JPS6212994Y2 - - Google Patents

Info

Publication number
JPS6212994Y2
JPS6212994Y2 JP11244081U JP11244081U JPS6212994Y2 JP S6212994 Y2 JPS6212994 Y2 JP S6212994Y2 JP 11244081 U JP11244081 U JP 11244081U JP 11244081 U JP11244081 U JP 11244081U JP S6212994 Y2 JPS6212994 Y2 JP S6212994Y2
Authority
JP
Japan
Prior art keywords
sample
integrating sphere
measurement
control
sample chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11244081U
Other languages
Japanese (ja)
Other versions
JPS5817542U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11244081U priority Critical patent/JPS5817542U/en
Publication of JPS5817542U publication Critical patent/JPS5817542U/en
Application granted granted Critical
Publication of JPS6212994Y2 publication Critical patent/JPS6212994Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【考案の詳細な説明】 本考案は試料の分光透過率とか分光反射率等の
光学的特性を測定する装置に関する。
[Detailed Description of the Invention] The present invention relates to an apparatus for measuring optical properties such as spectral transmittance and spectral reflectance of a sample.

透明試料或は光散乱性試料の透過率とか光沢面
試料の反射率、粗面試料の反射率等の測定に汎用
できる測定方法として積分球を用いる方法があ
る。分光分析用の分光光度計を利用して上述した
積分球による測定を行う場合、積分球を分光光度
計の試料室にセツトするので試料をセツトできる
空間が著るしく狭められ、試料の大きさ形状が制
限される。第1図は通常の分光分析用分光光度計
を用いて積分球による測定を行う場合の構成を示
す。M1,M4はセクターミラーで、Rは対照光
束、Sは試料光束、D1は光検出器でSCは試料
室である。通常の用法では対照光束R、試料光束
Sは点線で示す光路を経て交互に光検出器D1に
入射する。積分球による測定を行うときは、試料
室SC内に積分球I及び付属ミラーM5,M6,
M7よりなる装置を設置し、対照光束R、試料光
束Sを積分球I内に入射せしめ、図の紙面に直角
の方向から積分球内の光を取出し光検出器D2に
入射せしめる。試料の透過率測定の場合は積分球
Iの入射窓の一方の試料セルcsを置き他方の入射
窓に対照セルcrを置き、Ws,Wrの位置に標準白
板をセツトする。反射率測定の場合は試料セル
cs、対照セルcrを除き、Wsの所に測定試料を置
き、Wrの所に対照試料を置く。この構成では測
定試料Wsは試料室SC内の積分球外の残りの空間
の一部に収まる形状大きさに制限され、また光検
出器D1とは別に光検出器D2が必要になる。こ
のような試料の形状、大きさの制限を緩和し光検
出器を一個にするため第2図に示すような装置構
成が用いられている。Iが積分球で欠球状をなし
試料室SCに接して設けられ、対照光束R及び試
料光束Sが互に平行に積分球Iに入射せしめられ
るようになつている。積分球Iの後壁で対照光束
R及び試料光束Sが入射する位置に対照試料Wr
及び測定試料Wsがセツトされる窓が設けられ、
図の紙面に垂直の方向から積分球I内の光を取出
し光検出器Dに入射せしめる。crは対照セル、cs
は試料セルで液体試料の透過率測定時に用いられ
る。M1は分光器の出射光を対照光束と試料光束
とに分割するセクターミラーである。この構成で
は試料Wsをセツトする空間は背後に光学系がな
いから自由に拡大可能であるが、測定試料Wsを
セツトする面と対照試料Wrをセツトする面とが
鋭角θをはさんで交わつているため、余り大きな
測定試料であると対照試料に当つてしまい、任意
の試料を測定すると云うわけには行かない。対照
及び測定両試料をセツトする面の交角を大きくす
れば対照及び測定両試料の形状における干渉は避
けられるが、対照及び試料用の両光束が平行して
積分球Iに入射しているため対照及び測定各試料
をセツトする面の交角は余り大きくできない。
There is a method that uses an integrating sphere as a general-purpose measuring method for measuring the transmittance of a transparent sample or a light-scattering sample, the reflectance of a glossy surface sample, the reflectance of a rough surface sample, and the like. When performing the above-mentioned integrating sphere measurements using a spectrophotometer for spectroscopic analysis, the integrating sphere is set in the sample chamber of the spectrophotometer, which significantly reduces the space in which the sample can be set, and the size of the sample increases. Shape is limited. FIG. 1 shows a configuration for performing measurements using an integrating sphere using a normal spectrophotometer for spectroscopic analysis. M1 and M4 are sector mirrors, R is a reference beam, S is a sample beam, D1 is a photodetector, and SC is a sample chamber. In normal usage, the reference light beam R and the sample light beam S alternately enter the photodetector D1 via optical paths indicated by dotted lines. When performing measurements using an integrating sphere, the integrating sphere I and attached mirrors M5, M6,
A device consisting of M7 is installed, and a reference light beam R and a sample light beam S are made to enter the integrating sphere I, and the light inside the integrating sphere is extracted from a direction perpendicular to the plane of the drawing and is made to enter the photodetector D2. To measure the transmittance of a sample, place the sample cell cs on one side of the entrance window of the integrating sphere I, place the reference cell cr on the other side of the entrance window, and set the standard white plate at the positions Ws and Wr. Sample cell for reflectance measurements
Remove cs and control cell cr, place the measurement sample at Ws, and place the control sample at Wr. In this configuration, the measurement sample Ws is limited to a size that fits within a portion of the remaining space outside the integrating sphere in the sample chamber SC, and a photodetector D2 is required in addition to the photodetector D1. In order to alleviate such restrictions on the shape and size of the sample and to reduce the number of photodetectors to one, an apparatus configuration as shown in FIG. 2 is used. I is an integrating sphere in the shape of a broken sphere and is provided in contact with the sample chamber SC, so that the reference light beam R and the sample light beam S are made to enter the integrating sphere I in parallel with each other. A control sample Wr is placed on the rear wall of the integrating sphere I at a position where the control beam R and the sample beam S are incident.
and a window for setting the measurement sample Ws,
Light inside the integrating sphere I is extracted from a direction perpendicular to the plane of the drawing and is made to enter a photodetector D. cr is control cell, cs
is used in the sample cell when measuring the transmittance of a liquid sample. M1 is a sector mirror that divides the output light of the spectroscope into a reference beam and a sample beam. In this configuration, the space in which the sample Ws is set can be expanded freely because there is no optical system behind it, but the surface where the measurement sample Ws is set and the surface where the control sample Wr is set intersect at an acute angle θ. Therefore, if the measurement sample is too large, it will hit the control sample, and it is not possible to measure any sample. Interference in the shapes of both the control and measurement samples can be avoided by increasing the intersection angle of the planes on which both the control and measurement samples are set, but since both the control and sample light beams are incident on the integrating sphere I in parallel, the control and measurement samples are Also, the intersection angle of the planes on which each measurement sample is set cannot be too large.

本考案は積分球を用いた分光光度計の汎用性を
より一層高めるため試料の形状、大きさに対する
自由度を上述したような従来例より更に拡大する
ことを目的としてなされた。以下実施例によつて
本考案を説明する。
The present invention was made with the aim of further expanding the degree of freedom regarding the shape and size of a sample compared to the conventional example described above, in order to further enhance the versatility of a spectrophotometer using an integrating sphere. The present invention will be explained below with reference to Examples.

第3図は本考案の一実施例を示す。Lは光源、
mは分光器である。M1はセクターミラーで分光
器mの出射光束を試料光束Sと対照光束Rとに分
割する。試料光束Sが通過するように試料室SC
が配置され、この試料室の後面に接して積分球I
が配置され、試料室SCを通過した試料光束が積
分球Iに入射するようになつている。対照光束R
はミラーM2,M3によつて反射され試料室SC
を迂回して試料光束Sと直交するように積分球I
に入射する。積分球Iにおいて試料光束Sの入射
窓と反対側の壁に測定試料設置窓w1が設けら
れ、対照光束Rの入射窓と反対側の壁に対照試料
設置窓w2が設けられている。必要に応じて積分
球Iの試料室SCとは反対側の外面に接して反射
試料室RCを設置してもよい。反射試料室RCを用
いない、或は反射試料室RCが着脱可能な場合
に、測定試料を窓w1に接して配置し、光の漏れ
或は侵入を防ぐため、窓w1の周囲に平面のフラ
ンジFが取付けてある。Dは光検出器である。
FIG. 3 shows an embodiment of the present invention. L is the light source,
m is a spectrometer. M1 is a sector mirror that divides the emitted light beam from the spectrometer m into a sample light beam S and a reference light beam R. Sample chamber SC so that sample light flux S passes through
is placed, and an integrating sphere I is placed in contact with the rear surface of this sample chamber.
is arranged so that the sample light beam passing through the sample chamber SC is incident on the integrating sphere I. Contrast luminous flux R
is reflected by mirrors M2 and M3 and enters the sample chamber SC.
The integrating sphere I
incident on . In the integrating sphere I, a measurement sample installation window w1 is provided on the wall opposite to the entrance window for the sample light flux S, and a control sample installation window w2 is provided on the wall opposite to the entrance window for the reference light flux R. If necessary, a reflection sample chamber RC may be installed in contact with the outer surface of the integrating sphere I on the side opposite to the sample chamber SC. When the reflective sample chamber RC is not used or when the reflective sample chamber RC is detachable, a flat flange is installed around the window w1 to place the measurement sample in contact with the window w1 and prevent light from leaking or entering. F is installed. D is a photodetector.

第4図は本考案の他の実施例を示す。第3図の
実施例の各部と対応する部分には同じ符号を付し
一々の説明を省略する。この実施例では対照光束
を試料室SCを迂回させて積分球Iに導くのにミ
ラーM2,M3の代りに光フアイバーOpfを用い
ている点が第3図の実施例と異なる。
FIG. 4 shows another embodiment of the invention. Components corresponding to those in the embodiment shown in FIG. 3 are designated by the same reference numerals, and detailed description thereof will be omitted. This embodiment differs from the embodiment shown in FIG. 3 in that an optical fiber Opf is used instead of mirrors M2 and M3 to guide the reference beam to the integrating sphere I by bypassing the sample chamber SC.

上述各実施例で試料の透過率測定の場合は測定
試料cs(図では液体試料用のセル)を試料室SC
内で積分球Iの入射窓に接して置き、対照試料
(セル)crを対照光束Rの光路中で積分球Iの入
射窓に接しておく。試料室SCは対照光束Rが外
側を迂回していて対照試料を置く必要がなく、ま
た測定試料によつて対照光束を遮ぎるおそれがな
いから、試料室一杯の測定試料でも測定すること
ができ、これが本考案の一つの特徴である。なお
透過率測定の場合には反射率測定試料Ws及び対
照試料Wrの所に白板をセツトする。
In each of the above embodiments, when measuring the transmittance of a sample, the measurement sample cs (cell for liquid sample in the figure) is placed in the sample chamber SC.
A reference sample (cell) cr is placed in contact with the entrance window of the integrating sphere I in the optical path of the reference beam R. In the sample chamber SC, the reference light flux R detours around the outside, so there is no need to place a reference sample, and there is no risk of the reference light flux being blocked by the measurement sample, so measurements can be taken even with a measurement sample that fills the sample chamber. , This is one of the features of the present invention. In the case of transmittance measurement, a white board is set at the reflectance measurement sample Ws and the control sample Wr.

上の各実施例で試料の反射率測定の場合は、透
過率測定用のセル等cs,crを除き、Wrの所に対
照試料を、またWsの所に測定試料をセツトす
る。この場合測定試料Wsの後には何もないから
測定試料設置空間は半無限の広りを持つ。また対
照試料及び測定試料をセツトする各面は互に直交
しているので、測定試料Wsの被測定面が任意に
広くても対照試料Wrと当る心配がない。従つて
測定試料に形状、大きさについての自由度が大へ
ん大きい。これが本考案の主要な特徴である。反
射率測定の試料としては完成商品そのものの表面
塗装と云つたものがあり、その形状、大きさにつ
いては全然特定できないのであるが、本考案はこ
のような反射率の測定に当つてその真価を発揮す
る。また鏡の反射率の測定では試料を積分球の窓
w1に接してセツトしたのでは入射した試料光束
が反射されてそのまゝ積分球の入射窓から出てし
まうので、試料を少し傾けてセツトし反射光が積
分球内にトラツプされるようにしなければならな
い。この場合小さな鏡であれば問題はないが、大
きな鏡の場合は、わづか傾けるにしても鏡の他の
部分があちこちに当るため測定が困難であるが、
本考案装置によれば試料Wsをセツトする空間は
半無限に等しいから何等の不便もなく測定ができ
る。
In the case of measuring the reflectance of a sample in each of the above embodiments, cells for transmittance measurement, etc., such as CS and CR are removed, and a control sample is set at Wr, and a measurement sample is set at Ws. In this case, since there is nothing behind the measurement sample Ws, the measurement sample installation space has a semi-infinite extent. Furthermore, since the surfaces on which the control sample and the measurement sample are set are perpendicular to each other, there is no fear that the surface to be measured of the measurement sample Ws will come into contact with the control sample Wr even if the surface to be measured is arbitrarily wide. Therefore, there is a large degree of freedom in determining the shape and size of the sample to be measured. This is the main feature of the invention. The sample for reflectance measurement is the surface coating of the finished product itself, and its shape and size cannot be determined at all, but this invention allows us to evaluate its true value in measuring reflectance. Demonstrate. In addition, when measuring the reflectance of a mirror, if the sample is set in contact with the window w1 of the integrating sphere, the incident sample light flux will be reflected and exit directly from the entrance window of the integrating sphere, so it is necessary to set the sample at a slight angle. However, the reflected light must be trapped within the integrating sphere. In this case, there is no problem if it is a small mirror, but if it is a large mirror, even if you tilt it slightly, other parts of the mirror will hit various places, making measurement difficult.
According to the device of the present invention, the space in which the sample Ws is set is semi-infinite, so measurements can be made without any inconvenience.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々異る従来例の平面図、
第3図及び第4図は夫々本考案の異る実施例の平
面図である。 SC……試料室(透過用)、I……積分球、RC
……反射試料室、D……光検出器、S……試料光
束、R……対照光束、Ws……反射測定試料、Wr
……反射対照試料。
FIG. 1 and FIG. 2 are plan views of different conventional examples, respectively.
3 and 4 are plan views of different embodiments of the present invention, respectively. SC...Sample chamber (for transmission), I...Integrating sphere, RC
...Reflection sample chamber, D...Photodetector, S...Sample light flux, R...Reference light flux, Ws...Reflection measurement sample, Wr
...Reflection control sample.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 試料室と積分球とを相接して配置し、試料側光
束が試料室を通過して積分球に入射するように
し、対照光束が上記試料室を迂回して試料側光束
とは直角の方向から積分球に入射するようにし、
積分球の試料室とは反対側の壁に測定試料設置窓
を、また積分球の対照光束入射窓と反対側の壁に
対照試料設置窓を設けた試料の光学特性測定装
置。
The sample chamber and the integrating sphere are placed adjacent to each other, so that the sample-side light flux passes through the sample chamber and enters the integrating sphere, and the control light flux bypasses the sample chamber in a direction perpendicular to the sample-side light flux. so that it is incident on the integrating sphere from
A sample optical property measuring device that has a measurement sample installation window on the wall opposite to the sample chamber of the integrating sphere, and a control sample installation window on the wall opposite to the reference beam incidence window of the integrating sphere.
JP11244081U 1981-07-28 1981-07-28 Sample optical property measuring device Granted JPS5817542U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11244081U JPS5817542U (en) 1981-07-28 1981-07-28 Sample optical property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11244081U JPS5817542U (en) 1981-07-28 1981-07-28 Sample optical property measuring device

Publications (2)

Publication Number Publication Date
JPS5817542U JPS5817542U (en) 1983-02-03
JPS6212994Y2 true JPS6212994Y2 (en) 1987-04-03

Family

ID=29906768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11244081U Granted JPS5817542U (en) 1981-07-28 1981-07-28 Sample optical property measuring device

Country Status (1)

Country Link
JP (1) JPS5817542U (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795982B2 (en) * 1986-10-31 1995-10-18 古河電気工業株式会社 Heat pipe hot plate
JP2003106996A (en) * 2001-09-28 2003-04-09 Jasco Corp Heating measuring device
JP4545559B2 (en) * 2004-11-15 2010-09-15 日本分光株式会社 Variable angle measuring device
JP4539628B2 (en) * 2006-09-15 2010-09-08 株式会社島津製作所 Double beam spectrophotometer
DE102011053140B4 (en) * 2011-08-31 2021-11-11 Byk-Gardner Gmbh Apparatus and method for measuring optical properties of transparent materials

Also Published As

Publication number Publication date
JPS5817542U (en) 1983-02-03

Similar Documents

Publication Publication Date Title
JP2763770B2 (en) Light scattering characteristics measurement method
US4678326A (en) Apparatus for the measurement of fluorescence, turbidity, luminescence or absorption
US5764352A (en) Process and apparatus for spectral reflectance and transmission measurements
JPH11281567A (en) Microtitration plate
US4746214A (en) Spectrophotometer
JPS6177745A (en) System for fluoro-optic measuring substance concentration insample
JPH0248054B2 (en)
JPS6212994Y2 (en)
JP2001507117A (en) Laser beam splitter producing multiple parallel beams
JP3169027B2 (en) Optical fiber spectral transmittance measuring device
JPS639610B2 (en)
JPH07198597A (en) Photoelectric measuring instrument
JPH0261701B2 (en)
GB2101299A (en) Spectrophotometer
JPH0626843Y2 (en) Gas concentration measuring device
JPH11142241A (en) Measuring apparatus for spectral transmittance
JPS60142204A (en) Dimension measuring method of object
JPS6210667Y2 (en)
JPH08159878A (en) Illuminating and light receiving apparatus
JPH0518893A (en) Refractive index measuring device
US20050179902A1 (en) Reflected light measuring apparatus and reflected light measuring method
US20230384156A1 (en) Systems and methods to redistribute field of view in spectroscopy
JP2561141Y2 (en) Diffuse reflection measurement device
SU1642334A1 (en) Method of material refractive index determination
JP3039569B2 (en) Prism for total internal reflection measurement