163A (en) * 2004-05-21 2005-12-02 Mitsui Mining & Smelting Co Ltd Electroconductive tin oxide powder, manufacturing method thereof, and electroconductive-paste and -paint
JP2006059806A (en) * 2004-07-23 2006-03-02 Mitsubishi Materials Corp Fine powder of surface-modified transparent conductive tin oxide, its manufacturing method, and its dispersion body

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046925A (en) * 1983-08-25 1985-03-14 Mitsubishi Metal Corp Production of fine powder of tin oxide having low electrical resistance
JPH04213463A (en) * 1990-02-05 1992-08-04 Oce Nederland Bv Toner powder comprising particle having coating of fluorine-doped tin oxide particle
JPH06345429A (en) * 1993-06-14 1994-12-20 Mitsui Mining & Smelting Co Ltd Electrically conductive ultrafine-powdered tin dioxide and production thereof
JP2005015324A (en) * 2002-12-03 2005-01-20 Nissan Chem Ind Ltd Denatured stannic oxide sol, stannic oxide-zirconium oxide multiple sol, and production method therefor
JP2003300727A (en) * 2003-03-24 2003-10-21 Mitsui Mining & Smelting Co Ltd Conductive tin dioxide superfine powder
WO2005076291A1 (en) * 2004-02-06 2005-08-18 Mitsui Mining & Smelting Co., Ltd. Electroconductive tin oxide powder and method for production thereof
JP2005219979A (en) * 2004-02-06 2005-08-18 Mitsui Mining & Smelting Co Ltd Conductive tin oxide powder and its manufacturing method
JP2005330163A (en) * 2004-05-21 2005-12-02 Mitsui Mining & Smelting Co Ltd Electroconductive tin oxide powder, manufacturing method thereof, and electroconductive-paste and -paint
JP2006059806A (en) * 2004-07-23 2006-03-02 Mitsubishi Materials Corp Fine powder of surface-modified transparent conductive tin oxide, its manufacturing method, and its dispersion body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140605A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp Conductive fine powder of high dispersibility, and its application
JP2010056047A (en) * 2008-08-29 2010-03-11 Mitsubishi Materials Corp Conductive tin oxide powder and manufacturing method therefor
JP2015071539A (en) * 2010-02-17 2015-04-16 石原産業株式会社 Conductive oxide particle, method of processing oxide particle to obtain the conductive oxide particle, electrode active material containing the conductive oxide particle and electricity storage device using the electrode active material
JP2013006707A (en) * 2011-06-22 2013-01-10 Mitsubishi Materials Corp Silicon oxide-containing conductive tin oxide powder containing silicon oxide

Also Published As

Publication number Publication date
JP5051566B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP2004349167A (en) White conductive powder and its application
JP5062520B2 (en) Transparent tin oxide powder
JP4904575B2 (en) Surface-modified transparent conductive tin oxide fine powder, production method thereof and dispersion thereof
JP5400307B2 (en) White conductive powder and its use
JP5051566B2 (en) Transparent conductive fine powder, method for producing the same, dispersion, and paint
JP5181322B2 (en) Method for producing conductive tin oxide powder
JP2008230915A (en) Electrically conductive zinc oxide particle and method for manufacturing the same
JP4778139B2 (en) White conductive powder and its application
JP5400306B2 (en) White conductive powder and its use
JP4830393B2 (en) Method and apparatus for producing conductive tin oxide powder
JP2008162863A (en) White electroconductive powder
JP2015160759A (en) Transparent electroconductive compound oxide fine powder, production method thereof, and transparent electroconductive film
JP4848672B2 (en) Highly dispersible conductive fine powder and its application
JP5977603B2 (en) White conductive powder, dispersion thereof, paint, and film
JP5289077B2 (en) Acicular tin oxide fine powder and method for producing the same
JP2005330163A (en) Electroconductive tin oxide powder, manufacturing method thereof, and electroconductive-paste and -paint
JP2008251210A (en) White conductive powder, its manufacturing method, and its use
JP5562174B2 (en) Transparent conductive tin oxide powder, method for producing the same, and film composition using the same
JP3515625B2 (en) Needle-like conductive tin oxide fine powder and method for producing the same
KR20200137136A (en) Toner additives to be safe for the human body and toner using them
JP2003300727A (en) Conductive tin dioxide superfine powder
JPWO2018088163A1 (en) Tin oxide particles and method for producing the same
JP2011054508A (en) White conductive powder
JP5977602B2 (en) White conductive powder, dispersion thereof, paint, and film
JP2010040397A (en) Conductive particulate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R150 Certificate of patent or registration of utility model

Ref document number: 5051566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250