JP2006225691A - Tin-coated copper powder and electrically conductive paste using the tin-coated copper powder - Google Patents

Tin-coated copper powder and electrically conductive paste using the tin-coated copper powder Download PDF

Info

Publication number
JP2006225691A
JP2006225691A JP2005038392A JP2005038392A JP2006225691A JP 2006225691 A JP2006225691 A JP 2006225691A JP 2005038392 A JP2005038392 A JP 2005038392A JP 2005038392 A JP2005038392 A JP 2005038392A JP 2006225691 A JP2006225691 A JP 2006225691A
Authority
JP
Japan
Prior art keywords
tin
copper powder
particles
coated
coated copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005038392A
Other languages
Japanese (ja)
Inventor
Takahiko Sakagami
貴彦 坂上
Keita Furumoto
啓太 古本
Katsuhiko Yoshimaru
克彦 吉丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005038392A priority Critical patent/JP2006225691A/en
Publication of JP2006225691A publication Critical patent/JP2006225691A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide tin-coated copper powder for forming an electrically conductive part composed of fine particles with the particle diameter of ≤5 μm, having excellent dispersibility and capable of low temperature sintering, and with which an electrically conductive part having high strength can be formed. <P>SOLUTION: The tin-coated copper powder is constituted so that the particles of copper powder are used as a core material and the surface of each particle is provided with a tin-coated layer, wherein the particles of copper powder in which the value of the average particle diameter is 0.1 to 5 μm are used as the core, and the surface of each particle of the copper powder is provided with a tin-coated layer of 5 to 40 wt.%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、スズコート銅粉及び当該スズコート銅粉を用いた導電性ペーストに関する。さらに詳細には、導体部形成に好適なスズコート銅粉及び当該スズコート銅粉を用いた導電性ペーストに関する。   The present invention relates to a tin-coated copper powder and a conductive paste using the tin-coated copper powder. More specifically, the present invention relates to a tin-coated copper powder suitable for forming a conductor part and a conductive paste using the tin-coated copper powder.

現在、多層プリント配線板のヴィアホール(Via Hole)の充填、プリント配線板へのIC部品等の部品実装時の位置決め等のための接合用組成物の構成粉体として半田粉が広く用いられている。   Currently, solder powder is widely used as a constituent powder of bonding compositions for filling via holes in multilayer printed wiring boards, positioning when mounting IC components etc. on printed wiring boards, etc. Yes.

このような半田粉と銅粉との混合粉を多層プリント配線板のヴィアホールの充填用に用いると、部品実装工程における溶融混合粉がヴィアホール内で加熱されると、ヴィアホール内部の半田粉がフロー温度で融解し、ヴィアホールの内部に充填した形状が変形し収縮挙動をする。この収縮挙動により、そのヴィアホールの外層に位置する銅箔層により形成された外層回路と、ヴィアホールに形成された導電部と、の接続信頼性が低下する傾向がある。したがって過度の収縮は好ましくない。   When such a mixed powder of solder powder and copper powder is used for filling the via hole of the multilayer printed wiring board, when the molten mixed powder in the component mounting process is heated in the via hole, the solder powder inside the via hole Melts at the flow temperature, and the shape filled in the via hole is deformed to be contracted. Due to this contraction behavior, the connection reliability between the outer layer circuit formed by the copper foil layer located in the outer layer of the via hole and the conductive portion formed in the via hole tends to be lowered. Therefore, excessive shrinkage is not preferable.

また、近年、電気電子機器に実装される配線板においては、さらなる配線部のファインピッチ化及びヴィアホール断面の小径化が進んでいるが、微粒アトマイズ半田粉や従来のスズ粉では微粒化が困難であり粗粉が混入するためこれらに対応できない。   In recent years, in wiring boards mounted on electrical and electronic equipment, finer pitches in wiring parts and smaller diameters of via holes have been developed, but it is difficult to atomize with fine atomized solder powder and conventional tin powder. It is not possible to cope with these because coarse powder is mixed.

これらの問題に対処するため半田粉に代えて銅粉の粒子をコア材にして、その表面にスズ、半田等の低融点金属コート層を形成し、部品実装時のリフロー温度で融解する可能性のある層を表面層のみに制限して、融解による形状変形を最小限に抑制する金属粉の一種としてスズコート銅粉の供給が検討されてきた(特許文献1参照)。   To cope with these problems, copper powder particles may be used instead of solder powder as a core material, and a low-melting-point metal coating layer such as tin or solder may be formed on the surface and melted at the reflow temperature during component mounting. The supply of tin-coated copper powder has been studied as a kind of metal powder that restricts a certain layer to only the surface layer and suppresses shape deformation due to melting to a minimum (see Patent Document 1).

特開昭60−49067号JP 60-49067

しかしながら、銅粉の粒子をコア材として、その表面にスズコート層を設けた、従来のスズコート銅粉を構成する粒子の粒径は、数10μm程度と大きく、そこでは電解メッキ法を用いてスズコート層を構成する方法が採られてきた。換言すると、大きな粒径の銅粒子からなる銅粉(粗粉)をコア材に用いなければ、電解メッキ法を用いて粒子表面へのスズコート層形成ができなかった。   However, the particle diameter of the particles constituting the conventional tin-coated copper powder, in which the copper powder particles are used as the core material and the tin-coated layer is provided on the surface thereof, is as large as several tens of μm. Have been adopted. In other words, unless a copper powder (coarse powder) made of copper particles having a large particle diameter is used as a core material, a tin coat layer cannot be formed on the particle surface using an electrolytic plating method.

また、アトマイズ法を用いて銅−スズ合金粉等が製造される場合もあるが、アトマイズ法では粒径の制御が困難なため粗粉が必ず存在することになり、さらに、当該方法ではスズコート銅粉を構成する粒子の平均粒径を5μm以下にすることは殆ど困難であった。   In addition, copper-tin alloy powders and the like may be produced by using the atomizing method, but it is difficult to control the particle size by the atomizing method, so that coarse powder always exists. It was almost difficult to make the average particle size of the particles constituting the powder 5 μm or less.

さらに、近年のプリント配線板の軽薄短小化に伴い、プリント配線板に適用されるヴィアホール径の小径化がさらに進んでおり、信号伝達速度の高速化を達成しつつ、プリント配線板の導電部の発熱問題の解消を可能にするためには、導体抵抗の上昇は可能な限り避けるべきである。そのため、市場では粒径が5μm以下の微銅粒子からなるスズコート銅粉であって、分散性に優れ、低温焼結が可能で低電気抵抗値を持つスズコート銅粉に対する要求が高まってきた。   In addition, along with the recent reduction in the size and size of printed wiring boards, the via hole diameter applied to printed wiring boards has been further reduced, and while achieving higher signal transmission speed, the conductive parts of printed wiring boards In order to eliminate the heat generation problem, the increase in the conductor resistance should be avoided as much as possible. For this reason, there has been an increasing demand for tin-coated copper powder consisting of fine copper particles having a particle size of 5 μm or less, excellent in dispersibility, capable of low-temperature sintering and having a low electrical resistance value.

さらに、昨今、プリント配線板のさらなるビルドアップ化の要請と共に、ヴィア層及びライン層としての導電部(導電部形成体)が、ビルドアップ基板(フレキシブル基板又はリジッド−フレキシブル基板等)内にしばしば形成されつつある。このような層の導電部はファイン化され形成されている。さらに、このような層の導電部は屈曲部が多い3次元状構造として形成されており、当該導電部を有するフレキシブル基板等は、しばしば湾曲した状態で電気電子機器、カメラ、携帯電話等の中に使用される。このような用途に対しては、比抵抗値を低めに抑えることもさることながら、当該導電部の断線や接触不良の防止を優先するために靱性や剛性等の強度を有する構造が、当該導電部に必要とされる。   Furthermore, with the recent demand for further build-up of printed wiring boards, conductive parts (conductive part forming bodies) as via layers and line layers are often formed in build-up boards (flexible boards or rigid-flexible boards, etc.). It is being done. The conductive part of such a layer is made fine. In addition, the conductive portion of such a layer is formed as a three-dimensional structure having many bent portions, and the flexible substrate having the conductive portion is often bent in an electric electronic device, a camera, a mobile phone, or the like. Used for. For such applications, a structure having strength such as toughness and rigidity is given in order to give priority to prevention of disconnection and contact failure of the conductive part while keeping the specific resistance value low. Required by the department.

そこで、本発明者等は、以下に説明する微粒銅粉粒子をコア材として、その表層に均一かつある程度厚膜のスズコート層をコア材粒子表面に形成したスズコート銅粉により上記問題を解決した。   Accordingly, the present inventors have solved the above problem with tin-coated copper powder in which fine copper powder particles described below are used as a core material, and a tin coat layer having a uniform and thick film is formed on the surface of the core material particles.

まず、本発明は「銅粒子をコア材とし、当該銅粒子にスズを被覆したスズコート銅粒子を含むスズコート銅粉であって、前記銅粉子の平均粒径が0.1μm〜5μmであり、前記スズコート銅粉粒子全体のwt%を100としたときに当該銅粉の粒子表面に5wt%〜40wt%のスズコート層を備えることを特徴とするスズコート銅粉」を提供する。   First, the present invention is “a tin-coated copper powder including tin-coated copper particles in which copper particles are used as a core material and tin is coated on the copper particles, and the average particle diameter of the copper powder is 0.1 μm to 5 μm, Provided is a tin-coated copper powder characterized by comprising a tin coat layer of 5 wt% to 40 wt% on the surface of the copper powder particles when the wt% of the entire tin-coated copper powder particles is 100.

さらに、本発明は「上記スズコート銅粉であって、当該コア材の銅粉の粒子を被覆するスズコート層の膜厚TSnが2nm〜500nmであることを特徴とする請求項1に記載のスズコート銅粉(スズコート層の膜厚TSnは、スズコート銅粉を球とみなしたときのスズコート層のwt%とSnの密度から換算した膜厚を指す。)」を提供する。 Furthermore, the present invention is “the tin coat copper powder, wherein the tin coat layer covering the copper powder particles of the core material has a thickness T Sn of 2 nm to 500 nm. Copper powder (the film thickness T Sn of the tin coat layer indicates the film thickness converted from the wt% of the tin coat layer and the density of Sn when the tin coat copper powder is regarded as a sphere).

なお、スズコート銅粉は、通常は単独で使用される。また、銅、金、銀、及びインジウム等の導電性の金属粉(微粉)の少なくとも1つとからなる混合粉を、当該スズコート銅粉に対して一定の割合で混合して使用してもよい。そして、この混合粉を導電性ペーストの材料とし、この導電性ペーストを用いて回路等を形成し、焼成する事で導体部を形成する場合もある。   In addition, tin coat copper powder is normally used independently. Further, a mixed powder composed of at least one of conductive metal powders (fine powder) such as copper, gold, silver, and indium may be mixed and used at a certain ratio with respect to the tin-coated copper powder. In some cases, the mixed powder is used as a material for a conductive paste, a circuit or the like is formed using the conductive paste, and a conductor portion is formed by firing.

上記スズコート銅粉の構成要素である銅粒子に関して以下説明する。   The copper particles that are the constituent elements of the tin-coated copper powder will be described below.

銅粉の平均粒径は、銅粉粒子をSEM(走査型電子顕微鏡)により撮像し、その像から銅粉粒子の直径を測り、撮像倍率から換算して、直接的に銅粉粒子の粒径を複数個(例えば20個〜100個)測定し、その平均値(本願では随時「DIA」と称する。)により求めている。
一方、レーザー回折散乱式粒度分布測定装置を用いて測定した体積累積粒径値(本願では「D50」と称する。)を用いて求める測定方法も随時採用する。
The average particle diameter of the copper powder is obtained by taking an image of the copper powder particle with an SEM (scanning electron microscope), measuring the diameter of the copper powder particle from the image, and converting it from the imaging magnification to directly calculate the particle diameter of the copper powder particle. the plurality (e.g., 20 to 100 pieces) were measured, and calculated by the average value (time to time in this application referred to as "D IA".).
On the other hand, a measurement method obtained using a volume cumulative particle size value (referred to as “D 50 ” in the present application) measured using a laser diffraction / scattering particle size distribution measuring apparatus is also employed as needed.

なお、本発明のコート粒子の平均粒径DIA値の適正範囲について、5μmを超える場合、最終的に得られるスズコート銅粉の粒径が微細な20μm径以下のヴィアホールの内部充填に用いることができなくなることに基づく。一方,DIAの値が0.1μm未満の場合は、以下に説明する製造方法をもってしても、スズコート層を形成したときの粒子の凝集が著しくなるため、ペーストに加工したときの粘度上昇を招くことになる。 Note that the proper range of the average particle diameter D IA value of the coated particles of the present invention, if it exceeds 5 [mu] m, the particle diameter of the finally obtained Suzukoto copper powder be used inside filling of the via hole under a fine 20μm diameter or less Is based on being unable to. On the other hand, when the value of D IA is less than 0.1 [mu] m, even with the manufacturing method described below, since the agglomeration of the particles when forming the Suzukoto layer becomes remarkable, the increase in viscosity when processing the paste Will be invited.

さらに、当該銅粉は、分散性を高め、且つ、その粒子の表面を微細な凹凸のない滑らかな表面とした表面平滑化銅粉を用いることで、最終的に得られるスズコート銅粉の表面状態も滑らかなものとなり、スズコート銅粉の品質向上が図ることができる。従って、銅粉の粒子を滑らかにする手法を採用することも可能である。分散性に関しては、D50とDIAとを用いてD50/DIAで表される凝集度の値が1.5以下であることが望ましい。この凝集度に関しては後述する。 Furthermore, the copper powder has a surface state of a tin-coated copper powder finally obtained by using a surface smoothed copper powder that improves dispersibility and makes the surface of the particle a smooth surface without fine irregularities. As a result, the quality of the tin-coated copper powder can be improved. Therefore, it is also possible to employ a technique for smoothing the copper powder particles. Regarding the dispersibility, it is desirable that the value of the degree of aggregation represented by D 50 / D IA using D 50 and D IA is 1.5 or less. This degree of aggregation will be described later.

50/DIAで規定される凝集度は、以下の理由から採用したパラメータである。すなわち、D50の値は、真に粒子の一つ一つの径を直接観察したものではないと考えられる。殆どの金属粉を構成する粒子は、個々の粒子が完全に分離した単分散粉ではなく、複数個の粒子が凝集して集合した状態になっているからである。レーザー回折散乱式粒度分布測定法は、凝集した粒子をも一個の粒子(凝集粒子若しくは一次粒子)として捉えて、体積累積粒径を算出していると言い得る。 The degree of aggregation defined by D 50 / D IA is a parameter adopted for the following reason. That is, the value of D 50 is not believed in genuinely was observed one by one in the diameter of the particles directly. This is because most of the particles constituting the metal powder are not monodispersed powders in which individual particles are completely separated, but a plurality of particles are aggregated and aggregated. It can be said that the laser diffraction / scattering particle size distribution measurement method calculates the cumulative volume particle size by capturing the aggregated particles as one particle (aggregated particle or primary particle).

一方、平均粒径DIAは、走査型電子顕微鏡を用いて観察される金属粉の観察像を画像処理することにより得られる平均粒径DIAはSEM観察像から直接測定し倍率で換算した粒径であり、一次粒子が確実に捉えられることになるが、粒子の凝集状態の存在を全く反映させていないことになる。 On the other hand, the average particle diameter D IA has an average particle diameter D IA obtained by image processing an observation image of the metal powder is observed using a scanning electron microscope was converted with magnification was measured directly from the SEM image grain It is a diameter, and the primary particles can be surely captured, but does not reflect the existence of the aggregated state of the particles.

以上に鑑みて、本発明者等は、D50とDIAとを用いて、D50/DIAで算出される値を凝集度として捉えることとした。即ち、同一製造条件の銅粉において、D50とDIAとの値が同一精度で測定できるものと仮定して、上述した理論で考えると、凝集状態のあることを測定値に反映させるD50の値はDIAの値よりも大きな値になると考えられる。 In view of the above, the present inventors have used the D 50 and D IA, was to capture the value calculated by D 50 / D IA as cohesion. That is, in copper powder of the same manufacturing conditions, assuming that the value of D 50 and D IA can be measured with the same accuracy, considering theory described above, D 50 to be reflected in the measured values that the aggregation state The value of is considered to be larger than the value of DIA .

このとき、D50の値は、金属粉の粒子の凝集状態が全くなくなると、限りなくDIAの値に近づいてゆき、凝集度であるD50/DIAの値が1に近づく。凝集度が1となった段階で、粒子の凝集状態が全く無くなった単分散粉と言える。但し、現実には、凝集度が1未満の値を示す場合もある。理論的に考え真球の場合に1未満の値にはならないが、現実には、真球ではなく1未満の凝集度の値が得られる。 At this time, the value of D 50, when the aggregation state of the particles of the metal powder at all eliminated, Yuki approaching the value of the infinitely D IA, the value of a degree of aggregation D 50 / D IA approaches one. It can be said that it is a monodisperse powder in which the aggregation state of the particles is completely lost when the aggregation degree becomes 1. However, in reality, the degree of aggregation may be less than 1. Theoretically, it is not a value less than 1 in the case of a true sphere, but in reality, a value of aggregation degree less than 1 is obtained instead of a true sphere.

本発明のスズコート銅粉の、コア材たる銅粉粒子の表面に設けるスズコート層は、上述したように、スズコート銅粉粒子全体のwt%を100としたときに当該銅粉の粒子表面に5wt%〜40wt%設けられている。   As described above, the tin coat layer provided on the surface of the copper powder particles as the core material of the tin coat copper powder of the present invention is 5 wt% on the surface of the copper powder particles when the wt% of the tin coat copper powder particles is 100. ˜40 wt% is provided.

このようなスズコート層を設ける理由は大きく2つある。
第1の理由は、Snの融点(228℃)が低いことに起因して、スズコート銅粉を含む導電性ペーストを焼成する際に、低焼成温度でスズコート銅粉の外層の構成要素たるスズコート銅粒子同士を早く接合できることにある。
第2の理由は、スズコートの比率が全体の重量部に対して大きいため、焼結後にSnの比率が高いCuとSnの合金が形成され、もって、この合金からなる導電部により大きな強度が与えられることにある。
また、コアが融点の高い銅粉であるため、本発明のSnコート量(wt%)においては、ほぼSnの融点付近で収縮が開始し、その後温度を上昇させても略一定の収縮率を維持し、部品がリフローされた基板上において位置ずれをおこしにくい利点がある。(後述のTMAグラフ(表3)を参照されたい。)
There are two main reasons for providing such a tin coat layer.
The first reason is that tin-coated copper, which is a component of the outer layer of tin-coated copper powder at a low firing temperature, when firing a conductive paste containing tin-coated copper powder due to the low melting point of Sn (228 ° C.) It is that particles can be joined quickly.
The second reason is that, since the ratio of tin coat is large with respect to the entire weight part, an alloy of Cu and Sn having a high Sn ratio is formed after sintering, so that the conductive part made of this alloy is given high strength. It is to be done.
In addition, since the core is made of copper powder having a high melting point, in the Sn coating amount (wt%) of the present invention, shrinkage starts near the melting point of Sn, and a substantially constant shrinkage rate is obtained even if the temperature is raised thereafter. There is an advantage that it is difficult to cause positional displacement on the substrate on which the components are reflowed. (See the TMA graph (Table 3) below.)

さらに、本発明の上記スズコート銅粉は、コート粒子の平均粒径をDIAとし、当該コア材を被覆するスズコート層の平均膜厚をTSnとすると、2TSn /DIAの値が、0.03〜0.20であることを特徴とするスズコート銅粉を提供する。(平均粒径DIAは、走査型電子顕微鏡によりコート粒子を撮像し、その撮像倍率から換算した実粒径を指す。) Furthermore, the Suzukoto copper powder of the present invention, the average particle size of the coated particles and D IA, when the average film thickness of Suzukoto layer covering the core material and T Sn, the value of 2T Sn / D IA is 0 The present invention provides a tin-coated copper powder characterized by having a ratio of 0.03 to 0.20. (Average particle diameter DIA refers to the actual particle diameter obtained by imaging coated particles with a scanning electron microscope and converted from the imaging magnification.)

さらに、本発明は、上記スズコート銅粉を焼結することによって得られるSn−Cu合金を含む導電部形成体を提供する。スズコート銅粉の粒子同士を焼結すると、初めはスズ同士の接合が始まるが、その後、SnとCuとが拡散しSn−Cu合金を作るようになる。このSn−Cu合金が導電部形成体に強度を付与することになると考えられる。そして、上記導電部形成体は、Cuが60wt%〜95wt%及びSnが5wt%〜40wt%のSn−Cu合金を含んでいると、接合強度等において十分なものとなる。   Furthermore, this invention provides the electroconductive part formation body containing the Sn-Cu alloy obtained by sintering the said tin coat copper powder. When the tin-coated copper powder particles are sintered, tin-to-tin bonding begins initially, but then Sn and Cu diffuse to form a Sn-Cu alloy. It is considered that this Sn—Cu alloy gives strength to the conductive part forming body. And the said electroconductive part formation body will become sufficient in joining strength etc., if Cu contains 60 wt%-95 wt% and Sn contains 5 wt%-40 wt%.

続いて、本発明のスズコート銅粉の製造方法に関して説明する。この製造方法では、銅粉の粒子の表面にスズコート層を置換析出型の無電解メッキ法を採用して製造する点が従来の電解法によるものと異なる。そして、このような無電解メッキ法を採用することによって、微細銅粉の粒子表面へのスズコート層の形成を行っても、電解法では不可能なレベルにスズコート銅粉の凝集を初めて抑制できるのである。   Then, the manufacturing method of the tin coat copper powder of this invention is demonstrated. This manufacturing method is different from the conventional electrolytic method in that a tin coat layer is manufactured on the surface of copper powder particles by employing a displacement deposition type electroless plating method. And by adopting such an electroless plating method, even if a tin coat layer is formed on the surface of the fine copper powder particles, the aggregation of tin coat copper powder can be suppressed for the first time to a level impossible with the electrolytic method. is there.

本発明のスズコート銅粉の製造方法において、コア材となる銅粉原料は、平均粒径が0.2μm〜5.2μmの範囲にあるものを用いる。コート後の平均粒径は0.1μm〜5μm程となるが、これはコア材粒子の銅とスズとの析出置換による厚みの減少、並びに当該析出置換に用いる反応液によるエッチング作用に起因する。   In the method for producing a tin-coated copper powder of the present invention, the copper powder raw material to be the core material is one having an average particle diameter in the range of 0.2 μm to 5.2 μm. The average particle diameter after coating is about 0.1 μm to 5 μm, and this is due to the decrease in thickness due to precipitation substitution of copper and tin of the core material particles and the etching action by the reaction solution used for the precipitation substitution.

また、当該コア材である銅粉は、いわゆる2次粒子状態として凝集していることがあり、これはスズコートを被覆する前に解粒した方が好ましい。その理由は、スズコート銅粉の分散性を高めることができるからである。また、スズコート銅粉を用いて製造した導電性ペーストの粘度を可能な限り低減させることを考慮すると、解粒処理により当該スズコート銅粉の比表面積を可能な限り小さくすることが効果的と考えられる。   Moreover, the copper powder which is the said core material may be agglomerated as what is called a secondary particle state, and it is preferable that this is pulverized before coat | covering a tin coat. The reason is that the dispersibility of tin-coated copper powder can be enhanced. In addition, considering that the viscosity of the conductive paste produced using tin-coated copper powder is reduced as much as possible, it is considered effective to reduce the specific surface area of the tin-coated copper powder as much as possible by pulverization treatment. .

以上に述べた銅粉を純水中に0.1mol/L〜5mol/Lとなるように投入し攪拌することにより銅粉スラリーとする。このような混合割合を採用したのは、次に述べる置換析出スズ溶液の濃度、スズを置換析出させる際の溶液中での均一なスズの置換析出可能な銅粉の分散状態を考慮して、最も理想的と考えたからである。   The copper powder described above is poured into pure water so as to have a concentration of 0.1 mol / L to 5 mol / L and stirred to obtain a copper powder slurry. Such a mixing ratio was adopted in consideration of the concentration of the substituted precipitation tin solution described below, and the dispersion state of the copper powder capable of uniform precipitation of tin in the solution at the time of substitution deposition of tin. This is because I thought it was the most ideal.

一方、水に、塩化第1スズ二水和物、硫酸スズ等の2価のスズ塩を0.01mol/L〜1mol/L、チオ尿素を0.1mol/L〜10mol/Lを用意し、pHが2以下となるように酸を加え、液温30〜80℃とした置換析出スズ溶液を作成する。なお、本願における「水」は、実質的にスズを置換析出させる際の不純物となりうるインヒビターを含まないものであればよい。従って、純水、蒸留水、イオン交換水等が望ましい。   Meanwhile, in water, 0.01 mol / L to 1 mol / L of divalent tin salt such as stannous chloride dihydrate and tin sulfate, and 0.1 mol / L to 10 mol / L of thiourea are prepared, An acid is added so that pH becomes 2 or less, and the substituted precipitation tin solution which was made into liquid temperature 30-80 degreeC is created. In addition, the “water” in the present application may be any substance that does not substantially contain an inhibitor that can be an impurity when substitutional precipitation of tin is performed. Accordingly, pure water, distilled water, ion exchange water, and the like are desirable.

無電解メッキとしてスズを置換析出させるのに用いる溶液の構成成分として考えたときに、塩化第1スズ二水和物、硫酸スズ等の2価のスズ塩、チオ尿素、酒石酸、硝酸、硫酸、塩酸等の酸(銅とスズを置換させスズを銅表面に析出させるための酸であって、溶液pHを2以下にするためのものである)からなる組み合わせ自体はある程度想起できる。しかし、本発明のように、微粒銅粉の粒子表面に適度な厚さ2nm〜500nmの均一なスズコート層を形成するためには、上述した組成及び液温条件の組み合わせを採用することが好ましい。   When considered as a constituent of a solution used for substitution deposition of tin as electroless plating, divalent tin salts such as stannous chloride dihydrate, tin sulfate, thiourea, tartaric acid, nitric acid, sulfuric acid, A combination itself consisting of an acid such as hydrochloric acid (an acid for substituting copper and tin and precipitating tin on the copper surface and making the solution pH 2 or less) can be recalled to some extent. However, in order to form a uniform tin coat layer having an appropriate thickness of 2 nm to 500 nm on the surface of the fine copper powder particles as in the present invention, it is preferable to employ a combination of the above-described composition and liquid temperature conditions.

ここで、2価のスズ塩が0.01mol/L未満の場合には、溶液中のスズイオン量が少ないため析出速度が遅く、均一な置換析出が行えない。また、2価のスズ塩が1mol/Lを超えると、他の添加剤とのバランスが悪くなり、不均一な置換析出状態となる。そして、チオ尿素は、スズの析出安定性を改善し、スズコート層の欠陥の発生を防止するために添加するものであり、0.1mol/L未満の場合には、スズの析出安定剤としての効果を発揮せず、10mol/Lを超えて添加しても、スズの析出安定剤としての効果が飽和してしまい不経済となる。また、酸は、銅粉の粒子表面を酸化させ銅イオンの溶出を促進し、スズイオンの銅粉への置換析出を促進するための置換促進剤である。この酸のpHが2を超える場合には、置換促進剤としての効果が低く、pHが0.1未満では反応が早くなりすぎ均一なコート形成の阻害となる。   Here, when the divalent tin salt is less than 0.01 mol / L, since the amount of tin ions in the solution is small, the deposition rate is slow, and uniform displacement deposition cannot be performed. On the other hand, when the divalent tin salt exceeds 1 mol / L, the balance with other additives is deteriorated, resulting in a non-uniform substitutional precipitation state. And thiourea is added in order to improve the precipitation stability of tin and prevent the occurrence of defects in the tin coat layer. When it is less than 0.1 mol / L, Even if it is added in excess of 10 mol / L, the effect as a tin precipitation stabilizer is saturated and it becomes uneconomical. Moreover, an acid is a substitution accelerator for oxidizing the particle | grain surface of a copper powder, accelerating | stimulating elution of a copper ion, and accelerating | stimulating the precipitation of a tin ion to the copper powder. When the pH of this acid exceeds 2, the effect as a substitution accelerator is low, and when the pH is less than 0.1, the reaction becomes too fast and uniform coat formation is inhibited.

さらに、この銅粉スラリーと置換析出スズ溶液とを、前記銅粉スラリー中のCu1molに対しSnが0.02mol〜0.25molの割合となるように混合し、5分間〜60分間攪拌し、さらに洗浄、濾過、乾燥することでスズコート銅粉を得る。ここで前記銅粉スラリー中の1molのCuに対しSnが0.02mol〜0.25molの割合となるように混合するとしているのは、コート量制御のためである。攪拌時間は、当該溶液バランスから導かれるスズの析出速度から必然的に定められるものであり、本来限定を要するものではない。   Further, the copper powder slurry and the displacement precipitation tin solution are mixed so that Sn is in a ratio of 0.02 mol to 0.25 mol with respect to Cu 1 mol in the copper powder slurry, and stirred for 5 minutes to 60 minutes. Tin-coated copper powder is obtained by washing, filtering, and drying. Here, the reason why Sn is mixed so as to have a ratio of 0.02 mol to 0.25 mol with respect to 1 mol of Cu in the copper powder slurry is to control the coating amount. The stirring time is inevitably determined from the precipitation rate of tin derived from the solution balance, and is not originally limited.

以上のようにして、スズコート層の形成が終了すると、一旦スズコート銅粉を濾別採取し水等を用いて洗浄し、濾過し、乾燥することで本発明のスズコート銅粉を得ることができる。これらの工程は常法に基づいて行えばよいため、特に、ここでの説明を行う必要はないものと判断する。   As described above, when the formation of the tin coat layer is completed, the tin coat copper powder is once collected by filtration, washed with water or the like, filtered, and dried to obtain the tin coat copper powder of the present invention. Since these steps may be performed based on a conventional method, it is determined that it is not particularly necessary to perform explanation here.

以上に述べてきたスズコート銅粉を用いて導電性ペーストを製造し、当該導電性ペーストを導電部に適用すると、本発明のスズコート銅粉は、Snの融点の228℃近辺という比較的低い温度からスズコート銅粒子同士の焼結を始めることができ、さらには、焼結後にSnとCuとの合金の持つ強度特性から大きな強度を持つ導電部を形成することができる。   When a conductive paste is manufactured using the tin-coated copper powder described above and the conductive paste is applied to a conductive part, the tin-coated copper powder of the present invention has a relatively low temperature around 228 ° C. of the melting point of Sn. Sintering of tin-coated copper particles can be started, and furthermore, a conductive part having a large strength can be formed from the strength characteristics of an alloy of Sn and Cu after sintering.

本発明のスズコート銅粉は、平均粒径が0.1μm〜5μmの微粒であって、分散性に優れ、通常の銅粉と比して低温焼結が可能である。また、当該スズコート銅粉は、スズ含有量が比較的多いため、当該スズコート銅粉を導電性ペーストの材料として使用した際、早期に低温でスズコート銅粉粒子の焼結を開始させることができる。また、SnとCuの合金により強度が付与された導電形成部を提供できる。   The tin-coated copper powder of the present invention is a fine particle having an average particle diameter of 0.1 μm to 5 μm, is excellent in dispersibility, and can be sintered at a low temperature as compared with ordinary copper powder. Moreover, since the tin-coated copper powder has a relatively high tin content, when the tin-coated copper powder is used as a material for the conductive paste, the tin-coated copper powder particles can be quickly sintered at a low temperature. Moreover, the electroconductive formation part to which the intensity | strength was provided by the alloy of Sn and Cu can be provided.

実施例1、実施例2、比較例1、及び比較例2を通じて、本発明の実施の形態を以下説明する。   Embodiments of the present invention will be described below through Example 1, Example 2, Comparative Example 1, and Comparative Example 2.

表1は、実施例1、実施例2、比較例1、及び比較例2の上記製造方法に基づく製造条件(特に原料の投入重量等)を、表2は、各実施例及び各比較例で得られたスズコート銅粉の粉体特性の諸結果を示す。   Table 1 shows the production conditions (particularly the input weight of raw materials) based on the above production methods of Example 1, Example 2, Comparative Example 1 and Comparative Example 2, and Table 2 shows the results of each Example and each Comparative Example. The results of the powder characteristics of the obtained tin-coated copper powder are shown.

Figure 2006225691
Figure 2006225691

Figure 2006225691
Figure 2006225691

初めに、表2に示された各諸特性の測定方法について表2の評価項目を左から順に以下説明することとする。   First, the evaluation items in Table 2 will be described below in order from the left with respect to the measurement methods for the various characteristics shown in Table 2.

平均粒径DIA(μm)及びD50/DIAについては、既述したのでここではその説明を省略する。 Since the average particle diameters D IA (μm) and D 50 / D IA have already been described, the description thereof is omitted here.

50(μm)90(μm)SD(μm)は、スズコート銅粉0.1gをSNディスパーサント5468の0.1%水溶液(サンノプコ社製)と混合し、超音波ホモジナイザ(日本精機製作所製 US−300T)で5分間分散させた後、レーザー回折散乱式粒度分布測定装置 Micro Trac HRA 9320−X100型(Leeds+Northrup社製)を用いて測定した。 D 50 (μm) , D 90 (μm) , and SD (μm) were prepared by mixing 0.1 g of tin-coated copper powder with a 0.1% aqueous solution of SN Dispersant 5468 (manufactured by San Nopco), and ultrasonic homogenizer (Nippon Seiki) It was measured using a laser diffraction / scattering particle size distribution measuring device, Micro Trac HRA 9320-X100 (Leeds + Northrup), after being dispersed for 5 minutes by Seisakusho (US-300T).

SD/D50は、前述したD50/DIAと同様にスズコート銅粉の凝集度を表すパラメータである。数値が大きいほど凝集度が高い。D50/DIAと明らかに相関があることはいうまでもないが、ここでは参考として表2に示した。 SD / D 50 is a parameter that represents the degree of aggregation of the tin-coated copper powder as in D 50 / D IA described above. The larger the value, the higher the degree of aggregation. Needless to say, there is a clear correlation with D 50 / D IA , but it is shown in Table 2 as a reference here.

Tsn(nm)は、まず、測定すべきスズコート銅粉(スズコート銅粉の粒子の総数をNとする。)を秤量した(=W[g]とする。)。次に、酸に溶解させ、塩酸酸性の条件下ICP測定によりスズコート銅粉中のスズの含有量率を求め(A[%]とする。)、また銅の含有量率(B[%]=100−Aとする。)し、粒子一粒当たりのスズの重量Sw=W×A/100[g]、粒子一粒当たりの銅の重量Cw=W×B/100[g]と求め、dcu、dsnはそれぞれ銅の密度、スズの密度とすると。
Cw=N×W×B/100
=N×4/3・π(DIA−Tsn)・dcu
Sw=N×W×A×N/100
=N×{4/3・π・DIA −4/3・π・(DIA−Tsn)}・dsn
A=100×N×Sw/(N×Sw+N×Cw)=100×Sw/(Sw+Cw)
ゆえに、
A(ICPで求めたスズの含有量率%)
=100×{DIA −(DIA−Tsn)}・dsn/〔{DIA −(DIA−Tsn)}・dsn+(DIA−Tsn)・dcu〕
これをTsnについて解くことにより求めた。
For Tsn (nm), first, tin-coated copper powder to be measured (the total number of particles of tin-coated copper powder is N) was weighed (= W [g]). Next, it is dissolved in an acid, and the content ratio of tin in the tin-coated copper powder is obtained by ICP measurement under hydrochloric acid conditions (A [%]), and the copper content ratio (B [%] = 100-A), and the weight of tin per particle Sw = W × A / 100 [g] and the weight of copper per particle Cw = W × B / 100 [g] were obtained, dcu , Dsn are the density of copper and the density of tin, respectively.
Cw = N × W × B / 100
= N × 4/3 · π (D IA −Tsn) 3 · dcu
Sw = N × W × A × N / 100
= N × {4/3 · π · D IA 3 -4 / 3 · π · (D IA -Tsn) 3 } · dsn
A = 100 × N × Sw / (N × Sw + N × Cw) = 100 × Sw / (Sw + Cw)
therefore,
A (% tin content rate determined by ICP)
= 100 × {D IA 3 − (D IA −Tsn) 3 } · dsn / [{D IA 3 − (D IA −Tsn) 3 } · dsn + (D IA −Tsn) 3 · dcu]
This was determined by solving for Tsn.

SSA(m/g)は、実測の比表面積である。より詳細には、試料2.00gを75℃で10分間の脱気処理を行った後、モノソーブ(カンタクロム社製)を用いてBET1点法で測定した。SSA値が大きくなるほど表面積の大きな粒子であることを意味する。そして、この粒子の凹凸が大きな程、導電ペーストに加工した際のペースト粘度を上昇させることになる。一般に、銅粉の粒子にスズコート層を形成すると、その表面状態は粗れて、微細な凹凸形状が粒子表面に形成されることを意味しているが、問題となるほどのレベルでないことが分かる。 SSA (m 2 / g) is an actually measured specific surface area. More specifically, 2.00 g of a sample was degassed at 75 ° C. for 10 minutes, and then measured by a BET 1-point method using a monosorb (manufactured by Cantachrome). The larger the SSA value, the larger the surface area of the particles. And the larger the unevenness of the particles, the higher the paste viscosity when processed into a conductive paste. In general, when a tin coat layer is formed on copper powder particles, the surface state is rough and a fine uneven shape is formed on the particle surface, but it is understood that the level is not a problem.

TD(タップ充填密度)(g/cm)は、試料重量を120gとして、パウダーテスターPT−E(ホソカワミクロン株式会社製)を用いて測定した。 TD (tap filling density) (g / cm 3 ) was measured using a powder tester PT-E (manufactured by Hosokawa Micron Corporation) with a sample weight of 120 g.

酸化開始温度(℃)は、スズコート銅粉を用いて、大気雰囲気中でTg測定による熱分析により測定した。   The oxidation start temperature (° C.) was measured by thermal analysis by Tg measurement in an air atmosphere using tin-coated copper powder.

収縮開始温度(℃)(=焼結開始温度)及び収縮率(%)はTMA分析により測定した。さらに詳細には、スズコート銅粉0.5gを秤量して、この粉体を1t/cmの圧力で1分間の加圧しペレットを作製し、セイコーインスツルメンツ社製TMA/SS6000を用いて、1%水素−99%窒素雰囲気中で常温から600℃まで昇温速度10℃/minで加熱し、収縮挙動が出力されるチャートグラフから収縮開始温度及び収縮率1(=(初期のペレット高−300℃時点のペレット高との比率)×100、収縮率2(=(初期のペレット高−350℃時点のペレット高との比率)×100を求めた。 The shrinkage start temperature (° C.) (= sintering start temperature) and the shrinkage rate (%) were measured by TMA analysis. More specifically, 0.5 g of tin-coated copper powder is weighed, and this powder is pressed at a pressure of 1 t / cm 2 for 1 minute to produce a pellet, which is 1% using TMA / SS6000 manufactured by Seiko Instruments Inc. Heating from normal temperature to 600 ° C. in a hydrogen-99% nitrogen atmosphere at a heating rate of 10 ° C./min, the shrinkage start temperature and shrinkage rate 1 (= (initial pellet height−300 ° C.) The ratio of the pellet height at the time point × 100 and the shrinkage ratio 2 (= (the ratio of the initial pellet height−the pellet height at the time of 350 ° C.) × 100 were obtained.

実施例1では、コア材(元粉)の粉体特性が、DIA=1.12μm、D50=1.26μm、D90=1.79、SD=0.30μm、SD/D50 =0.24、凝集度が1.1であるものを使用し、当該銅粉の粒子表面に9wt%のスズコート層を備えるスズコート銅粉を、以下の方法により作成した。(なお、上記コア材は後述する実施例2、比較例1、及び比較例2においても同じものを使用した。よって各項目においてコア材の粉体特性の説明は省略する。) In Example 1, the powder characteristics of the core material (original powder) are as follows: D IA = 1.12 μm, D 50 = 1.26 μm, D 90 = 1.79, SD = 0.30 μm, SD / D 50 = 0. A tin-coated copper powder having a cohesion degree of 1.1 and a 9 wt% tin-coated layer on the surface of the copper powder particles was prepared by the following method. (The same core material was used in Example 2, Comparative Example 1, and Comparative Example 2 described later. Therefore, explanation of the powder characteristics of the core material is omitted in each item.)

実施例1で用いた置換析出スズ溶液は、純水に塩化第1スズ二水和物190g、チオ尿素1465g、酒石酸1000gを溶解させ、液温を40℃に維持して10Lとした。一方、40℃に維持した4リットルの純水中に1kgの銅粉を入れ攪拌して、銅粉スラリーとした。そして、この銅粉スラリー中に置換析出スズ溶液を入れ、液温を40℃に維持したまま、30分間攪拌した。その後、常法に従って、濾過洗浄、濾過、及び乾燥を行いスズコート銅粉を得た。   The substituted precipitation tin solution used in Example 1 was prepared by dissolving 190 g of stannous chloride dihydrate, 1465 g of thiourea and 1000 g of tartaric acid in pure water, and maintaining the liquid temperature at 40 ° C. to 10 L. On the other hand, 1 kg of copper powder was placed in 4 liters of pure water maintained at 40 ° C. and stirred to obtain a copper powder slurry. And the substituted precipitation tin solution was put in this copper-powder slurry, and it stirred for 30 minutes, maintaining a liquid temperature at 40 degreeC. Then, it carried out filtration washing | cleaning, filtration, and drying in accordance with the conventional method, and obtained the tin coat copper powder.

ここで得られたスズコート銅粉の粉体特性は、DIA=1.10μm、D50=1.33μm、D90=2.02μm、SD=0.39μm、SD/D50 =0.29、Tsn=24nm、SSA=1.11m/g、TD=3.4g/cm、凝集度=1.2、スズ含有量は9wt%であった。この値をスズコート層の形成前の粉体特性を対比することで、粉体特性に大きな変化がないことが分かる。 The powder characteristics of the tin-coated copper powder obtained here were as follows: D IA = 1.10 μm, D 50 = 1.33 μm, D 90 = 2.02 μm, SD = 0.39 μm, SD / D 50 = 0.29, Tsn = 24 nm, SSA = 1.11 m 2 / g, TD = 3.4 g / cm 3 , aggregation degree = 1.2, and tin content was 9 wt%. By comparing this value with the powder characteristics before the formation of the tin coat layer, it can be seen that there is no significant change in the powder characteristics.

さらに、Tg測定による酸化開始温度は約300℃であり、TMA分析による収縮開始温度は約240℃であり、収縮率1は約4%、収縮率2は約6%であり、ほぼ一定であった。   Furthermore, the oxidation start temperature by Tg measurement is about 300 ° C., the shrinkage start temperature by TMA analysis is about 240 ° C., the shrinkage rate 1 is about 4%, and the shrinkage rate 2 is about 6%. It was.

上記コア材の銅粉の粒子表面に35wt%のスズコート層を備えるスズコート銅粉を以下の方法により作成した。   A tin-coated copper powder having a 35 wt% tin coat layer on the surface of the copper powder particles of the core material was prepared by the following method.

実施例2で用いた置換析出スズ溶液は、純水に塩化第1スズ二水和物665g、チオ尿素5122g、酒石酸5000gを溶解させ、液温を40℃に維持して50Lとした。一方、40℃に維持した15リットルの純水中に1kgの銅粉を入れ攪拌して、銅粉スラリーとした。そして、この銅粉スラリー中に置換析出スズ溶液を入れ、液温を40℃に維持したまま、30分間攪拌した。その後、実施例1と同様の処理を行いスズコート銅粉を得た。   The substituted precipitation tin solution used in Example 2 was prepared by dissolving 665 g of stannous chloride dihydrate, 5122 g of thiourea and 5000 g of tartaric acid in pure water, and maintaining the liquid temperature at 40 ° C. to 50 L. On the other hand, 1 kg of copper powder was placed in 15 liters of pure water maintained at 40 ° C. and stirred to obtain a copper powder slurry. And the substituted precipitation tin solution was put in this copper-powder slurry, and it stirred for 30 minutes, maintaining a liquid temperature at 40 degreeC. Then, the process similar to Example 1 was performed and the tin coat copper powder was obtained.

実施例2で得られたスズコート銅粉の粉体特性は、DIA=1.09μm、D50=1.50μm、SD=0.51μm、SD/D50 =0.34、Tsn=95nm、SSA=1.65m/g、TD=2.8g/cm、D90=2.39μm、凝集度1.4、スズ含有量は35wt%であった。この値をスズコート層の形成前の粉体特性を対比すると、実施例1と同様にあまり大きな差異はないものとなっている。 The powder characteristics of the tin-coated copper powder obtained in Example 2 were as follows: D IA = 1.09 μm, D 50 = 1.50 μm, SD = 0.51 μm, SD / D 50 = 0.34, Tsn = 95 nm, SSA = 1.65 m 2 / g, TD = 2.8 g / cm 3 , D 90 = 2.39 µm, the degree of aggregation was 1.4, and the tin content was 35 wt%. When this value is compared with the powder characteristics before the formation of the tin coat layer, there is no significant difference as in Example 1.

さらに、Tg測定による酸化開始温度は約300℃であり、TMA分析による収縮開始温度は約230℃であり、収縮率1は約20%、収縮率2は約40%であり、大きく変化するものであった。   Furthermore, the oxidation start temperature by Tg measurement is about 300 ° C., the shrinkage start temperature by TMA analysis is about 230 ° C., the shrinkage rate 1 is about 20%, and the shrinkage rate 2 is about 40%, which varies greatly. Met.

次に、比較例1及び比較例2について以下説明する。   Next, Comparative Example 1 and Comparative Example 2 will be described below.

<比較例1>
上記コア材たる銅粉の粒子表面に4wt%のスズコート層を備えるスズコート銅粉を以下の方法により作成した。
<Comparative Example 1>
A tin-coated copper powder comprising a 4 wt% tin-coated layer on the surface of the copper powder particles as the core material was prepared by the following method.

比較例1で用いた置換析出スズ溶液は、純水に塩化第1スズ二水和物190g及びチオ尿素1465gを溶解させ、液温を40℃に維持して5Lとした。一方、40℃に維持した4Lの純水中に1kgの銅粉を入れ攪拌して、銅粉スラリーとした。そして、この銅粉スラリー中に置換析出スズ溶液を入れ、液温を40℃に維持したまま、30分間攪拌した。その後、実施例1と同様の処理を行いスズコート銅粉を得た。   The substituted precipitation tin solution used in Comparative Example 1 was prepared by dissolving 190 g of stannous chloride dihydrate and 1465 g of thiourea in pure water and maintaining the liquid temperature at 40 ° C. to 5 L. On the other hand, 1 kg of copper powder was placed in 4 L of pure water maintained at 40 ° C. and stirred to obtain a copper powder slurry. And the substituted precipitation tin solution was put in this copper-powder slurry, and it stirred for 30 minutes, maintaining a liquid temperature at 40 degreeC. Then, the process similar to Example 1 was performed and the tin coat copper powder was obtained.

比較例1のスズコート銅粉の粉体特性は、DIA=1.10μm、D50=1.29μm、SD=0.38μm、SD/D50 =0.29、Tsn=11nm、SSA(比表面積)=0.85m/g、D90=1.97μm、TD=3.4g/cm、凝集度1.2、スズ含有量は4wt%であった。この値をスズコート層の形成前の粉体特性を対比することで、粉体特性に大きな変化がないことが分かる。 The powder characteristics of the tin-coated copper powder of Comparative Example 1 were as follows: D IA = 1.10 μm, D 50 = 1.29 μm, SD = 0.38 μm, SD / D 50 = 0.29, Tsn = 11 nm, SSA (specific surface area) ) = 0.85 m 2 / g, D 90 = 1.97 μm, TD = 3.4 g / cm 3 , aggregation degree 1.2, and tin content was 4 wt%. By comparing this value with the powder characteristics before the formation of the tin coat layer, it can be seen that there is no significant change in the powder characteristics.

さらに、比較例1のスズコート銅粉を用いて、Tg測定を行った結果、酸化開始温度は200℃程度であり、TMA分析を行ったところ焼結開始温度は約500℃であり、収縮率1および2はほぼ0%であった。   Furthermore, as a result of Tg measurement using the tin-coated copper powder of Comparative Example 1, the oxidation start temperature was about 200 ° C., and when TMA analysis was performed, the sintering start temperature was about 500 ° C., and the shrinkage rate was 1 And 2 were approximately 0%.

<比較例2>
比較例2では、実施例1と同様の銅粉をコア材とし、当該銅粉の粒子表面に83wt%のスズコート層を備えるスズコート銅粉を以下の方法で製造した。
<Comparative example 2>
In Comparative Example 2, a tin-coated copper powder having the same copper powder as in Example 1 as a core material and an 83 wt% tin-coated layer on the surface of the copper powder particles was produced by the following method.

比較例2で用いた置換析出スズ溶液は、純水に塩化第1スズ二水和物800g、チオ尿素7250g、及び酒石酸5200gを溶解させ、液温を40℃に維持して15Lとした。一方、40℃に維持した15Lの純水中に500gの銅粉を入れ攪拌して、銅粉スラリーとした。そして、この銅粉スラリー中に置換析出スズ溶液を入れ、液温を40℃に維持したまま、30分間攪拌した。その後、実施例1と同様の処理を行いスズコート銅粉を得た。   The substituted precipitated tin solution used in Comparative Example 2 was dissolved in pure water with 800 g of stannous chloride dihydrate, 7250 g of thiourea, and 5200 g of tartaric acid, and the liquid temperature was maintained at 40 ° C. to 15 L. On the other hand, 500 g of copper powder was placed in 15 L of pure water maintained at 40 ° C. and stirred to obtain a copper powder slurry. And the substituted precipitation tin solution was put in this copper-powder slurry, and it stirred for 30 minutes, maintaining a liquid temperature at 40 degreeC. Then, the process similar to Example 1 was performed and the tin coat copper powder was obtained.

比較例2のスズコート銅粉の粉体特性は、DIA=0.98μm、D50=5.47μm、SD=3.43μm、SD/D50 =0.63、Tsn=252nm、D90=11.64μm、凝集度5.6、SSA=2.92m/g、TD=1.7g/cm、スズ含有量は83wt%であった。
さらに、Tg測定による酸化開始温度は約300℃であり、TMA分析による収縮開始温度は約230℃であり、収縮率1は約20%、収縮率2は約40%であり、大きく変化するものであった。

Figure 2006225691
The powder characteristics of the tin-coated copper powder of Comparative Example 2 are as follows: D IA = 0.98 μm, D 50 = 5.47 μm, SD = 3.43 μm, SD / D 50 = 0.63, Tsn = 252 nm, D 90 = 11 0.64 μm, degree of aggregation 5.6, SSA = 2.92 m 2 / g, TD = 1.7 g / cm 3 , and the tin content was 83 wt%.
Furthermore, the oxidation start temperature by Tg measurement is about 300 ° C., the shrinkage start temperature by TMA analysis is about 230 ° C., the shrinkage rate 1 is about 20%, and the shrinkage rate 2 is about 40%, which varies greatly. Met.
Figure 2006225691

<総合評価>
以上の結果を考察すると、本発明に係る実施例1及び実施例2のスズコート銅粉は、微粉1μm程度の微粉でありかつ凝集度が低いという優れたコア粉と同様の粉体特性を維持しつつも、スズの被覆により酸化開始温度を向上させ、かつ一定の収縮率を有することができると考えられる。特に一定の収縮率は、ヴィアホール等の優れた充填性を達成するには不可欠である。
<Comprehensive evaluation>
Considering the above results, the tin-coated copper powders of Example 1 and Example 2 according to the present invention are fine powders of about 1 μm fine powder and maintain the same powder characteristics as the core powder having a low degree of aggregation. However, it is considered that the oxidation start temperature can be improved by coating with tin and a certain shrinkage rate can be obtained. In particular, a certain shrinkage rate is indispensable for achieving excellent filling properties such as via holes.

さらに、上記図3は実施例2のTMA分析結果であるが、スズが35wt%のスズコート銅粉は、スズの融点(230℃)付近から収縮を開始するが、コアが融点の高い銅であるために収縮が300℃近辺から14%程度で止まるという結果が得られた。530℃近辺から再び収縮が始まるが、300℃から530℃の広い領域で収縮しないということはある程度収縮しても安定なので、本発明のスズコート銅粉を導電部形成時に、基板の焼成温度とのマッチング等、適用の用途が広く好ましいといえる。また、初めの収縮率は主にスズコート層の接合によるものと考えられ、スズコート層の厚さにもよるが、10%〜30%程度で収縮が止まるものと考えられる。このようにスズコート層の厚さで一義的に収縮率がある一定の値で広い温度領域で留まれば焼成温度の制御もし易いと考えられる。
なお、元粉(銅)は1点鎖線が示す通り銅の融点(約1085℃)が高いので1μm程度の微粉であっても600℃まで収縮しない。
Further, FIG. 3 shows the TMA analysis result of Example 2. Tin coated copper powder with 35 wt% tin starts shrinking from the vicinity of the melting point (230 ° C.) of tin, but the core is copper having a high melting point. Therefore, the result that shrinkage | contraction stops in about 14% from 300 degreeC vicinity was obtained. Shrinkage starts again at around 530 ° C, but the fact that it does not shrink in a wide region from 300 ° C to 530 ° C is stable even if it shrinks to some extent, so that when the tin-coated copper powder of the present invention is formed into a conductive part, Applications such as matching are widely preferred. Further, the initial shrinkage rate is considered to be mainly due to the bonding of the tin coat layer, and although it depends on the thickness of the tin coat layer, the shrinkage is considered to stop at about 10% to 30%. In this way, it is considered that the firing temperature can be easily controlled if the tin coating layer remains in a wide temperature range with a constant shrinkage rate with a unique thickness.
Note that the base powder (copper) has a high melting point of copper (about 1085 ° C.) as indicated by the alternate long and short dash line.

比較例1に係るスズコート銅粉の粉体特性に着目すると、スズコート量が少ないことに起因して酸化開始温度が低く、このようなスズコート銅粉を導電部形成用に用いた場合、電気抵抗の上昇を免れない。   Focusing on the powder characteristics of the tin-coated copper powder according to Comparative Example 1, the oxidation start temperature is low due to the small amount of tin coating, and when such tin-coated copper powder is used for forming a conductive part, I cannot escape the rise.

さらに、比較例2に係るスズコート銅粉の粉体特性とスズコート層の形成前の粉体特性とを対比すると、凝集度が高く、即ち凝集状態が著しいことが明らかである。このレベルの凝集が起こっていると、経験的に導電性ペーストのバインダー樹脂との均一な混合が困難な状態になる。しかも、83wt%相当のスズコート層が形成された比較例2のスズコート銅粉の電気抵抗は、非常に高いものになると考えられる。   Furthermore, when the powder characteristics of the tin-coated copper powder according to Comparative Example 2 are compared with the powder characteristics before the formation of the tin coat layer, it is clear that the degree of aggregation is high, that is, the aggregation state is remarkable. When this level of agglomeration occurs, it becomes empirically difficult to uniformly mix the conductive paste with the binder resin. Moreover, the electrical resistance of the tin-coated copper powder of Comparative Example 2 in which a tin coat layer equivalent to 83 wt% is formed is considered to be very high.

本発明は、スズコート銅粉及び当該スズコート銅粉を用いた導電性ペーストに適用される。さらに詳細には、導体部形成に好適なスズコート銅粉及び当該スズコート銅粉を用いた導電性ペーストに適用される。

The present invention is applied to a tin-coated copper powder and a conductive paste using the tin-coated copper powder. More specifically, the present invention is applied to a tin-coated copper powder suitable for forming a conductor portion and a conductive paste using the tin-coated copper powder.

Claims (7)

銅粒子をコア材とし、当該銅粒子にスズを被覆したスズコート銅粒子を含むスズコート銅粉であって、
前記スズコート銅粉子の平均粒径が0.1μm〜5μmであり、前記スズコート銅粉粒子全体のwt%を100としたときに当該銅粉の粒子表面に5wt%〜40wt%のスズコート層を備えることを特徴とするスズコート銅粉。
A tin-coated copper powder containing tin-coated copper particles in which copper particles are used as a core material, and the copper particles are coated with tin,
The tin-coated copper powder has an average particle size of 0.1 μm to 5 μm, and a tin coating layer of 5 wt% to 40 wt% is provided on the surface of the copper powder particles when the wt% of the tin coating copper powder particles is 100. A tin-coated copper powder characterized by that.
請求項1に記載のスズコート銅粉であって、
当該コア材の銅粉の粒子を被覆するスズコート層の膜厚TSnが2nm〜500nmであることを特徴とする請求項1に記載のスズコート銅粉。
(スズコート層の膜厚TSnは、スズコート銅粉粒子を球とみなしたときのスズコート層のwt%とSnの密度から換算した膜厚を指す。)
The tin-coated copper powder according to claim 1,
2. The tin-coated copper powder according to claim 1, wherein a film thickness T Sn of a tin coat layer covering the copper powder particles of the core material is 2 nm to 500 nm.
(The film thickness T Sn of the tin coat layer refers to the film thickness converted from the wt% of the tin coat layer and the density of Sn when the tin coat copper powder particles are regarded as spheres.)
請求項1に記載のスズコート銅粉であって、
コート粉粒子の平均粒径をDIAとし、当該コア材を被覆するスズコート層の膜厚をTSnとすると、
2TSn /DIAの値が、0.03〜0.20であることを特徴とするスズコート銅粉。
(平均粒径DIAは、走査型電子顕微鏡によりコア材の銅粒子を撮像し、その撮像倍率から換算した実粒径を指す。)
The tin-coated copper powder according to claim 1,
The average particle size of the coated powder particles with D IA, and the thickness of Suzukoto layer covering the core material and T Sn,
A tin- coated copper powder having a value of 2T Sn / D IA of 0.03 to 0.20.
(Average particle diameter DIA refers to the actual particle diameter obtained by imaging copper particles of the core material with a scanning electron microscope and converting from the imaging magnification.)
請求項1〜請求項3のいずれか1項に記載のスズコート銅粉を焼結することによって得られるSn−Cu合金を含む導電部形成体。   The electroconductive part formation body containing the Sn-Cu alloy obtained by sintering the tin coat copper powder of any one of Claims 1-3. 請求項4に記載のスズコート銅粉を焼結することによって得られる、Cuが60wt%〜95wt%及びSnが5wt%〜40wt%のSn−Cu合金を含む導電部形成体。   The electroconductive part formation body containing the Sn-Cu alloy of 60 wt%-95 wt% of Cu and 5 wt%-40 wt% of Sn obtained by sintering the tin coat copper powder of Claim 4. 銅粉を水に入れ撹拌したCuの分散濃度が0.1mol/L〜5mol/Lの銅粉スラリーを作成する工程と、
0.01mol/L〜1mol/Lの2価のスズ塩と、0.1mol/L〜10mol/Lのチオ尿素、を含む溶液であって、pHが2以下となるように酸を加え、液温30℃〜80℃とした溶液である置換析出スズ溶液を作成する工程と、
前記銅粉スラリーと前記置換析出スズ溶液とを、前記銅粉スラリー中の1molのCuに対し2価のスズ塩が0.02mol〜0.25molの割合となるように混合する工程と、
この混合液を撹拌し、銅粉粒子表面にスズを置換析出させる工程と、
を含むスズコート銅粉製造方法。
A step of creating a copper powder slurry having a Cu dispersion concentration of 0.1 mol / L to 5 mol / L in which copper powder is stirred in water;
A solution containing 0.01 mol / L to 1 mol / L divalent tin salt and 0.1 mol / L to 10 mol / L thiourea, and an acid is added so that the pH is 2 or less. A step of creating a substituted precipitation tin solution which is a solution having a temperature of 30 ° C. to 80 ° C .;
Mixing the copper powder slurry and the substituted precipitation tin solution so that the divalent tin salt is in a ratio of 0.02 mol to 0.25 mol with respect to 1 mol of Cu in the copper powder slurry;
A step of stirring the mixed liquid and substituting and depositing tin on the surface of the copper powder particles;
A method for producing tin-coated copper powder.
請求項1〜請求項3のいずれか1項に記載のスズコート銅粉を用いた導電性ペースト。
The electrically conductive paste using the tin coat copper powder of any one of Claims 1-3.
JP2005038392A 2005-02-15 2005-02-15 Tin-coated copper powder and electrically conductive paste using the tin-coated copper powder Pending JP2006225691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038392A JP2006225691A (en) 2005-02-15 2005-02-15 Tin-coated copper powder and electrically conductive paste using the tin-coated copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005038392A JP2006225691A (en) 2005-02-15 2005-02-15 Tin-coated copper powder and electrically conductive paste using the tin-coated copper powder

Publications (1)

Publication Number Publication Date
JP2006225691A true JP2006225691A (en) 2006-08-31

Family

ID=36987315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038392A Pending JP2006225691A (en) 2005-02-15 2005-02-15 Tin-coated copper powder and electrically conductive paste using the tin-coated copper powder

Country Status (1)

Country Link
JP (1) JP2006225691A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007755A1 (en) * 2008-07-15 2010-01-21 日本ペイント株式会社 Copper surface processing agent, surface processing method, and copper surface film
JP2012092376A (en) * 2010-10-25 2012-05-17 Ishihara Chem Co Ltd Method of manufacturing tin plated copper powder
JP2012157870A (en) * 2011-01-31 2012-08-23 Mitsubishi Materials Corp Solder powder and paste for solder using the same
CN102649201A (en) * 2011-02-28 2012-08-29 三菱综合材料株式会社 Pre-coating welding paste
WO2013118892A1 (en) * 2012-02-08 2013-08-15 Jx日鉱日石金属株式会社 Surface treated metal powder, and manufacturing method for same
WO2014007064A1 (en) * 2012-07-06 2014-01-09 三井金属鉱業株式会社 Composite copper particles, and method for producing same
JP2016172912A (en) * 2015-03-18 2016-09-29 三菱マテリアル株式会社 Solder powder production method and solder paste using the powder
WO2017061443A1 (en) * 2015-10-05 2017-04-13 住友金属鉱山株式会社 Sn-COATED COPPER POWDER, CONDUCTIVE PASTE USING SAME, AND PRODUCING METHOD FOR Sn-COATED COPPER POWDER
US9951231B2 (en) 2014-08-28 2018-04-24 E I Du Pont De Nemours And Company Copper-containing conductive pastes and electrodes made therefrom
US10325693B2 (en) 2014-08-28 2019-06-18 E I Du Pont De Nemours And Company Copper-containing conductive pastes and electrodes made therefrom
CN110324963A (en) * 2018-03-28 2019-10-11 上海逻骅投资管理合伙企业(有限合伙) Electrocondution slurry and its preparation method and application
US10672922B2 (en) 2014-08-28 2020-06-02 Dupont Electronics, Inc. Solar cells with copper electrodes
CN115233026A (en) * 2022-05-30 2022-10-25 广东华诺勤耕材料科技有限公司 Preparation method of copper-tin alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049067A (en) * 1983-08-30 1985-03-18 Toshiba Chem Corp Electrically conductive paint
JPH0528829A (en) * 1991-07-12 1993-02-05 Tokyo Cosmos Electric Co Ltd Conductive coating and conductive film formation thereof
JPH06299363A (en) * 1993-04-09 1994-10-25 Japan Energy Corp Plating method with tin
JP2004156061A (en) * 2002-11-01 2004-06-03 Mitsui Mining & Smelting Co Ltd Tin-coated copper powder, method of producing the tin-coated copper powder, and electrically conductive paste obtained by using the tin-coated copper powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049067A (en) * 1983-08-30 1985-03-18 Toshiba Chem Corp Electrically conductive paint
JPH0528829A (en) * 1991-07-12 1993-02-05 Tokyo Cosmos Electric Co Ltd Conductive coating and conductive film formation thereof
JPH06299363A (en) * 1993-04-09 1994-10-25 Japan Energy Corp Plating method with tin
JP2004156061A (en) * 2002-11-01 2004-06-03 Mitsui Mining & Smelting Co Ltd Tin-coated copper powder, method of producing the tin-coated copper powder, and electrically conductive paste obtained by using the tin-coated copper powder

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007755A1 (en) * 2008-07-15 2010-01-21 日本ペイント株式会社 Copper surface processing agent, surface processing method, and copper surface film
JP2012092376A (en) * 2010-10-25 2012-05-17 Ishihara Chem Co Ltd Method of manufacturing tin plated copper powder
JP2012157870A (en) * 2011-01-31 2012-08-23 Mitsubishi Materials Corp Solder powder and paste for solder using the same
CN102649201B (en) * 2011-02-28 2016-05-04 三菱综合材料株式会社 Precoating soldering paste
CN102649201A (en) * 2011-02-28 2012-08-29 三菱综合材料株式会社 Pre-coating welding paste
JP2012179624A (en) * 2011-02-28 2012-09-20 Mitsubishi Materials Corp Solder paste for precoating
WO2013118892A1 (en) * 2012-02-08 2013-08-15 Jx日鉱日石金属株式会社 Surface treated metal powder, and manufacturing method for same
JP2016106175A (en) * 2012-02-08 2016-06-16 Jx金属株式会社 Surface-treated metal powder, and method for producing the same
JPWO2013118892A1 (en) * 2012-02-08 2015-05-11 Jx日鉱日石金属株式会社 Surface-treated metal powder and method for producing the same
TWI505293B (en) * 2012-02-08 2015-10-21 Jx Nippon Mining & Metals Corp The treated copper powder
TWI624842B (en) * 2012-02-08 2018-05-21 Jx Nippon Mining & Metals Corp Metal oxide paste, electrode, wafer laminated ceramic capacitor, multilayer substrate, electronic part
WO2014007064A1 (en) * 2012-07-06 2014-01-09 三井金属鉱業株式会社 Composite copper particles, and method for producing same
JPWO2014007064A1 (en) * 2012-07-06 2016-06-02 三井金属鉱業株式会社 Composite copper particles and method for producing the same
CN104470657A (en) * 2012-07-06 2015-03-25 三井金属矿业株式会社 Composite copper particles, and method for producing same
US9951231B2 (en) 2014-08-28 2018-04-24 E I Du Pont De Nemours And Company Copper-containing conductive pastes and electrodes made therefrom
US10325693B2 (en) 2014-08-28 2019-06-18 E I Du Pont De Nemours And Company Copper-containing conductive pastes and electrodes made therefrom
US10672922B2 (en) 2014-08-28 2020-06-02 Dupont Electronics, Inc. Solar cells with copper electrodes
JP2016172912A (en) * 2015-03-18 2016-09-29 三菱マテリアル株式会社 Solder powder production method and solder paste using the powder
WO2017061443A1 (en) * 2015-10-05 2017-04-13 住友金属鉱山株式会社 Sn-COATED COPPER POWDER, CONDUCTIVE PASTE USING SAME, AND PRODUCING METHOD FOR Sn-COATED COPPER POWDER
CN110324963A (en) * 2018-03-28 2019-10-11 上海逻骅投资管理合伙企业(有限合伙) Electrocondution slurry and its preparation method and application
CN115233026A (en) * 2022-05-30 2022-10-25 广东华诺勤耕材料科技有限公司 Preparation method of copper-tin alloy
CN115233026B (en) * 2022-05-30 2024-04-12 广东华诺勤耕材料科技有限公司 Preparation method of copper-tin alloy

Similar Documents

Publication Publication Date Title
JP2006225691A (en) Tin-coated copper powder and electrically conductive paste using the tin-coated copper powder
JP2006225692A (en) Tin-coated copper powder and composite electrically conductive paste using the tin-coated copper powder
JP6376176B2 (en) Copper powder, copper paste, method for producing conductive coating film and conductive coating film
JP6900278B2 (en) Silver coated alloy powder, conductive paste, electronic components and electrical equipment
JP2007100155A (en) Silver nanoparticle-adhered silver-copper composite powder and method for producing the silver nanoparticle-adhered silver-copper composite powder
TWI668065B (en) Solder powder, method for producing same, and method for preparing solder paste using the same
US10237976B2 (en) Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
KR101327974B1 (en) Tin powder, process for producing tin powder, and tin powder-containing electrically conductive paste
KR20120098513A (en) Solder paste for pre-coat
WO2005123308A1 (en) Copper-containing tin powder and method for producing the copper-containing tin powder, and electroconductive paste using the copper-containing tin powder
JP4144695B2 (en) Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder
JP5327582B2 (en) Reduction precipitation type spherical NiP fine particles and method for producing the same
JP4144694B2 (en) Tin-coated copper powder, method for producing the tin-coated copper powder, and conductive paste using the tin-coated copper powder
WO2004027787A1 (en) Conductive composition for electrical connection of electronic device and electronic device
JP4797968B2 (en) Solder powder and solder paste using this powder
JP6970609B2 (en) Silver-coated alloy powder and its manufacturing method, conductive paste and its manufacturing method, electronic parts, and electronic equipment
JP2007191752A (en) Tin-coated silver powder and method for producing the tin-coated silver powder
JP2013094836A (en) Solder paste for precoat and method of manufacturing the same
JPWO2006038376A1 (en) Solder composition and method for forming solder layer using the same
JP7313195B2 (en) Method for producing metal powder and method for producing silver-coated metal powder
JP2018122309A (en) Powder for joining and paste for joining using the powder
JP2019031735A (en) Surface treatment silver-coated alloy powder, production method of powder, conductive paste, electronic component and electric device
JP4826453B2 (en) Solder powder and solder paste using the powder
JP5074670B2 (en) Method for producing tin powder-containing colloidal liquid
KR20070018115A (en) Copper-containing tin powder and method for producing the copper-containing tin powder, and electroconductive paste using the copper-containing tin powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330