JP2006234681A - Solid bi-elliptic optical device - Google Patents

Solid bi-elliptic optical device Download PDF

Info

Publication number
JP2006234681A
JP2006234681A JP2005051715A JP2005051715A JP2006234681A JP 2006234681 A JP2006234681 A JP 2006234681A JP 2005051715 A JP2005051715 A JP 2005051715A JP 2005051715 A JP2005051715 A JP 2005051715A JP 2006234681 A JP2006234681 A JP 2006234681A
Authority
JP
Japan
Prior art keywords
mirror
light
focal point
incident
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005051715A
Other languages
Japanese (ja)
Other versions
JP4742616B2 (en
Inventor
Etsuo Kawate
悦男 川手
Fumiko Hiwatari
史子 樋渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYSTEMS ENGINEERING Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
SYSTEMS ENGINEERING Inc
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYSTEMS ENGINEERING Inc, National Institute of Advanced Industrial Science and Technology AIST filed Critical SYSTEMS ENGINEERING Inc
Priority to JP2005051715A priority Critical patent/JP4742616B2/en
Publication of JP2006234681A publication Critical patent/JP2006234681A/en
Application granted granted Critical
Publication of JP4742616B2 publication Critical patent/JP4742616B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid bi-elliptic optical system capable of measuring a reflectance, a transmittance and a diffusion reflectance of a sample highly accurately in the same setting. <P>SOLUTION: The optical axis of a bi-ellipsoidal mirror and an optical axis connecting an external light source to a detector are arranged three-dimensionally, and the sample is arranged on the common focal point of the bi-ellipsoidal mirror, and each complex mirror having a conical mirror on the outer peripheral part and including a plane mirror inclined at 45 degrees on the center axis is arranged on two residual focal points. Signal light is measured by the internal 45-degree mirror, and non-measuring light is removed to the outside of the bi-ellipsoidal mirror by the peripheral conical mirror, to thereby reduce stray light, and to enable highly-accurate optical measurement. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レーザやマイクロ波源のような外部光源と検出器からなる系に或いは分散型分光光度計又はフーリエ変換型分光光度計の試料室中に組み込むことで、試料の同一セッティングで反射率、透過率と拡散反射率の順次測定が可能な双楕円面鏡を用いた光学系に関する。   The present invention incorporates an external light source and detector such as a laser or microwave source into a system or a sample chamber of a dispersive spectrophotometer or a Fourier transform spectrophotometer, so that the reflectivity can be obtained with the same setting of the sample. The present invention relates to an optical system using a bielliptic mirror capable of sequentially measuring transmittance and diffuse reflectance.

双楕円型光学系の構造は、特開2004-45065号公報及び特開2004-257956号公報に詳しく述べられている。図5は平面双楕円型光学系の透視図で、図6は双楕円面鏡の赤道面の断面図である。その構造は、入射側の楕円面鏡E1と受光側の楕円面鏡E2を、互いの1つの焦点を共通焦点F0とし、さらにE1鏡とE2鏡のそれぞれの残りの焦点をF1とF2とすると、これら3つの焦点が一直線状に並ぶように造られている。この直線を光軸と呼び、この光軸と各E1鏡とE2鏡の交点には、穴が開けられている。そして、焦点F1とF2には、それぞれビーム回転鏡RM1とRM2が取り付けられ、共通焦点F0には試料が取り付けられている。このように、外部の光源と検出器からなる光軸と双楕円面鏡の光軸が一直線上にある構造の双楕円型光学系を、平面双楕円型光学系と呼ぶことにする。   The structure of the bielliptical optical system is described in detail in Japanese Patent Application Laid-Open Nos. 2004-45065 and 2004-257956. FIG. 5 is a perspective view of a planar bielliptic optical system, and FIG. 6 is a cross-sectional view of the equatorial plane of the bielliptic mirror. The structure is such that the incident-side ellipsoidal mirror E1 and the light-receiving ellipsoidal mirror E2 have a common focal point F0 as one focal point and F1 and F2 as the remaining focal points of the E1 mirror and the E2 mirror, respectively. These three focal points are constructed so as to be aligned in a straight line. This straight line is called an optical axis, and a hole is made at the intersection of this optical axis and each E1 mirror and E2 mirror. Then, beam rotating mirrors RM1 and RM2 are attached to the focal points F1 and F2, respectively, and a sample is attached to the common focal point F0. A bielliptic optical system having a structure in which the optical axis of the external light source and detector and the optical axis of the bielliptic mirror are in a straight line is called a planar bielliptical optical system.

光軸上を進んできた光を、一方の穴(この穴のある楕円面鏡をE1鏡と呼ぶ)を通して双楕円面鏡内部に光を取り込むと、この光はRM1鏡に達する。この双楕円面鏡構造では、RM1鏡を適当に回転することで、試料への任意の入射角度を実現できる(図6参照)。適当に回転したRM1鏡で反射された光は、E1鏡でさらに反射され、共通焦点上の試料に入射する。この試料で反射された光(図6の実線)と、試料を透過した光(図6の破線)はE2鏡で反射されてF2焦点に集光する。F2焦点上のRM2鏡を適当に回転させることで、RM2鏡に入射した光を、元の光軸に一致させるように反射させることができる。これにより、この光はE2鏡に開けられている上記の穴を通して、双楕円面鏡外部に取り出すことができ、検出器等に導くことができる。   When the light traveling on the optical axis is taken into the double ellipsoidal mirror through one hole (the ellipsoidal mirror having this hole is called the E1 mirror), the light reaches the RM1 mirror. In this double ellipsoidal mirror structure, an arbitrary angle of incidence on the sample can be realized by appropriately rotating the RM1 mirror (see FIG. 6). The light reflected by the appropriately rotated RM1 mirror is further reflected by the E1 mirror and enters the sample on the common focal point. The light reflected by the sample (solid line in FIG. 6) and the light transmitted through the sample (broken line in FIG. 6) are reflected by the E2 mirror and collected at the F2 focal point. By appropriately rotating the RM2 mirror on the F2 focal point, the light incident on the RM2 mirror can be reflected so as to coincide with the original optical axis. Thus, this light can be taken out of the bielliptic mirror through the hole formed in the E2 mirror and guided to a detector or the like.

この双楕円面鏡を用いた試料の反射、透過と散乱の光学測定の配置を図7に示す。この例では光源としてレーザを用いているが、基本的に全ての光学測定が、通常の透過測定のように光学素子を一直線上にラインナップさせるだけで、任意の入射角度で光学測定ができる。   FIG. 7 shows the arrangement of optical measurement of reflection, transmission and scattering of a sample using this bielliptic mirror. In this example, a laser is used as a light source. Basically, all optical measurements can be performed at an arbitrary incident angle by simply arranging optical elements in a straight line as in normal transmission measurement.

上記の試料が、不透明でその入射面が鏡面である試料、例えばミラーの場合には、試料により正反射された光は、E2鏡で反射された後、焦点F2に集光する。この光をF2上のRM2鏡を適当に回転させて、双楕円面鏡外部に導くことができる。この結果、焦点F2に集光された光が、再度反射して試料に戻ることはない。   When the sample is opaque and the incident surface is a mirror surface, for example, a mirror, the light regularly reflected by the sample is reflected by the E2 mirror and then collected at the focal point F2. This light can be guided outside the bielliptic mirror by appropriately rotating the RM2 mirror on F2. As a result, the light collected at the focal point F2 is not reflected again and returned to the sample.

次に、上記の試料が、透明試料でその入射面が鏡面である試料、例えば石英の平行平板の場合には、E1鏡側から試料に入射した光は、試料により反射された光L1(図6の実線)と試料を透過した光L2(図6の点線)の2つの光がE2鏡内部に存在し、共にE2鏡で反射された後、焦点F2に集光される。この時、RM2鏡は上記L1かL2のどちらか一方を光軸に一致させるように反射することができ、その光はE2鏡上の穴を通して双楕円面鏡外部に導かれて検出器に達し、試料の反射スペクトルか透過スペクトルのいずれかが測定できる。   Next, in the case where the sample is a transparent sample and the incident surface is a mirror surface, for example, a parallel plate of quartz, the light incident on the sample from the E1 mirror side is reflected by the light L1 (see FIG. (Solid line 6) and light L2 (dotted line in FIG. 6) that has passed through the sample exist inside the E2 mirror, and are both reflected by the E2 mirror and then focused on the focal point F2. At this time, the RM2 mirror can reflect either L1 or L2 so as to coincide with the optical axis, and the light is guided to the outside of the bielliptic mirror through the hole on the E2 mirror and reaches the detector. Either the reflection spectrum or transmission spectrum of the sample can be measured.

特開2004-45065号公報JP 2004-45065 A 特開2004-257956号公報JP 2004-257956 A

しかし、試料が透明試料の場合、上記で測定されなかった光は、RM2鏡の側面、背面やRM2鏡ホルダーで反射されて一部はE2鏡で再度反射された後、試料に戻り、試料で反射光と透過光が作られる。今度はこれらはE1鏡側に存在し、E1鏡で反射され、F1焦点上のRM1鏡に達して再度その一部が試料側に向けて反射されることがある。このような光は双楕円面鏡内部で多重反射を繰り返し、迷光と呼ばれ、測定信号上にノイズとなって現れる。   However, when the sample is a transparent sample, the light not measured above is reflected by the side and back of the RM2 mirror and the RM2 mirror holder, and partly reflected again by the E2 mirror, and then returns to the sample. Reflected light and transmitted light are created. In this case, these exist on the E1 mirror side, and are reflected by the E1 mirror, reach the RM1 mirror on the F1 focal point, and part thereof may be reflected again toward the sample side. Such light repeats multiple reflections inside the double ellipsoidal mirror, is called stray light, and appears as noise on the measurement signal.

図8にその一例を示す。この測定では試料は、厚さ1mmの高純度石英の平行平板で、測定光はヘリウムネオンレーザの0.633μmである。このレーザ光のP偏光成分を試料に斜入射させたときの反射率の入射角度依存性を測定した結果である。図中の白□がこの測定結果である。黒■がこの双楕円面鏡にレーザ光を入射させないときの同じ方法で測定した結果であり、この双楕円面鏡のゼロ信号レベルである。白□の反射率の最小値は0.0012であった。高純度石英試料ではこの最小値はゼロになるはずであるが、このように有限の値に留まっている。この理由は、上記の双楕円面鏡内部の多重反射による迷光のためである。   An example is shown in FIG. In this measurement, the sample is a parallel plate of high purity quartz having a thickness of 1 mm, and the measurement light is 0.633 μm of a helium neon laser. It is the result of measuring the incident angle dependence of the reflectance when the P-polarized component of this laser beam is obliquely incident on the sample. The white squares in the figure are the measurement results. Black ■ is the result of measurement by the same method when laser light is not incident on this double ellipsoidal mirror, and is the zero signal level of this double ellipsoidal mirror. The minimum reflectance of white square was 0.0012. In a high purity quartz sample, this minimum value should be zero, but remains in a finite value in this way. The reason for this is stray light due to multiple reflection inside the above-mentioned bielliptic mirror.

さらに上記の試料が、拡散反射板である時も、上記の迷光が大きなノイズ源になる。拡散反射板の反射面は、鏡面ではなくてザラザラした粗面、或いは多孔質の表面であって、その試料面にE1鏡側から入射した光は、試料表面で乱反射され、反射光はE2鏡側ばかりではなくてE1鏡側にも反射される。E2鏡側に反射された光は焦点F2に集光されるが、その一部だけがRM2鏡により元の光軸に一致されるように反射されて双楕円面鏡外部の検出器に導かれ、拡散反射率の角度依存性が測定できる。しかし、RM2鏡で外部に取り出されなかった光の一部と、E1鏡側に反射されF1焦点のRM1鏡に達した光の一部は、双楕円面鏡内部で多重反射を繰り返して迷光となり、測定信号のノイズになる。   Further, when the sample is a diffuse reflector, the stray light becomes a large noise source. The reflection surface of the diffuse reflector is not a mirror surface but a rough surface or a porous surface. Light incident on the sample surface from the E1 mirror side is irregularly reflected on the sample surface, and the reflected light is reflected by the E2 mirror. Reflected not only on the side but also on the E1 mirror side. The light reflected to the E2 mirror is collected at the focal point F2, but only a part of the light is reflected by the RM2 mirror so as to coincide with the original optical axis and guided to the detector outside the bielliptic mirror. The angular dependence of diffuse reflectance can be measured. However, some of the light that was not extracted to the outside by the RM2 mirror and some of the light that was reflected by the E1 mirror and reached the RM1 mirror at the F1 focal point were repeatedly reflected inside the bielliptic mirror and became stray light. , It becomes noise of the measurement signal.

従来の双楕円面鏡を用いた平面楕円型光学系では、迷光を低減する技術が開発されていなかった。このために反射、透過と散乱の測定には、迷光のために高精度な測定が困難であった。   In a conventional planar elliptical optical system using a double ellipsoidal mirror, a technique for reducing stray light has not been developed. For this reason, it is difficult to measure reflection, transmission and scattering because of stray light.

本発明は、迷光を除去して高精度な測定が可能な双楕円型光学系を提供することを目的とする。   An object of the present invention is to provide a bielliptic optical system capable of removing stray light and performing highly accurate measurement.

本発明では、迷光を低減させる方法として、(1)光吸収物質を使う方法と(2)測定していない光を双楕円面鏡外部へ排除する方法の2つの方法を利用する。或いはこれら2つの方法を併用することも可能である。   In the present invention, as a method for reducing stray light, two methods are used: (1) a method using a light-absorbing substance and (2) a method for excluding unmeasured light to the outside of the bielliptic mirror. Alternatively, these two methods can be used in combination.

すなわち、本発明による立体双楕円型光学装置は、それぞれ内面が鏡面となった入射側楕円面鏡と受光側楕円面鏡とを、1つの焦点を共通焦点とし、共通焦点と当該共通焦点以外の入射側楕円面鏡の第1の焦点及び受光側楕円面鏡の第2の焦点が一直線の光軸上に位置するように組み合わせ、上下に開口部が設けられた双楕円面鏡と、試料を共通焦点の位置に保持する試料保持部と、試料照射用の入射光を、開口部から光軸に垂直な第1の軸に沿って第1の焦点に入射させるための第1の反射鏡と、第1の焦点に配置され、第1の軸の回りに回転自在な第2の反射鏡と、第2の焦点に配置され、第1の軸に平行な第2の軸の回りに回転自在な第3の反射鏡と、第3の反射鏡で反射された光を検出器に向けて反射する第4の反射鏡とを備え、第2の反射鏡は、第1の反射鏡で反射された入射光を入射側楕円面鏡の内面で反射させて共通焦点に入射させ、第3の反射鏡は、試料と相互作用したのち受光側楕円面鏡の内面で反射した測定光を前記第4の反射鏡に入射させることを特徴とする。楕円面鏡を構成する楕円体は回転楕円体であっても良いし、楕円柱であっても良い。   That is, the stereoscopic bi-elliptic optical device according to the present invention has an incident-side ellipsoidal mirror and a light-receiving-side ellipsoidal mirror whose inner surfaces are mirror surfaces, with one focal point as a common focal point, and a common focal point and other than the common focal point. A combination of a bi-elliptical mirror having an opening on the upper and lower sides, and a sample are combined so that the first focal point of the incident-side ellipsoidal mirror and the second focal point of the light-receiving side ellipsoidal mirror are positioned on a straight optical axis A sample holding unit that holds the sample at a common focal point; and a first reflecting mirror that causes incident light for sample irradiation to enter the first focal point along a first axis perpendicular to the optical axis from the opening. A second reflector disposed at the first focal point and rotatable about the first axis; and a second reflector disposed at the second focal point and rotatable about the second axis parallel to the first axis. A third reflecting mirror, and a fourth reflecting mirror that reflects the light reflected by the third reflecting mirror toward the detector, The reflecting mirror reflects the incident light reflected by the first reflecting mirror on the inner surface of the incident-side ellipsoidal mirror and makes it incident on the common focal point. The third reflecting mirror interacts with the sample and then receives the light-receiving ellipse. The measuring light reflected by the inner surface of the surface mirror is incident on the fourth reflecting mirror. The ellipsoid constituting the ellipsoidal mirror may be a spheroid or an elliptic cylinder.

入射側楕円面鏡内部の光軸に対して入射光が存在する側と反対側の空間の少なくとも一部及び/又は受光側楕円面鏡内部の光軸に対して測定光が存在する側と反対側の空間の少なくとも一部に挿入される光吸収部材を備えるのが好ましい。   At least a part of the space opposite to the side where incident light exists with respect to the optical axis inside the incident side ellipsoidal mirror and / or the side opposite to the side where measurement light exists against the optical axis inside the light receiving side ellipsoidal mirror It is preferable to include a light absorbing member inserted into at least a part of the side space.

第2の反射鏡及び/又は第3の反射鏡は、回転軸に接続された円錐部材の内部に配置され、円錐部材は、外面が鏡面であり、頂点から内部に配置された反射鏡まで延びる穴と、円錐側面から内部に配置された反射鏡まで延びる穴を有するのが好ましい。第2の反射鏡及び/又は第3の反射鏡は、また、回転軸に接続された円錐部材の内部に配置され、円錐部材は、外面が鏡面であり、底面から内部に配置された反射鏡まで延びる穴と、円錐側面から内部に配置された反射鏡まで延びる穴を有するのが好ましい。第2の反射鏡及び/又は第3の反射鏡は、また、回転軸に接続された部材の内部に配置され、部材は、外面が光吸収面であり、内部の反射鏡から部材側面まで回転軸に平行に延びる穴及び内部の反射鏡から部材側面まで回転軸に垂直に延びる穴を有するものであってもよい。   The second reflecting mirror and / or the third reflecting mirror is disposed inside a conical member connected to the rotation axis, and the conical member has a mirror surface on the outer surface and extends from the apex to the reflecting mirror disposed on the inside. It is preferable to have a hole and a hole extending from the conical side surface to the reflecting mirror disposed inside. The second reflecting mirror and / or the third reflecting mirror is also disposed inside the conical member connected to the rotation axis, and the conical member has a mirror surface on the outer surface and is disposed from the bottom surface to the inside. And a hole extending from the conical side surface to the reflecting mirror disposed therein. The second reflecting mirror and / or the third reflecting mirror is also disposed inside the member connected to the rotation axis, and the member has an outer surface that is a light absorbing surface and rotates from the inner reflecting mirror to the member side surface. You may have a hole extended in parallel with an axis | shaft, and a hole extended perpendicularly | vertically to a rotating shaft from an internal reflecting mirror to a member side surface.

第3の反射鏡は、回転軸に接続された円錐部材を備え、円錐部材は、外面が鏡面であり、試料からの正反射成分を入射させて吸収する穴を側面に有するものとすることもできる。   The third reflecting mirror includes a conical member connected to the rotation shaft, and the conical member may have a mirror surface on the outer surface and a hole on the side surface for absorbing the specular reflection component from the sample. it can.

本発明によると、迷光に影響されることなく試料の反射、透過、あるいは拡散反射を高精度に測定することが可能になる。   According to the present invention, it is possible to measure the reflection, transmission, or diffuse reflection of a sample with high accuracy without being affected by stray light.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図9は、本発明による平面双楕円型光学系の一実施例を示す模式図である。本実施例では、平面双楕円型光学系において、双楕円面鏡の内部で測定しない光が存在する領域に光吸収部材を配置し、この光吸収部材により測定しない光を吸収して、迷光を低減させる。或いは、RM1とRM2のミラーホルダーや試料ホルダーに光吸収剤を塗布することにより同じ効果を上げることが可能である。図示の例は試料の反射を測定する例であり、試料からの透過光(図9の破線)がE2鏡に達する間の空間に、光吸収部材として黒色フェルト生地を挿入して迷光となる透過光を吸収するようにした。黒色フェルト生地は支持体に固定され、双楕円面鏡の下方あるいは上方に設けられた開口部から双楕円面鏡の内部に挿入される。試料の透過スペクトルを測定する場合には、光吸収部材を試料からの反射光(図9の実線)がE2鏡に達する間の空間に挿入すればよい。   FIG. 9 is a schematic diagram showing an embodiment of a planar bielliptical optical system according to the present invention. In this embodiment, in a planar bielliptic optical system, a light absorbing member is arranged in a region where light that is not measured is present inside the bielliptic mirror, and light that is not measured is absorbed by the light absorbing member, so that stray light is absorbed. Reduce. Alternatively, the same effect can be obtained by applying a light absorber to the mirror holder and sample holder of RM1 and RM2. The illustrated example is an example in which the reflection of the sample is measured, and a black felt cloth is inserted as a light absorbing member into the space between the light transmitted from the sample (broken line in FIG. 9) reaching the E2 mirror and transmitted as stray light. The light was absorbed. The black felt cloth is fixed to the support, and is inserted into the inside of the double ellipsoidal mirror through an opening provided below or above the double elliptical mirror. When measuring the transmission spectrum of the sample, the light absorbing member may be inserted into the space while the reflected light from the sample (solid line in FIG. 9) reaches the E2 mirror.

この光吸収部材を用いた実験結果を図8に示す。図8の結果は、石英平行平板からの反射光でE2鏡側に反射された光が測定光で、石英平行平板の透過光でE2鏡側に透過した光が、迷光になる。そこで、試料からの透過光がE2鏡に達する間の空間に、黒色フェルト生地を置いて透過光を吸収させたときのP偏光反射率の入射角度依存性を、白△で示してある。この測定では最小の反射率は、0.0003であった。この黒色フェルト生地を使う方法では、その配置の仕方によっては、反射率をゼロにすることも可能であった。この図8の結果は何回もおこなった測定結果の平均値である。このように光吸収部材を用いる方法は、平面双楕円型光学系の迷光ノイズ低減技術として重要である。   The experimental results using this light absorbing member are shown in FIG. The result of FIG. 8 is that the light reflected from the quartz parallel plate and reflected to the E2 mirror side is the measurement light, and the light transmitted through the quartz parallel plate and transmitted to the E2 mirror side is stray light. Therefore, the incident angle dependence of the P-polarized reflectance when a black felt cloth is placed and absorbed in a space while the transmitted light from the sample reaches the E2 mirror is indicated by white Δ. In this measurement, the minimum reflectance was 0.0003. In the method using the black felt cloth, the reflectance could be made zero depending on the arrangement. The result of FIG. 8 is an average value of measurement results obtained many times. Thus, the method using the light absorbing member is important as a stray light noise reduction technique of the planar bielliptical optical system.

図1は、本発明による双楕円型光学装置の別の実施例を示す図である。この図中で破線が光の進行を示している。   FIG. 1 is a diagram showing another embodiment of a bi-elliptical optical device according to the present invention. In this figure, the broken line indicates the progress of light.

図示した双楕円型光学装置は、内面が鏡面となった入射側楕円面鏡E1と受光側楕円面鏡E2を、1つの焦点を共通焦点とし、共通焦点以外のE1鏡の焦点とE2鏡の焦点及び共通焦点が一直線の光軸上に位置するように組み合わせて構成された双楕円面鏡を備える。双楕円面鏡の上下には開口部が設けられ、その開口部を通して双楕円面鏡の内部に下向きのRM1鏡とRM2鏡、試料を保持するサンプルホルダーSHが挿入される。サンプルホルダーSHは、試料をE1鏡とE2鏡の共通焦点の位置に保持することが出来るものであり、モーター#3によって上下動し、モーター#4によってその上下動軸の回りに回転することが出来る。   The illustrated bi-elliptical optical device includes an incident-side ellipsoidal mirror E1 and a light-receiving-side ellipsoidal mirror E2 whose inner surfaces are mirror surfaces, with one focal point as a common focal point, and the focal points of the E1 mirror and the E2 mirror other than the common focal point. A bi-ellipsoidal mirror configured to be combined so that the focal point and the common focal point are located on a straight optical axis is provided. Openings are provided at the top and bottom of the double ellipsoidal mirror, and the RM1 mirror, the RM2 mirror, and the sample holder SH for holding the specimen are inserted into the double ellipsoidal mirror through the openings. The sample holder SH can hold the sample at the position of the common focal point of the E1 and E2 mirrors, and it can be moved up and down by motor # 3 and rotated around its vertical axis by motor # 4. I can do it.

光源部Lから出射した光は、上向きミラーUM1鏡によって、双楕円面鏡の光軸に垂直にE1鏡の焦点に向けて反射される。E1鏡の焦点には、下向きのRM1鏡が設置されている。RM1鏡は、モーター#1によって入射光線を軸として回転可能である。また、E2鏡の焦点には、モーター#2によって回転可能な下向きのRM2鏡が設置されている。RM2鏡の回転軸はMR1鏡の回転軸と平行である。RM2鏡で反射された光は、上向きのUM2鏡によって反射されて、検出器部Dに入射する。   The light emitted from the light source part L is reflected by the upward mirror UM1 mirror toward the focal point of the E1 mirror perpendicular to the optical axis of the bielliptic mirror. A downward-facing RM1 mirror is installed at the focal point of the E1 mirror. The RM1 mirror can be rotated about the incident light beam by the motor # 1. In addition, a downward RM2 mirror that can be rotated by motor # 2 is installed at the focal point of the E2 mirror. The rotation axis of the RM2 mirror is parallel to the rotation axis of the MR1 mirror. The light reflected by the RM2 mirror is reflected by the upward UM2 mirror and enters the detector section D.

本実施例の双楕円型光学装置においてMR1鏡やRM2鏡として図2や図3に示す複合ミラーを使うことで、迷光となる測定しない光を双楕円面鏡外部に排除させることができ、しかも双楕円面鏡光学系の優れた特長(つまり、試料へ任意入射角度で光を入射させることができること、さらに独立に試料からの反射光或いは透過光を任意の角度で測定できること)を享受することができる。   By using the composite mirror shown in FIGS. 2 and 3 as the MR1 mirror and the RM2 mirror in the hyperelliptic optical device of the present embodiment, stray light that is not measured can be excluded outside the bielliptic mirror. To enjoy the excellent features of the double ellipsoidal mirror optical system (that is, light can be incident on the sample at an arbitrary incident angle, and the reflected or transmitted light from the sample can be independently measured at an arbitrary angle). Can do.

平面双楕円型光学系では、その双楕円面鏡の光軸と外部光学系の光軸は一致していたが、本実施例(図1)の立体双楕円型光学系では、その双楕円面鏡の光軸と外部光学系の光軸は一致していない。外部光学系の光軸上を進んできた光は、E1鏡とE2鏡が作る双楕円面鏡の下部の空間に配置されている上向きのUM1鏡(約45度)で反射されて、E1鏡内部で下向き(約45度)のRM1鏡で受けてE1鏡に向けて反射される。その後の光の進み方は通常の双楕円面鏡(図6)の場合と同じで、試料で反射・透過した光はE2鏡内部で下向き(約45度)のRM2鏡に集光される。RM2鏡は集光された光の一部を、その下部にあるUM2鏡に向けて反射し、このときUM2鏡の反射光が元の光軸と一致させることができる構造になっている。   In the planar bielliptic optical system, the optical axis of the bielliptic mirror and the optical axis of the external optical system coincide with each other, but in the stereoscopic bielliptic optical system of this embodiment (FIG. 1), the bielliptic surface The optical axis of the mirror and the optical axis of the external optical system do not match. The light that has traveled on the optical axis of the external optical system is reflected by the upward UM1 mirror (about 45 degrees) disposed in the space below the double ellipsoidal mirror formed by the E1 mirror and the E2 mirror. It is received by the RM1 mirror facing downward (about 45 degrees) and reflected toward the E1 mirror. Thereafter, the light travels in the same way as in the case of a normal bi-elliptic mirror (FIG. 6), and the light reflected and transmitted by the sample is condensed inside the E2 mirror onto the RM2 mirror facing downward (about 45 degrees). The RM2 mirror has a structure in which a part of the collected light is reflected toward the UM2 mirror below the RM2 mirror, and at this time, the reflected light of the UM2 mirror can coincide with the original optical axis.

従来の平面双楕円型光学系では、RM1鏡とRM2鏡は平面鏡であった。しかし、この立体双楕円型光学系のためのRM1鏡とRM2鏡の形状と構造としては、キノコ型鏡(図2)あるいはカクテルグラス型鏡(図3)を用いるのが好ましい。このキノコ型鏡あるいはカクテルグラス型鏡は共に2重構造で、外周の円錐面鏡11とこの円錐面の一部に円錐の回転軸に向かって水平な穴12が開けられ、その回転軸との交点に約45度の傾斜を持った鏡13が取り付けられ、さらに回転軸に沿って上方向に穴14が開けられている。この円錐の中心部にある鏡13を使うことで、UM1鏡とRM1鏡の間での光の送受とRM2鏡とUM2鏡の間での光の送受を可能として、外周部の円錐面鏡11で迷光の原因となる測定していない光を双楕円面鏡外部へ排除することが可能となる。キノコ型鏡とカクテルグラス型鏡では光の排除される方向が上方向か下方向かの違いだけで、基本的な役割は同じである。   In the conventional planar bielliptical optical system, the RM1 mirror and the RM2 mirror are plane mirrors. However, it is preferable to use a mushroom type mirror (FIG. 2) or a cocktail glass type mirror (FIG. 3) as the shape and structure of the RM1 mirror and RM2 mirror for this stereoscopic bi-elliptical optical system. Both the mushroom type mirror and the cocktail glass type mirror have a double structure, and a conical mirror 11 on the outer periphery and a horizontal hole 12 are formed in a part of the conical surface toward the rotational axis of the cone, A mirror 13 having an inclination of about 45 degrees is attached to the intersection, and a hole 14 is drilled upward along the rotation axis. By using the mirror 13 at the center of the cone, it is possible to transmit and receive light between the UM1 mirror and the RM1 mirror and to transmit and receive light between the RM2 mirror and the UM2 mirror. Thus, it is possible to exclude light that has not been measured, which causes stray light, to the outside of the double ellipsoidal mirror. The basic role of the mushroom mirror and the cocktail glass mirror is the same except that the direction in which light is excluded is upward or downward.

キノコ型鏡を用いた測定結果を図8に示す。先ほどと同じ高純度石英平行平板試料にP偏光のヘリウムネオンレーザ光を入射させてその反射光を測定した結果を、白○で示してある。反射率の最小値は、光を入射させなかったときのゼロ信号レベルと同じで、反射率は0.0000であった。   The measurement result using a mushroom mirror is shown in FIG. The result of measuring the reflected light by making P-polarized helium neon laser light incident on the same high-purity quartz parallel plate sample as before is shown by white circles. The minimum value of the reflectance was the same as the zero signal level when no light was incident, and the reflectance was 0.0000.

上記で説明したキノコ型鏡あるいはカクテルグラス型鏡は、立体双楕円型光学系内部の迷光を外周の円錐鏡面で反射して双楕円型光学系外部に排除するものであった。このキノコ型鏡あるいはカクテルグラス型鏡の外周の円錐面を鏡面ではなく、光吸収面として迷光を吸収するようにしても、迷光の除去に効果がある。また、RM1鏡とRM2鏡を内部に保持する部材によって迷光を吸収して除去する場合には、その部材の外面形状は必ずしも円錐面である必要はなく、円筒形、球形あるいは不定形状であってもよい。   The mushroom type mirror or the cocktail glass type mirror described above reflects stray light inside the stereoscopic bi-elliptical optical system by the outer conical mirror surface and excludes it outside the bi-elliptical optical system. Even if the conical surface on the outer periphery of this mushroom mirror or cocktail glass mirror is not a mirror surface but a light absorbing surface is used to absorb stray light, it is effective in removing stray light. Further, when stray light is absorbed and removed by a member that holds the RM1 mirror and the RM2 mirror inside, the outer surface shape of the member does not necessarily need to be a conical surface, and is cylindrical, spherical, or indefinite. Also good.

また、図9に示したように双楕円面鏡の内部に光吸収部材を挿入して迷光を吸収除去する方法は、図1に示した立体双楕円型光学系に対しても同様に適用可能である。   Further, as shown in FIG. 9, the method of absorbing and removing stray light by inserting a light absorbing member into the inside of the bielliptic mirror can be similarly applied to the stereoscopic bielliptic optical system shown in FIG. It is.

次に、試料からの散乱光の角度依存測定法と積分散乱光強度測定法のための、立体双楕円型光学系の実施例について説明する。本実施例においても、基本的には図1に示した立体双楕円型光学系を用いる。   Next, an embodiment of a three-dimensional ellipse optical system for the angle-dependent measurement method of the scattered light from the sample and the integrated scattered light intensity measurement method will be described. Also in this embodiment, basically, the three-dimensional elliptical optical system shown in FIG. 1 is used.

双楕円面鏡の共通焦点F0に、試料のマクロな表面が双楕円面鏡の赤道面に垂直で、光軸に平行になるように配置し、RM1鏡の回転角度を適当に選んで固定する。試料で反射した散乱光は、E2鏡側ばかりでなくE1鏡側にも進む。E2鏡側に進んだ散乱光はE2鏡で反射されて、F2焦点に集光される。この集光された光は、RM2鏡で反射され元の光軸に戻すことができ、E2鏡外部の検出器に導かれる。ここで、RM2鏡を回転させることで散乱光の角度依存性が測定できる。このときRM1鏡とRM2鏡は、図2のキノコ型鏡、或いは図3のカクテルグラス型鏡を用いることで、迷光を除去できている。   At the common focal point F0 of the bielliptic mirror, the macro surface of the sample is arranged so as to be perpendicular to the equator plane of the bielliptic mirror and parallel to the optical axis, and the rotation angle of the RM1 mirror is appropriately selected and fixed. . The scattered light reflected by the sample proceeds not only to the E2 mirror side but also to the E1 mirror side. Scattered light traveling toward the E2 mirror is reflected by the E2 mirror and collected at the F2 focal point. The condensed light can be reflected by the RM2 mirror and returned to the original optical axis, and guided to a detector outside the E2 mirror. Here, the angle dependence of the scattered light can be measured by rotating the RM2 mirror. At this time, the RM1 mirror and the RM2 mirror can remove stray light by using the mushroom type mirror of FIG. 2 or the cocktail glass type mirror of FIG.

ここで試料として、表面が鏡面であるアルミミラーと、完全拡散反射板としてよく知られている市販のスペクトラロンの2つについて、同じ測定を行った。光源をヘリウムネオンレーザ(0.633μm)とし、このレーザ光を試料のマクロな表面にほぼ垂直に入射させ、RM2鏡を回転しながら測定した前方散乱の角度依存の測定結果を図10に示す。この図の縦軸はそれぞれについて任意スケールであり、アルミミラーの結果は点線で、スペクトラロンの結果は実線で示してある。   Here, the same measurement was performed on two samples, an aluminum mirror having a mirror surface and a commercially available Spectralon, which is well known as a perfect diffuse reflector. FIG. 10 shows the angle-dependent measurement results of forward scattering measured with a helium neon laser (0.633 μm) as the light source, with this laser light incident almost perpendicularly on the macroscopic surface of the sample and rotating the RM2 mirror. The vertical axis in this figure is an arbitrary scale, and the aluminum mirror results are indicated by dotted lines and the Spectralon results are indicated by solid lines.

アルミミラー試料では、図10に測定結果が示されているように、正反射光成分のみが測定されている。次にスペクトラロン試料の場合には、非常に優れた拡散反射板であったので、図10に示されているように、そのマクロな表面からの正反射光成分は測定されず、散乱光成分のみが測定されている。しかし、一般の表面形状の試料では、2つの反射光成分が共存することが可能である。つまり、その試料のマクロな表面に対して、入射光と同一入射面内にあって入射角度と反射角度が等しい正反射光成分と、入射角度と無関係に任意方向に反射された散乱光成分である。   In the aluminum mirror sample, as shown in the measurement results in FIG. 10, only the specular reflection light component is measured. Next, in the case of the Spectralon sample, since it was a very excellent diffuse reflector, the specularly reflected light component from the macro surface was not measured as shown in FIG. Only measured. However, in a sample having a general surface shape, two reflected light components can coexist. That is, a specularly reflected light component having the same incident angle and reflection angle within the same incident surface as the incident light, and a scattered light component reflected in an arbitrary direction regardless of the incident angle with respect to the macro surface of the sample. is there.

立体双楕円型光学系のRM1鏡とRM2鏡として、図2のキノコ型鏡や図3カクテルグラス型鏡を用いることで、このような一般の表面形状の試料からの散乱光の角度依存性を測定できる。   By using the mushroom type mirror of FIG. 2 and the cocktail glass type mirror of FIG. 3 as the RM1 mirror and RM2 mirror of the stereoscopic bi-elliptical optical system, the angle dependency of the scattered light from the sample having such a general surface shape can be obtained. It can be measured.

この一般の表面形状の試料で、散乱光成分と正反射光成分を分離して測定することも重要である。この場合には、特に全空間への散乱光成分を一度に測定できる角度積分散乱光測定が必要になる。この測定を実現する方法として、RM1鏡は図2のキノコ型鏡か図3のカクテルグラス型鏡を用いるが、RM2鏡は図4に示すような変形キノコ型鏡を用いる。変形キノコ型鏡は、外周が円錐面鏡21になっており、この円錐面鏡21の一部に円錐の回転軸に向かって水平な穴22が開けられている。水平な穴22は内部で屈折し、穴の奥に光吸収物質24が配置されている。穴22から変形キノコ型鏡に入射した光は、鏡23で反射されて光吸収物質24に到達し、そこで吸収される。   It is also important to separate and measure the scattered light component and the specularly reflected light component with this general surface shape sample. In this case, it is necessary to measure the angle-integrated scattered light that can measure the scattered light component to the entire space at once. As a method for realizing this measurement, the RM1 mirror uses the mushroom type mirror of FIG. 2 or the cocktail glass type mirror of FIG. 3, while the RM2 mirror uses a modified mushroom type mirror as shown in FIG. The outer periphery of the deformed mushroom type mirror is a conical mirror 21, and a horizontal hole 22 is formed in a part of the conical mirror 21 toward the rotational axis of the cone. The horizontal hole 22 is refracted inside, and a light-absorbing substance 24 is disposed behind the hole. The light that has entered the deformed mushroom-type mirror from the hole 22 is reflected by the mirror 23, reaches the light absorbing material 24, and is absorbed there.

変形キノコ型鏡の形状と構造は、試料からの正反射成分はキノコ型鏡内部に閉じ込めてそこに入れてある光吸収物質で完全吸収させ、外部の円錐面鏡21による反射光がUM2鏡に集まるように円錐の頂角を選んである。この変形キノコ型鏡を用いることで、試料からの散乱光成分のうち、全空間に対するE2鏡表面が占める割合が、角度積分散乱光測定で実測できる散乱光強度である。   The shape and structure of the modified mushroom mirror is such that the specular reflection component from the sample is confined inside the mushroom mirror and completely absorbed by the light absorbing material contained therein, and the reflected light from the external conical mirror 21 is transmitted to the UM2 mirror. The apex angle of the cone is chosen to gather. By using this deformed mushroom-type mirror, the ratio of the E2 mirror surface to the total space in the scattered light component from the sample is the scattered light intensity that can be actually measured by the angular integral scattered light measurement.

この角度積分散乱光測定法によると、上記のような散乱測定ばかりでなく、(1)試料からの全空間への発光の角度積分測定、(2)鏡面試料では正反射光と透過光の和のスペクトル測定、も可能になる。   According to this angle integral scattered light measurement method, not only the above-described scattering measurement, but also (1) the angle integral measurement of light emission from the sample to the whole space, and (2) the sum of specular reflection light and transmitted light in the specular sample. It is also possible to measure the spectrum.

最後に、立体双楕円型光学系は、図2や図3に示した円錐型鏡を併用することで、迷光を双楕円面鏡外部へ排除できる点で、平面双楕円型光学系と異なっている。しかしこの特長以外にも、既存の光学系(紫外・可視分散型分光光度計、赤外フーリエ変換型分光光度計等)中に双楕円面鏡を組み込むときに、双楕円面鏡内部に最大の試料スペースを確保できる構造になっている。   Finally, the stereoscopic bielliptic optical system differs from the planar bielliptic optical system in that stray light can be excluded outside the bielliptic mirror by using the conical mirror shown in FIGS. 2 and 3 together. Yes. However, in addition to this feature, when a bielliptic mirror is incorporated into an existing optical system (such as an ultraviolet / visible dispersion spectrophotometer or an infrared Fourier transform spectrophotometer), the largest inside the bielliptic mirror The structure can secure the sample space.

上記の分光光度計を例にしてこの状況を説明する。市販の分光光度計は試料室を備えている。この試料室中に各種の光学アクセサリーを装着することで、透過測定、反射測定、散乱測定、ATR測定等を実現できる構造になっている。多くの分光光度計の試料室は、図11(a)に示すように試料室内部の光軸の中点に光が集光される構造になっている。この図中の破線で光の進行を示している。双楕円面鏡をこの既存の分光光度計中で用いるためには、分光光度計によって集光される位置が光軸上の中点ではなくて、双楕円面鏡のRM1鏡の位置になるように、光路長を長く伸ばさなければならない。このように焦点位置を移動させるためには、図11(b)に示すように数枚の鏡(SM1とSM2)を試料室内部に設置しなければならない。同じように、RM2鏡にも集光されているので、RM2鏡の反射光を分光光度計の光軸に戻すためにも、数枚の鏡(SM3とSM4)を試料室内部に設置しなければならない。この結果、分光光度計の試料室に入る双楕円面鏡自体の大きさが小さくなり、焦点F0周囲の試料スペースも小さくなる。   This situation will be described using the above spectrophotometer as an example. Commercially available spectrophotometers have a sample chamber. By mounting various optical accessories in the sample chamber, it is possible to realize transmission measurement, reflection measurement, scattering measurement, ATR measurement, and the like. The sample chambers of many spectrophotometers have a structure in which light is collected at the midpoint of the optical axis in the sample chamber as shown in FIG. The progress of light is indicated by broken lines in the figure. In order to use the double ellipsoidal mirror in this existing spectrophotometer, the position focused by the spectrophotometer is not the midpoint on the optical axis, but the position of the RM1 mirror of the bielliptic mirror. In addition, the optical path length must be extended. In order to move the focal position in this way, several mirrors (SM1 and SM2) must be installed inside the sample chamber as shown in FIG. In the same way, since it is also focused on the RM2 mirror, several mirrors (SM3 and SM4) must be installed inside the sample chamber to return the reflected light of the RM2 mirror to the optical axis of the spectrophotometer. I must. As a result, the size of the bielliptic mirror itself entering the sample chamber of the spectrophotometer is reduced, and the sample space around the focal point F0 is also reduced.

図11(c)は、本発明の立体楕円型光学系を市販の分光光度計の試料室に設置したときの模式図である。本発明の立体楕円型光学系では、分光光度計自身の光軸と双楕円面鏡自身の光軸を立体的にすることで、RM1鏡とRM2鏡に焦点を結ぶために必要な光路長を確保している。この結果として、双楕円面鏡自体が大きくなり、焦点F0周囲の試料スペースも大きくなる。   FIG.11 (c) is a schematic diagram when the solid elliptical optical system of this invention is installed in the sample chamber of a commercially available spectrophotometer. In the three-dimensional elliptical optical system of the present invention, the optical path length necessary for focusing on the RM1 mirror and the RM2 mirror is obtained by making the optical axis of the spectrophotometer itself and the optical axis of the bielliptic mirror three-dimensional. Secured. As a result, the double ellipsoidal mirror itself becomes large, and the sample space around the focal point F0 also becomes large.

以上実施例により本発明を説明したが、本発明はこれらの実施例に限定されることなく、特許請求の範囲記載の技術事項の範囲内でいろいろ変形例があることは言うまでもない。   The present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and it goes without saying that there are various modifications within the scope of the technical matters described in the claims.

立体双楕円型光学系の透視図。The perspective view of a solid bi-elliptical optical system. 迷光を排除するためのキノコ型鏡の模式図。Schematic diagram of a mushroom mirror for eliminating stray light. 迷光を排除するためのカクテルグラス型鏡の模式図。Schematic diagram of a cocktail glass-type mirror for eliminating stray light. 角度積分散乱光測定のための変形キノコ型鏡の模式図。The schematic diagram of the deformation | transformation mushroom type | mold mirror for angle integral scattered light measurement. 平面双楕円型光学系の透視図。FIG. 3 is a perspective view of a planar bielliptical optical system. 赤道面での双楕円面鏡の断面図。Sectional view of a bielliptic mirror at the equator plane. レーザ光源を用いての反射、透過と散乱測定の模式図。Schematic of reflection, transmission and scattering measurement using a laser light source. 透明石英平行平板試料のブリュスター角度近傍でのP偏光反射率の測定結果を示す図。The figure which shows the measurement result of the P polarization | polarized-light reflectance in the Brewster angle vicinity of a transparent quartz parallel plate sample. 双楕円面鏡内部に挿入された光吸収部材の図。The figure of the light absorption member inserted in the inside of a double ellipsoidal mirror. 試料による散乱光の角度依存性の測定結果を示す図。The figure which shows the measurement result of the angle dependence of the scattered light by a sample. (a)市販の分光光度計の試料室中の光線(図中の破線)の様子を示す模式図。(b)この分光光度計の試料室中に平面双楕円型光学系を組み込んだ模式図。(c)試料室中に立体双楕円型光学系を組み込んだ模式図。(A) The schematic diagram which shows the mode of the light ray (broken line in a figure) in the sample chamber of a commercially available spectrophotometer. (B) A schematic view in which a planar bi-elliptical optical system is incorporated in the sample chamber of this spectrophotometer. (C) A schematic view in which a three-dimensional bi-elliptical optical system is incorporated in a sample chamber.

符号の説明Explanation of symbols

E1:入射側の楕円面鏡、E2:受光側の楕円面鏡、RM1,RM2:下向きミラー、UM1,UM2:上向きミラー、SH:サンプルホルダー、SM1、SM2、SM3,SM4:補助ミラー、L:光源部、D:検出器部、11:円錐面鏡、12:穴、13:鏡、14:穴、21:円錐面鏡、22:穴、23:鏡、24:光吸収物質 E1: Incident side ellipsoidal mirror, E2: Light receiving side ellipsoidal mirror, RM1, RM2: Downward mirror, UM1, UM2: Upward mirror, SH: Sample holder, SM1, SM2, SM3, SM4: Auxiliary mirror, L: Light source part, D: detector part, 11: conical mirror, 12: hole, 13: mirror, 14: hole, 21: conical mirror, 22: hole, 23: mirror, 24: light absorbing substance

Claims (7)

それぞれ内面が鏡面となった入射側楕円面鏡と受光側楕円面鏡とを、1つの焦点を共通焦点とし、前記共通焦点と当該共通焦点以外の前記入射側楕円面鏡の第1の焦点及び前記受光側楕円面鏡の第2の焦点が一直線の光軸上に位置するように組み合わせ、上下に開口部が設けられた双楕円面鏡と、
試料を前記共通焦点の位置に保持する試料保持部と、
試料照射用の入射光を、前記開口部から前記光軸に垂直な第1の軸に沿って前記第1の焦点に入射させるための第1の反射鏡と、
前記第1の焦点に配置され、前記第1の軸の回りに回転自在な第2の反射鏡と、
前記第2の焦点に配置され、前記第1の軸に平行な第2の軸の回りに回転自在な第3の反射鏡と、
前記第3の反射鏡で反射された光を検出器に向けて反射する第4の反射鏡とを備え、
前記第2の反射鏡は、前記第1の反射鏡で反射された入射光を前記入射側楕円面鏡の内面で反射させて前記共通焦点に入射させ、前記第3の反射鏡は、試料と相互作用したのち前記受光側楕円面鏡の内面で反射した測定光を前記第4の反射鏡に入射させることを特徴とする立体双楕円型光学装置。
Each of the incident-side ellipsoidal mirror and the light-receiving-side ellipsoidal mirror whose inner surface is a mirror surface has one focal point as a common focal point, and the common focal point and the first focal point of the incident-side elliptical mirror other than the common focal point and A combination of the light receiving side ellipsoidal mirrors so that the second focal point is located on a straight optical axis, and a bielliptic mirror provided with openings above and below,
A sample holder for holding the sample at the position of the common focus;
A first reflecting mirror for causing incident light for sample irradiation to enter the first focal point from the opening along a first axis perpendicular to the optical axis;
A second reflector disposed at the first focus and rotatable about the first axis;
A third reflector disposed at the second focal point and rotatable about a second axis parallel to the first axis;
A fourth reflecting mirror that reflects the light reflected by the third reflecting mirror toward the detector;
The second reflecting mirror reflects incident light reflected by the first reflecting mirror on an inner surface of the incident-side ellipsoidal mirror and makes it incident on the common focal point. The third reflecting mirror A three-dimensional elliptical optical device characterized in that, after interaction, measurement light reflected by the inner surface of the light-receiving-side ellipsoidal mirror is incident on the fourth reflecting mirror.
請求項1記載の立体双楕円型光学装置において、前記入射側楕円面鏡内部の光軸に対して入射光が存在する側と反対側の空間の少なくとも一部及び/又は前記受光側楕円面鏡内部の光軸に対して測定光が存在する側と反対側の空間の少なくとも一部に挿入される光吸収部材を備えることを特徴とする立体双楕円型光学装置。   2. The stereoscopic bielliptic optical device according to claim 1, wherein at least a part of a space opposite to a side where incident light exists with respect to an optical axis inside the incident-side elliptical mirror and / or the light-receiving-side elliptical mirror. A solid bielliptic optical device comprising a light absorbing member inserted into at least a part of a space opposite to a side where measurement light exists with respect to an internal optical axis. 請求項1記載の立体双楕円型光学装置において、前記第2の反射鏡及び/又は第3の反射鏡は回転軸に接続された円錐部材の内部に配置され、前記円錐部材は、外面が鏡面であり、頂点から内部に配置された反射鏡まで延びる穴と、円錐側面から内部に配置された反射鏡まで延びる穴を有することを特徴とする立体双楕円型光学装置。   2. The three-dimensional ellipsoidal optical device according to claim 1, wherein the second reflecting mirror and / or the third reflecting mirror are disposed inside a conical member connected to a rotating shaft, and the conical member has an outer surface as a mirror surface. And a hole extending from the apex to the reflecting mirror disposed inside, and a hole extending from the conical side surface to the reflecting mirror disposed inside. 請求項1記載の立体双楕円型光学装置において、前記第2の反射鏡及び/又は第3の反射鏡は回転軸に接続された円錐部材の内部に配置され、前記円錐部材は、外面が鏡面であり、底面から内部に配置された反射鏡まで延びる穴と、円錐側面から内部に配置された反射鏡まで延びる穴を有することを特徴とする立体双楕円型光学装置。   2. The three-dimensional ellipsoidal optical device according to claim 1, wherein the second reflecting mirror and / or the third reflecting mirror are disposed inside a conical member connected to a rotating shaft, and the conical member has an outer surface as a mirror surface. And a hole extending from the bottom surface to the reflecting mirror disposed inside, and a hole extending from the conical side surface to the reflecting mirror disposed inside. 請求項1記載の立体双楕円型光学装置において、前記第2の反射鏡及び/又は第3の反射鏡は回転軸に接続された部材の内部に配置され、前記部材は、外面が光吸収面であり、内部の反射鏡から部材側面まで前記回転軸に平行に延びる穴及び内部の反射鏡から部材側面まで前記回転軸に垂直に延びる穴を有することを特徴とする立体双楕円型光学装置。   2. The three-dimensional ellipsoidal optical device according to claim 1, wherein the second reflecting mirror and / or the third reflecting mirror are arranged inside a member connected to a rotation shaft, and the outer surface of the member is a light absorbing surface. And a hole extending in parallel to the rotation axis from the internal reflector to the side surface of the member and a hole extending perpendicularly to the rotation axis from the internal reflection mirror to the side surface of the member. 請求項1記載の立体双楕円型光学装置において、前記第3の反射鏡は、回転軸に接続された円錐部材を備え、前記円錐部材は、外面が鏡面であり、試料からの正反射成分を入射させて吸収する穴を側面に有することを特徴とする立体双楕円型光学装置。   2. The three-dimensional ellipsoidal optical device according to claim 1, wherein the third reflecting mirror includes a conical member connected to a rotation shaft, and the conical member has a mirror surface on the outer surface, and a specular reflection component from the sample. A three-dimensional bi-elliptical optical device characterized by having a hole on the side surface that absorbs the incident light. それぞれ内面が鏡面となった入射側楕円面鏡と受光側楕円面鏡とを、1つの焦点を共通焦点とし、前記共通焦点と当該共通焦点以外の前記入射側楕円面鏡の第1の焦点及び前記受光側楕円面鏡の第2の焦点が一直線の光軸上に位置するように組み合わせ、前記光軸と入射側楕円面鏡と受光側楕円面鏡との交点にそれぞれ穴が開けられた双楕円面鏡と、
試料を前記共通焦点の位置に保持する試料保持部と、
前記第1の焦点に配置され、前記光軸に垂直な第1の軸の回りに回転自在な第1の反射鏡と、
前記第2の焦点に配置され、前記第1の軸に平行な第2の軸の回りに回転自在な第2の反射鏡と、
前記入射側楕円面鏡内部の光軸に対して入射光が存在する側と反対側の空間の少なくとも一部及び/又は前記受光側楕円面鏡内部の光軸に対して測定光が存在する側と反対側の空間の少なくとも一部に挿入される光吸収部材を備えることを特徴とする平面双楕円型光学装置。
Each of the incident-side ellipsoidal mirror and the light-receiving-side ellipsoidal mirror whose inner surface is a mirror surface has one focal point as a common focal point, and the common focal point and the first focal point of the incident-side elliptical mirror other than the common focal point and A combination is made so that the second focal point of the light-receiving-side ellipsoidal mirror is positioned on a straight optical axis, and a pair of holes each having a hole formed at the intersection of the optical axis, the incident-side elliptical mirror, and the light-receiving-side elliptical mirror. An ellipsoidal mirror,
A sample holder for holding the sample at the position of the common focus;
A first reflecting mirror disposed at the first focal point and rotatable about a first axis perpendicular to the optical axis;
A second reflecting mirror disposed at the second focal point and rotatable about a second axis parallel to the first axis;
At least part of the space opposite to the side where incident light exists with respect to the optical axis inside the incident-side ellipsoidal mirror and / or the side where measurement light exists relative to the optical axis inside the light-receiving-side elliptical mirror A planar bielliptical optical device comprising a light absorbing member inserted into at least a part of a space on the opposite side.
JP2005051715A 2005-02-25 2005-02-25 Three-dimensional elliptical optical device Expired - Fee Related JP4742616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005051715A JP4742616B2 (en) 2005-02-25 2005-02-25 Three-dimensional elliptical optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005051715A JP4742616B2 (en) 2005-02-25 2005-02-25 Three-dimensional elliptical optical device

Publications (2)

Publication Number Publication Date
JP2006234681A true JP2006234681A (en) 2006-09-07
JP4742616B2 JP4742616B2 (en) 2011-08-10

Family

ID=37042482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005051715A Expired - Fee Related JP4742616B2 (en) 2005-02-25 2005-02-25 Three-dimensional elliptical optical device

Country Status (1)

Country Link
JP (1) JP4742616B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121323A1 (en) 2011-03-08 2012-09-13 独立行政法人産業技術総合研究所 Optical characteristic measurement device
WO2015001753A1 (en) * 2013-07-01 2015-01-08 日本電気株式会社 Optical device for use with coherent terahertz light
DE102013223945A1 (en) * 2013-11-22 2015-05-28 Inoex Gmbh Measuring device and method for measuring test objects
CN114791352A (en) * 2021-01-26 2022-07-26 卡尔蔡司光谱学有限公司 Measuring arrangement for measuring diffuse and specular reflected light

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110037A (en) * 1980-01-23 1981-09-01 Commissariat Energie Atomique Measuring device for luminous intensity
JPH03172728A (en) * 1989-11-30 1991-07-26 Hoya Corp Reflectivity measurement device for light-transmissive member
JPH05257076A (en) * 1992-03-12 1993-10-08 Copal Co Ltd Optical scanning device
JPH07140004A (en) * 1993-11-18 1995-06-02 Shimadzu Corp Spectroscopic analysis apparatus
JPH11153534A (en) * 1997-11-19 1999-06-08 Otsuka Denshi Kk Apparatus for measuring intensity of scattering of light
JP2000180351A (en) * 1998-10-08 2000-06-30 Nikon Corp Optical-characteristic measuring unit
JP2001281097A (en) * 2000-03-28 2001-10-10 Nikon Corp Method and apparatus for measuring scattered light
JP2001343287A (en) * 2000-06-02 2001-12-14 Fuji Xerox Co Ltd Optical measuring device and color image forming device
JP2002286635A (en) * 2001-03-26 2002-10-03 Nikon Corp Scattering rate measuring method and device
JP2004022038A (en) * 2002-06-13 2004-01-22 Sharp Corp Semiconductor laser device and optical pickup device
JP2004045065A (en) * 2002-07-09 2004-02-12 National Institute Of Advanced Industrial & Technology Incident-angle-variable optical system for measuring absolute reflectivity and absolute transmissivity
JP2004257956A (en) * 2003-02-27 2004-09-16 National Institute Of Advanced Industrial & Technology Elliptic optical system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110037A (en) * 1980-01-23 1981-09-01 Commissariat Energie Atomique Measuring device for luminous intensity
JPH03172728A (en) * 1989-11-30 1991-07-26 Hoya Corp Reflectivity measurement device for light-transmissive member
JPH05257076A (en) * 1992-03-12 1993-10-08 Copal Co Ltd Optical scanning device
JPH07140004A (en) * 1993-11-18 1995-06-02 Shimadzu Corp Spectroscopic analysis apparatus
JPH11153534A (en) * 1997-11-19 1999-06-08 Otsuka Denshi Kk Apparatus for measuring intensity of scattering of light
JP2000180351A (en) * 1998-10-08 2000-06-30 Nikon Corp Optical-characteristic measuring unit
JP2001281097A (en) * 2000-03-28 2001-10-10 Nikon Corp Method and apparatus for measuring scattered light
JP2001343287A (en) * 2000-06-02 2001-12-14 Fuji Xerox Co Ltd Optical measuring device and color image forming device
JP2002286635A (en) * 2001-03-26 2002-10-03 Nikon Corp Scattering rate measuring method and device
JP2004022038A (en) * 2002-06-13 2004-01-22 Sharp Corp Semiconductor laser device and optical pickup device
JP2004045065A (en) * 2002-07-09 2004-02-12 National Institute Of Advanced Industrial & Technology Incident-angle-variable optical system for measuring absolute reflectivity and absolute transmissivity
JP2004257956A (en) * 2003-02-27 2004-09-16 National Institute Of Advanced Industrial & Technology Elliptic optical system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121323A1 (en) 2011-03-08 2012-09-13 独立行政法人産業技術総合研究所 Optical characteristic measurement device
JP2012185121A (en) * 2011-03-08 2012-09-27 National Institute Of Advanced Industrial & Technology Optical characteristic measurement device
US8982345B2 (en) 2011-03-08 2015-03-17 National Institute Of Advanced Industrial Science And Technology Optical characteristic measuring apparatus
WO2015001753A1 (en) * 2013-07-01 2015-01-08 日本電気株式会社 Optical device for use with coherent terahertz light
JPWO2015001753A1 (en) * 2013-07-01 2017-02-23 日本電気株式会社 Optical device for coherent terahertz light
DE102013223945A1 (en) * 2013-11-22 2015-05-28 Inoex Gmbh Measuring device and method for measuring test objects
US10054424B2 (en) 2013-11-22 2018-08-21 Inoex Gmbh Terahertz measuring device and method for measuring test objects
CN114791352A (en) * 2021-01-26 2022-07-26 卡尔蔡司光谱学有限公司 Measuring arrangement for measuring diffuse and specular reflected light

Also Published As

Publication number Publication date
JP4742616B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
US11662311B2 (en) Optical sample characterization
JP5721070B2 (en) Optical property measuring device
JP5366536B2 (en) Raman scattered light measurement system
JP2004504591A (en) High spatial resolution infrared ellipsometer
KR101770688B1 (en) Imaging by attenuated total reflectance(atr)
JP2005003666A (en) Spectroscopic ellipsometer
WO2019179163A1 (en) Spectrum detection instrument
JP4742616B2 (en) Three-dimensional elliptical optical device
KR20230004553A (en) Optical sample characterization
KR101108497B1 (en) NDIR Gas Sensor
JP5263783B2 (en) Optical characteristic measuring apparatus and measuring method
JP6635849B2 (en) Optical measuring device and measuring method
CN115291378A (en) Optical path system of microscope
WO2017092614A1 (en) Mirror for optical resonator, optical resonator, and spectrometer
JPH1019779A (en) Weak fluorescence measuring apparatus
JP7205190B2 (en) Optical measuring instrument
CN206594055U (en) Moisture content determining device
JPS6212994Y2 (en)
JPH11142241A (en) Measuring apparatus for spectral transmittance
JP2010091428A (en) Scanning optical system
JP3141105B2 (en) Sensor having slab optical waveguide using photothermal conversion method and detection method using photothermal conversion method
JP2536901B2 (en) Fluorescence measurement device
TWI780846B (en) Can measure the concentration of liquid
JP2001281056A (en) Interferometer and spectroscope
JP2007101242A (en) Sensing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4742616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees