JPH05257076A - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JPH05257076A
JPH05257076A JP4087997A JP8799792A JPH05257076A JP H05257076 A JPH05257076 A JP H05257076A JP 4087997 A JP4087997 A JP 4087997A JP 8799792 A JP8799792 A JP 8799792A JP H05257076 A JPH05257076 A JP H05257076A
Authority
JP
Japan
Prior art keywords
axis
light
concave mirror
vibrating member
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4087997A
Other languages
Japanese (ja)
Inventor
Yoshitada Ishizuka
嘉忠 石束
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Precision Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP4087997A priority Critical patent/JPH05257076A/en
Publication of JPH05257076A publication Critical patent/JPH05257076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To reduce the size of the optical scanning device and speed up its operation. CONSTITUTION:The optical scanning device is equipped with a concave mirror 1 having a reflecting surface in such a shape that part of a spherical surface is cut. A vibrating member 2 is arranged opposite the concave mirror 1. The vibrating member 2 is rotated and vibrated by a galvanometer 12 around a 1st axis 3 in both directions. The vibrating member 2 is fitted with a photodetecting element 6 through an arm part 5. The photodetection surface of the photodetecting element 6 is positioned at the mid-point of the sphere radius on a 2nd axis 7 and faces the concave mirror 1. Further, a plane mirror 8 which is arranged slantingly to the 1st axis 3 is fixed atop of the vibrating member 2. Incident light 9 parallel to the 1st axis 3 is reflected by the plane mirror 8 and projected as scanning light 10 in parallel to the 2nd axis 7. Return light 11 parallel to the scanning light 10 is converged by the concave mirror 1 and photodetected by the photodetecting element 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光線をスキャニング投
光し標的からの反射光あるいは散乱光を受光検出する光
スキャニング装置に関する。光スキャニング装置は例え
ばレーザレーダに組み込まれる。レーザレーダは自動車
や列車等の移動体に取り付けられ前方あるいは後方の遠
隔物にレーザ光を発射し、その反射光を受光する事によ
り障害物等を検出したり、あるいは距離を測定する為に
用いられる。又、光スキャニング装置はバーコードリー
ダにも組み込まれ、バーコードの読み取りに用いられ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning device for scanning and projecting a light beam and receiving and detecting reflected light or scattered light from a target. The optical scanning device is incorporated in, for example, a laser radar. A laser radar is attached to a moving body such as an automobile or a train and emits a laser beam to a remote object in front of or behind it, and is used to detect obstacles or measure the distance by receiving the reflected light. Be done. The optical scanning device is also incorporated in a bar code reader and used for reading the bar code.

【0002】[0002]

【従来の技術】図5を参照して、従来の光スキャニング
装置の典型的な構成例を簡潔に説明する。図示する様
に、レーザ光源101から出射されたレーザ光102は
平面ミラー103によって偏向され、スキャニング出力
光104となって目標物をスキャニングする。平面ミラ
ー103はガルバノメータ105に取り付けられており
その反射面は回転振動する。目標物からの反射光あるい
は散乱光のうちスキャニング出力光104に略平行な戻
り光106は平面ミラー103により反射された後集光
レンズ107を介して集光され受光素子108で受光さ
れる。
2. Description of the Related Art A typical configuration example of a conventional optical scanning device will be briefly described with reference to FIG. As shown in the figure, the laser light 102 emitted from the laser light source 101 is deflected by the plane mirror 103 and becomes scanning output light 104 to scan the target object. The plane mirror 103 is attached to the galvanometer 105, and the reflecting surface of the plane mirror 103 rotationally vibrates. Of the reflected light or the scattered light from the target object, the return light 106 that is substantially parallel to the scanning output light 104 is reflected by the plane mirror 103, is condensed through the condenser lens 107, and is received by the light receiving element 108.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の構成に
おいては、平面ミラー103がスキャニング用と受光用
を兼ねた構造となっている。検出感度を高め且つ誤検出
を防止する為に受光量は大きい程好ましい。平面ミラー
の面積寸法は主として所定の受光量を確保する観点から
決定され、大きなミラー程受光の面で有利になる。但
し、レーザ光スキャニングの観点からは、平面ミラーの
面積との関連はない。光スキャニング装置の高性能化を
図る為高速スキャニングが必要になる。平面ミラーを高
速回転振動させると慣性に従って大きな応力が作用す
る。この応力によって生じる平面ミラーの機械的歪みを
抑制する為に十分な剛性を付与する必要があり、平面ミ
ラーの厚みを大きくせざるを得ない。この様に、受光量
を確保する為にミラー面積を大きく取るとともに剛性を
付与する為にミラー厚みを大きくすると、必然的に質量
の増加をもたらす。相当程度の重量を有するミラーを高
速駆動する為には当然高出力のガルバノメータが必要に
なり、光スキャニング装置の小型化を図る上で障害にな
っているという課題がある。従来のガルバノメータと反
射鏡からなる構造においては、受光量の確保が優先され
ており平面ミラー面積を縮小できない。従って高速化と
小型化を同時に達成する事が不可能であった。高速化の
為にはミラー厚みを増加し高出力のガルバノメータを使
用しなければならず小型化に相反する事となる。
In the above-mentioned conventional structure, the plane mirror 103 has a structure for both scanning and light reception. It is preferable that the amount of received light is large in order to enhance detection sensitivity and prevent erroneous detection. The area size of the plane mirror is determined mainly from the viewpoint of ensuring a predetermined amount of received light, and the larger the mirror, the more advantageous in terms of light reception. However, from the viewpoint of laser light scanning, there is no relation with the area of the plane mirror. High-speed scanning is required to improve the performance of the optical scanning device. When the plane mirror is rotated and oscillated at high speed, a large stress acts according to the inertia. Sufficient rigidity must be imparted to suppress the mechanical distortion of the plane mirror caused by this stress, and the thickness of the plane mirror must be increased. In this way, if the mirror area is made large in order to secure the amount of received light and the mirror thickness is made large to give rigidity, the mass is inevitably increased. In order to drive a mirror having a considerable weight at a high speed, a high output galvanometer is naturally required, which is an obstacle to the miniaturization of the optical scanning device. In the conventional structure consisting of a galvanometer and a reflecting mirror, securing the amount of received light is given priority, and the area of the plane mirror cannot be reduced. Therefore, it has been impossible to achieve high speed and small size at the same time. In order to achieve high speed, the mirror thickness must be increased and a high output galvanometer must be used, which conflicts with miniaturization.

【0004】[0004]

【課題を解決するための手段】上述した従来の技術の課
題に鑑み、本発明は光スキャニング装置の小型化を可能
とする改良された構造を提供する事を目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, it is an object of the present invention to provide an improved structure capable of downsizing an optical scanning device.

【0005】図1に基き、本発明の目的を達成する為に
講じられた手段を説明する。本発明にかかる光スキャニ
ング装置は球面の一部を切り取った形状の反射面を有す
る凹面鏡1を備えている。固定された凹面鏡1に対向す
る様に振動部材2が配置されている。この振動部材2は
第一の軸3を中心として回転振動する。この第一の軸3
は、球中心点4を含み凹面鏡1と対向した平面上にある
球直径に一致している。振動部材2には腕部5を介して
受光素子6が取り付けられている。受光素子6の受光面
は凹面鏡1に対面して配置されている。受光素子6は第
二の軸7上に位置する。この第二の軸7は球中心点4を
通り且つ振動部材2に固定された球半径に一致してい
る。受光素子6は当該球半径の略中点に位置する。振動
部材2には平面ミラー8が固定されている。平面ミラー
8は前記第一の軸3に対し所定の傾斜角(例えば45
°)をもって配置されている。この平面ミラー8は第一
の軸3に平行な入射光9を反射して、前記第二の軸7に
平行に且つ受光素子6と反対の方向へスキャニング光1
0を投光する。なお、入射光9は例えば第一の軸3上に
あるレーザ光源14から放射される。最後に、駆動手段
例えばガルバノメータ12がシャフト13を介して振動
部材2に接続されており、第一の軸3を中心にして高速
回転振動させる。
The measures taken to achieve the object of the present invention will be described with reference to FIG. The optical scanning device according to the present invention includes a concave mirror 1 having a reflecting surface in which a spherical surface is partially cut off. A vibrating member 2 is arranged so as to face the fixed concave mirror 1. The vibrating member 2 rotationally vibrates about the first shaft 3. This first axis 3
Corresponds to the sphere diameter on the plane including the sphere center point 4 and facing the concave mirror 1. A light receiving element 6 is attached to the vibrating member 2 via an arm 5. The light receiving surface of the light receiving element 6 is arranged to face the concave mirror 1. The light receiving element 6 is located on the second axis 7. The second axis 7 passes through the sphere center point 4 and coincides with the sphere radius fixed to the vibrating member 2. The light receiving element 6 is located approximately at the center of the radius of the sphere. A plane mirror 8 is fixed to the vibrating member 2. The plane mirror 8 has a predetermined inclination angle (for example, 45 degrees) with respect to the first axis 3.
°) is arranged. The plane mirror 8 reflects the incident light 9 parallel to the first axis 3 and scans the light 1 parallel to the second axis 7 and in the direction opposite to the light receiving element 6.
0 is projected. The incident light 9 is emitted from the laser light source 14 located on the first axis 3, for example. Finally, a driving means, for example, a galvanometer 12 is connected to the vibrating member 2 via a shaft 13, and vibrates at high speed about the first shaft 3.

【0006】図1に示す構造においては振動部材2に平
面ミラー8を固着する一方、レーザ光源14を離間配置
している。本発明の目的を達成する為に他の構造を採用
する事もできる。即ち、振動部材2に直接発光部を搭載
する構造である。この発光部は例えばレーザダイオード
とコリメータレンズの組み合わせからなり、第二の軸7
に平行で且つ受光素子6と反対の方向へスキャニング光
10を出射する。
In the structure shown in FIG. 1, the plane mirror 8 is fixed to the vibrating member 2 and the laser light sources 14 are arranged separately. Other structures may be employed to achieve the objects of the invention. That is, the light emitting unit is directly mounted on the vibrating member 2. This light emitting part is composed of, for example, a combination of a laser diode and a collimator lens, and has a second axis 7
The scanning light 10 is emitted in the direction parallel to the direction opposite to the light receiving element 6.

【0007】[0007]

【作用】引き続き図1を参照して本発明にかかる光スキ
ャニング装置の作用を説明する。振動部材2の高速回転
振動に伴なってスキャニング光10は紙面に垂直な平面
に沿って角的に走査される。標的物に反射された散乱光
の一部はスキャニング光10に平行な戻り光11となっ
て凹面鏡1の反射面に入射する。凹面鏡1からの反射光
は受光素子6の表面に集光される。この様にして、光学
的な標的検出が行なわれる。
The operation of the optical scanning device according to the present invention will be described with reference to FIG. As the vibrating member 2 vibrates at high speed, the scanning light 10 is angularly scanned along a plane perpendicular to the paper surface. A part of the scattered light reflected by the target object becomes a return light 11 parallel to the scanning light 10 and enters the reflecting surface of the concave mirror 1. The reflected light from the concave mirror 1 is condensed on the surface of the light receiving element 6. In this way, optical target detection is performed.

【0008】本発明によれば、スキャニング専用の平面
ミラー8と受光専用の凹面鏡1とが別々に設けられてい
る。振動部材2に固着されたスキャニング用平面ミラー
8を極力小型化する一方、受光専用の凹面鏡1は効率的
な集光を行なう為に拡大された反射面積を有する。凹面
鏡1で集光された戻り光の焦点が常に受光素子6の受光
面に当る様に、受光素子6は腕部5を介して平面ミラー
8と連動する。かかる構造により、光スキャニング装置
の高速化及び小型化を同時に可能とする。
According to the present invention, the plane mirror 8 dedicated to scanning and the concave mirror 1 dedicated to light reception are separately provided. The flat mirror 8 for scanning fixed to the vibrating member 2 is made as small as possible, while the concave mirror 1 dedicated to receiving light has an enlarged reflection area for efficient light collection. The light receiving element 6 is interlocked with the plane mirror 8 via the arm 5 so that the focus of the return light condensed by the concave mirror 1 always strikes the light receiving surface of the light receiving element 6. With such a structure, it is possible to speed up and downsize the optical scanning device at the same time.

【0009】[0009]

【実施例】以下図面を参照して本発明の好適な実施例を
詳細に説明する。図2は本発明にかかる光スキャニング
装置の第一実施例を示す模式的な斜視図である。固定配
置された凹面鏡21は、中心点22を有する球面を一部
切り取った形状の反射面23を有する。凹面鏡21の上
部に振動部材24が配置されている。振動部材24はガ
ルバノメータ25により駆動され、球反射面23に対向
しておかれた第一の軸即ちX軸を中心として双方向に回
転振動する。振動部材24の先端には平面ミラー26が
X軸に対して傾斜した姿勢で取り付けられている。傾斜
角は例えば45°に設定されている。平面ミラー26か
ら離間してX軸上にレーザ光源27が配置されている。
レーザ光源27から出射したレーザ光28は平面ミラー
26で反射されスキャニング光29となる。スキャニン
グ光29は振動部材24の回転振動に応じてX軸に直交
するZ軸の周りを角度θで角的に走査される。このスキ
ャニング光29はX軸に垂直な面即ちZ軸及びY軸によ
って規定される平面に沿って進行する。振動部材24の
先端には腕部材30を介して受光素子31が固定されて
いる。受光素子31は球中心点22を通りスキャニング
光29に一致する第二の軸33上に配置されている。受
光素子31の受光面は球半径の略中点に位置し且つ反射
面23に対面している。標的から反射された散乱光のう
ちスキャニング光29に平行な戻り光32は凹面鏡21
により反射集光され球半径の中点に配置された受光面に
集まる。但し、第二の軸33から比較的離れた平行な戻
り光は球半径の中点よりも凹面鏡側へ焦点が若干移動し
集光誤差が生じる。この誤差を少なくする為に球半径即
ち凹面鏡のサイズをある程度確保する事が好ましい。な
お、受光素子31から出力される電気信号はフレキシブ
ルな細線を介して図示しない電子回路に導かれる。さら
に、前述した様に平面ミラー26はX軸即ち回転振動軸
に対して必ずしも45°の傾斜姿勢にする必要はない。
一般に、受光素子31と球中心点22を結ぶ第二の軸3
3がスキャニング光29に平行であり且つレーザ光28
あるいは入射光が回転振動軸Xに平行となる様な条件を
満たしていれば良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 2 is a schematic perspective view showing a first embodiment of the optical scanning device according to the present invention. The fixedly arranged concave mirror 21 has a reflecting surface 23 in which a spherical surface having a center point 22 is partially cut off. A vibrating member 24 is arranged above the concave mirror 21. The vibrating member 24 is driven by the galvanometer 25 and rotationally vibrates bidirectionally around the first axis, that is, the X axis, which is opposed to the spherical reflecting surface 23. A plane mirror 26 is attached to the tip of the vibrating member 24 in a posture inclined with respect to the X axis. The inclination angle is set to 45 °, for example. A laser light source 27 is arranged on the X axis apart from the plane mirror 26.
The laser light 28 emitted from the laser light source 27 is reflected by the plane mirror 26 and becomes scanning light 29. The scanning light 29 is angularly scanned at an angle θ around the Z axis orthogonal to the X axis according to the rotational vibration of the vibrating member 24. The scanning light 29 travels along a plane perpendicular to the X axis, that is, a plane defined by the Z axis and the Y axis. A light receiving element 31 is fixed to the tip of the vibrating member 24 via an arm member 30. The light receiving element 31 is arranged on the second axis 33 which passes through the spherical center point 22 and coincides with the scanning light 29. The light-receiving surface of the light-receiving element 31 is located approximately at the midpoint of the spherical radius and faces the reflecting surface 23. Of the scattered light reflected from the target, the return light 32 parallel to the scanning light 29 is the concave mirror 21.
The light is reflected and condensed by and is collected on the light receiving surface located at the midpoint of the sphere radius. However, the parallel return light relatively distant from the second axis 33 has its focus slightly moved to the concave mirror side from the midpoint of the spherical radius, and a focusing error occurs. In order to reduce this error, it is preferable to secure the spherical radius, that is, the size of the concave mirror to some extent. The electric signal output from the light receiving element 31 is guided to an electronic circuit (not shown) via a flexible thin wire. Further, as described above, the plane mirror 26 does not necessarily have to be inclined at 45 ° with respect to the X axis, that is, the rotational vibration axis.
Generally, the second axis 3 connecting the light receiving element 31 and the sphere center point 22.
3 is parallel to the scanning light 29 and the laser light 28
Alternatively, it is only necessary to satisfy the condition that the incident light is parallel to the rotational vibration axis X.

【0010】図3を参照して図2に示す光スキャニング
装置の動作を詳細に説明する。図3はY軸及びZ軸によ
って規定される平面上における幾何光学図である。この
図において外側の円34は凹面鏡の反射面に沿って描か
れている。又、内側の円35は球中心点22の周りを球
半径の半分量に相当する距離で回転振動する受光素子3
1の移動軌跡に沿っている。さらに、ガルバノメータの
回転振動軸即ちX軸あるいは第一の軸は球中心点22を
通りY−Z平面に垂直である。この第一の軸に沿って入
射したレーザ光は振動部材の先端部に傾斜設置された平
面ミラーで反射されスキャニング光29になる。このス
キャニング光29はY−Z平面に沿って角的に走査され
る。この時走査角θはガルバノメータの回転変位角と一
致する。
The operation of the optical scanning device shown in FIG. 2 will be described in detail with reference to FIG. FIG. 3 is a geometrical optical diagram on a plane defined by the Y axis and the Z axis. In this figure, the outer circle 34 is drawn along the reflecting surface of the concave mirror. In addition, the inner circle 35 is the light receiving element 3 that rotates and oscillates around the sphere center point 22 at a distance corresponding to half the radius of the sphere.
It follows the movement trajectory of 1. Further, the rotational oscillation axis of the galvanometer, namely the X axis or the first axis, passes through the spherical center point 22 and is perpendicular to the YZ plane. The laser light incident along the first axis is reflected by a plane mirror inclined at the tip of the vibrating member and becomes scanning light 29. The scanning light 29 is angularly scanned along the YZ plane. At this time, the scanning angle θ coincides with the rotational displacement angle of the galvanometer.

【0011】スキャニング光29に平行な戻り光32即
ち第二の軸33に平行な戻り光は凹面鏡により反射され
第二の軸33に一致する球半径の中点に位置する受光面
に集光される。但し、この幾何光学的な関係は戻り光3
2が第二の軸33の近傍にある場合に成立する。戻り光
32が第二の軸33から離れるに従って集光点は受光面
より球反射面側に近い方向へずれていく。しかしながら
この集光点の誤差は実際上問題とはならない。受光素子
31の受光面を許容される範囲で大きくとる事により相
当量の平行戻り光を有効に受光できる。かかる構造によ
れば受光面寸法に比べて球反射面寸法をはるかに大きく
とれるので従来に比し受光量が著しく増大する。又、球
半径を大きく設定する事により前述した集光誤差あるい
は収差を改善できる。あるいはこの様な収差を除去する
為に追加の光学系を挿入しても良い。
The return light 32 parallel to the scanning light 29, that is, the return light parallel to the second axis 33 is reflected by the concave mirror and is focused on the light receiving surface located at the midpoint of the spherical radius coinciding with the second axis 33. It However, this geometrical optical relationship is due to the return light 3
2 holds when 2 is near the second axis 33. As the return light 32 moves away from the second axis 33, the condensing point shifts from the light receiving surface toward the spherical reflecting surface side. However, this error of the focal point does not actually pose a problem. By setting the light receiving surface of the light receiving element 31 to be large within an allowable range, a considerable amount of parallel return light can be effectively received. According to such a structure, the size of the spherical reflecting surface can be made much larger than the size of the light receiving surface, so that the amount of received light is remarkably increased as compared with the conventional case. Further, by setting a large spherical radius, the above-mentioned focusing error or aberration can be improved. Alternatively, an additional optical system may be inserted to eliminate such aberration.

【0012】以上説明した様に、本発明は、球状の凹面
鏡を用いて球中心点を通る軸に平行な戻り光をその軸に
一致する半径の中点に集光するという光学的な原理に基
いている。受光素子の受光面が常時その集光点にある為
の条件を列挙すると以下の通りである。即ち、受光素子
は球中心点を旋回中心とする第二の軸に一致する球半径
の中点に配置するとともに、スキャニング光を第二の軸
と常時平行に保つ事である。後半の条件を満たす為には
入射光を第一の軸即ち回転振動軸に沿って平面ミラーに
導入すれば良い。スキャニング用の平面ミラーは必要最
少限の寸法を備えていれば良く受光レンズも不要にな
る。ガルバノメータの負荷は小型化されたスキャニング
用平面ミラーと同じく小型の受光素子のみとなり、高速
駆動が可能になる。
As described above, the present invention is based on the optical principle of using a spherical concave mirror to collect return light parallel to an axis passing through the center point of a sphere at a midpoint of a radius coinciding with the axis. It is based. The conditions for keeping the light receiving surface of the light receiving element always at the light converging point are as follows. That is, the light receiving element is arranged at the midpoint of the sphere radius coinciding with the second axis having the sphere center point as the turning center, and the scanning light is always kept parallel to the second axis. In order to satisfy the latter half condition, incident light may be introduced into the plane mirror along the first axis, that is, the rotational vibration axis. The plane mirror for scanning has only to have the necessary minimum size, and the light receiving lens is not necessary. The load of the galvanometer is only a small light receiving element like the downsized plane mirror for scanning, and high speed driving is possible.

【0013】図4を参照して本発明にかかる光スキャニ
ング装置の第二実施例を説明する。先に説明した第一実
施例では平面ミラーとこれから離間して固定配置された
レーザ光源を用いていたが、本例では発光源を直接駆動
する構造としている。この発光源は筒部材41に収納さ
れたレーザダイオード42とコリメータレンズ43とか
ら構成されている。この発光源は振動部材44に直接搭
載されている。振動部材44はシャフト45を介してガ
ルバノメータ46に連結されており、X軸を中心にして
双方向に回転振動する。振動部材44には、さらに発光
源と反対側において腕部材47を介して受光素子48が
取り付けられている。この受光素子48に対面して球反
射面49を有する凹面鏡50が固定配置されている。発
光源から出射されるスキャニング光51の光軸が、球中
心点52と受光素子48を結ぶ軸53と平行になる様に
両者を整列させる。レーザダイオード42と受光素子4
8に対する電気的な結線はフレキシブルワイヤ等を用い
て行なわれ図示しない電子回路に接続される。できるだ
け多くの戻り光が凹面鏡50によって受光できる様にす
る為、発光源の寸法を極力小型化し戻り光が遮られる面
積を縮小する事が好ましい。この事は勿論先に説明した
第一実施例についても同様である。
A second embodiment of the optical scanning device according to the present invention will be described with reference to FIG. In the first embodiment described above, the plane mirror and the laser light source fixedly arranged apart from this are used, but in this example, the light emitting source is directly driven. This light emitting source is composed of a laser diode 42 and a collimator lens 43 housed in a tubular member 41. This light emitting source is directly mounted on the vibrating member 44. The vibrating member 44 is connected to the galvanometer 46 via the shaft 45 and rotationally vibrates bidirectionally about the X axis. Further, a light receiving element 48 is attached to the vibrating member 44 via an arm member 47 on the side opposite to the light emitting source. A concave mirror 50 having a spherical reflecting surface 49 is fixedly arranged facing the light receiving element 48. The scanning light 51 emitted from the light emitting source is aligned so that the optical axis thereof is parallel to the axis 53 connecting the sphere center point 52 and the light receiving element 48. Laser diode 42 and light receiving element 4
Electrical connection to 8 is made using a flexible wire or the like and is connected to an electronic circuit (not shown). In order to allow as much return light as possible to be received by the concave mirror 50, it is preferable to reduce the size of the light emitting source as much as possible and reduce the area where the return light is blocked. This also applies to the first embodiment described above.

【0014】[0014]

【発明の効果】以上説明した様に、本発明によれば、ス
キャニング用ミラーと受光用ミラーとを別々に設けスキ
ャニング用ミラーを小型化できる構造とした為、光スキ
ャニング装置の高速化が可能になるという効果がある。
又、受光用ミラーとして集光機能を備えた球状の凹面鏡
を利用する事により集光レンズを不要にする事ができ部
品点数を削減できるという効果がある。さらには、レー
ザダイオードとコリメータレンズ等からなる発光源自体
を回転振動駆動して光スキャニングを行なう事により、
スキャニング用ミラーも省く事ができ構造の簡略化が達
成されるという効果がある。
As described above, according to the present invention, since the scanning mirror and the light receiving mirror are separately provided and the scanning mirror can be downsized, the optical scanning device can be operated at high speed. There is an effect of becoming.
Further, by using a spherical concave mirror having a light collecting function as the light receiving mirror, there is an effect that the light collecting lens can be eliminated and the number of parts can be reduced. Furthermore, the light source itself consisting of a laser diode and a collimator lens is rotationally driven to perform optical scanning.
The effect is that the scanning mirror can be omitted and the structure can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる光スキャニング装置の基本的な
構成を示す模式図である。
FIG. 1 is a schematic diagram showing a basic configuration of an optical scanning device according to the present invention.

【図2】本発明にかかる光スキャニング装置の第一実施
例を示す斜視図である。
FIG. 2 is a perspective view showing a first embodiment of an optical scanning device according to the present invention.

【図3】第一実施例の動作を説明する為の幾何光学図で
ある。
FIG. 3 is a geometrical optical diagram for explaining the operation of the first embodiment.

【図4】本発明にかかる光スキャニング装置の第二実施
例を示す模式的な断面図である。
FIG. 4 is a schematic sectional view showing a second embodiment of an optical scanning device according to the present invention.

【図5】従来の光スキャニング装置の典型例を示す斜視
図である。
FIG. 5 is a perspective view showing a typical example of a conventional optical scanning device.

【符号の説明】[Explanation of symbols]

1 凹面鏡 2 振動部材 3 第一の軸 4 球中心点 5 腕部 6 受光素子 7 第二の軸 8 平面ミラー 9 入射光 10 スキャニング光 11 戻り光 12 ガルバノメータ 14 レーザ光源 42 レーザダイオード 43 コリメータレンズ 1 concave mirror 2 vibrating member 3 first axis 4 sphere center point 5 arm section 6 light receiving element 7 second axis 8 plane mirror 9 incident light 10 scanning light 11 return light 12 galvanometer 14 laser light source 42 laser diode 43 collimator lens

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光線をスキャニング投光し標的からの散
乱光を受光検出する光スキャニング装置において、 球面の一部を切り取った形状の反射面を有する凹面鏡
と、 球中心点を含み前記凹面鏡と対向した平面上にある球直
径を第一の軸とし該第一の軸の周りを回転振動する振動
部材と、 前記球中心点を通り前記振動部材に固定された球半径を
第二の軸とし該第二の軸上において前記球半径の略中点
で前記振動部材に取り付けられ受光面を前記凹面鏡の方
向に向けて設置された受光素子と、 前記第一の軸に対し傾斜角をもって前記振動部材に固定
され前記第一の軸に平行な入射光が前記第二の軸に平行
に且つ受光素子と反対の方向へ反射される様に設置され
た平面ミラーと、 前記振動部材を前記第一の軸の周りに回転振動させる駆
動手段とからなる事を特徴とする光スキャニング装置。
1. An optical scanning device for scanning and projecting light rays to detect scattered light from a target, comprising: a concave mirror having a reflecting surface in which a spherical surface is partially cut off; and a concave mirror including a spherical center point and facing the concave mirror. A vibrating member having a sphere diameter lying on a flat plane as a first axis and rotating and vibrating around the first axis; and a sphere radius fixed to the vibrating member passing through the sphere center point and being a second axis. A light-receiving element attached to the vibrating member at a substantially midpoint of the sphere radius on a second axis and having a light-receiving surface oriented toward the concave mirror; and the vibrating member having an inclination angle with respect to the first axis. A plane mirror fixed to the first axis and installed so that incident light parallel to the first axis is reflected in a direction opposite to the light receiving element in parallel to the second axis; Driving means to rotate and oscillate about the axis It becomes possible optical scanning apparatus according to claim.
【請求項2】 光線をスキャニング投光し標的からの散
乱光を受光検出する光スキャニング装置において、 球面の一部を切り取った形状の反射面を有する凹面鏡
と、 球中心点を含み前記凹面鏡と対向した平面上にある球直
径を第一の軸とし該第一の軸の周りを回転振動する振動
部材と、 前記球中心点を通り前記振動部材に固定された球半径を
第二の軸とし該第二の軸上において前記球半径の略中点
で前記振動部材に取り付けられ受光面を前記凹面鏡の方
向に向けて設置された受光素子と、 前記振動部材に固定され前記第二の軸に平行で且つ受光
素子と反対の方向へ光線を出射する様に設置された発光
部と、 前記振動部材を前記第一の軸の周りに回転振動させる駆
動手段とからなる事を特徴とする光スキャニング装置。
2. An optical scanning device for scanning and projecting light rays to detect scattered light from a target, comprising: a concave mirror having a reflecting surface in which a spherical surface is partially cut off; and a concave mirror including a spherical center point and facing the concave mirror. A vibrating member having a sphere diameter lying on a flat plane as a first axis and rotating and vibrating around the first axis; and a sphere radius fixed to the vibrating member passing through the sphere center point and being a second axis. A light receiving element that is attached to the vibrating member at a substantially midpoint of the sphere radius on the second axis and is installed with the light receiving surface facing the direction of the concave mirror; And a driving means for rotating and vibrating the vibrating member around the first axis, the light emitting portion being installed so as to emit a light beam in a direction opposite to the light receiving element. ..
JP4087997A 1992-03-12 1992-03-12 Optical scanning device Pending JPH05257076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4087997A JPH05257076A (en) 1992-03-12 1992-03-12 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4087997A JPH05257076A (en) 1992-03-12 1992-03-12 Optical scanning device

Publications (1)

Publication Number Publication Date
JPH05257076A true JPH05257076A (en) 1993-10-08

Family

ID=13930441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4087997A Pending JPH05257076A (en) 1992-03-12 1992-03-12 Optical scanning device

Country Status (1)

Country Link
JP (1) JPH05257076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234681A (en) * 2005-02-25 2006-09-07 National Institute Of Advanced Industrial & Technology Solid bi-elliptic optical device
KR20180080383A (en) * 2017-01-02 2018-07-12 전자부품연구원 Rotational scanning LiDAR comprising curved reflective mirror

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234681A (en) * 2005-02-25 2006-09-07 National Institute Of Advanced Industrial & Technology Solid bi-elliptic optical device
JP4742616B2 (en) * 2005-02-25 2011-08-10 独立行政法人産業技術総合研究所 Three-dimensional elliptical optical device
KR20180080383A (en) * 2017-01-02 2018-07-12 전자부품연구원 Rotational scanning LiDAR comprising curved reflective mirror

Similar Documents

Publication Publication Date Title
US5933225A (en) Vehicular optical radar apparatus
JP3052686B2 (en) Laser distance measuring device
JP2772521B2 (en) Optical system of floodlight-type photodetector
EP0295863B1 (en) Optical printer of scanning type
EP1929354A1 (en) Energy signal processing system
CN114365006A (en) Laser scanner
JP3169074B2 (en) Laser radar device
JP2690642B2 (en) Scanning optical system
US5033845A (en) Multi-direction distance measuring method and apparatus
JP2777353B2 (en) Photodetector
JPH05257076A (en) Optical scanning device
US5771115A (en) Optical scanner
JPH0553067A (en) Lens for optical scan and optical scanner
JP2000205858A (en) Laser range finder device
JPH06202016A (en) Optical scanning device
JPS59171878A (en) Obstacle detecting apparatus for vehicle
JP3208702B2 (en) Optical radar device
JP3149102B2 (en) Laser distance measuring device
JP2012058178A (en) Laser radar device
JPH05257072A (en) Two-dimensional optical scanning device
JPH05257073A (en) Two-dimensional optical scanning device
JPH07182439A (en) Bessel beam scanning device
CN218824680U (en) Laser radar's coaxial light path structure and laser radar
JP3356576B2 (en) Laser radar
CN213122289U (en) Laser ranging device and laser radar with same