JP2006236859A - リチウム電池の処理方法 - Google Patents

リチウム電池の処理方法 Download PDF

Info

Publication number
JP2006236859A
JP2006236859A JP2005051868A JP2005051868A JP2006236859A JP 2006236859 A JP2006236859 A JP 2006236859A JP 2005051868 A JP2005051868 A JP 2005051868A JP 2005051868 A JP2005051868 A JP 2005051868A JP 2006236859 A JP2006236859 A JP 2006236859A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
sulfuric acid
current collector
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005051868A
Other languages
English (en)
Inventor
Hirofumi Iizaka
浩文 飯坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005051868A priority Critical patent/JP2006236859A/ja
Publication of JP2006236859A publication Critical patent/JP2006236859A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】 リチウム遷移金属酸化物を備えるリチウム電池から有価物を回収する処理方法を提供する。
【解決手段】 本発明のリチウム電池処理方法は、リチウム遷移金属酸化物から実質的に構成される正極活物質を含む正電極材を集電体上に有する正極ユニットを備えたリチウム電池の処理に適用される。その方法は、前記リチウム電池から正極ユニットを分離する工程と、前記正極ユニットから前記正電極材を分離する工程と、前記正電極材を0.01〜12Nの硫酸とともに加熱する工程と、その硫酸加熱処理後の不溶分を回収する工程とを包含する。
【選択図】 図1

Description

本発明は、リチウム電池から有価物を回収する技術に関する。特に、該電池の正極活物質として用いられているリチウム遷移金属酸化物から有用な回収物を得る技術に関する。
リチウムと遷移金属元素とを含む複合酸化物(以下、「リチウム遷移金属酸化物」という。)を有するリチウム電池からリチウム遷移金属酸化物を回収することに関する種々の方法が提案されている。例えば特許文献1には、正極活物質としてのコバルト酸リチウムを含む粉状物質をリチウム電池から篩分けによって分離した後、その粉状物質を造粒する工程と、該造粒物を焙焼してコバルト酸リチウムを回収する工程と、を含む電池の解体処理方法が記載されている。一方、電池用のリチウム遷移金属酸化物に関する他の従来技術文献として特許文献2および3が挙げられる。
国際公開第00/19557号パンフレット 特開2004−273451号公報 特開平6−203834号公報
特許文献1に記載の技術では、コバルト酸リチウムを含む粉状物質をリチウム電池から分離した後、該粉状物質をそのまま造粒し、焙焼することによってコバルト酸リチウムを回収している。しかし、このようにして回収されたコバルト酸リチウム(すなわち、リチウム電池から再生されたコバルト酸リチウム)を再利用して新たに製造したリチウム電池によると、一般的な(すなわち再生品ではない)コバルト酸リチウムを用いたリチウム電池に比べて電池性能(例えば低温特性)が不足しがちであった。
そこで本発明は、リチウム遷移金属酸化物を備えるリチウム電池の処理方法であって、より性能のよいリチウム電池を構築し得る有価物(例えば、リチウム遷移金属酸化物)を得ることのできる処理方法を提供することを一つの目的とする。本発明の他の一つの目的は、かかる処理方法を適用した有価物(例えば、リチウム遷移金属酸化物)の回収方法を提供することである。さらに他の目的は、リチウム遷移金属酸化物を備えるリチウム電池から正極活物質を製造する方法を提供することである。
ここに開示される一つの発明は、リチウム遷移金属酸化物から実質的に構成される正極活物質を有するリチウム電池の処理方法に関する。該リチウム電池は、集電体上に正電極材を有する正極ユニットを備える。その正電極材は前記正極活物質を含み、典型的にはさらにバインダを含む。前記処理方法は、前記リチウム電池から正極ユニットを分離する工程を包含する。また、前記正極ユニットを構成する前記集電体から前記正電極材を分離する工程を包含する。また、前記正電極材を凡そ0.01〜12Nの硫酸とともに加熱する工程を含む。その硫酸加熱処理後の不溶分を回収する工程をさらに含むことができる。
前記硫酸加熱処理後の不溶分は、固体状(典型的には粉末状)のリチウム遷移金属酸化物を含有する。その固体状リチウム遷移金属酸化物は、前記硫酸加熱処理によって改質されている。例えば、粉末状のリチウム遷移金属酸化物(以下、「リチウム遷移金属酸化物粉末」ということもある。)を構成する粒子の主として表面に硫酸イオン(SO4 2-)および/または硫酸基(以下、硫酸イオンおよび/または硫酸基をまとめて「SO4成分」という。)が導入されている。このように硫酸成分が意図的に導入されたリチウム遷移金属酸化物粉末は、リチウム電池(典型的には、リチウムイオン二次電池)その他の電池の正極活物質または該正極活物質を製造するための原料として用いられて、より良好な性能(例えば低温出力)を示す電池を構築し得る。したがって、前記処理方法によると、リチウム電池の正極活物質またはその原料としてより有用な回収物(リチウム遷移金属酸化物)を得ることができる。
集電体から正電極材を分離する前記工程は、典型的には、該集電体から正電極材を剥離することを含む。剥離する方法としては、機械的(物理的)な方法および化学的な方法のいずれも使用可能である。機械的な方法と化学的な方法とを併せてまたは順次に使用してもよい。機械的な分離方法としては、例えば、正極ユニットに超音波振動を与える方法を採用することができる。化学的な分離方法としては、例えば、正極ユニットを硫酸に接触させる方法(硫酸に浸漬する方法、硫酸で洗浄する方法等)を例示することができる。このとき使用する硫酸の濃度は、正極集電体を過度に溶解させない程度の濃度とすることが適切である。また、正電極材がバインダ(例えば水溶性バインダ)を含む場合には、該バインダを溶解および/または膨潤させるとともに、正極集電体を過度に溶解させない程度の濃度とすることが適切である。なお、ここで正電極材の剥離に使用する硫酸は、後続する硫酸加熱工程に使用する硫酸と兼用することができる。
前記硫酸加熱処理には、濃度が凡そ0.01〜12Nの硫酸を使用する。本発明の適用効果がよりよく発揮され得る(例えば、より良好な性能(例えば低温出力)を示す電池を構築し得る回収物が得られる)という観点からは、濃度が凡そ0.05N以上(典型的には、凡そ0.05N〜12N)の硫酸を用いることが好ましく、濃度が凡そ0.1N以上(典型的には、凡そ0.1〜12N)の硫酸を用いることがより好ましい。上述のように正極ユニットを硫酸に接触させて正電極材を剥離する場合であって、該剥離に使用する硫酸と硫酸加熱工程に使用する硫酸とを兼用する場合には、正極集電体(典型的にはアルミニウム製)の溶解をよりよく回避するという観点から、濃度が凡そ5N以下(典型的には、凡そ0.01〜5N)の硫酸を使用することが好ましく、濃度が凡そ1N以下(典型的には、凡そ0.01〜1N)の硫酸を使用することが好ましい。
前記硫酸加熱処理における加熱温度は室温以上であればよく、特に限定されない。例えば、該加熱温度を凡そ50〜180℃とすることができる。通常は、該加熱温度を凡そ80〜180℃とすることが好ましく、凡そ120〜170℃とすることがより好ましい。
ここに開示される方法は、前記硫酸加熱処理後の不溶分をリチウム溶液で処理する工程をさらに含む態様で実施することができる。該処理に使用するリチウム溶液としては、イオン性のリチウム化合物(リチウム塩)が適当な溶媒(典型的には水)に溶解したリチウム溶液を適宜選択することができる。例えば、水酸化リチウムの水溶液を好ましく選択することができる。
かかるリチウム溶液処理を行うことにより、該処理までの間に(例えば、前記硫酸加熱処理の際に)欠失したリチウム成分が適切に補われた回収物(リチウム遷移金属酸化物)を得ることができる。したがって、かかるリチウム溶液処理を経て得られた回収物は、必要に応じてさらなる処理を経てリチウム電池の正極活物質またはその製造用原料として再利用されて、より性能のよいリチウム電池を構築することができる。
また、ここに開示される方法は、前記硫酸加熱処理後の不溶分を所定のリチウム化合物と混合し、該混合物を酸化性雰囲気中で加熱してリチウム遷移金属酸化物を得る工程をさらに含む態様で実施することができる。ここで、前記不溶分と混合するリチウム化合物としては、酸化リチウム;および、加熱により酸化物となり得るリチウム化合物(例えば、リチウムの水酸化物、硝酸塩、炭酸塩、炭酸水素塩等);からなる群から選択される一種または二種以上を適宜選択して使用することができる。この工程に使用する「硫酸加熱処理後の不溶分」は、前記リチウム溶液処理を経たものであってもよく、該処理を経ていないものであってもよい。
かかる態様によると、該工程までの間に(例えば、前記硫酸加熱処理の際に)欠失したリチウム成分が適切に補われたリチウム遷移金属酸化物を得ることができる。かかるリチウム遷移金属酸化物は、必要に応じてさらなる処理を経てリチウム電池の正極活物質またはその製造用原料として再利用されて、より性能のよいリチウム電池を構築することができる。
ここに開示される方法は、前記正電極材がバインダを含むリチウム電池に対して好ましく適用することができる。バインダとしては、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)等のセルロース系ポリマー(セルロース誘導体);ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリエチレンオキサイド−プロピレンオキサイド共重合体(PEO−PPO)等のポリアルキレンオキサイド;ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重含体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、エチレン−テトラフルオロエチレン共重合体(ETFE)等のフッ素系樹脂;酢酸ビニル共重合体;スチレンブタジエンゴム(SBR);ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)等のビニリデン樹脂;ポリビニルアルコール(PVA);ポリアクリルアミド(PAAD);ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン樹脂;熱硬化性樹脂(例えばポリイミド(PI));ポリウレタン;等から選択される一種又は二種以上を用いることができる。
本発明の特に好ましい適用対象として、前記バインダがセルロース系ポリマーであるリチウム電池が挙げられる。前記硫酸加熱処理によると、このようなセルロース系ポリマーを改質して低分子量化することができる。好ましい一つの態様では、セルロース系ポリマーの大部分が単量体(例えばグルコース)に分解される。セルロース系ポリマーに比べてグルコース等は加熱により分解しやすい。したがって、硫酸加熱処理後の不溶分がリチウム遷移金属酸化物とバインダとを含む混合物となっている場合、該不溶分を加熱することによって、該混合物から有機成分(改質されたバインダ)をより容易におよび/またはより適切に除去することができる。したがって、より性能のよいリチウム電池を構築し得る回収物(リチウム遷移金属酸化物)を得ることができる。
ここに開示される方法は、前記リチウム遷移金属酸化物を構成する主たる(第一の)遷移金属元素がニッケル(Ni)、コバルト(Co)およびマンガン(Mn)のいずれかであるリチウム電池の処理に好ましく適用され得る。例えば、リチウムとニッケルとを含む複合酸化物であって主たる遷移金属元素がニッケルである複合酸化物(リチウム・ニッケル含有複合酸化物)から実質的に構成される正極活物質を用いたリチウム電池の処理に好ましく適用され得る。かかるリチウム・ニッケル含有複合酸化物の一例として、一般式LiNiOで表される酸化物が挙げられる。他の例としては、第一遷移金属元素がニッケルであり、他の金属元素(副成分)としてCo,Al,Mn,Cr,Fe,V,Mg,Ti,Zr,Nb,Mo,W,Cu,Zn,Ga,In,Sn,LaおよびCeからなる群から選択される一種または二種以上を含むリチウム・ニッケル含有複合酸化物が挙げられる。例えば、第一遷移金属元素がニッケルであり、副成分として少なくともコバルトを含むリチウム・ニッケル含有複合酸化物が好ましい。かかる酸化物は、例えば一般式LiNi1−xCoで表すことができる。該一般式中のxは0<x<0.5であり、好ましくは0.1<x<0.3である。ここに開示される方法は、また、主たる遷移金属元素がコバルトである複合酸化物(リチウム・コバルト含有複合酸化物)から実質的に構成される正極活物質を用いたリチウム電池、および、主たる遷移金属元素がマンガンである複合酸化物(リチウム・マンガン含有複合酸化物)から実質的に構成される正極活物質を用いたリチウム電池の処理にも好ましく適用され得る。
ここに開示される他の一つの発明は、リチウム遷移金属酸化物から実質的に構成される正極活物質を有するリチウム電池から正極活物質を製造する方法に関する。該リチウム電池は、正極集電体上に正電極材を有する正極ユニットを備える。その正電極材は前記正極活物質を含み、典型的にはさらにバインダ(好ましくはセルロース系ポリマー)を含む。前記正極活物質製造方法は、前記リチウム電池から前記正極ユニットを分離する工程を包含する。また、前記正極ユニットを構成する前記集電体から前記正電極材を分離する工程を包含する。また、前記正電極材を凡そ0.01〜12Nの硫酸とともに加熱する工程を包含する。また、その硫酸加熱処理後の不溶分(典型的にはリチウム遷移金属酸化物粒子を含み、通常は該酸化物粒子とバインダとを含む。)を回収する工程を含有することができる。さらに、該不溶分を酸化性雰囲気中で加熱してリチウム遷移金属酸化物を得る工程を包含することができる。前記リチウム遷移金属酸化物を得る工程は、前記不溶分をリチウム溶液で処理した後、そのリチウム処理された不溶分を用いて行ってもよい。また、前記不溶分を、酸化リチウムおよび加熱により酸化物となり得るリチウム化合物からなる群から選択される一種または二種以上と混合し、その混合物(前記不溶分を含む)を酸化性雰囲気中で加熱してもよい。
なお、この明細書により開示される技術には以下のものが含まれる。
(1)前記リチウム遷移金属酸化物を構成する主たる遷移金属元素がニッケルであるリチウム電池に上述したいずれかのリチウム電池処理方法を適用して前記硫酸加熱処理後の不溶分を得る工程と、
該不溶分と酸化リチウムとを混合する工程と、
該混合物を酸化性雰囲気中(例えば酸素ガス中)、凡そ800〜900℃(例えば凡そ850℃)で加熱してリチウム・ニッケル含有複合酸化物を得る工程と、
を包含するリチウム・ニッケル含有複合酸化物の製造方法。
(2)前記リチウム遷移金属酸化物を構成する主たる遷移金属元素がニッケルであるリチウム電池に上述したいずれかのリチウム電池処理方法を適用して前記硫酸加熱処理後の不溶分を得る工程と、
該不溶分と硝酸リチウムとを混合する工程と、
該混合物を酸化性雰囲気中(例えば酸素ガス中)、凡そ600〜750℃(例えば凡そ600℃または750℃)で加熱する工程と、
を包含するリチウム・ニッケル含有複合酸化物の製造方法。
(3)前記リチウム遷移金属酸化物を構成する主たる遷移金属元素がニッケルであるリチウム電池に上述したいずれかのリチウム電池処理方法を適用して前記硫酸加熱処理後の不溶分を得る工程と、
該不溶分と水酸化リチウムとを混合する工程と、
該混合物を酸化性雰囲気中(例えば酸素ガス中)、凡そ700〜800℃(例えば凡そ750℃)で加熱してリチウム・ニッケル含有複合酸化物を得る工程と、
を包含するリチウム・ニッケル含有複合酸化物の製造方法。
(4)前記リチウム遷移金属酸化物を構成する主たる遷移金属元素がコバルトであるリチウム電池に上述したいずれかのリチウム電池処理方法を適用して前記硫酸加熱処理後の不溶分を得る工程と、
該不溶分と炭酸リチウムとを混合する工程と、
該混合物を酸化性雰囲気中(例えば酸素ガス中)、凡そ700〜1000℃で加熱してリチウム・コバルト含有複合酸化物を得る工程と、
を包含するリチウム・コバルト含有複合酸化物の製造方法。
ここで、主としてCo34組成のリチウム・コバルト含有複合酸化物の製造を目的とする場合には、前記加熱温度を凡そ900〜960℃とすることが好ましい。また、主としてCoO3組成のリチウム・コバルト含有複合酸化物の製造を目的とする場合には、前記加熱温度を凡そ850〜950℃(例えば凡そ900℃)とすることが好ましい。また、主としてCo23組成のリチウム・コバルト含有複合酸化物の製造を目的とする場合には、前記加熱温度を凡そ650〜750℃(例えば凡そ700℃)とすることが好ましい。
(5)前記リチウム遷移金属酸化物を構成する主たる遷移金属元素がマンガンであるリチウム電池に上述したいずれかのリチウム電池処理方法を適用して前記硫酸加熱処理後の不溶分を得る工程と、
該不溶分と炭酸リチウムと水酸化リチウムとを混合する工程と、
該混合物を酸化性雰囲気中(例えば大気中)、凡そ750〜850℃で加熱してリチウム・マンガン含有複合酸化物を得る工程と、
を包含するリチウム・マンガン含有複合酸化物の製造方法。この方法は、主としてMnO2組成のリチウム・マンガン含有複合酸化物の製造を目的とする場合に好ましく採用され得る。
(6)前記リチウム遷移金属酸化物を構成する主たる遷移金属元素がマンガンであるリチウム電池に上述したいずれかのリチウム電池処理方法を適用して前記硫酸加熱処理後の不溶分を得る工程と、
該不溶分と水酸化リチウムとを混合する工程と、
該混合物を酸化性雰囲気中、凡そ750〜820℃で加熱してリチウム・マンガン含有複合酸化物を得る工程と、
を包含するリチウム・マンガン含有複合酸化物の製造方法。この方法は、主としてMn34組成のリチウム・マンガン含有複合酸化物の製造を目的とする場合に好ましく採用され得る。
(7)上述したいずれかの処理方法および/または製造方法により得られたリチウム遷移金属酸化物を正極活物質に用いて構築されているリチウム電池。また、上述したいずれかの処理方法および/または製造方法により得られたリチウム遷移金属酸化物を原料に用いて製造された正極活物質を用いて構築されているリチウム電池。そのようなリチウム電池(例えばリチウムイオン二次電池)の典型例としては、正極活物質を含む正電極材が正極集電体上に設けられている正極ユニットと、負極活物質を含む負電極材が負極集電体上に設けられている負極ユニットと、その正電極材と負電極材の間に介在する電解液とを備え、ここで、正電極材に含まれる正極活物質として前記方法により得られたリチウム遷移金属酸化物を利用(再利用)して構築されているものが挙げられる。
以下、本発明に関する具体的実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。また、本明細書において特に言及している内容以外の技術的事項であって本発明の実施に必要な事項は、従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている技術内容と当該分野における技術常識とに基づいて実施することができる。
<実施例1:リチウムイオン二次電池の処理方法>
まず、この実施例で処理するリチウム電池(ここでは、使用済みの車両用リチウムイオン二次電池)の構成を説明する。
図2は、本実施例に係るリチウム電池を示す模式的断面図であり、図3はその一部を拡大した説明図である。これらの図に示されるように、リチウム電池1は、一対の電極シート(正極シート12および負極シート14)が二枚のセパレータシート16を介して捲回された捲回型電極体10と、電極体10を収容する電池容器20と、電極体10の軸方向両端部にそれぞれ接続された正極端子30および負極端子40とを備える。
図3に示すように、電極体10を構成する正極シート12は、長尺状の正極集電体122と、その両面に正電極材を層状に付着させてなる正電極材層124とを備える。また、負極シート14は、長尺状の負極集電体142と、その両面に負電極材を層状に付着させて設けられた負電極材層144とを備える。電極体10は、これらのシートを正極シート12、セパレータシート16、負極シート14、セパレータシート16の順に積層し、その積層体を長尺方向(長手方向)に捲回した構成を有する。積層された正極シート12と負極シート14との間はセパレータシート16によって絶縁されている。図2および図3に示すように、この捲回型電極体10の軸方向の一端では正極集電体122が正極集電板126に接続(例えば溶接)され、さらに正極端子30に接続されている。また、捲回型電極体10の軸方向の他端では、負極集電体142が負極集電板146に接続(例えば溶接)され、さらに負極端子40に接続されている。正極集電体122、正極集電板126および正極端子30は、いずれもアルミニウム製である。一方、負極集電体142、負極集電板146および負極端子40は、いずれも銅製である。また、セパレータシート16は、ポリオレフィン製(ここではポリプロピレン製)の多孔質シートである。
このリチウム電池1の正電極材層124は、第一遷移金属元素がニッケルであって、他の金属元素としてコバルトを含有するリチウム・ニッケル含有複合酸化物から実質的に構成される正極活物質を主成分とする。かかる正極活物質は、例えば、一般式LiNi1−xCo(0<x<0.5、好ましくは0.1<x<0.3)で表すことができる。本実施例に係る電池1では、前記一般式におけるxが約0.2であるリチウム・ニッケル含有複合酸化物(すなわち、LiNi0.8Co0.2で表される複合酸化物)を正極活物質に用いている。正電極材層124は、導電剤としてのカーボンブラック(CB)と、バインダとしてのカルボキシメチルセルロース(CMC)とをさらに含有する。それらの含有割合は、例えば正極活物質:CB:CMCの質量比が凡そ87:10:3となる割合である。一方、負電極材層(グラファイト層)144は、負極活物質としてのカーボンブラック(CB)を主成分とし、バインダとしてのCMCおよびスチレンブタジエンゴム(SBR)を含有する。それらの含有割合は、例えばCB:CMC:SBRの質量比が凡そ98:1:1となる割合である。
電池容器20はアルミニウム製であって、有底筒状の本体(電池ケース)22と、本体22の上端開口部を封止する蓋体(電池蓋)24とを備える。この容器20に電極体10が収容されている。正極端子30および負極端子40は、蓋体24を貫通して容器20の外方に延びている。これらの端子30,40はネジ32,42によって蓋体24に固定されている。負極端子40と蓋体24は絶縁体26により隔てられている。蓋体24は、電解液の注入等に用いられる注液口27を有する。この注液口27は、二次電池1の通常の使用時には封止された状態にある。また、蓋体24には安全弁28が設けられている。この安全弁28は、容器20の内部圧力が所定の設定値を超えて高くなると容器20の内外を自動的に連通させて圧力を解放するように構成されている。
電極体10には図示しない電解液が含浸されている。この電解液を構成する有機溶媒としては、γ−ブチロラクトン、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,3−ジオキソラン等からなる群から選択された一種または二種以上を用いることができる。本実施例に係る二次電池1では、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との3:3:4(モル比)混合溶媒を用いている。また、この電解液を構成する電解質(支持塩)としては、フッ素を構成元素とする各種リチウム塩から選択される一種または二種以上を用いることができる。例えば、LiPF,LiBF,LiAsF,LiCFSO,LiCSO,LiN(CFSO,LiC(CFSO等からなる群から選択される一種または二種以上を用いることができる。本実施例に係る電池1では、電解質としてヘキサフルオロリン酸リチウム(LiPF)を用いている。その濃度は約1mol/リットルである。
次に、前記構成のリチウム電池1を処理する手順につき説明する。図1は、その手順の概略を示すフローチャートである。
まず、使用済みのリチウム電池1を用意し(ステップ210)、これをほぼ完全に放電させる(ステップ212)。もっとも、ステップ210において用意した電池1が既にほぼ完全に放電した状態にあることが明らかである場合には、電池1の放電処理(ステップ212)を省略してもよい。
次いで、放電済みの電池1を有機溶媒に浸漬する(ステップ220)。容器20が未だ密閉された状態にある場合には、事前に容器20を開口して該有機溶媒が容器20内に充分に行き渡るようにするとよい。この浸漬処理によって、電池1内の電解液を有機溶媒で抽出する(ステップ222)。使用する有機溶媒としては、電解液の組成に応じて適当なものを選択すればよい。例えば、環状または鎖状の低分子量エーテル(テトラヒドロフラン、1,2−ジメトキシエタン等)、低分子量ケトン(アセトン、メチルエチルケトン等)、低分子量エステル(酢酸エチル、プロピオン酸エチル等)の低分子量エステルを使用することができる。これらのうち一種のみを使用してもよく、二種以上を含む混合溶媒をして使用してもよい。また、組成の異なる二種以上の溶媒を順次に使用してもよい。ステップ222により回収された電解液は、必要に応じて抽出に用いた有機溶媒を留去する等の適当な精製処理を施した後、各種用途に再利用することができる。
続くステップ232では、前記有機溶媒浸漬処理(ステップ220)を経て電解質が除去(抽出)された電池1の容器20を切断(分割)する。例えば、例えば容器20の蓋部24を切り落とす。そして、容器20から捲回型電極体10を取り出し、さらにその電極体10から正極シート12を取り出す(ステップ234)。例えば、捲回型電極体10の巻きをほどいて、該電極体10をその構成シート(すなわち、正極シート12、負極シート14およびセパレータシート16)毎に分離する。なお、電極体10を取り出した後に残された容器20(電池ケース22および蓋体24)は、アルミニウム材料として各種用途に再利用することができる。
取り出した正極シート12を構成する正極集電体122から正電極材を剥離する(ステップ235)。そして、該正極シート12から正極集電体122および正電極材をそれぞれ取り出す(ステップ236,250)。正極集電体122から正電極材を剥離する方法としては、機械的(物理的)な方法および化学的な方法のいずれも使用可能である。機械的な方法と化学的な方法とを併用してもよい。機械的な分離方法としては、例えば、正極シート12に超音波振動を与える方法を例示することができる。化学的な分離方法としては、例えば、正極シート12を硫酸に接触させる方法(硫酸に浸漬する方法、硫酸で洗浄する方法等)を例示することができる。接触させる硫酸の濃度は、通常、正電極材層124を構成するCMC(水溶性バインダ)を溶解および/または膨潤させるとともに、アルミニウム製の正極集電体122を過度に溶解させない程度の濃度とすることが適切である。例えば、凡そ0.01〜12N(好ましくは凡そ0.05〜12N、より好ましくは凡そ0.1〜5N、さらに好ましくは凡そ0.1〜1N)の濃度の硫酸を使用することができる。正極集電体124の過度の溶解を回避するため、このとき使用する硫酸の温度は凡そ60℃以下(好ましくは凡そ40℃以下、例えば室温程度)とすることが好ましい。このように正極シート12を硫酸に接触させることにより、正電極材層124の正極集電体122への付着力を弱めることができる。これにより、正極集電体122から正電極材層124が自然に剥離(脱落)し得る。また、正極シート12を硫酸に接触させた後、あるいは正極シート12を硫酸に接触させつつ、正極集電体122上に残っている正電極材層124を正極集電体122から機械的に除去(掻き落とす等)してもよい。なお、ここで正電極材の剥離に使用する硫酸は、後続する硫酸加熱工程に使用する硫酸と兼用することができる。
本実施例では、濃度約0.1Nの希硫酸に正極シート12を室温で浸漬することによって正極集電体122から正電極材を剥離し(ステップ235)、正極集電体122を希硫酸中から取り出した(ステップ236)。これにより、正極集電体122の取出後に残された希硫酸中に正電極材が取り出されたこととなる(ステップ250)。該希硫酸の上層には正電極材に含まれていたカーボンブラックが浮かんでいたので、そのカーボンブラックを分離(回収)した。その後、残りの正電極材構成成分(正極活物質およびCMC)を該希硫酸とともに加熱した。すなわち、正極活物質およびCMCを濃度0.1Nの希硫酸とともに凡そ150℃に加熱する硫酸加熱処理を行った(ステップ252)。
かかる硫酸加熱処理後の不溶分(硫酸で処理された正極活物質およびCMC)を濾過等によって希硫酸から分離した。その回収物を所定量の水酸化リチウム(LiOH・HO等)と混合し、酸素雰囲気中、600℃で8時間加熱した(ステップ254)。このようにして、リチウム電池(例えばリチウムイオン二次電池)の正極活物質として使用可能なリチウム・ニッケル含有複合酸化物を得た(ステップ260)。
なお、ステップ236において取り出した正極集電体122は、適当な溶媒(例えば水)で洗浄し、乾燥することにより(ステップ238)、アルミニウム箔として回収することができる(ステップ240)。このようにして回収された正極集電体(アルミニウム箔)は、アルミニウム材料として各種用途に再利用することができる。
使用済みのリチウム二次電池に本実施例の処理方法を適用して得られた(すなわち、再生された)リチウム・ニッケル含有複合酸化物につきXRD(X線回折)分析を行った。得られたチャートを図4(A)に示す。この図から、得られたリチウム・ニッケル含有複合酸化物(再生品)は単相になっていることがわかる。また、かかる再生リチウム・ニッケル含有複合酸化物と実質的に同じ組成の一般的な(すなわち、再生品ではない)リチウム・ニッケル含有複合酸化物につきXRD(X線回折)分析を行って得られたチャートを図4(B)に示す。図4(A)および(B)から判るように、非再生品のリチウム・ニッケル含有複合酸化物と本実施例による再生品との間に特に大きな差異は見られない。このことは、本実施例により得られた再生リチウム・ニッケル含有複合酸化物が、一般的な(非再生品の)リチウム・ニッケル含有複合酸化物と同様の各種用途(例えば、リチウム二次電池の正極活物質としての用途)に好適に使用され得ることを示唆している。
なお、図6に示すように、正電極材の剥離(ステップ235)および硫酸加熱処理(ステップ252)に使用した硫酸の濃度(N)と、得られたリチウム・ニッケル含有複合酸化物における硫酸成分含有率との間には正の相関があった。このグラフは、上記実施例(硫酸濃度0.1N)により得られたリチウム・ニッケル含有複合酸化物と、ステップ235,252において濃度5Nの硫酸を使用した点以外は上記実施例と同様にして得られたリチウム・ニッケル含有複合酸化物と、これらのステップにおいて濃度12Nの硫酸を使用した点以外は上記実施例と同様にして得られたリチウム・ニッケル含有複合酸化物とについて、各リチウム・ニッケル含有複合酸化物の粉末を純水で洗浄し、該洗浄により洗い出されたSO4イオンを定量して求めた硫酸成分含有率(mass%)を、これらのステップに使用した硫酸の濃度(N)に対しプロットして得られたものである。この結果は、硫酸加熱処理を適用することによって、該処理後の回収物(リチウム・ニッケル含有複合酸化物)に適量の硫酸成分を導入し得ることを示している。
上記実施例において使用する硫酸の濃度を異ならせることにより、硫酸成分含有率の異なる複数種類のリチウム・ニッケル含有複合酸化物(再生品)を得た。それらの再生品の粉末をそれぞれ正極活物質に使用して、以下のようにして電池を作成した。それらの電池の充放電容量および−30℃における出力(低温出力)を測定した。
すなわち、上記再生品粉末90質量部、アセチレンブラック5質量部およびポリフッ化ビニリデン(PVDF)5質量部を混合し、NMP(N−メチルピロリドン)を加えてペースト化した。前記ペーストを、乾燥後の質量が0.05g/cm2になるようにアルミニウム箔(厚さ20μm)に塗布し、120℃で真空乾燥させた。それを直径1cmの円形に打ち抜いたものを正極とした。負極としては金属リチウムを使用し、電解液としては1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)との等量混合物を使用して、露点−80℃以下に管理されたアルゴン雰囲気のグローブボックス中で2032型のコイン型電池を組み立てた。組立後の電池を24時間程度放置してOCV(Open Circuit Voltage;開回路電圧)を安定させ、その後、雰囲気温度25℃および−30℃において、正極に対する電流密度0.5mA/cm2、カットオフ電圧4.3〜3.0Vの条件で充放電試験を行った。低温出力は、−30℃で行った上記充放電試験の1回目の放電曲線の積分により算出した。その結果を、硫酸成分含有率(mass%)に対する低温出力(W)の関係として図5に示す。
この図からわかるように、正極活物質としてのリチウム・ニッケル含有複合酸化物に含まれる硫酸成分含有率を増す(例えば、該硫酸成分の含有率を0.3mass%以上とする)ことにより、該正極活物質を用いて構築されたリチウム二次電池の低温出力(−30℃における出力)が向上する傾向がみられた。この結果は、硫酸成分を意図的に導入した正極活物質を用いることによってリチウム二次電池の低温出力が改善され得ることを支持している。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
リチウム二次電池を処理する手順の概略を示すフローチャートである。 リチウム二次電池の構成を模式的に示す断面図である。 リチウム二次電池の電極体を拡大して示す説明図である。 (A)は実施例により得られたリチウム・ニッケル含有複合酸化物(再生品)のXRD分析結果を示すチャートであり、(B)は一般的なリチウム・ニッケル含有複合酸化物(非再生品)のXRD分析結果を示すチャートである。 正極活物質の硫酸成分含有率と低温出力との関係を示すグラフである。 使用した硫酸の濃度と、結果物における硫酸成分含有率との関係を示すグラフである。
符号の説明
1:リチウム二次電池(リチウム電池)
10:捲回型電極体
12:正極シート(正極ユニット)
122:正極集電体(集電体)
124:正電極材層
14:負極シート(負極ユニット)
16:セパレータシート
20:電池容器

Claims (9)

  1. リチウム遷移金属酸化物から実質的に構成される正極活物質を含む正電極材を集電体上に有する正極ユニットを備えたリチウム電池を処理する方法であって、以下の工程:
    前記リチウム電池から前記正極ユニットを分離する工程;
    前記正極ユニットを構成する前記集電体から前記正電極材を分離する工程;
    前記正電極材を0.01〜12Nの硫酸とともに加熱する工程;および、
    その硫酸加熱処理後の不溶分を回収する工程;
    を包含する、リチウム電池の処理方法。
  2. 前記硫酸加熱処理後の不溶分をリチウム溶液で処理する工程をさらに含む、請求項1に記載の方法。
  3. 前記硫酸加熱処理後の不溶分を、酸化リチウムおよび加熱により酸化物となり得るリチウム化合物からなる群から選択される一種または二種以上と混合し、その混合物を酸化性雰囲気中で加熱してリチウム遷移金属酸化物を得る工程をさらに含む、請求項1または2に記載の方法。
  4. 前記正電極材はバインダとしてのセルロース系ポリマーを含む、請求項1から3のいずれか一項に記載の方法。
  5. 前記集電体から前記正電極材を分離する工程は、該集電体から該正電極材を機械的に剥離することを含む、請求項1から4のいずれか一項に記載の方法。
  6. 前記集電体から前記正電極材を分離する工程は、該集電体から該正電極材を化学的に剥
    離することを含む、請求項1から5のいずれか一項に記載の方法。
  7. 前記正極ユニットを0.01〜12Nの硫酸に接触させることにより前記集電体から前記正電極材を化学的に剥離する、請求項6に記載の方法。
  8. 前記リチウム遷移金属酸化物を構成する主たる遷移金属元素がニッケル、コバルトおよびマンガンのいずれかである、請求項1から7のいずれか一項に記載の方法。
  9. リチウム遷移金属酸化物から実質的に構成される正極活物質を含む正電極材を集電体上に有する正極ユニットを備えたリチウム電池から正極活物質を製造する方法であって、以下の工程:
    前記リチウム電池から前記正極ユニットを分離する工程;
    前記正極ユニットを構成する前記集電体から前記正電極材を分離する工程;
    前記正電極材を0.01〜12Nの硫酸とともに加熱する工程;
    その硫酸加熱処理後の不溶分を回収する工程;および、
    その不溶分を酸化性雰囲気中で加熱してリチウム遷移金属酸化物を得る工程;
    を包含する、正極活物質の製造方法。
JP2005051868A 2005-02-25 2005-02-25 リチウム電池の処理方法 Pending JP2006236859A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005051868A JP2006236859A (ja) 2005-02-25 2005-02-25 リチウム電池の処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005051868A JP2006236859A (ja) 2005-02-25 2005-02-25 リチウム電池の処理方法

Publications (1)

Publication Number Publication Date
JP2006236859A true JP2006236859A (ja) 2006-09-07

Family

ID=37044261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005051868A Pending JP2006236859A (ja) 2005-02-25 2005-02-25 リチウム電池の処理方法

Country Status (1)

Country Link
JP (1) JP2006236859A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002019A1 (ja) * 2008-07-03 2010-01-07 住友化学株式会社 電池廃材からの酸化物含有電池材料の回収方法
JP2012035180A (ja) * 2010-08-05 2012-02-23 Sumitomo Metal Mining Co Ltd 有価金属回収処理液の処理方法
CN104466294A (zh) * 2015-01-08 2015-03-25 兰州理工大学 从镍钴锰酸锂废电池中回收金属的方法
CN104466295A (zh) * 2015-01-08 2015-03-25 兰州理工大学 镍钴锰酸锂废锂离子电池中正极活性材料的再生方法
CN104538695A (zh) * 2015-01-08 2015-04-22 兰州理工大学 废镍钴锰酸锂电池中回收金属并制备镍钴锰酸锂的方法
CN104538696A (zh) * 2015-01-08 2015-04-22 兰州理工大学 从镍钴锰酸锂正极材料的废锂离子电池中回收金属的方法
US9394585B2 (en) 2011-02-15 2016-07-19 Sumitomo Chemical Company, Limited Method for recovering active material from waste battery material
US20160372802A1 (en) * 2015-06-19 2016-12-22 24M Technologies, Inc. Methods for electrochemical cell remediation
CN107275706A (zh) * 2017-06-19 2017-10-20 上海第二工业大学 一种采用机械活化法从废旧钴酸锂电池中回收钴和锂的工艺
CN113611857A (zh) * 2021-06-21 2021-11-05 广西科技师范学院 一种利用含锰钴镍废渣制备三元正极材料的方法
CN117410609A (zh) * 2023-12-15 2024-01-16 山西迪诺思新能源科技有限公司 一种新能源汽车废旧动力电池的梯次利用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197076A (ja) * 1997-09-18 1999-04-09 Toshiba Corp 電池の処理方法
JPH11329443A (ja) * 1998-05-15 1999-11-30 Hitachi Maxell Ltd リチウム二次電池
JP2000015216A (ja) * 1998-06-30 2000-01-18 Toshiba Corp リチウムイオン2次電池からの正極活物質の再生方法
JP2005026088A (ja) * 2003-07-02 2005-01-27 Toyota Motor Corp リチウム電池の処理方法およびリサイクル方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197076A (ja) * 1997-09-18 1999-04-09 Toshiba Corp 電池の処理方法
JPH11329443A (ja) * 1998-05-15 1999-11-30 Hitachi Maxell Ltd リチウム二次電池
JP2000015216A (ja) * 1998-06-30 2000-01-18 Toshiba Corp リチウムイオン2次電池からの正極活物質の再生方法
JP2005026088A (ja) * 2003-07-02 2005-01-27 Toyota Motor Corp リチウム電池の処理方法およびリサイクル方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034021A (ja) * 2008-07-03 2010-02-12 Sumitomo Chemical Co Ltd 電池廃材からの酸化物含有電池材料の回収方法
CN102077409A (zh) * 2008-07-03 2011-05-25 住友化学株式会社 从电池废弃材料中回收含氧化物的电池材料的方法
WO2010002019A1 (ja) * 2008-07-03 2010-01-07 住友化学株式会社 電池廃材からの酸化物含有電池材料の回収方法
JP2012035180A (ja) * 2010-08-05 2012-02-23 Sumitomo Metal Mining Co Ltd 有価金属回収処理液の処理方法
US9394585B2 (en) 2011-02-15 2016-07-19 Sumitomo Chemical Company, Limited Method for recovering active material from waste battery material
CN104466294A (zh) * 2015-01-08 2015-03-25 兰州理工大学 从镍钴锰酸锂废电池中回收金属的方法
CN104538695A (zh) * 2015-01-08 2015-04-22 兰州理工大学 废镍钴锰酸锂电池中回收金属并制备镍钴锰酸锂的方法
CN104538696A (zh) * 2015-01-08 2015-04-22 兰州理工大学 从镍钴锰酸锂正极材料的废锂离子电池中回收金属的方法
CN104466295A (zh) * 2015-01-08 2015-03-25 兰州理工大学 镍钴锰酸锂废锂离子电池中正极活性材料的再生方法
US10411310B2 (en) 2015-06-19 2019-09-10 24M Technologies, Inc. Methods for electrochemical cell remediation
WO2016205780A1 (en) * 2015-06-19 2016-12-22 24M Technologies, Inc. Methods for electrochemical cell remediation
US20160372802A1 (en) * 2015-06-19 2016-12-22 24M Technologies, Inc. Methods for electrochemical cell remediation
US11094976B2 (en) 2015-06-19 2021-08-17 24M Technologies, Inc. Methods for electrochemical cell remediation
CN113594485A (zh) * 2015-06-19 2021-11-02 24M技术公司 电化学电池修复方法
US11876194B2 (en) 2015-06-19 2024-01-16 24M Technologies, Inc. Methods for electrochemical cell remediation
CN107275706A (zh) * 2017-06-19 2017-10-20 上海第二工业大学 一种采用机械活化法从废旧钴酸锂电池中回收钴和锂的工艺
CN113611857A (zh) * 2021-06-21 2021-11-05 广西科技师范学院 一种利用含锰钴镍废渣制备三元正极材料的方法
CN117410609A (zh) * 2023-12-15 2024-01-16 山西迪诺思新能源科技有限公司 一种新能源汽车废旧动力电池的梯次利用方法
CN117410609B (zh) * 2023-12-15 2024-02-27 山西迪诺思新能源科技有限公司 一种新能源汽车废旧动力电池的梯次利用方法

Similar Documents

Publication Publication Date Title
JP2006236859A (ja) リチウム電池の処理方法
JP4640013B2 (ja) 電気化学素子用電極の製造方法および電気化学素子の製造方法
JP3665544B2 (ja) リチウム2次電池のセパレータ形成用組成物及びこれを用いたリチウム2次電池の製造方法
JP6137088B2 (ja) リチウムイオン電池用正極活物質層の製造方法、及びリチウムイオン電池用正極活物質層
JP2007035770A (ja) 電気化学素子用電極の製造方法および電気化学素子の製造方法
JP5334156B2 (ja) 非水電解液二次電池の製造方法
JP2007287677A (ja) 非水電解質二次電池
WO2001063687A1 (fr) Element secondaire a electrolyte non-aqueux
JP2006294393A (ja) リチウムイオン二次電池
JP5194633B2 (ja) 活物質及び電極の製造方法、活物質及び電極
JP2006294482A (ja) リチウムイオン二次電池
CN108370026B (zh) 非水电解液二次电池
JP7358363B2 (ja) 被覆正極活物質及びリチウムイオン二次電池の製造方法
JP2008198408A (ja) 非水電解質二次電池
JP2006004739A (ja) リチウム二次電池と該電池に備えられる正極及びその製造方法
JP4942249B2 (ja) リチウムイオン二次電池の製造方法
JP5919942B2 (ja) 正極活物質および電極の製造方法、ならびに電極
JP4639883B2 (ja) 非水電解液二次電池の製造方法
JP2003132894A (ja) 負極集電体およびこの集電体を用いた負極板と非水電解液二次電池
JP2005197073A (ja) リチウム二次電池用正極
JP4857608B2 (ja) リチウム二次電池及びその製造方法
JP2010153337A (ja) リチウム二次電池の製造方法
JP2010199083A (ja) リチウム二次電池
JP2010003614A (ja) 電極用集電体の製造方法
JP4563555B2 (ja) リチウム二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511