WO2004027787A1 - Conductive composition for electrical connection of electronic device and electronic device - Google Patents

Conductive composition for electrical connection of electronic device and electronic device Download PDF

Info

Publication number
WO2004027787A1
WO2004027787A1 PCT/JP2003/012011 JP0312011W WO2004027787A1 WO 2004027787 A1 WO2004027787 A1 WO 2004027787A1 JP 0312011 W JP0312011 W JP 0312011W WO 2004027787 A1 WO2004027787 A1 WO 2004027787A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
conductive
particles
composition
powder
Prior art date
Application number
PCT/JP2003/012011
Other languages
French (fr)
Japanese (ja)
Inventor
Hirotaka Ogawa
Isao Suzuki
Keisuke Abe
Kentarou Tsunozaki
Yasuhiro Sanada
Hisao Inokuma
Masako Kawamoto
Original Assignee
Noda Screen Co., Ltd.
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noda Screen Co., Ltd., Asahi Glass Company, Limited filed Critical Noda Screen Co., Ltd.
Priority to AU2003266547A priority Critical patent/AU2003266547A1/en
Publication of WO2004027787A1 publication Critical patent/WO2004027787A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder

Definitions

  • the present invention relates to a conductive composition for electrically connecting an electronic device and an electronic device.
  • the present invention relates to a conductive composition for electrically connecting electronic devices and an electronic device using the conductive composition.
  • a metal-containing composition sometimes called a conductive base
  • conductive particles such as silver powder and a resin
  • a method of forming an electric circuit (wiring conductor) such as a wiring board and an electronic component and a contact hole filling member is generally known. (See, for example, “Electronic Materials,” Industrial Research Council, October 1998, p. 42-46.)
  • the metal-containing composition is composed of a conductive filler which is a powder, a resin, a diluent, and the like. If the ratio of the conductive filler is excessively increased, the amount of the resin and the diluent decreases, and the metal-containing composition decreases. The composition itself loses fluidity or becomes powdery, making it difficult to apply, print and fill.
  • the flat-tree-shaped conductive filler has a lower density than the spherical conductive filler, the additive concentration in the metal-containing composition is lower than that of the spherical conductive filler.
  • the circuit forming portion becomes finer, the fluidity requirement for the metal-containing composition itself becomes higher, and such a drawback has become more remarkable with the trend of miniaturization of electronic devices.
  • it is desired to suppress deterioration that is, to improve the durability of a circuit made of a conductive composition obtained by subjecting a metal-containing composition to heat treatment or the like and an electrical connection site in a contact hole.
  • the thermal expansion coefficient of the constituent material in the conductive composition is not uniform, and the thermal expansion is repeated as the Z contraction is repeated. It is known that a fine crack is generated in a connection portion and a conductive path is cut.
  • the conductive composition solidifies and connects the conductive fillers with a resin, and a conductive path is formed by physical contact between the conductive fillers.
  • Thermal expansion coefficient of copper and silver as the material of the representative conductive filler are each 17X 10- 6 ° C one 1, 19X 10- 6 ° ⁇ -], the thermal expansion coefficient of the epoxy resins which are commonly used There considering that a 50 X 1 0- 6 ⁇ 1 0 0 X 1 0- 6 ° C- 1, to human one preparative cycles of thermal expansion Z contraction, prior to rely only on physical contact of the filler It can be said that there is essentially a limit in improving the durability of a metal-containing composition.
  • the present invention relates to a conductive composition for electrical connection of electronic devices, which is excellent in conductivity and durability, and is also excellent in applicability, printability, and filling property, and an electrically connected portion of the conductive composition. Further objects and advantages of the invention, which are to provide a highly reliable electronic device applied to the present invention, will be apparent from the following description.
  • the first aspect of the present invention relates to a metal particle powder having an average particle size of 2 Onm or less (hereinafter, “metal particle powder having an average particle size of 2 Onm or less” is also referred to as “metal particle powder A”).
  • Metal powder having a particle size of 50 nm or more and 2000 nm or less (hereinafter, “metal particle powder having an average particle diameter of 50 nm or more and 200 Onm or less” is also referred to as “metal particle powder B”)
  • Metals containing conductive particle powder having an average particle size of more than 2000 nm and not more than 20 hereinafter, “conductive particle powder having an average particle size of more than 2000 nm and not more than 20” is also referred to as “conductive particle powder C”)
  • the concentration of the metal particle powder A in the metal-containing composition is a mass%
  • the concentration of the metal particle powder B is b mass%
  • the concentration of the conductive particle powder C is c mass%. If a: b is between 3:97 to 90:10
  • a third aspect of the present invention is directed to a third aspect of the present invention, which includes metal particles, a resin, and, in some cases, conductive particles, and has a particle size of 20 nm or less based on the total amount of the metal particles and the conductive particles.
  • the mass ratio between the metal particles having a diameter of 50 nm or more and 200 nm or less is 3:97 to 90:10 by mass ratio, and the metal particles having a particle size of 20 nm or less and the particles are present.
  • Metal particles having a diameter of 50 nm or more and 200 nm or less are contained in a total amount of 60 to 100% by mass, and conductive particles having a diameter of more than 200 nm and 20 or less are 40 to 100%. What is claimed is: 1.
  • a method for measuring solid particles present in the metal-containing composition by dynamic light scattering Of the particle size distribution below 20 nm and 50 nm Energy is applied to a metal-containing composition in which a peak exists in the upper particle size region of 2000 nm or less, and in some cases, a peak exists in a particle size region of more than 2000 nm and 20 zm or less.
  • a conductive composition for electrical connection of electronic devices
  • At least one arbitrarily selected in 0. 1 mm 2 cross-section of the conductive composition needle-like shape composed of a metal or metals and electrically conductive particles, dendritic shape, Igagu Ri shapes and irregular
  • At least one new shape selected from the group consisting of connected shapes is newly generated,
  • the conductive particle powder C When the conductive particle powder C is present, the conductive particle powder C
  • Metal particles with a particle size of 20 nm or less and metals with a particle size of 50 nm or more and 2000 nm or less The group consisting of Ag, Au, u, Pd, Pt, Re, Os, Ir, Cu, Ni, Sn, A1, Zn, In, Co, W, and Mo, respectively At least one of metal particles of at least one element selected from the group consisting of metal particles and alloy particles containing the element,
  • At least one kind of conductive carbon compound selected from the group consisting of graphite, a carbon compound having a graphite structure, and a carbon nano tube;
  • the conductive composition according to the above aspect 3 or 4 comprising at least one of the following.
  • the resin is an epoxy-based curable resin, a phenol-based curable resin, a melamine-based curable resin, a silicone-based curable resin, an acrylic resin, polyethylene, polystyrene, polypropylene, or polychlorinated resin.
  • the conductive composition according to any one of the above aspects 1 to 7 is applied to at least one kind of electrical connection site selected from the group consisting of a via hole, a through hole, and a wiring.
  • Electronic device BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a model diagram illustrating a needle-shaped metal composite.
  • FIG. 2 is another model diagram illustrating a needle-shaped metal composite.
  • FIG. 3 is another model diagram illustrating a needle-shaped metal composite.
  • FIG. 4 is another model diagram illustrating a needle-shaped metal composite.
  • FIG. 5 is another model diagram illustrating a needle-shaped metal composite.
  • FIG. 6 is another model diagram illustrating a needle-shaped metal composite.
  • FIG. 7 is a model diagram illustrating a tree-shaped metal combination.
  • FIG. 8 is another model diagram illustrating a tree-shaped metal combination.
  • FIG. 9 is a model diagram illustrating a ragged metal combination.
  • FIG. 10 is another model diagram illustrating a ragged metal combination.
  • FIG. 11 is another model diagram illustrating a ragged metal combination.
  • FIG. 12 is another model diagram illustrating a ragged metal combination.
  • FIG. 13 is another model diagram illustrating a metal joint having an irregular connection shape.
  • FIG. 14 is a particle size distribution diagram of Ag fine particle powder as metal particle powder A.
  • FIG. 15 is a photograph of a transmission electron microscope image of Ag fine particle powder as metal particle powder A.
  • Figure 16 shows peaks in the particle size range below 20 nm, the particle size range from 500 nm to 200 nm, and the particle size range above 200 nm to 20 nm.
  • FIG. 4 is a particle size distribution diagram showing the appearance of the process.
  • FIG. 17 is a cross-sectional photograph of the conductive composition for electrical connection of an electronic device according to the present invention.
  • FIG. 18 is another cross-sectional photograph of the conductive composition for electrical connection of an electronic device according to the present invention.
  • FIG. 19 is another cross-sectional photograph of the conductive composition for electrical connection of an electronic device according to the present invention.
  • FIG. 20 is another cross-sectional photograph of the conductive composition for electrical connection of an electronic device according to the present invention.
  • FIG. 21 is a model diagram showing an example of use of the conductive composition for electrical connection of an electronic device according to the present invention.
  • FIG. 22 is a model diagram showing another usage example of the conductive composition for electrical connection of an electronic device according to the present invention.
  • FIG. 23 is a model diagram showing another example of use of the conductive composition for electrical connection of an electronic device according to the present invention.
  • FIG. 24 is a model diagram showing another usage example of the conductive composition for electrical connection of an electronic device according to the present invention.
  • FIG. 25 is a model diagram showing another usage example of the conductive composition for electrical connection of an electronic device according to the present invention.
  • FIG. 26 is a model diagram showing another usage example of the conductive composition for electrical connection of an electronic device according to the present invention.
  • FIG. 27 is a side view model diagram of a substrate for evaluation of a cured composition.
  • FIG. 28 is a plan model diagram of a substrate for evaluation of a cured composition.
  • FIG. 29 is another cross-sectional photograph of the conductive composition for electrical connection of an electronic device according to the present invention.
  • FIG. 30 is another cross-sectional photograph of the conductive composition for electrical connection of an electronic device according to the present invention.
  • the metal-containing composition used in the present invention is a paste-like composition containing metal particle powder A, metal particle powder B, and resin.
  • the metal-containing composition used in the present invention can be a paste having an appropriate viscosity, and can be sufficiently filled in a fine via hole having a diameter of 50 im or less. Fine circuit wiring with a line width of 20 m or less Becomes possible. With respect to the viscosity of the metal-containing composition, for example, a paste of 10 to 2000 dPa's having good handleability, coatability, printability, and filling property can be easily produced.
  • the metal-containing composition used in the present invention after filling the via hole and forming the wiring pattern, imparts energy to cure the curable resin, and if it is a thermoplastic resin, softens or melts it to form a conductive material.
  • surface melting occurs in metal particles with a particle size of 20 nm or less. It should be noted that since fine particles of this level have a sharp particle size distribution, there is no inconvenience even if it is considered that the metal particle powder A actually causes surface melting.
  • the resin contained in the metal-containing composition mainly, a curable resin or a combination of a curable resin and a thermoplastic resin has been described, but the resin contained in the metal-containing composition according to the present invention is included.
  • the resin may be a thermoplastic resin alone.
  • "cured” is replaced with “solidified” and "cured composition” is replaced with “solidified composition” within a range not contrary to the gist of the present invention. .
  • the surface melting of metal particles is caused by anomalous lattice vibration of the particle surface elements.
  • the surface atomic ratio (the ratio of the atoms present on the particle surface to the total number of atoms in the whole particle) is calculated to be 20% for a particle with a diameter of 10 nm, 10% for a particle with a diameter of 20 nm, and 7 O nm for a particle with a diameter of 20 nm. Less than 3% for particles. Due to this effect, the melting point of the bulk material is 961 ° C for silver, but surface melting is observed at around 160 ° C for particles with a diameter of 10 nm. (
  • the metal-containing composition does not contain the metal particle powder B and the metal-containing composition is prepared only with the metal particle powder A and the resin, the metal particles present therein are fine, The connection between the particles is often insufficient.
  • a paste-like metal-containing composition having high fluidity is prepared with metal particle powder A and a solvent in order to facilitate metal bonding between particles, the connection between particles is improved, It is necessary to heat the solvent to a temperature higher than the boiling point, which increases the process cost and greatly reduces the quality of other electronic components. Such behavior can be easily observed, for example, with fine Ag particles.
  • the particles of the metal particle powder B in the vicinity of the fine metal particles, the surface itself of the fine metal particles is melted, and then at the stage of bonding to the metal particle powder B, the combined body itself Is still not sufficiently large, so the surface energy is not stable, and it is thought that self-growth can be continued while entraining particles existing in the vicinity.
  • the shape in the cross section is different from the shape in the metal-containing composition.
  • needle-like shapes, tree-like shapes, burrow shapes, and irregularly-connected shapes are the results of connection between particles. Therefore, even when subjected to a heat cycle, it is possible to prevent the occurrence of minute cracks in the electrical connection portion and the breakage of the conductive path.
  • the needle-like shape means a rod-like or needle-like shape 1 as illustrated in FIGS. Some are wide as shown in Figs.
  • the dendritic shape means a bent rod-like or needle-like shape, or a shape 2 branched into three or more as illustrated in Figs.
  • the burrow shape 3 refers to a shape in which one or more rod-shaped or needle-shaped shapes 1 protrude from a solid shape. It should be noted that voids 4 may be present in the above-mentioned drawings.
  • the irregular connection shape 5 is considered to be a shape formed by connecting needle-like shapes, tree-like shapes, and burrow shapes.
  • the protruding shape in the needle shape, the dendritic bent shape or the branch shape, and the protruding shape in the burrow shape has an aspect ratio of 3 or more. As shown in FIGS. 1 to 12, the ratio between L1 and W1 is an example of the aspect ratio.
  • the length (L) is not uniform, the value of the largest aspect ratio is used for the aspect ratio. If there are multiple lengths (L) such as Ll and L2 in Fig. 8, the larger one is adopted.
  • the metal-containing composition used in the above may further contain conductive particle powder C.
  • the metal binder formed by the self-growth mechanism of the metal particle powder A and the metal particle powder B causes the particles of the conductive particle powder C Can be connected, which is preferable in terms of forming a conductive path.
  • the conductive particle powder C itself does not need to grow by itself, metals, conductive oxides, and conductive compounds can be used.
  • the particle size distribution and the average particle size are determined by a dynamic light scattering measuring method.
  • the electrical connection for the conductive composition of the electronic device configurations at least one of the cross-section of 0. 1 mm 2 arbitrarily selected, as described above, by the metal or metals and electrically conductive particles
  • At least one new shape selected from the group consisting of a needle-like shape, a tree-like shape, a burrow shape, and an irregular connection shape is newly generated.
  • the conductive composition for electrical connection of electronic devices obtained by applying energy such as heat treatment to the metal-containing composition used in the present invention has excellent conductivity and durability. .
  • the concentration of the metal particle powder A in the metal-containing composition is a mass%
  • the concentration of the metal particle powder B is b mass%
  • the concentration of the conductive particle powder C is c mass%
  • a: b is 3:97.
  • (a + b): c is between 100: 0 and 60:40, and that 50.ltoreq.
  • a + b): c force s, 100: 0 to 60: 40, the self-growth tends to occur easily, and if c is not 0 (zero), the connection between metal particles is promoted.
  • a: b is between 3:97 and 90:10, needle-like, tree-like, ragged, irregularly connected shapes, etc. will grow. 50 ⁇ (a + b + c) If it is ⁇ 95, the number of needle-like, tree-like, scrambled, irregularly connected shapes, etc. is large, and it is easy to secure conductivity. When the above conditions are satisfied, excellent conductivity, durability, coatability, printability, and filling properties, which are characteristics of the conductive composition for electrical connection of an electronic device according to the present invention, are more highly exhibited. .
  • the metal particle powder A and the metal particle powder B are respectively Ag, Au, Ru, Pd, Pt, Re, Os, Ir, Cu, Ni, Sn, A1, Zn, In, Co, W And metal particles of at least one element selected from the group consisting of It is preferable to include at least one of alloy particles containing:
  • the electrical resistivity (resistivity) of these elements is as follows: Ag: 1.63 / ⁇ cm, Au: 2.2 ⁇ cm, Ru: 7.37 cm, ⁇ d: 10.55 / i ⁇ cm, ⁇ t: 10.42 Qcm, Re: 18.8.7 ⁇ , Os: 9.13 ⁇ ⁇ cm, Ir: 5.07 ⁇ cm, Cu: 1.6 9 ⁇ ⁇ , N i: 30.6 x ⁇ cm, S n: 12.6 ⁇ ⁇ cm, A 1: 2.67 ⁇ cm, Z n: 5.96 ⁇ cm, I n: 9 O zQ cm, Co: 6.24 Q cm, W: 5.5 ⁇ cm, Mo: 5.7 ⁇ cm, all of which are available.
  • metal particle powder A and the metal particle powder B according to the present invention are connected and self-growth between the metal particles in a paste-like metal-containing composition having fluidity when energy is applied.
  • the metal particle powder A and the metal particle powder B may be any combination of the same metal atomic species or a metal that does not hinder self-growth.
  • the combination forms a solid solution entirely.
  • there are combinations such as Ag-Au, Ag-Pd, Pd-Au, Au-Cu, and Ru_Re.
  • the combination does not form a solid solution, it is preferable to use a combination of metal species that causes surface melting on the metal particles of the metal particle powder A and easily bonds to the surface of the metal particles of the metal particle powder B.
  • the electrical resistivity may be worse than that of a single metal depending on the combination of metals, but it is possible to easily select an appropriate one through experiments and the like.
  • the conductive particle powder C according to the present invention means powder of conductive particles. It is preferable that the particles have an electrical resistivity of 150 0 ⁇ cm or less. Therefore, particles of a substance other than metal particles also belong to the category of conductive particles.
  • Examples of the conductive particle powder C include Ag, Au, Ru, Pd, Pt, Re, Os, Ir, Cu, Ni, Sn, Al, Zn, In, Co, W and Metal particles of at least one element selected from the group consisting of Mo, alloy particles containing the element, and a group consisting of In, Ru, Re, Os, Ir, and Sn And at least one conductive material selected from the group consisting of graphite, a carbon compound having a graphite structure, and a carbon nanotube. It is preferable to include at least one of carbon compounds.
  • graphite is a hexagonal hexagonal plate-like flat crystal with a six-membered carbon ring forming a layered structure, and the electrical resistivity in the layer plane is about 40 ⁇ cm. , Available.
  • the conductive carbons that are generally sold there are carbons in which a part of the graphite structure is formed in the crystal. Available.
  • the carbon nanotube has a shape in which the graphite sheet is formed into a cylindrical shape, and a boundary condition occurs structurally, and t ub e (n, m) is displayed as a chiral vector.
  • the particles are bonded to each other in the cured product irrespective of the crosslinking effect of the resin. , The bond is strong and the conductivity is high. Also, unlike the form of the particles that were previously present in the metal-containing composition, the bonded form is in a state in which the aspect ratio has changed greatly, and it is easy to form a network with each other. It also contributes to structural stability during heat cycles.
  • the effect equivalent to that of the metal-containing composition for electrical connection of an electronic device comprising the metal particle powder A and the metal particle powder B and, in some cases, the conductive particle powder C according to the present invention is the same as that of the particles.
  • metal particles and a resin, and in some cases, conductive particles are included, and the metal particles having a particle size of 20 nm or less and the particle size are not more than the total amount of the metal particles and the conductive particles.
  • the mass ratio between the metal particles of 50 nm or more and 200 nm or less is 3:97 to 90:10 by mass ratio, and the metal particles having a particle size of 20 nm or less and the particle size are 20 nm or less.
  • the metal or metal At least one new shape selected from the group consisting of a needle-like shape, a dendritic shape, a scrambled shape, and an irregularly-connected shape constituted by conductive particles can be newly generated.
  • the mass ratio of the metal particles having a particle size of 20 nm or less to the metal particles having a particle size of 50 nm or more and 200 nm or less is 3: 9 with respect to the total amount of the metal particles and the conductive particles. 7-9 When the ratio is between 0 and 10, needle-like, tree-like, ragged, irregularly connected shapes, etc. tend to grow, and metal particles having a particle size of 20 nm or less and particles having a particle size of 50 nm or more are 20 nm or more.
  • the metal particles having a size of 200 nm or less When a total of 60% by mass or more of the metal particles having a size of 200 nm or less is included, self-growth of the metal particles easily occurs, and the conductive particles having a size of more than 200 nm and 20 m or less are reduced to 40% or less. This is because if the content is less than the percentage by mass, the connection between the metal particles is promoted.
  • the total of the metal particles having a particle size of 20 nm or less, the metal particles having a particle size of 50 nm or more and 200 nm or less, and the conductive particles having a particle size of 200 nm or more and 20 m or less is:
  • the content is preferably 50 to 95% by mass in the metal-containing composition.
  • the conductive composition for electrical connection of the electronic device according to the present invention has excellent conductivity, durability, coating properties, printability, and filling properties, which are highly developed. You.
  • the particle size range of 20 nm or less and the particle size range of 50 nm to 200 nm A similar effect can be achieved even with a metal-containing composition in which a peak is present in each case, and in some cases, a peak is present in a particle size region of more than 2000 nm and not more than 20 m.
  • the metal or metal in electrically connecting the conductive composition of the electron Debaisu obtained in such a case at least one 0. 1 mm 2 of a cross section arbitrarily selected, as described above, the metal or metal At least one new shape selected from the group consisting of a needle-like shape, a dendritic shape, a scrambled shape, and an irregularly-connected shape constituted by conductive particles can be newly generated.
  • the particles existing in the particle diameter region of 20 nm or less and the particle diameter region of 500 nm or more and 200 nm or less are substantially made of metal particles.
  • the particle size distribution of the solid particles present in the metal-containing composition refers to the case where other solid particles other than metal particles and conductive particles are present.
  • the metal particles having a particle size of 20 nm or less and the particle size of 50 nm or more are used.
  • the conductive particles are Ag, Au, Ru, Pd, Pt, e, Os, Ir, Cu, Ni, Sn, A1, Zn, In, Co, "W And Mo, selected from the group consisting of metal particles of at least one element selected from the group consisting of Mo, alloy particles containing the element, and In, Ru, Re, ⁇ s, Ir, Sn. Contains at least one of the specified elements It is preferable that the conductive oxide particles include at least one of conductive oxide particles and at least one conductive carbon compound selected from the group consisting of graphite, a carbon compound having a graphite structure, and a carbon nanotube. Preferred.
  • At least one method of heating, ultraviolet irradiation, X-ray irradiation, electron beam irradiation, and ultrasonic irradiation is used.
  • a heating method a method such as hot air heating or heat radiation can be used. The heating temperature and the processing time can be appropriately determined based on the properties actually required.
  • a low-pressure UV lamp having a main wavelength of 254 nm or a high-pressure UV lamp having a main wavelength of 365 nm can be used.
  • Short wave in energy Although the long ultraviolet light has high energy, it is preferable to appropriately determine it in consideration of the irradiation time and the like.
  • a curing initiator that reacts with the ultraviolet light and cures the ultraviolet light can be added to the metal-containing composition.
  • X-rays and electron beams are also high-energy radiation, and can be used from the viewpoint of imparting energy.
  • an electron beam is preferable because heat energy can be applied to only the irradiated portion in a short time.
  • ultrasonic irradiation bubbles can be generated in the uncured metal-containing composition, and the bubbles can be cured using thermal energy at the time of cleavage.
  • the resin used in the present invention may be any resin that imparts fluidity to the metal-containing composition before the metal-containing composition is cured, and is in a state where the resins are solidified at the stage of curing.
  • a curable resin such as a resin is preferable, but a thermoplastic resin or the like may be used in combination or alone.
  • Other resins may be contained as long as they do not contradict the spirit of the present invention.
  • the resin itself is a solid, it may be dissolved in an organic solvent or a reactive diluent.
  • the curable resin at least one curable resin selected from the group consisting of an epoxy curable resin, a phenol curable resin, a melamine curable resin, and a silicone curable resin is preferable.
  • the thermoplastic resin at least one kind of thermoplastic resin selected from the group consisting of acrylic resin, polyethylene, polystyrene, polypropylene, polyvinyl chloride, polyimide, polyamide and polybenzoimidazole is preferable.
  • metal particles other than those described above, conductive particles, various additives, and the like may be coexistent, as long as the purpose of the present invention is not violated.
  • the additives include curing initiators such as energy ray curing and heat curing, curing accelerators, sensitizers, thickeners, and strength reinforcing agents.
  • the conductive composition for electrical connection of an electronic device has a great effect when used for via holes, through holes, wiring, and the like, which are electrical connection sites of an electronic device such as a circuit board.
  • (1) Filling through holes in printed wiring boards Filling, hardening, and surface polishing of the parts that connect circuits between each layer by performing hardening and surface polishing, and (2) non-through holes made by laser vias and photo vias on printed wiring boards (3) A part to connect the circuit by filling, hardening and polishing the through hole for connecting the back surface of the semiconductor, (3) A non-penetration for heat dissipation of the semiconductor (5) Printed and cured metal-containing composition on semiconductor package printed wiring board, and bump-shaped electrode sites called bumps, (6) Print Conductive conical projections formed by printing and curing on the circuit of the inner layer material in the interlayer connection of the wiring board, (7) Used as an alternative to the solder connection used when mounting printed wiring boards and semiconductor package components Ira (8) printed circuit board, printed circuit board,
  • These semiconductor devices can be manufactured, for example, as follows.
  • the printed circuit board on which the inner layer copper electrode portion is formed is irradiated with laser light, holes are drilled up to the copper electrode portion inside the printed circuit board, and the residual insulating resin, which is the printed circuit board material dissolved and evaporated by the laser light, is removed. Then, a print substrate having a non-through hole having a bottomed copper electrode portion is manufactured.
  • the non-through holes are filled with the metal-containing composition by screen printing. Thereafter, the metal-containing composition is cured by applying heat, and the surface of the printed circuit board is further polished to remove irregularities on the printed circuit board caused by the cured product. Plan.
  • copper plating is applied to the surface of the cured material portion exposed on the surface of the printed circuit board, electrodes are provided, and connection is made with the circuit portion.
  • the metal-containing composition may be screen-printed and heat-cured to form a conductive circuit (wiring).
  • Examples 1-31, 33, 35-41 are This is an example.
  • the numbers 1 to 23 in Examples 32 and 34 are examples, and the numbers 24 and 25 are comparative examples.
  • the Z value is a dimensionless number defined as the ratio of the centrifugal acceleration to the gravitational acceleration in order to compare the magnitude of the force acting on one point in the centrifugal force field. The measurements and evaluations used in the following examples were based on the following methods.
  • the powder was added to cyclohexane, and the measurement was performed by a dynamic light scattering method using laser light using Microtrack 9340-UPA manufactured by Nikkiso Co., Ltd.
  • a transmission electron microscope For observation with a transmission electron microscope, a Hitachi transmission electron microscope H-90000 was used.
  • a scanning electron microscope a scanning electron microscope S-800 manufactured by Hitachi, Ltd. was used.
  • This cured composition belongs to the category of the conductive composition according to the present invention, but this does not mean only the conductive composition according to the present invention prepared under the above conditions. As long as the requirements of the present invention described in the above embodiment are satisfied, any other cured composition belonging to the present invention belongs to the scope of the present invention.
  • Ag ultrafine particle powder as metal particle powder A was prepared as follows. In a glass container, add 1904 g of iron (II) sulfate heptahydrate and 900 ml of trinatric citrate to 100 g of distilled water 362 g of Pemuni hydrate were dissolved. To this, 625 g of a 10% aqueous solution of silver nitrate was added and stirred. Immediately after the addition, ultrafine Ag particles were formed.
  • this solution was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, the supernatant was discarded, the precipitated solid was taken out, 1000 g of distilled water was added to the solid, and the deflocculation was performed. did.
  • FIG. 14 shows the particle size distribution.
  • the observation image (500,000-fold) observed by the transmission electron microscope illustrated in FIG. 15 was also in good agreement with the average particle size.
  • Ultrafine Pd particles as metal particle powder A were prepared as follows. In a glass container, 970 g of iron (II) sulfate heptahydrate and 1800 g of trinatum citrate hydrate were dissolved in 10,000 g of distilled water. To this, 2000 g of a 1% aqueous solution of palladium (II) nitrate was added and stirred. Ten minutes after the addition, ultrafine Pd particles were formed. Thereafter, desalting and concentration treatment was performed by ultrafiltration to obtain 500 g of a 1.5% sol solution in terms of Pd solid content.
  • Au ultrafine particles as metal particle powder A were prepared as follows. In a glass container, 10.4 g of salted lauric acid and 1 g of hydroxypropyl cellulose (average molecular weight: 25,000) were dissolved in 10,000 g of distilled water. To this was added a mixture of 950 g of a 1.12% aqueous solution of potassium hydroxide and 150 g of a 36% aqueous solution of formaldehyde, followed by stirring. Immediately after the addition, ultrafine Au particles were generated.
  • the solution was heated to 40 ° C, stirred for 1 hour, and subjected to ultrafiltration for desalination and concentration to obtain 300 g of a 1.2% Au solid sol solution in terms of Au solid content. .
  • Ru ultrafine particles as metal particle powder A were prepared as follows. In a glass container, 12.5 g of ruthenium chloride trihydrate (Ru40%) was dissolved in 10,000 g of distilled water. To this, 1000 g of a 3% aqueous sodium borohydride solution was added and stirred. Immediately after the addition, ultrafine particles of Ru were formed.
  • Ru40% ruthenium chloride trihydrate
  • Ag-Pd ultrafine particles (alloy) as metal particle powder A were prepared as follows. In a glass container, 194 g of iron (II) sulfate heptahydrate and 362 g of trinatridimni hydrate were dissolved in 1000 g of distilled water. A mixed solution of 625 g of a 10% aqueous silver nitrate solution and 200 g of a 1% aqueous palladium (II) nitrate solution was added thereto, followed by stirring. Immediately after the addition, ultrafine AgPd particles were formed.
  • Ultrafine Pt particles as metal particle powder A were prepared as follows. In a glass container, 970 g of iron (II) sulfate heptahydrate and 1800 g of tri-n-trinimudium citrate were dissolved in 10,000 g of distilled water. To this, 2000 g of a 1% aqueous solution of chloroplatinic acid was added and stirred. 15 minutes after the addition, ultrafine Pt particles were formed.
  • Ultra fine particles of Re as metal particle powder A were prepared as follows. In a glass container, 10.5 g of rhenium trichloride (Re 40%) was dissolved in 10,000 g of distilled water. To this, 1000 g of a 3% aqueous sodium borohydride solution was added and stirred. Immediately after the addition, ultra fine particles of Re were generated.
  • Os ultrafine particles as metal particle powder A were prepared as follows. In a glass container, 10.5 g of osmium trichloride trihydrate (Os content: 64%) was dissolved in 10,000 g of distilled water. To this, 1000 g of a 3% aqueous sodium borohydride solution was added and stirred. Immediately after the addition, ⁇ s ultrafine particles were formed.
  • Ir ultrafine particles as metal particle powder A were prepared as follows. In a glass container Then, 10.5 g of iridium trichloride hydrate (Ir content 53%) was dissolved in 10,000 g of distilled water. To this, 1000 g of a 3% aqueous sodium borohydride solution was added and stirred. Immediately after the addition, ultra fine particles of I rr were formed.
  • Ru ultrafine particles (alloy) as metal particle powder A were prepared as follows. In a glass container, 12.5 g of ruthenium chloride trihydrate (Ru40%) and 10.4 g of salted diacid were dissolved in 10,000 g of distilled water. To this, 2000 g of a 3% sodium borohydride aqueous solution was added and stirred. Immediately after the addition, Au_Ru ultrafine particles were generated.
  • Au-Pd ultrafine particles (alloy) as metal particle powder A were prepared as follows. In a glass container, 10.4 g of chloroauric acid was dissolved in 10,000 g of distilled water. To this, 2000 g of a 1% aqueous solution of palladium (II) nitrate was added and stirred. Furthermore, 2000 g of a 3% aqueous sodium borohydride solution was added to this mixed solution, and the mixture was stirred. did. Immediately after the addition, AuPd ultrafine particles were formed.
  • Au-Ag ultrafine particles (alloy) as metal particle powder A were prepared as follows. In a glass container, 10.5 g of gold hydroxide was dissolved in 1000 g of an alkaline solution whose pH was adjusted to 13 with potassium. To this was added 200 g of a 5% aqueous solution of silver nitrate and stirred. Further, 30 g of trisodium citrate dihydrate was added to the mixed solution, followed by stirring. The solution was heated to 95 ° C and stirred, and Au-Ag ultrafine particles were formed.
  • Ultrafine In particles as metal particle powder A were prepared as follows. In a glass container, 12.5 g of ruthenium trichloride trihydrate was dissolved in 10,000 g of distilled water. This solution was heated to 90 ° C., and 2,000 g of a 3% aqueous sodium borohydride solution was added with stirring. Immediately after the addition, ultrafine In particles were formed.
  • Ag particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetylacetone were added to 10 g of Ag powder having a specific surface area of 0.6 m 2 / g, and pulverized by a sand mill for 200 minutes to obtain 90 g of an Ag suspension. The obtained suspension was centrifuged at 1000 rpm (Z value 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated. 800 g of a 3% strength solution of stearyl acid in ethanol was added to the supernatant suspension, and the mixture was stirred. The mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded. The precipitated solid was removed. This solid was dried under reduced pressure at room temperature to obtain a powder of Ag particles. The average particle size of this powder was 900 nm. Observed images observed with a scanning electron microscope were also in good agreement with this average particle size.
  • Ru particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetylacetylacetone were added to 8 g of Ru powder having a specific surface area of 0.1 m 2 Zg, and pulverized by a sand mill for 500 minutes to obtain 90 g of a Ru suspension. The obtained suspension was centrifuged at 1000 rpm (Z value: 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated. 500 g of a 3% ethanol solution of stearic acid was added to the supernatant suspension, and the mixture was stirred. The mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded. The solid was removed. The solid was dried under reduced pressure at room temperature to obtain a Ru powder. The average particle size of this powder was 1,000 nm. [Example 16]
  • Ni particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetylacetone are added to 8 g of Ni powder having a specific surface area of 0.1 An ⁇ Zg generated by decomposition of carbonynickel, and pulverized by a sand mill for 500 minutes. 90 g were obtained. The obtained suspension was centrifuged at 1000 rpm (Z value: 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated. 800 g of a 3% strength solution of stearic acid in ethanol was added to the supernatant suspension, and the mixture was stirred. The mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded. The solid was removed. The solid was dried under reduced pressure at room temperature to obtain a Ni powder. The average particle size of this powder was 1500 nm.
  • Sn particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetyl acetone were added to 8 g of Sn powder having a specific surface area of 0.3 m 2 / g produced by the atomization method, and pulverized by a sand mill for 500 minutes to obtain a Sn suspension. 90 g were obtained. The obtained suspension was subjected to centrifugation at 1000 rpm (Z value 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated.
  • A1 particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetyl acetone were added to 8 g of A1 powder having a specific surface area of 0.1 lm 2 / g produced by the atomizing method, and pulverized by a sand mill for 500 minutes. 90 g were obtained. Centrifuge the obtained suspension at l OOO r pm (Z value 110) for 3 minutes Separation treatment was performed to settle coarse particles, and the supernatant suspension was separated.
  • Zn particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetyl aceton were added to 8 g of Zn powder having a specific surface area of 0.1 lm 2 Zg produced by the atomization method, and pulverized by a sand mill for 500 minutes to obtain a Zn suspension of 90 g. Got. The obtained suspension was subjected to centrifugal separation at l OOO rpm (Z value 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated.
  • W particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetylaceton are added to 8 g of W powder having a specific surface area of 0.1 lm 2 Zg produced by the electrolytic reduction precipitation method, and pulverized by a sand mill for 500 minutes to obtain a W suspension of 90 g. Got. The obtained suspension was centrifuged at 1000 rpm (Z value: 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated.
  • In particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetylacetone are added to 8 g of In powder having a specific surface area of 0.1 lm 2 / g produced by the electrolytic deposition method, and pulverized by a sand mill for 500 minutes. 90 g of a suspension was obtained. The obtained suspension was centrifuged at 1000 rpm (Z value 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated.
  • Cu particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetylacetone are added to 8 g of Cu powder having a specific surface area of 0.2 m 2 Zg generated by the electrolytic deposition method, and pulverized by a sand mill for 500 minutes. 0 g was obtained. The resulting suspension was subjected to centrifugation at l OOO rpm (Z value 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated.
  • Co particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetylaceton are added to 8 g of Co powder having a specific surface area of 0.2 m 2 / g produced by the reductive precipitation method, and pulverized by a sand mill for 500 minutes to obtain a Co suspension. 90 g were obtained. The resulting suspension was subjected to centrifugation at l OOO rpm (Z value 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated.
  • Ag particles as conductive particle powder C were prepared as follows. 80 g of alcohol and 5 g of acetylacetone were added to 10 g of Ag powder having a specific surface area of 0.02 m 2 Zg, and pulverized by a sand mill for 30 minutes to obtain 90 g of an Ag suspension. The obtained suspension was centrifuged at 5000 rpm (Z value: 2742) for 3 minutes to sediment the particles. This precipitate was added to 800 g of a 3% ethanol solution of stearic acid, subjected to ultrasonic dispersion for 100 minutes, and then centrifuged at 5000 rpm (Z value 274 2) for 3 minutes to remove the supernatant. It was discarded and the precipitated solid was removed. The solid was dried under reduced pressure at room temperature to obtain an Ag powder of conductive particles. The average particle size of this powder was 5 m. Observed images observed with a scanning electron microscope were also in good agreement with this average particle size.
  • Ru particles as conductive particle powder C were prepared as follows. Alcohol 80 g, the ⁇ cetyl acetone 5 g was added to 1 11 flour 10 g of a specific surface area of 0.03111 2 7, for 30 minutes peptization treatment in a sand mill to obtain a 11 suspension 90. The resulting suspension was centrifuged at 5 OOO rpm (Z value 2742) for 3 minutes to sediment the particles. This precipitate is added to 800 g of a 3% ethanol solution of stearic acid, dispersed by ultrasonic waves for 100 minutes, and then centrifuged at 5000 rpm (Z value 2742) for 3 minutes. Was discarded and the precipitated solid was removed. This solid was dried under reduced pressure at room temperature to obtain Ru powder of conductive particles. The average particle size of this powder was 16 m.
  • Cu particles as conductive particle powder C were prepared as follows. 80 g of alcohol and 5 g of acetylacetone are added to 10 g of Cu powder produced by the electrolytic deposition method with a specific surface area of 0.04 m 2 Zg, deflocculated in a sand mill for 30 minutes, and 90 g of the Cu suspension Got. The resulting suspension was centrifuged at 5000 rpm (Z value 2742) for 3 minutes to sediment the particles. This precipitate is added to 800 g of a 3% ethanol solution of stearic acid, dispersed by ultrasonic waves for 100 minutes, and then centrifuged at 5000 rpm (Z value 2742) for 3 minutes. The night was discarded and the precipitated solid was removed. The solid was dried under reduced pressure at room temperature to obtain Cu powder of conductive particles. The average particle size of this powder was 20 m.
  • ITO (tin solid solution type indium oxide) particles as conductive particle powder C were prepared as follows.
  • Shii-Dani Tin (IV) anhydrous
  • 40 g of indium trichloride anhydrous
  • the mixture was added dropwise to a 1.12% aqueous potassium hydroxide solution kept at 40 ° C. to obtain a hydroxide.
  • the solution containing the hydroxide was further heated to 90 ° C. and stirred for 6 hours. By this heating treatment, the hydroxide in the solution formed an aggregated structure.
  • Impurity ions were removed by desalting from the obtained indium monotin hydroxide having an aggregated structure, followed by baking at 800 ° C. for 2 hours in a nitrogen atmosphere to obtain a tin-containing indium oxide powder. After adding 10 g of the obtained tin-containing indium oxide powder to 50 g of an aqueous nitric acid solution adjusted to pH 5.5, the mixture was pulverized with a sand mill for 5 minutes to obtain a tin-containing zinc oxide of 12% in terms of solid content. 40 g of an indium oxide-containing suspension was obtained.
  • the obtained suspension was centrifuged at 5000 rpm (Z value 2742) for 3 minutes to sediment the particles.
  • This precipitate is added to 800 g of a 3% ethanol solution of stearic acid, and the mixture is ultrasonically dispersed for 100 minutes. (Z value: 2742), centrifuged for 3 minutes, the supernatant was discarded, and the precipitated solid was taken out.
  • the solid was dried under reduced pressure at room temperature to obtain ITO powder of conductive particles. The average particle size of this powder was 2 im.
  • ATO (antimony solid solution type tin oxide) particles which are conductive particle powder C, were prepared as follows. In a glass container, 5 g of potassium antimonyl tartrate was added to 1000 g of distilled water to prepare a solution. In addition, tin chloride (IV) (anhydrous) 40 g was added to another 1000 g of distilled water to prepare a solution. After mixing the two kinds of dissolving solutions, the mixture was added dropwise to a 1.5% aqueous solution of hydroxylated water kept at 40 ° C. to obtain tin-antimony hydroxide. The solution containing the hydroxide was further heated to 90 ° C. and stirred for 6 hours. By this heating treatment, the hydroxide in the solution formed an aggregated structure.
  • Impurity ions were removed from the obtained hydroxide having an aggregated structure by desalting, and then calcined at 550 ° C. for 2 hours under an air atmosphere to obtain antimony-containing tin oxide powder.
  • the obtained suspension was centrifuged at 5000 rpm (Z value 2742) for 3 minutes to precipitate coarse particles.
  • This precipitate was added to 800 g of a 3% ethanol solution of stearic acid in ethanol, and subjected to a dispersion treatment with ultrasonic waves for 100 minutes, followed by centrifugation at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was removed.
  • the liquid was discarded, and the precipitated solid was removed.
  • the solid was dried under reduced pressure at room temperature to obtain ATO powder of conductive particles. The average particle size of this powder was 3 nm.
  • the Ru0 2 (ruthenium oxide) particles are conductive particles powder C was prepared as follows. In a glass container, add ruthenium chloride trihydrate (Ru40 %) was added to obtain a solution. A solution of ruthenium chloride was added dropwise to a 1.5% aqueous sodium hydroxide solution kept at 40 ° C to obtain a hydroxide. The solution containing the hydroxide was further heated to 90 ° C. and stirred for 6 hours. By this heating treatment, the hydroxide in the solution formed an aggregated structure.
  • Impurity ions were removed by desalting from the resulting ruthenium hydroxide having formed an aggregated structure, and then calcined at 800 ° C for 2 hours in the atmosphere to obtain ruthenium oxide powder.
  • the mixture was peptized with a sand mill for 5 minutes, and 40 g of a 3% ruthenium oxide suspension in terms of ruthenium oxide solids was added.
  • the obtained suspension was centrifuged at 5000 rpm (Z value: 2742) for 3 minutes to precipitate coarse particles.
  • This precipitate is added to 800 g of a 3% ethanol solution of stearic acid, dispersed by ultrasonication for 100 minutes, centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant is removed. Was discarded and the precipitated solid was removed. The solid was dried under reduced pressure at room temperature to obtain Ru ⁇ 2 (ruthenium oxide) powder of conductive particles. The average particle size of this powder was 10 m.
  • a carbon nanotube as the conductive particle powder C was prepared as follows. 10 g of carbon nanotube powder of carbon nanotubes (tube length 0.5 m to 25 m, diameter 0.3 to 2 nm) obtained by the arc discharge method is a 3% concentration of stearic acid in ethanol 800 g, ultrasonically dispersed for 100 minutes, centrifuged at 5000 rpm (Z value 2742) for 3 minutes, the supernatant was discarded, and the precipitated solid was removed. The solid was dried under reduced pressure at room temperature to obtain carbon nanotube powder of conductive particles. The average particle size of this powder was 19 m.
  • the conductive carbon having a graphite structure which is a conductive particle powder C, is as follows. It was prepared as follows. 100 g of conductive carbon (trade name: Ketjen Black) having a partially graphite structure in the particles is added to 800 g of a 3% -concentration ethanol solution of stearic acid, and ultrasonically added to 100 g. After the minute dispersion treatment, the mixture was centrifuged at 500 rpm (Z value: 2742) for 3 minutes, the supernatant was discarded, and the precipitated solid was taken out. The solid was dried under reduced pressure at room temperature to obtain a conductive carbon powder partially having a graphite structure. The average particle size of this powder was 3 m.
  • metal particle powder A, metal particle powder B, resin, and in some cases, conductive particle powder C were mixed at a composition ratio shown in Table 1, and roughly kneaded in an automatic mortar for 1 hour. Then, kneading with three rolls was carried out for 60 minutes, and defoaming treatment was further performed for 1 hour with a centrifugal defoaming apparatus to prepare a metal-containing composition for electrical connection of an electronic device.
  • Nos. 1 to 23 had a viscosity in the range of about 800 dPa ⁇ s and were excellent in fluidity.
  • the examples of numbers 1 to 23 show the concentration of metal particles with a particle size of 20 nm or less and the concentration of metal particles with a particle size of 50 nm or more and 200 nm or less. And the concentration of the conductive particles having a particle diameter of more than 2000 nm and not more than 20 m satisfied the requirement of the above-described embodiment 3.
  • a particle size region of 20 nm or less and a particle size of 50 nm or more A peak was present in each of the particle size regions of less than nm and, in some cases, a peak was also present in a particle size region of more than 2000 nm and less than 20 m.
  • each pair of two holes provided on a 5.0 mm thick glass epoxy board is connected by a 15 zm thick copper electrode 101.
  • a via-hole 102 having a pore size of 50 urn and a depth of 60 / im was filled with a paste of a metal-containing composition having the composition shown in Table 1 by a screen printing method, and processed according to the conditions of the above-mentioned "Preparation of a cured composition".
  • a substrate to which the curing (crosslinking) composition was applied was obtained.
  • the resistance value (initial resistance value) of the cured composition filled in the holes was measured by measuring the resistance value between the ends of the 3000 holes.
  • the daisy chain circuit board has one cycle of -65 ° C for 30 minutes and 125 ° C for 30 minutes. After 1000 cycles of the test, the resistance value between the ends of the 3000 holes was measured. (I) Switching between 65 ° C for 30 minutes and 125 ° C for 30 minutes is performed automatically, and the time required for one switch is about 3 seconds Z times. Table 2 shows the rate of change of the resistance value. It can be understood that all of the examples are more excellent in conductivity and durability than the comparative examples. The resistance of the cured composition was specifically determined as follows.
  • the resistance value of the cured composition filled in one pier hole is calculated by dividing the resistance value between the ends of the 3,000 holes by the number of holes filled with the paste (3000).
  • FIG. Needle-like, tree-like, burrow-like and irregularly connected shapes as shown in 1 to 13 were observed.
  • Figures 17-20, 29, and 30 are cross-sectional photographs taken using a Hitachi S-800 scanning electron microscope. Figure 17 was taken at 1000x, Figure 18 was taken at 10,000x, Figure 19 was taken at 5000x, and Figures 20, 29 and 30 were taken at 10000x.
  • FIG. 21 is a model diagram showing an example of the above (1), (2), and (8).
  • the conductive composition for electrical connection of an electronic device according to the present invention is a conductor circuit portion formed on the insulating substrate 16 by printing and curing the conductor circuit. Used as wiring pattern 11, wiring pattern 14 provided inside, conductive filler in through hole covered with chemical plating layer 15, and conductive filler 13 in non-through hole covered with chemical plating layer 15. Have been.
  • FIG. 22 is a model diagram showing an example of the above (3) and (4).
  • the conductive composition for electrical connection of an electronic device according to the present invention includes a through hole 23 for back surface connection, a non-through hole 24 for heat radiation, which penetrates the silicon wafer 21 and the passivation film 22. Used in
  • FIG. 23 is a model diagram showing an example of the above (5).
  • the conductive composition for electrical connection of an electronic device according to the present invention is used as a bump 32 when a semiconductor package 31 is mounted on a print substrate 34.
  • Number 33 represents a sealing material.
  • FIG. 24 is a model diagram showing an example of the above (6).
  • the conductive composition for electrical connection of an electronic device according to the present invention includes a wiring pattern 11 provided on an insulating substrate 16 and a wiring pattern 14 provided inside.
  • the conductive conical projections 41 provided between the wiring patterns 11 and 14 are used.
  • FIG. 25 is a model diagram showing an example of the above (7).
  • the conductive composition for electrical connection of an electronic device according to the present invention includes a solder connection portion 5 2 on a gold bump 5 1 when the semiconductor package 3 1 is mounted on a print substrate 3 4. It is used as a substitute material for soldering.
  • FIG. 26 is a model diagram showing an example of the above (9).
  • the conductive composition for electrical connection of an electronic device according to the present invention is composed of a wiring pattern 11 on a printed circuit board 34 and a capacitor, which is an embedded passive element in the printed circuit board 34. It is used as an electrical connection material 63 filled in a non-through hole connecting the electrode 61 with the electrode 62.
  • composition Constituent properties No. 21 No. 22 No. 23 No. 24 No. 25 Metal particle powder A In metal-containing composition 5 4 5 0 1 Average 3 ⁇ 4 ⁇ (nm) 10 12 12 10 Cumulative number of pieces 90% 14 16 16 15:00 ⁇ 1 (nm)
  • Resin Resin type Phenolic silicone e Liimide Epoxy epoxy Cured resin Cured resin and epoxy resin Resin Resin Resin Kishi tree
  • a conductive composition for electrical connection of electronic devices which is excellent in conductivity and durability, and excellent in applicability, printability, and filling property, and a conductive composition electrical connection site
  • a highly reliable electronic device that is applied to a semiconductor device can be obtained.

Abstract

A conductive composition for electrical connection of an electronic device, excellent in conduction and durability and further excellent in applicability, printability, and placeability and a high-reliability electronic device in which such a conductive composition is applied to an electrical connection portion are disclosed. The composition is prepared by a method wherein energy is given to a metal-containing composition containing a metal powder having an average particle size of 20 nm or less, a metal powder having an average particle size of 50 to 2000 nm, a resin, and, as the case may be, a conductive powder having an average particle size of 2000 nm to 20 μm, and as a result, at least one form selected from the group including an acicular, dendritic, burry, and amorphously connected forms constituted of metal or of metal and conductive particles is newly produced in at least one arbitrarily selected cross section of 0.1 mm2.

Description

明 細 書  Specification
電子デパイスの電気的接続用導電性組成物および電子デバィス 技術分野  TECHNICAL FIELD The present invention relates to a conductive composition for electrically connecting an electronic device and an electronic device.
本発明は電子デバイスの電気的接続用導電性組成物およびその導電性組成物を 用レ ^た電子デバィスに関するものである。  The present invention relates to a conductive composition for electrically connecting electronic devices and an electronic device using the conductive composition.
従来、 銀粉等の導電性粒子および樹脂を含有する金属含有組成物 (導電性べ一 ストと呼ばれることもある) を塗布、 印刷または充填し、 硬化処理して導電性組 成物となし、 プリント配線板、 電子部品等の電気回路 (配線導体) やコンタクト ホール充填部材を形成する方法が一般的に知られている。 (たとえば、 「電子材 料」 , 工業調査会, 1 9 9 4年 1 0月号, p . 4 2— 4 6参照。 ) 。 Conventionally, a metal-containing composition (sometimes called a conductive base) containing conductive particles such as silver powder and a resin is applied, printed or filled, and cured to form a conductive composition. A method of forming an electric circuit (wiring conductor) such as a wiring board and an electronic component and a contact hole filling member is generally known. (See, for example, “Electronic Materials,” Industrial Research Council, October 1998, p. 42-46.)
このような金属含有組成物を用いて形成される電気的接続部位では、 導電性組 成物中で銀粒子等の金属粒子間に物理的接触が生じ、 形成された導電パスによつ て導電性が発現している。 このため、 導電性を上げるためには導電パスの形成が 不可欠であり、 導電パスの形成の点から、 金属含有組成物中の導電フイラ一の比 率を上げることや、 導電フィラーの形状を扁平状にし、 フイラ一間の接触をより 大きくする試みが知られている (たとえば、 特開平 9一 9 2 0 2 6号公報参照。 ) ,  In an electrical connection portion formed using such a metal-containing composition, physical contact occurs between metal particles such as silver particles in the conductive composition, and the conductive path is formed by the formed conductive path. Sex has developed. For this reason, the formation of conductive paths is indispensable in order to increase the conductivity.In terms of forming the conductive paths, it is necessary to increase the ratio of the conductive filler in the metal-containing composition and to reduce the shape of the conductive filler. Attempts to increase the contact between the fillers have been known (see, for example, Japanese Patent Application Laid-Open No. Hei 9-92026).
しかしながら、 一般に金属含有組成物は粉体である導電性フィラーと樹脂、 希 釈剤等とによって構成されており、 導電フイラ一比率を上げすぎると、 樹脂、 希 釈剤量が低下し、 金属含有組成物自体が流動性を失つたり粉状となつたりするた め、 塗布、 印刷、 充填が困難になる。 また、 扁平状ゃ樹枝形状の導電性フィラー は球形状に比べて夕ップ密度が低下するため、 金属含有組成物における添加濃度 は、 球形状の導電性フィラーに比べて低下する。 更に、 回路形成部分が微細にな ればなるほど金属含有組成物自体に対する流動性の要求は高度になるため、 この ような欠点は電子デバイスの小型化の動向とともにより顕著になってきている。 一方、 金属含有組成物を加熱処理等して得られる導電性組成物よりなる回路や コンタクトホール中の電気的接続部位について、 劣化の抑制、 すなわち耐久性の 向上が望まれている。 回路ゃコンタクトホール中の導電性組成物よりなる電気的 接続部位の劣化としては、 導電性組成物中の構成材料の熱膨張係数が一様でなく 、 熱膨張 Z収縮を繰り返すうちに、 電気的接続部位内に微細なクラックが生じ、 導電パスが切断されることが知られている。 However, in general, the metal-containing composition is composed of a conductive filler which is a powder, a resin, a diluent, and the like.If the ratio of the conductive filler is excessively increased, the amount of the resin and the diluent decreases, and the metal-containing composition decreases. The composition itself loses fluidity or becomes powdery, making it difficult to apply, print and fill. In addition, since the flat-tree-shaped conductive filler has a lower density than the spherical conductive filler, the additive concentration in the metal-containing composition is lower than that of the spherical conductive filler. Further, as the circuit forming portion becomes finer, the fluidity requirement for the metal-containing composition itself becomes higher, and such a drawback has become more remarkable with the trend of miniaturization of electronic devices. On the other hand, it is desired to suppress deterioration, that is, to improve the durability of a circuit made of a conductive composition obtained by subjecting a metal-containing composition to heat treatment or the like and an electrical connection site in a contact hole. As for the deterioration of the electrical connection portion made of the conductive composition in the circuit ゃ contact hole, the thermal expansion coefficient of the constituent material in the conductive composition is not uniform, and the thermal expansion is repeated as the Z contraction is repeated. It is known that a fine crack is generated in a connection portion and a conductive path is cut.
導電性組成物は導電フィラー同士を樹脂により固め、 連結させているものであ り、 導電フイラ一間の物理的接触により導電パスが形成されている。 代表的導電 性フィラーの材料である銅および銀の熱膨張係数が、 それぞれ 17X 10— 6°C一1 、 19X 10— 6°〇-]であり、 一般に使用されているエポキシ樹脂の熱膨張係数が 50 X 1 0— 6〜1 0 0 X 1 0— 6°C— 1であることを考慮すると、 熱膨張 Z収縮のヒ 一トサイクルに対し、 フィラーの物理的接触だけに依存する従来の金属含有組成 物では、 本質的に耐久性の向上については限界があるといえる。 The conductive composition solidifies and connects the conductive fillers with a resin, and a conductive path is formed by physical contact between the conductive fillers. Thermal expansion coefficient of copper and silver as the material of the representative conductive filler are each 17X 10- 6 ° C one 1, 19X 10- 6 ° 〇-], the thermal expansion coefficient of the epoxy resins which are commonly used There considering that a 50 X 1 0- 6 ~1 0 0 X 1 0- 6 ° C- 1, to human one preparative cycles of thermal expansion Z contraction, prior to rely only on physical contact of the filler It can be said that there is essentially a limit in improving the durability of a metal-containing composition.
本発明は、 導電性と耐久性とにすぐれ、 かつ、 塗布性、 印刷性、 充填性にも優 れた電子デバィスの電気的接続用導電性組成物および、 この導電性組成物電気的 接続部位に適用してなる信頼性の高い電子デバイスを提供することを目的とする 本発明のさらに他の目的および利点は、 以下の説明から明らかになるであろう  The present invention relates to a conductive composition for electrical connection of electronic devices, which is excellent in conductivity and durability, and is also excellent in applicability, printability, and filling property, and an electrically connected portion of the conductive composition. Further objects and advantages of the invention, which are to provide a highly reliable electronic device applied to the present invention, will be apparent from the following description.
発明の開示 Disclosure of the invention
本発明の第 1の態様は、 平均粒径が 2 Onm以下の金属粒子粉 (以下、 「平均 粒径が 2 Onm以下の金属粒子粉」 を 「金属粒子粉 A」 ともいう) と平均粒径が 50 nm以上 2000 nm以下の金属粒子粉 (以下、 「平均粒径が 50 nm以上 200 Onm以下の金属粒子粉」 を 「金属粒子粉 B」 ともいう) と樹 S旨と、 場合 によってはさらに平均粒径が 2000 nmを超え 20 以下の導電性粒子粉 ( 以下、 「平均粒径が 2000 nmを超え 20 以下の導電性粒子粉」 を 「導電 性粒子粉 C」 ともいう) とを含む金属含有組成物にエネルギー付与してなる、 電 子デバイスの電気的接続用導電性組成物であつて、 The first aspect of the present invention relates to a metal particle powder having an average particle size of 2 Onm or less (hereinafter, “metal particle powder having an average particle size of 2 Onm or less” is also referred to as “metal particle powder A”). Metal powder having a particle size of 50 nm or more and 2000 nm or less (hereinafter, “metal particle powder having an average particle diameter of 50 nm or more and 200 Onm or less” is also referred to as “metal particle powder B”), Metals containing conductive particle powder having an average particle size of more than 2000 nm and not more than 20 (hereinafter, “conductive particle powder having an average particle size of more than 2000 nm and not more than 20” is also referred to as “conductive particle powder C”) By applying energy to the composition A conductive composition for electrical connection of a child device,
当該導電性組成物の任意に選択した 0 . 1 mm2の断面の少なくとも一つに、 金属または金属と導電性粒子とによって構成される針状形状、 樹枝形状、 いがぐ り形状および不定形連結形状からなる群から選ばれた少なくとも一つの形状が 1 個以上新たに生じている、 0 arbitrarily selected in the conductive composition. To at least one 1 mm 2 cross-section, needle-like shape composed of a metal or metals and electrically conductive particles, dendritic shape, Igagu Ri shapes and irregular At least one new shape selected from the group consisting of connected shapes is newly generated,
電子デバィスの電気的接続用導電性組成物である。 It is a conductive composition for electrical connection of electronic devices.
本発明の第 2の態様は、 金属含有組成物中の金属粒子粉 Aの濃度を a質量%、 金属粒子粉 Bの濃度を b質量%、 導電性粒子粉 Cの濃度を c質量%とした場合、 a : bが 3 : 9 7〜 9 0 : 1 0の間にあり、  In the second embodiment of the present invention, the concentration of the metal particle powder A in the metal-containing composition is a mass%, the concentration of the metal particle powder B is b mass%, and the concentration of the conductive particle powder C is c mass%. If a: b is between 3:97 to 90:10
( a + b ) : cが 1 0 0 : 0〜6 0 : 4 0の間にあり、 ,  (a + b): c is between 100: 0 to 60: 40,
5 0≤ ( a + b + c ) ≤ 9 5である、  5 0 ≤ (a + b + c) ≤ 9 5;
上記態様 1に記載の導電性組成物である。 2 is a conductive composition according to the first embodiment.
本発明の第 3の態様は、 金属粒子と樹脂と、 場合によっては導電性粒子とを含 み、 金属粒子と導電性粒子との総量に対し、 粒径が 2 0 nm以下の金属粒子と粒 径が 5 0 nm以上 2 0 0 0 n m以下の金属粒子との量割合が質量比で 3 : 9 7〜 9 0 : 1 0の間にあり、 粒径が 2 0 nm以下の金属粒子と粒径が 5 0 n m以上 2 0 0 0 n m以下の金属粒子とを合計で 6 0〜1 0 0質量%の割合で含み、 2 0 0 0 nmを超え 2 0 以下の導電性粒子を 4 0〜 0質量%の割合で含む金属含有 組成物にエネルギー付与してなる、 電子デバイスの電気的接続用導電性組成物で あって、  A third aspect of the present invention is directed to a third aspect of the present invention, which includes metal particles, a resin, and, in some cases, conductive particles, and has a particle size of 20 nm or less based on the total amount of the metal particles and the conductive particles. The mass ratio between the metal particles having a diameter of 50 nm or more and 200 nm or less is 3:97 to 90:10 by mass ratio, and the metal particles having a particle size of 20 nm or less and the particles are present. Metal particles having a diameter of 50 nm or more and 200 nm or less are contained in a total amount of 60 to 100% by mass, and conductive particles having a diameter of more than 200 nm and 20 or less are 40 to 100%. What is claimed is: 1. A conductive composition for electrical connection of an electronic device, wherein energy is imparted to a metal-containing composition containing 0 mass%.
当該導電性組成物の任意に選択した 0 . 1 mm2の断面の少なくとも一つに、 金属または金属と導電性粒子とによって構成される針状形状、 樹枝形状、 いがぐ り形状および不定形連結形状からなる群から選ばれた少なくとも一つの形状が 1 個以上新たに生じている、 0 arbitrarily selected in the conductive composition. To at least one 1 mm 2 cross-section, needle-like shape composed of a metal or metals and electrically conductive particles, dendritic shape, Igagu Ri shapes and irregular At least one new shape selected from the group consisting of connected shapes is newly generated,
電子デバィスの電気的接続用導電性組成物である。 It is a conductive composition for electrical connection of electronic devices.
本発明の第 4の態様は、 金属粒子と樹脂と、 場合によっては導電性粒子とを含 む金属含有組成物において、 当該金属含有組成物中に存在する固体粒子の動的光 散乱による測定法による粒度分布のうち、 2 0 nm以下の粒径領域と 5 0 n m以 上 2000 nm以下の粒径領域とにそれぞれピークが存在し、 場合によってはさ らに 2000 nmを超え 20 zm以下の粒径領域にピークが存在する金属含有組 成物にエネルギー付与してなる、 電子デバイスの電気的接続用導電性組成物であ つて、 According to a fourth aspect of the present invention, in a metal-containing composition containing metal particles, a resin, and, in some cases, conductive particles, a method for measuring solid particles present in the metal-containing composition by dynamic light scattering Of the particle size distribution below 20 nm and 50 nm Energy is applied to a metal-containing composition in which a peak exists in the upper particle size region of 2000 nm or less, and in some cases, a peak exists in a particle size region of more than 2000 nm and 20 zm or less. A conductive composition for electrical connection of electronic devices,
当該導電性組成物の任意に選択した 0. 1 mm2の断面の少なくとも一つに、 金属または金属と導電性粒子とによって構成される針状形状、 樹枝形状、 いがぐ り形状および不定形連結形状からなる群から選ばれた少なくとも一つの形状が 1 個以上新たに生じている、 At least one arbitrarily selected in 0. 1 mm 2 cross-section of the conductive composition, needle-like shape composed of a metal or metals and electrically conductive particles, dendritic shape, Igagu Ri shapes and irregular At least one new shape selected from the group consisting of connected shapes is newly generated,
電子デバイスの電気的接続用導電性組成物である。 It is a conductive composition for electrical connection of an electronic device.
本発明の第 5の態様は、 前記金属含有組成物において、  According to a fifth aspect of the present invention, in the metal-containing composition,
金属粒子粉 Aと金属粒子粉 Bとが、 それぞれ、 Ag, Au, Ru, Pd, P t , Re, O s , I r, Cu, N i、 Sn、 A 1 , Z n, I n, Co, Wおよび M oからなる群から選ばれた少なくともいずれか 1種の元素の金属粒子と当該元素 を含む合金粒子との少なくともいずれか一つを含み、  Ag, Au, Ru, Pd, Pt, Re, Os, Ir, Cu, Ni, Sn, A1, Zn, In, Co , W and Mo, including at least one of metal particles of at least one element selected from the group consisting of and alloy particles containing the element,
導電性粒子粉 Cが存在する場合には当該導電性粒子粉 Cが、  When the conductive particle powder C is present, the conductive particle powder C
Ag, Au, Ru, Pd, P t, Re, O s , I r, Cu, N i、 Sn、 A 1 , Zn, I n, Co, Wおよび Moからなる群から選ばれた少なくともいずれか 1種の元素の金属粒子と、  Ag, Au, Ru, Pd, Pt, Re, Os, Ir, Cu, Ni, Sn, A1, Zn, In, Co, W and at least one selected from the group consisting of Mo Metal particles of the species element,
当該元素を含む合金粒子と、  Alloy particles containing the element,
I n, Ru, Re, Os, I r, S nからなる群から選ばれた少なくともいず れか 1種の元素を含む導電性酸化物粒子と、  Conductive oxide particles containing at least one element selected from the group consisting of In, Ru, Re, Os, Ir, and Sn;
グラフアイト、 グラフアイ卜構造を有するカーボン化合物および力一ボンナノ チューブからなる群から選ばれた少なくともいずれか 1種の導電性カーボン化合 物と、  At least one kind of a conductive carbon compound selected from the group consisting of graphite, a carbon compound having a graphite structure, and carbon nanotubes;
の少なくともいずれか一つを含む、 上記態様 1または 2に記載の導電性組成物で ある。 3. The conductive composition according to the above aspect 1 or 2, comprising at least one of the following.
本発明の第 6の態様は、 前記金属含有組成物において、  A sixth aspect of the present invention, in the metal-containing composition,
粒径が 20 nm以下の金属粒子と粒径が 50 nm以上 2000 nm以下の金属 粒子とが、 それぞれ、 Ag, Au, u, Pd, P t, Re, Os, I r, Cu , N i、 S n、 A 1 , Z n, I n, Co, Wおよび M oからなる群から選ばれた 少なくともいずれか 1種の元素の金属粒子と当該元素を含む合金粒子との少なく ともいずれか一つを含み、 Metal particles with a particle size of 20 nm or less and metals with a particle size of 50 nm or more and 2000 nm or less The group consisting of Ag, Au, u, Pd, Pt, Re, Os, Ir, Cu, Ni, Sn, A1, Zn, In, Co, W, and Mo, respectively At least one of metal particles of at least one element selected from the group consisting of metal particles and alloy particles containing the element,
2000 nmを超え 20; m以下の導電性粒子が存在する場合には当該導電性 粒子が、  If conductive particles of more than 2000 nm and 20; m or less are present,
Ag, Au, Ru, Pd, P t , Re, Os, I r, Cu, N i、 Sn、 A 1 , Z n, I n, Co, Wおよび Moからなる群から選ばれた少なくともいずれか 1種の元素の金属粒子と、  Ag, Au, Ru, Pd, Pt, Re, Os, Ir, Cu, Ni, Sn, A1, Zn, In, Co, W and at least one selected from the group consisting of Mo Metal particles of the species element,
当該元素を含む合金粒子と、  Alloy particles containing the element,
I n, Ru, Re, Os, I r, S nからなる群から選ばれた少なくともいず れか 1種の元素を含む導電性酸化物粒子と、  A conductive oxide particle containing at least one element selected from the group consisting of In, Ru, Re, Os, Ir, and Sn;
グラフアイト、 グラフアイト構造を有するカーボン化合物およびカーボンナノ. チューブからなる群から選ばれた少なくともいずれか 1種の導電性カーボン化合 物と、  At least one kind of conductive carbon compound selected from the group consisting of graphite, a carbon compound having a graphite structure, and a carbon nano tube;
の少なくともいずれか一つを含む、 上記態様 3または 4に記載の導電性組成物で ある。 5. The conductive composition according to the above aspect 3 or 4, comprising at least one of the following.
本発明の第 7の態様は、 樹脂が、 エポキシ系硬化性樹脂、 フエノール系硬ィ匕性 樹脂、 メラミン系硬化性樹脂、 シリコーン系硬化性樹脂、 アクリル樹脂、 ポリエ チレン、 ポリスチレン、 ポリプロピレン、 ポリ塩化ビニル、 ポリイミド、 ポリア ミドおよびポリべンゾイミダゾールからなる群から選ばれた少なくとも 1種の樹 脂とを含む、 上記態様 1〜 6のいずれかに記載の導電性組成物である。  According to a seventh aspect of the present invention, the resin is an epoxy-based curable resin, a phenol-based curable resin, a melamine-based curable resin, a silicone-based curable resin, an acrylic resin, polyethylene, polystyrene, polypropylene, or polychlorinated resin. The conductive composition according to any one of Embodiments 1 to 6, further comprising at least one resin selected from the group consisting of vinyl, polyimide, polyamide, and polybenzoimidazole.
本発明の第 8の態様は、 上記態様 1〜 7のいずれかに記載の導電性組成物を、 ビアホール、 スルーホールおよび配線からなる群から選ばれた少なくとも 1種の 電気的接続部位に適用してなる電子デバィスである。 図面の簡単な説明  According to an eighth aspect of the present invention, the conductive composition according to any one of the above aspects 1 to 7 is applied to at least one kind of electrical connection site selected from the group consisting of a via hole, a through hole, and a wiring. Electronic device. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 針状形状の金属結合体を例示するモデル図である。 図 2は、 針状形状の金属結合体を例示する他のモデル図である。 FIG. 1 is a model diagram illustrating a needle-shaped metal composite. FIG. 2 is another model diagram illustrating a needle-shaped metal composite.
図 3は、 針状形状の金属結合体を例示する他のモデル図である。 FIG. 3 is another model diagram illustrating a needle-shaped metal composite.
図 4は、 針状形状の金属結合体を例示する他のモデル図である。 FIG. 4 is another model diagram illustrating a needle-shaped metal composite.
図 5は、 針状形状の金属結合体を例示する他のモデル図である。 FIG. 5 is another model diagram illustrating a needle-shaped metal composite.
図 6は、 針状形状の金属結合体を例示する他のモデル図である。 FIG. 6 is another model diagram illustrating a needle-shaped metal composite.
図 7は、 樹枝形状の金属結合体を例示するモデル図である。 FIG. 7 is a model diagram illustrating a tree-shaped metal combination.
図 8は、 樹枝形状の金属結合体を例示する他のモデル図である。 FIG. 8 is another model diagram illustrating a tree-shaped metal combination.
図 9は、 いがぐり形状の金属結合体を例示するモデル図である。 FIG. 9 is a model diagram illustrating a ragged metal combination.
図 1 0は、 いがぐり形状の金属結合体を例示する他のモデル図である。 FIG. 10 is another model diagram illustrating a ragged metal combination.
図 1 1は、 いがぐり形状の金属結合体を例示する他のモデル図である。 FIG. 11 is another model diagram illustrating a ragged metal combination.
図 1 2は、 いがぐり形状の金属結合体を例示する他のモデル図である。 FIG. 12 is another model diagram illustrating a ragged metal combination.
図 1 3は、 不定形連結形状の金属結合体を例示する他のモデル図である。 FIG. 13 is another model diagram illustrating a metal joint having an irregular connection shape.
図 1 4は、 金属粒子粉 Aとしての A g微粒子粉の粒度分布図である。 FIG. 14 is a particle size distribution diagram of Ag fine particle powder as metal particle powder A.
図 1 5は、 金属粒子粉 Aとしての A g微粒子粉の透過型電子顕微鏡による観察像 の写真である。 FIG. 15 is a photograph of a transmission electron microscope image of Ag fine particle powder as metal particle powder A.
図 1 6は、 2 0 nm以下の粒径領域と 5 0 nm以上 2 0 0 0 nm以下の粒径領域 と、 さらに 2 0 0 0 nmを超え 2 0 以下の粒径領域とにピークが存在してい る様子を示す粒度分布図である。 Figure 16 shows peaks in the particle size range below 20 nm, the particle size range from 500 nm to 200 nm, and the particle size range above 200 nm to 20 nm. FIG. 4 is a particle size distribution diagram showing the appearance of the process.
図 1 7は、 本発明に係る電子デバイスの電気的接続用導電性組成物の断面写真で ある。 FIG. 17 is a cross-sectional photograph of the conductive composition for electrical connection of an electronic device according to the present invention.
図 1 8は、 本発明に係る電子デバイスの電気的接続用導電性組成物の他の断面写 真である。 FIG. 18 is another cross-sectional photograph of the conductive composition for electrical connection of an electronic device according to the present invention.
図 1 9は、 本発明に係る電子デバイスの電気的接続用導電性組成物の他の断面写 真である。 FIG. 19 is another cross-sectional photograph of the conductive composition for electrical connection of an electronic device according to the present invention.
図 2 0は、 本発明に係る電子デバイスの電気的接続用導電性組成物の他の断面写 真である。 FIG. 20 is another cross-sectional photograph of the conductive composition for electrical connection of an electronic device according to the present invention.
図 2 1は、 本発明に係る電子デバイスの電気的接続用導電性組成物の使用例を示 すモデル図である。 図 2 2は、 本発明に係る電子デバイスの電気的接続用導電性組成物の他の使用例 を示すモデル図である。 FIG. 21 is a model diagram showing an example of use of the conductive composition for electrical connection of an electronic device according to the present invention. FIG. 22 is a model diagram showing another usage example of the conductive composition for electrical connection of an electronic device according to the present invention.
図 2 3は、 本発明に係る電子デバイスの電気的接続用導電性組成物の他の使用例 を示すモデル図である。 FIG. 23 is a model diagram showing another example of use of the conductive composition for electrical connection of an electronic device according to the present invention.
図 2 4は、 本発明に係る電子デバイスの電気的接続用導電性組成物の他の使用例 を示すモデル図である。 FIG. 24 is a model diagram showing another usage example of the conductive composition for electrical connection of an electronic device according to the present invention.
図 2 5は、 本発明に係る電子デバイスの電気的接続用導電性組成物の他の使用例 を示すモデル図である。 FIG. 25 is a model diagram showing another usage example of the conductive composition for electrical connection of an electronic device according to the present invention.
図 2 6は、 本発明に係る電子デバイスの電気的接続用導電性組成物の他の使用例 を示すモデル図である。 FIG. 26 is a model diagram showing another usage example of the conductive composition for electrical connection of an electronic device according to the present invention.
図 2 7は、 硬化組成物の評価用基板の側面モデル図である。 FIG. 27 is a side view model diagram of a substrate for evaluation of a cured composition.
図 2 8は、 硬化組成物の評価用基板の平面モデル図である。 FIG. 28 is a plan model diagram of a substrate for evaluation of a cured composition.
図 2 9は、 本発明に係る電子デバイスの電気的接続用導電性組成物の他の断面写 真である。 FIG. 29 is another cross-sectional photograph of the conductive composition for electrical connection of an electronic device according to the present invention.
図 3 0は、 本発明に係る電子デバイスの電気的接続用導電性組成物の他の断面写 真である。 発明を実施するための最良の形態 FIG. 30 is another cross-sectional photograph of the conductive composition for electrical connection of an electronic device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の実施の形態を図、 表、 実施例等を使用して説明する。 なお、 これらの図、 表、 実施例等および説明は本発明を例示するものであり、 本発明の 範囲を制限するものではない。 本発明の趣旨に合致する限り他の実施の形態も本 発明の範疇に属し得ることは言うまでもない。 図中、 同一の要素については同一 の番号を使用する場合がある。  Hereinafter, embodiments of the present invention will be described with reference to the drawings, tables, and examples. It should be noted that these figures, tables, examples, and the like, and the description are only illustrative of the present invention, and do not limit the scope of the present invention. It goes without saying that other embodiments can also be included in the scope of the present invention as long as they conform to the gist of the present invention. In the drawings, the same element may be denoted by the same number.
本発明において使用する金属含有組成物は、 金属粒子粉 Aと金属粒子粉 Bと樹 脂とを含むペースト状の組成物である。  The metal-containing composition used in the present invention is a paste-like composition containing metal particle powder A, metal particle powder B, and resin.
本発明において使用する金属含有組成物は、 適度な粘性を有するペーストとす ることができ、 5 0 i m以下の直径の微細なビアホールなどにも十分充填が可能 になり、 塗布、 印刷等により、 線幅が 2 0 m以下の微細な回路配線も良好に形 成可能になる。 金属含有組成物の粘度としては、 たとえば、 取り扱い性、 塗布性 、 印刷性、 充填性の良好な 10〜2000 dP a ' sのペーストを容易に作製す ることができる。 The metal-containing composition used in the present invention can be a paste having an appropriate viscosity, and can be sufficiently filled in a fine via hole having a diameter of 50 im or less. Fine circuit wiring with a line width of 20 m or less Becomes possible. With respect to the viscosity of the metal-containing composition, for example, a paste of 10 to 2000 dPa's having good handleability, coatability, printability, and filling property can be easily produced.
本発明において使用する金属含有組成物は、 ビアホールへの充填、 配線パター ンの形成後、 エネルギーを付与し、 硬化性樹脂を硬化させ、 熱可塑性樹脂であれ ばそれを軟化または溶融させて導電性組成物とするが、 その際粒径が 20 nm以 下の金属粒子に表面融解が生じる。 なお、 このレベルの微細粒子では、 粒度分布 がシャープであるため、 実際には、 金属粒子粉 Aに表面融解が生じると考えても 不都合はない。  The metal-containing composition used in the present invention, after filling the via hole and forming the wiring pattern, imparts energy to cure the curable resin, and if it is a thermoplastic resin, softens or melts it to form a conductive material. In this case, surface melting occurs in metal particles with a particle size of 20 nm or less. It should be noted that since fine particles of this level have a sharp particle size distribution, there is no inconvenience even if it is considered that the metal particle powder A actually causes surface melting.
なお、 以下においては、 金属含有組成物に含まれる樹脂として、 主に、 硬化性 樹脂または硬化性樹脂と熱可塑性樹脂との組み合わせについて説明したが、 本発 明に係る金属含有組成物に含まれる樹脂としては、 熱可塑性樹脂のみの場合もあ り得る。 このように熱可塑性樹脂のみを使用する場合には、 本発明の趣旨に反し ない範囲で、 たとえば 「硬化」 は 「固化」 に、 「硬化組成物」 は 「固化組成物」 に読み替えることになる。  In the following, as the resin contained in the metal-containing composition, mainly, a curable resin or a combination of a curable resin and a thermoplastic resin has been described, but the resin contained in the metal-containing composition according to the present invention is included. The resin may be a thermoplastic resin alone. In the case where only the thermoplastic resin is used, for example, "cured" is replaced with "solidified" and "cured composition" is replaced with "solidified composition" within a range not contrary to the gist of the present invention. .
この時、 その融解部分の近傍に金属粒子粉 Bがあると、 エネルギーが付与され た場合、 金属粒子間の連結が加速度的に生じ、 金属粒子粉 Bを巻き込みながら金 属結合体が自己成長を始める。 この自己成長機構は、 金属粒子粉 Aの金属粒子の 表面エネルギーが安定な状態になった段階で終了する。  At this time, if there is metal particle powder B in the vicinity of the melted portion, when energy is applied, connection between the metal particles occurs at an accelerated rate, and the metal binder self-grows while entraining the metal particle powder B. start. This self-growth mechanism ends when the surface energy of the metal particles of the metal particle powder A becomes stable.
金属粒子の表面融解は粒子表面元素の異常格子振動によって起こり、 平均粒径 が小さく、 表面原子比率が高ければ高いほど表面溶融温度が低下する。 表面原子 比率 (粒子全体の原子のうちで粒子表面に存在する原子の比率) については、 計 算上、 直径 10 nmの粒子で 20 %、 直径 20 nmの粒子で 10 %、 直径 7 O n mの粒子で 3%以下となる。 この影響で、 銀の場合、 バルク体の融点は 961°C であるが、 直径 10 nmの粒子の場合 160 °C前後で表面溶融が観測される。 (  The surface melting of metal particles is caused by anomalous lattice vibration of the particle surface elements. The smaller the average particle size and the higher the surface atomic ratio, the lower the surface melting temperature. The surface atomic ratio (the ratio of the atoms present on the particle surface to the total number of atoms in the whole particle) is calculated to be 20% for a particle with a diameter of 10 nm, 10% for a particle with a diameter of 20 nm, and 7 O nm for a particle with a diameter of 20 nm. Less than 3% for particles. Due to this effect, the melting point of the bulk material is 961 ° C for silver, but surface melting is observed at around 160 ° C for particles with a diameter of 10 nm. (
Ge l S c i enc e Te c hno l o gy) 」 , (オランダ) , クルーヮ 一アカデミックパブリツシャ一ズ (Κ 1 uwe r Ac ademi c P u b 1 i s h e r s ) , 2 0 0 1年, 第 2 2巻, p . 1 5 1 - 1 6 6参照。 ) 。 (Gel S ci en c e Te c hno lo gy) ”, (Netherlands), Crew ヮ Academic Publishers (Κ 1 uwe r Ac ademi c Pub 1) ishers), 2001, Vol. 2, p. 151-166. ).
このとき、 金属含有組成物中に金属粒子粉 Bがなく、 金属粒子粉 Aと樹脂との みで金属含有組成物を調製した場合には、 その中に存在する金属粒子が微細なた め、 粒子間の連結が不充分となることが多い。 また、 粒子間の金属結合を起こり やすくするため、 金属粒子粉 Aと溶媒とで流動性の高いペースト状の金属含有組 成物を調製した場合には、 粒子間の連結は改良されるものの、 溶媒の沸点以上ま で加熱する必要があり、 工程コストが高くなり、 かつ、 他電子部品の品質低下を 招く恐れが大きい。 このような挙動は、 たとえば微細 A g粒子で容易に観察する ことができる。  At this time, if the metal-containing composition does not contain the metal particle powder B and the metal-containing composition is prepared only with the metal particle powder A and the resin, the metal particles present therein are fine, The connection between the particles is often insufficient. In addition, when a paste-like metal-containing composition having high fluidity is prepared with metal particle powder A and a solvent in order to facilitate metal bonding between particles, the connection between particles is improved, It is necessary to heat the solvent to a temperature higher than the boiling point, which increases the process cost and greatly reduces the quality of other electronic components. Such behavior can be easily observed, for example, with fine Ag particles.
更に、 金属粒子粉 Aと平均粒径が 2 0 0 0 n mを超える大きな金属粒子粉と樹 脂とのみでペースト状の金属含有組成物を調製した場合には、 金属粒子粉 Aの表 面溶融が生じた後に、 平均粒径が 2 0 0 0 n mを超える大きさの金属粒子粉を巻 き込みながらの自己成長が生じにくい。 これは、 微細な金属粒子の表面溶融が、 表面に存在する原子の異常格子振動に依存しているためであり、 微細金属粒子に 表面溶融が生じた後、 平均粒径が 2 0 0 0 n mを超える大きさの大粒子粉に結合 し、 表面原子比率が著しく低下し、 溶融現象が停止するからである。  Furthermore, when a paste-like metal-containing composition was prepared using only the metal particle powder A, the large metal particle powder having an average particle diameter exceeding 2000 nm, and the resin, the surface melting of the metal particle powder A After the occurrence of self-growth, self-growth while rolling in metal particle powder having an average particle size exceeding 2000 nm is unlikely to occur. This is because the surface melting of the fine metal particles depends on the abnormal lattice vibration of the atoms present on the surface.After the surface melting of the fine metal particles occurs, the average particle size becomes 200 nm. This is because they bind to large-particle powders having a size exceeding that, the surface atomic ratio is significantly reduced, and the melting phenomenon stops.
本発明において使用する金属含有組成物では、 微細金属粒子近傍に金属粒子粉 Bの粒子を配することにより、 微細金属粒子が表面溶融した後、 金属粒子粉 Bに 結合した段階でもその結合体自体が未だ十分に大きくないため、 表面エネルギー 的に安定になっておらず、 更にその近傍に存在する粒子を巻き込みながら自己成 長を続けることができると考えられる。  In the metal-containing composition used in the present invention, by arranging the particles of the metal particle powder B in the vicinity of the fine metal particles, the surface itself of the fine metal particles is melted, and then at the stage of bonding to the metal particle powder B, the combined body itself Is still not sufficiently large, so the surface energy is not stable, and it is thought that self-growth can be continued while entraining particles existing in the vicinity.
自己成長のメ力ニズムは必ずしも明らかではないが、 粒子サイズによるナノォ ーダ一粒子の表面融解の効果、 溶融部分の空間的な濃度勾配、 およびそれに伴う 温度の局部的勾配に起因すると考えられる。 従って、 形状的には等方的な形状で あるよりも異方的形状となりやすく、 結果として、 針状形状、 樹枝形状等の形状 になると考えられる。 このようにして、 生成した導電性組成物の断面を見ると、 球状粒子のみを使用した場合でも、 針状形状、 樹枝形状、 いがぐり形状および不 定形連結形状等が新たに生じたことが観察されるようになる。 針状形状、 樹枝形 状、 いがぐり形状おょぴ不定形連結形状等が新たに生じたことは、 金属粒子粉 B として針状形状、 樹枝形状、 いがぐり形状等を有するものを使用した場合にも、 導電性組成物の断面における形状が、 金属含有組成物中における形状とは異なる ことで容易に知ることができる。 Although the mechanism of self-growth is not always clear, it is thought to be due to the effect of the surface melting of the nano-order particles by particle size, the spatial concentration gradient of the molten part, and the accompanying local gradient of temperature. Therefore, the shape is likely to be anisotropic rather than isotropic, and as a result, it is considered to be a needle-like shape, a tree-like shape, or the like. Looking at the cross section of the conductive composition thus formed, it was observed that even when only spherical particles were used, needle-like, tree-like, burrowing, and irregularly-connected shapes were newly generated. Become so. Needle-like, dendritic The new shape of the conductive composition, the shape of the conductive composition, the shape of the conductive composition, etc. It can be easily known that the shape in the cross section is different from the shape in the metal-containing composition.
なお、 このような針状形状、 樹枝形状、 いがぐり形状および不定形連結形状等 は粒子間の連結の結果である。 従って、 ヒートサイクルを受けた場合にも、 電気 的接続部位内に微細なクラックが生じたり、 導電パスが切断されたりすることが 防止できることになる。  Note that such needle-like shapes, tree-like shapes, burrow shapes, and irregularly-connected shapes are the results of connection between particles. Therefore, even when subjected to a heat cycle, it is possible to prevent the occurrence of minute cracks in the electrical connection portion and the breakage of the conductive path.
ここで、 針状形状は、 図 1〜6に例示するように、 棒状または針状の形状 1を 意味する。 図 5, 6に示すような幅広のものも存在する。  Here, the needle-like shape means a rod-like or needle-like shape 1 as illustrated in FIGS. Some are wide as shown in Figs.
樹枝形状は、 折れ曲がった棒状または針状の形状や、 図 7, 8に例示するよう に 3つ以上に分岐した形状 2を意味する。  The dendritic shape means a bent rod-like or needle-like shape, or a shape 2 branched into three or more as illustrated in Figs.
いがぐり形状 3は、 図 9〜1 2に例示するように、 固まり形状から、 棒状また は針状の形状 1が、 ひとつ以上突き出している形状を意味する。 なお、 上記図中 には空隙 4が存在する場合もある。  As illustrated in FIGS. 9 to 12, the burrow shape 3 refers to a shape in which one or more rod-shaped or needle-shaped shapes 1 protrude from a solid shape. It should be noted that voids 4 may be present in the above-mentioned drawings.
図 1 3に示すように、 不定形連結形状 5は、 針状形状、 樹枝形状、 いがぐり形 状等が連結して生じた形状と思われる。  As shown in FIG. 13, the irregular connection shape 5 is considered to be a shape formed by connecting needle-like shapes, tree-like shapes, and burrow shapes.
針状形状、 樹枝形状の折れ曲がり形状または分岐形状、 いがぐり形状における 突き出し形状のアスペクト比が 3以上であることが好ましい。 図 1〜1 2に示す 、 L 1と W 1との比がアスペクト比の例である。  It is preferable that the protruding shape in the needle shape, the dendritic bent shape or the branch shape, and the protruding shape in the burrow shape has an aspect ratio of 3 or more. As shown in FIGS. 1 to 12, the ratio between L1 and W1 is an example of the aspect ratio.
長さ (L ) は一様ではないため、 アスペクト比は、 そのもっとも大きな部位の 値を採用している。 図 8の L l, L 2のように長さ (L ) が複数存在すると思わ れる場合は、 大きい方を採用する。  Since the length (L) is not uniform, the value of the largest aspect ratio is used for the aspect ratio. If there are multiple lengths (L) such as Ll and L2 in Fig. 8, the larger one is adopted.
幅 (W) についても一様ではないため、 図中の W 2に示すような端部分の幅や W 3に示すような微細な突起の幅ではない、 もっとも大きな部位の値を採用する 本発明において使用する金属含有組成物には、 さらに導電性粒子粉 Cを含める ことができる。 導電性粒子粉 Cがあると、 金属含有組成物の硬化中に、 金属粒子粉 Aと金属粒 子粉 Bとの自己成長機構によって形成される金属結合体によって、 導電性粒子粉 Cの粒子間を繋ぐことができるので、 導電パスの形成の点から好ましい。 導電性 粒子粉 C自体は自己成長をする必要がないため、 金属、 導電性酸化物、 導電性力 —ボン化合物等を使用することができる。 なお、 本発明において、 粒度分布や平 均粒径は動的光散乱による測定法によって求められたものである。 Since the width (W) is not uniform, the value of the largest part is adopted, which is not the width of the end portion as shown by W2 in the figure or the width of the fine protrusion as shown by W3. The metal-containing composition used in the above may further contain conductive particle powder C. When the conductive particle powder C is present, during the curing of the metal-containing composition, the metal binder formed by the self-growth mechanism of the metal particle powder A and the metal particle powder B causes the particles of the conductive particle powder C Can be connected, which is preferable in terms of forming a conductive path. Since the conductive particle powder C itself does not need to grow by itself, metals, conductive oxides, and conductive compounds can be used. In the present invention, the particle size distribution and the average particle size are determined by a dynamic light scattering measuring method.
本発明に係る、 電子デバイスの電気的接続用導電性組成物では、 任意に選択し た 0. 1mm2の断面の少なくとも一つに、 上記したような、 金属または金属と 導電性粒子とによって構成される針状形状、 樹枝形状、 いがぐり形状および不定 形連結形状からなる群から選ばれた少なくとも一つの形状が 1個以上新たに生じ ている。 この結果、 本発明 おいて使用する金属含有組成物に熱処理等のエネル ギー付与を施して得られる電子デバィスの電気的接続用導電性組成物は、 導電性 と耐久性とにすぐれたものとなる。 According to the present invention, the electrical connection for the conductive composition of the electronic device configurations, at least one of the cross-section of 0. 1 mm 2 arbitrarily selected, as described above, by the metal or metals and electrically conductive particles At least one new shape selected from the group consisting of a needle-like shape, a tree-like shape, a burrow shape, and an irregular connection shape is newly generated. As a result, the conductive composition for electrical connection of electronic devices obtained by applying energy such as heat treatment to the metal-containing composition used in the present invention has excellent conductivity and durability. .
金属含有組成物中の金属粒子粉 Aの濃度を a質量%、 金属粒子粉 Bの濃度を b 質量%、 導電性粒子粉 Cの濃度を c質量%とした場合、 a : bが 3 : 97〜90 : 10の間にあり、 (a + b) : cが 100 : 0〜60 : 40の間にあり、. 50 ≤ (a + b + c) ≤95であることが好ましい。 (a + b) : c力 s、100 : 0〜 60 : 40の間にあると上記自己成長が容易に起こりやすく、 cが 0 (ゼロ) で ない場合には金属粒子間の連結の促進が期待でき、 a: bが 3 : 97〜90 : 1 0の間にあると、 針状形状、 樹枝形状、 いがぐり形状、 不定形連結形状等が成長 しゃすく、 50≤ (a + b + c) ≤95にあると、 針状形状、 樹枝形状、 いがぐ り形状、 不定形連結形状等の数が多く、 導電性を確保しやすくなるからである。 上記の条件を満足すると、 本発明に係る電子デバイスの電気的接続用導電性組成 物の特徴である、 優れた導電性、 耐久性、 塗布性、 印刷性、 充填性がより高度に 発揮される。  When the concentration of the metal particle powder A in the metal-containing composition is a mass%, the concentration of the metal particle powder B is b mass%, and the concentration of the conductive particle powder C is c mass%, a: b is 3:97. It is preferable that (a + b): c is between 100: 0 and 60:40, and that 50.ltoreq. (A + b + c) .ltoreq.95. (A + b): c force s, 100: 0 to 60: 40, the self-growth tends to occur easily, and if c is not 0 (zero), the connection between metal particles is promoted. If a: b is between 3:97 and 90:10, needle-like, tree-like, ragged, irregularly connected shapes, etc. will grow. 50≤ (a + b + c) If it is ≤95, the number of needle-like, tree-like, scrambled, irregularly connected shapes, etc. is large, and it is easy to secure conductivity. When the above conditions are satisfied, excellent conductivity, durability, coatability, printability, and filling properties, which are characteristics of the conductive composition for electrical connection of an electronic device according to the present invention, are more highly exhibited. .
金属粒子粉 Aと金属粒子粉 Bとは、 それぞれ、 Ag, Au, Ru, Pd, P t , Re, Os, I r, Cu, N i、 Sn、 A 1 , Zn, I n, Co, Wおよび M oからなる群から選ばれた少なくともいずれか 1種の元素の金属粒子と当該元素 を含む合金粒子との少なくともいずれか一つを含むことが好ましい。 The metal particle powder A and the metal particle powder B are respectively Ag, Au, Ru, Pd, Pt, Re, Os, Ir, Cu, Ni, Sn, A1, Zn, In, Co, W And metal particles of at least one element selected from the group consisting of It is preferable to include at least one of alloy particles containing:
これらの元素の金属の電気抵抗率 (比抵抗) は、 Ag : 1. 6 3 /Ω cm, A u: 2. 2 Ω cm, Ru : 7. 3 7 cm, Ρ d: 1 0. 5 5 /i Ω cm, Ρ t : 1 0. 42 Q cm, Re : 1 8. 7 Ω οτη, O s : 9. 1 3 ^ Ω cm, I r : 5. 0 7 Ω cm, Cu : 1. 6 9 Ω ΟΠΙ, N i : 3 0. 6 x Ω cm, S n : 1 2. 6 χΩ cm, A 1 : 2. 6 7 μ Ω cm, Z n : 5. 9 6 Ω cm, I n : 9. O zQ cm, Co : 6. 24 Q cm, W : 5. 5 Ω cm, Mo : 5. 7 Ω c mと低い値を示し、 いずれも利用可能である。  The electrical resistivity (resistivity) of these elements is as follows: Ag: 1.63 / Ωcm, Au: 2.2 Ωcm, Ru: 7.37 cm, Ρd: 10.55 / iΩcm, Ρt: 10.42 Qcm, Re: 18.8.7Ωοτη, Os: 9.13 ^ Ωcm, Ir: 5.07Ωcm, Cu: 1.6 9 Ω ΟΠΙ, N i: 30.6 x Ω cm, S n: 12.6 χ Ω cm, A 1: 2.67 μΩ cm, Z n: 5.96 Ω cm, I n: 9 O zQ cm, Co: 6.24 Q cm, W: 5.5 Ω cm, Mo: 5.7 Ω cm, all of which are available.
本発明に係る金属粒子粉 Aと金属粒子粉 Bとは、 エネルギー付与時に流動性を 有するペースト状の金属含有組成物中で、 金属粒子同士が連結自己成長をするこ とが重要である。  It is important for the metal particle powder A and the metal particle powder B according to the present invention to be connected and self-growth between the metal particles in a paste-like metal-containing composition having fluidity when energy is applied.
金属の接合等の観点より、 金属粒子粉 Aと金属粒子粉 Bとは同一金属原子種も しくは自己成長を阻害しにくい金属の組合せであればよい。 同一元素種の場合特 に問題はなく、 異なる元素種の組合せであったとしても、 全率固溶体を形成する 組合せであれば好ましい。 たとえば、 Ag— Au, Ag-P d, P d-Au, A u-Cu, Ru_R e等の組合せがある。  From the viewpoint of metal bonding, etc., the metal particle powder A and the metal particle powder B may be any combination of the same metal atomic species or a metal that does not hinder self-growth. There is no particular problem in the case of the same element type, and even if a combination of different element types is used, it is preferable that the combination forms a solid solution entirely. For example, there are combinations such as Ag-Au, Ag-Pd, Pd-Au, Au-Cu, and Ru_Re.
また、 全率固溶体を形成しない組合せであっても、 金属粒子粉 Aの金属粒子に 表面融解 生じ、 金属粒子粉 Bの金属粒子の表面に結合しやすい金属種の組み合 わせであれば好ましい。  In addition, even if the combination does not form a solid solution, it is preferable to use a combination of metal species that causes surface melting on the metal particles of the metal particle powder A and easily bonds to the surface of the metal particles of the metal particle powder B.
表面溶解した金属種が他の金属粒子へ結合する場合拡散機構を経ることになる 。 拡散機構によってある金属が異なる金属表面に移行するか否かは吸着エネルギ 一等から計算できることが知られている (たとえば、 「サーフェスサイエンス ( Su r f a c e S c i e n c e) 」 , エルスヴイエアサイエンスパブリッシャ ーズ (E l s e v i e r S c i e n c e Pu b l i s h e r s) , 1 9 9 2 年, 第 2 6 0巻, p. 1 1 6- 1 2 8 参照。 ) 。 そのため、 これらに基づいて 適宜決定することができる。  When the surface-dissolved metal species binds to other metal particles, it will undergo a diffusion mechanism. It is known that whether or not a metal migrates to a different metal surface due to the diffusion mechanism can be calculated from the adsorption energy and the like (for example, “Surface Science”, Elsve Air Science Publishers ( E lsevier Science Publishers), 1992, Vol. 260, p. 116-128. Therefore, it can be determined appropriately based on these.
合金粒子の場合、 金属の組合せにより金属単体の場合より電気抵抗率が悪化す る場合もあり得るが、 実験等で適切なものを容易に選択することが可能である。 たとえば、 Au— Ag (Ag l O質量%) : 1 0. 4 Ω cm, Au— Cu ( Cu 2 0質量%) : 14. 2 μ,Ω οτη, Au-N i (N i 5質量%) : 1 3. 2 Ω cm, Au-P d (P d40質量%) : 3 2 Ω cm, Ag— Cu (C u 2 0質量%) : 2. 1 cm, P t— N i (N i l O質量%) : 2 7 Ω cm, P t -P d (? 012 0質量%) : 2 8 cm等を挙げることができる。 In the case of alloy particles, the electrical resistivity may be worse than that of a single metal depending on the combination of metals, but it is possible to easily select an appropriate one through experiments and the like. For example, Au—Ag (AgI O mass%): 10.4 Ωcm, Au—Cu (Cu20 mass%): 14.2 μ, Ω οτη, Au-Ni (Ni 5 mass%) : 13.2 Ωcm, Au-Pd (Pd40 mass%): 32 Ωcm, Ag—Cu (Cu20 mass%): 2.1 cm, Pt—Ni (NilO Mass%): 27 Ωcm, Pt-Pd (? 0120 mass%): 28 cm.
本発明に係る導電性粒子粉 Cは、 導電性を有する粒子の粉を意味する。 粒子の 電気抵抗率が 1 5 0 Α Ω cm以下であることが好ましい。 従って金属粒子以外の 物質の粒子も導電性粒子の範疇に属する。  The conductive particle powder C according to the present invention means powder of conductive particles. It is preferable that the particles have an electrical resistivity of 150 0Ωcm or less. Therefore, particles of a substance other than metal particles also belong to the category of conductive particles.
導電性粒子粉 Cとしては、 Ag, Au, Ru, P d, P t, R e, O s, I r , Cu, N i、 S n、 A l, Zn, I n, C o, Wおよび M oからなる群から選 ばれた少なくともいずれか 1種の元素の金属粒子と、 当該元素を含む合金粒子と 、 I n, Ru, R e, O s, I r, S nからなる群から選ばれた少なくともいず れか 1種の元素を含む導電性酸化物粒子と、 グラフアイト、 グラフアイト構造を 有するカーボン化合物およびカーボンナノチューブからなる群から選ばれた少な くともいずれか 1種の導電性カーボン化合物との少なくともいずれか一つを含む ことが好ましい。  Examples of the conductive particle powder C include Ag, Au, Ru, Pd, Pt, Re, Os, Ir, Cu, Ni, Sn, Al, Zn, In, Co, W and Metal particles of at least one element selected from the group consisting of Mo, alloy particles containing the element, and a group consisting of In, Ru, Re, Os, Ir, and Sn And at least one conductive material selected from the group consisting of graphite, a carbon compound having a graphite structure, and a carbon nanotube. It is preferable to include at least one of carbon compounds.
導電性酸化物の場合、 組成、 結晶構造、 酸素欠損状態などに起因し、 固有の定 まった電気抵抗率はないが、 一般には以下の値が知られている (たとえば、 津田 椎雄, 「電気伝導性酸化物」 , 増補第 3版, 裳華房, 1 98 7年 7月 2 5日, p . 9— 1 1および 「透明導電膜の技術」 , 第 1版, オーム社発行, 1 9 90年 3 月 3 0日, p. 5 1 参照。 ) 。 たとえば S nがドープされたインジウム酸化物 の I TO : 43 xQ cm、 酸化錫: 7 5 Ω c m、 酸化ルテニウム: 40 Ω c m、 酸化オスミウム: 60 Ω cm、 酸化イリジウム: 50 Ω cm、 酸化レニ ゥム: 1 0 0 Ω cmであり、 いずれも利用可能である。  In the case of conductive oxides, there is no specific fixed electrical resistivity due to the composition, crystal structure, oxygen deficiency, etc., but the following values are generally known (for example, Shizuo Tsuda, “ Electrically Conductive Oxide ", Third Augmented Edition, Shokabo, July 25, 1977, p. 9-11, and" Techniques for Transparent Conductive Conducting Films ", 1st edition, published by Ohmsha, 1 March 30, 1990, p. 51.) For example, Sn-doped indium oxide ITO: 43 x Q cm, tin oxide: 75 Ωcm, ruthenium oxide: 40 Ωcm, osmium oxide: 60 Ωcm, iridium oxide: 50 Ωcm, lenium oxide System: 100 Ωcm, all of which are available.
導電性カーボン化合物のうち、 グラフアイトは六方晶系の 6角板状の扁平な結 晶で炭素 6員環が層状構造を形成しており、 層面内の電気抵抗率は 40 Ω cm 程度であり、 利用可能である。 また一般に販売されている導電性カーボンのうち でもグラフアイト構造が結晶中に 1部形成されているものがあり、 導電性が高く 利用可能である。 Among the conductive carbon compounds, graphite is a hexagonal hexagonal plate-like flat crystal with a six-membered carbon ring forming a layered structure, and the electrical resistivity in the layer plane is about 40 Ωcm. , Available. In addition, among the conductive carbons that are generally sold, there are carbons in which a part of the graphite structure is formed in the crystal. Available.
カーボンナノチューブは前記グラフアイトのシートが筒状に形成された形状を しており、 構造上境界条件が発生し、 t u b e ( n , m) :キラルベクトル表示 The carbon nanotube has a shape in which the graphite sheet is formed into a cylindrical shape, and a boundary condition occurs structurally, and t ub e (n, m) is displayed as a chiral vector.
(グラフエンシートからの構造を規程した場合の表示方法) において, 2 n +m = 3となる場合、 金属的性質を有するため好ましい。 また、 形状的にアスペクト 比が著しく高いため、 導電パスの形成の点からも利用可能である。 (Display method when the structure from the graph ensheet is specified) In (2n + m = 3), it is preferable because it has metallic properties. In addition, since the aspect ratio is extremely high in shape, it can also be used in terms of forming conductive paths.
従来の導電性組成物が導電性フィラーの物理的な接触で導電パスを形成してい たのと異なり、 本発明では粒子が硬化物中で樹脂の架橋固着作用によらず、 相互 に結合した状態を形成しているため、 結合が強固であり、 導電性も高い。 また、 その結合した形態が、 予め金属含有組成物中に存在していた粒子の形態と異なり 、 アスペクト比が大きく変化した状態であり、 相互にネットワークを形成しやす いため、 熱膨張/収縮等のヒートサイクル時の構造安定性にも寄与する。  Unlike the conventional conductive composition, which forms a conductive path by physical contact of the conductive filler, in the present invention, the particles are bonded to each other in the cured product irrespective of the crosslinking effect of the resin. , The bond is strong and the conductivity is high. Also, unlike the form of the particles that were previously present in the metal-containing composition, the bonded form is in a state in which the aspect ratio has changed greatly, and it is easy to form a network with each other. It also contributes to structural stability during heat cycles.
なお、 本発明に係る、 金属粒子粉 Aと金属粒子粉 Bと、 場合によってはさらに 導電性粒子粉 Cとを含む電子デバィスの電気的接続用金属含有組成物と同等の効 果は、 粒子の混合状態で考えた場合、 金属粒子と樹脂と、 場合によっては導電性 粒子とを含み、 金属粒子と導電性粒子との総量に対し、 粒径が 2 0 n m以下の金 属粒子と粒径が 5 0 n m以上 2 0 0 0 n m以下の金属粒子との量割合が質量比で 3 : 9 7〜9 0 : 1 0の間にあり、 粒径が 2 0 n m以下の金属粒子と粒径が 5 0 n m以上 2 0 0 0 n m以下の金属粒子とを合計で 6 0〜1 0 0質量%の割合で含 み、 2 0 0 0 n mを超え 2 0 / m以下の導電性粒子を 4 0〜 0質量%の割合で含 む金属含有組成物で実現できることが判明した。  The effect equivalent to that of the metal-containing composition for electrical connection of an electronic device comprising the metal particle powder A and the metal particle powder B and, in some cases, the conductive particle powder C according to the present invention is the same as that of the particles. When considered in a mixed state, metal particles and a resin, and in some cases, conductive particles are included, and the metal particles having a particle size of 20 nm or less and the particle size are not more than the total amount of the metal particles and the conductive particles. The mass ratio between the metal particles of 50 nm or more and 200 nm or less is 3:97 to 90:10 by mass ratio, and the metal particles having a particle size of 20 nm or less and the particle size are 20 nm or less. A total of 60 to 100% by mass of metal particles of not less than 50 nm and not more than 200 nm is contained, and conductive particles of not less than 200 nm and not more than 20 / m are included. It has been found that this can be realized with a metal-containing composition containing で 0% by mass.
すなわち、 このような場合に得られる電子デバイスの電気的接続用導電性組成 物においても、 任意に選択した 0 . 1 mm2の断面の少なくとも一つに、 上記し たような、 金属または金属と導電性粒子とによって構成される針状形状、 樹枝形 状、 いがぐり形状および不定形連結形状からなる群から選ばれた少なくとも一つ の形状が 1個以上新たに生じるようにすることができる。 That is, in electrically connecting the conductive composition of the electronic device obtained in such a case, at least one 0. 1 mm 2 of a cross section arbitrarily selected, as described above, the metal or metal At least one new shape selected from the group consisting of a needle-like shape, a dendritic shape, a scrambled shape, and an irregularly-connected shape constituted by conductive particles can be newly generated.
金属粒子と導電性粒子との総量に対し、 粒径が 2 0 n m以下の金属粒子と粒径 が 5 0 n m以上 2 0 0 0 n m以下の金属粒子との量割合が質量比で 3 : 9 7〜9 0 : 1 0の間にあると、 針状形状、 樹枝形状、 いがぐり形状、 不定形連結形状等 が成長しやすく、 粒径が 2 0 n m以下の金属粒子と粒径が 5 0 n m以上 2 0 0 0 n m以下の金属粒子とを合計で 6 0質量%以上含むと、 金属粒子の自己成長が容 易に起こりやすくなり、 2 0 0 0 n mを超え 2 0 m以下の導電性粒子が 4 0質 量%以下の割合で存在すると、 金属粒子間の連結が促進されるからである。 なお 、 粒径が 2 0 nm以下の金属粒子と粒径が 5 0 n m以上 2 0 0 0 nm以下の金属 粒子と 2 0 0 0 nmを超え 2 0 m以下の導電性粒子との合計は、 金属含有組成 物中、 5 0〜9 5質量%であることが好ましい。 The mass ratio of the metal particles having a particle size of 20 nm or less to the metal particles having a particle size of 50 nm or more and 200 nm or less is 3: 9 with respect to the total amount of the metal particles and the conductive particles. 7-9 When the ratio is between 0 and 10, needle-like, tree-like, ragged, irregularly connected shapes, etc. tend to grow, and metal particles having a particle size of 20 nm or less and particles having a particle size of 50 nm or more are 20 nm or more. When a total of 60% by mass or more of the metal particles having a size of 200 nm or less is included, self-growth of the metal particles easily occurs, and the conductive particles having a size of more than 200 nm and 20 m or less are reduced to 40% or less. This is because if the content is less than the percentage by mass, the connection between the metal particles is promoted. The total of the metal particles having a particle size of 20 nm or less, the metal particles having a particle size of 50 nm or more and 200 nm or less, and the conductive particles having a particle size of 200 nm or more and 20 m or less is: The content is preferably 50 to 95% by mass in the metal-containing composition.
上記の条件を満足すると、 本発明に係る電子デバイスの電気的接続用導電性組 成物の特徴である、 優れた導電性、 耐久性、 塗布性、 印刷性、 充填性が高度に発 揮される。  When the above conditions are satisfied, the conductive composition for electrical connection of the electronic device according to the present invention has excellent conductivity, durability, coating properties, printability, and filling properties, which are highly developed. You.
また、 金属含有組成物中に存在する固体粒子の粒度分布の観点から見ると、 金 属粒子と樹脂と、 場合によっては導電性粒子とを含む電子デバィスの電気的接続 用金属含有組成物において、 当該金属含有組成物中に存在する固体粒子の動的光 散乱による測定法による粒度分布のうち、 2 0 nm以下の粒径領域と 5 0 n m以 上 2 0 0 0 nm以下の粒径領域とに、 それぞれピークが存在し、 場合によっては さらに 2 0 0 0 n mを超え 2 0 m以下の粒径領域にピークが存在する金属含有 組成物でも同様の効果を実現することができる。  Further, from the viewpoint of the particle size distribution of the solid particles present in the metal-containing composition, in the metal-containing composition for electrical connection of an electronic device including metal particles, resin, and, in some cases, conductive particles, In the particle size distribution of the solid particles present in the metal-containing composition measured by dynamic light scattering, the particle size range of 20 nm or less and the particle size range of 50 nm to 200 nm A similar effect can be achieved even with a metal-containing composition in which a peak is present in each case, and in some cases, a peak is present in a particle size region of more than 2000 nm and not more than 20 m.
すなわち、 このような場合に得られる電子デバィスの電気的接続用導電性組成 物においても、 任意に選択した 0 . 1 mm2の断面の少なくとも一つに、 上記し たような、 金属または金属と導電性粒子とによって構成される針状形状、 樹枝形 状、 いがぐり形状および不定形連結形状からなる群から選ばれた少なくとも一つ の形状が 1個以上新たに生じるようにすることができる。 That is, in electrically connecting the conductive composition of the electron Debaisu obtained in such a case at least one 0. 1 mm 2 of a cross section arbitrarily selected, as described above, the metal or metal At least one new shape selected from the group consisting of a needle-like shape, a dendritic shape, a scrambled shape, and an irregularly-connected shape constituted by conductive particles can be newly generated.
なお、 2 0 nm以下の粒径領域と 5 0 n m以上 2 0 0 0 n m以下の粒径領域に 存在する粒子としては、 実質的に金属粒子からなっていることが好ましい。  In addition, it is preferable that the particles existing in the particle diameter region of 20 nm or less and the particle diameter region of 500 nm or more and 200 nm or less are substantially made of metal particles.
ここで、 金属含有組成物中に存在する固体粒子の粒度分布とは、 金属粒子、 導 電性粒子以外に他の固体状の粒子が存在する場合には、 そのような固体粒子を含 めて、 全固体粒子としての粒度分布を意味する。 20 nm以下の粒径領域と 50 nm以上 2000 nm以下の粒径領域とに、 そ れぞれピークが存在すると、 針状形状、 樹枝形状、 いがぐり形状、 不定形連結形 状等が成長しやすく、 また金属粒子の自己成長が容易に起こりやすくなり、 さら に 2000 nmを超え 20 以下の粒径領域にピークが存在すると、 金属粒子 間の連結が促進されるからである。 このような条件を満足する場合にも、 本発明 に係る電子デバイスの電気的接続用導電性組成物の特徴である、 優れた導電性、 耐久性、 塗布性、 印刷性、 充填性が高度に発揮される。 Here, the particle size distribution of the solid particles present in the metal-containing composition refers to the case where other solid particles other than metal particles and conductive particles are present. Mean particle size distribution as all solid particles. If peaks are present in the particle size region of 20 nm or less and in the particle size region of 50 nm or more and 2000 nm or less, needle-like, tree-like, ragged, irregularly connected shapes, etc. are likely to grow. In addition, self-growth of metal particles is likely to occur easily, and if a peak exists in a particle size region exceeding 2000 nm and not more than 20, the connection between metal particles is promoted. Even when such a condition is satisfied, the conductive composition for electrical connection of the electronic device according to the present invention has a high level of excellent conductivity, durability, coatability, printability, and filling property. Be demonstrated.
なお、 このような場合、 金属粒子粉 Aと金属粒子粉 Bと、 場合によっては導電 性粒子粉 Cとの組み合わせのときと同様、 粒径が 20 nm以下の金属粒子と粒径 が 50 nm以上 2000 nm以下の金属粒子とが、 それぞれ、 Ag, Au, Ru , Ρ d, Ρ t , Re, Os, I r, C u, N i、 Sn、 A l, Z n, I n, Co , Wおよび Moからなる群から選ばれた少なくともいずれか 1種の元素の金属粒 子と当該元素を含む合金粒子との少なくともいずれか一つを含み、 2000 nm を超え 20 /im以下の導電性粒子が存在する場合には当該導電性粒子が、 Ag, Au, Ru, P d, P t , e, Os, I r, Cu, N i、 Sn、 A 1 , Z n, I n, Co, "Wおよび Moからなる群から選ばれた少なくともいずれか 1種の元 素の金属粒子と、 当該元素を含む合金粒子と、 I n, Ru, Re, 〇s, I r, S nからなる群から選ばれた少なくともいずれか 1種の元素を含む導電性酸化物 粒子と、 グラフアイト、 グラフアイト構造を有するカーボン化合物およびカーボ ンナノチューブからなる群から選ばれた少なくともいずれか 1種の導電性カーボ ン化合物との少なくともいずれか一つを含むことが好ましい。  In such a case, as in the case of the combination of the metal particle powder A and the metal particle powder B and, in some cases, the conductive particle powder C, the metal particles having a particle size of 20 nm or less and the particle size of 50 nm or more are used. Ag, Au, Ru, Ρd, Ρt, Re, Os, Ir, Cu, Ni, Sn, Al, Zn, In, Co, W And at least one of metal particles of at least one element selected from the group consisting of Mo and alloy particles containing the element, and conductive particles of more than 2000 nm and not more than 20 / im. If present, the conductive particles are Ag, Au, Ru, Pd, Pt, e, Os, Ir, Cu, Ni, Sn, A1, Zn, In, Co, "W And Mo, selected from the group consisting of metal particles of at least one element selected from the group consisting of Mo, alloy particles containing the element, and In, Ru, Re, 〇s, Ir, Sn. Contains at least one of the specified elements It is preferable that the conductive oxide particles include at least one of conductive oxide particles and at least one conductive carbon compound selected from the group consisting of graphite, a carbon compound having a graphite structure, and a carbon nanotube. Preferred.
本発明に係る電子デバイスの電気的接続用導電性組成物を作るためのエネルギ 一付与方法としては、 加熱、 紫外線照射、 X線照射、 電子線照射、 超音波照射の いずれか少なくとも一種の方法を使用することができる。 加熱方法としては、 温 風加熱、 熱輻射等の方法が利用可能である。 加熱温度および処理時間は実際に求 められる特性に基づいて適宜決定できる。  As the energy applying method for producing the conductive composition for electrical connection of an electronic device according to the present invention, at least one method of heating, ultraviolet irradiation, X-ray irradiation, electron beam irradiation, and ultrasonic irradiation is used. Can be used. As a heating method, a method such as hot air heating or heat radiation can be used. The heating temperature and the processing time can be appropriately determined based on the properties actually required.
紫外線照射方法としては、 254 nmを主波長とする低圧 UVランプや 365 nmを主波長とする高圧 UVランプの使用が可能である。 エネルギー的には短波 長の紫外線が高エネルギーであるが、 照射時間等との兼ね合いで適宜決定するこ とが好ましい。 また、 紫外線エネルギーを樹脂成分の硬化によりょく利用するた め、 紫外線に反応し、 硬化させる硬化開始剤を金属含有組成物に添加することも 可能である。 X線、 電子線も高エネルギー放射線であり、 エネルギー付与の観点 より使用可能である。 特に電子線の場合、 照射部のみ短時間で熱エネルギーを付 与できるため好ましい。 また、 超音波照射により金属含有組成物内部での粒子お よび樹脂を振動させ、 熱エネルギーを発生させることで硬化させることも可能で ある。 超音波照射の場合、 未硬化の金属含有組成物中で気泡を発生させ、 この気 泡の開裂時の熱エネルギーを利用して硬化させることも可能である。 As the UV irradiation method, a low-pressure UV lamp having a main wavelength of 254 nm or a high-pressure UV lamp having a main wavelength of 365 nm can be used. Short wave in energy Although the long ultraviolet light has high energy, it is preferable to appropriately determine it in consideration of the irradiation time and the like. In addition, since the ultraviolet energy is used for curing the resin component, a curing initiator that reacts with the ultraviolet light and cures the ultraviolet light can be added to the metal-containing composition. X-rays and electron beams are also high-energy radiation, and can be used from the viewpoint of imparting energy. In particular, an electron beam is preferable because heat energy can be applied to only the irradiated portion in a short time. It is also possible to vibrate the particles and the resin inside the metal-containing composition by irradiating ultrasonic waves and generate heat energy to cure the composition. In the case of ultrasonic irradiation, bubbles can be generated in the uncured metal-containing composition, and the bubbles can be cured using thermal energy at the time of cleavage.
本発明に用いる樹脂は、 金属含有組成物が硬化する前段階で金属含有組成物に 流動性を付与し、 硬化終了段階で樹脂同士が固化した状態であるものであればよ く、 熱硬化性樹脂等の硬化性樹脂が好ましいが、 熱可塑性樹脂等を併用または単 独に使用してもよい。 本発明の趣旨に反しない限り他の樹脂を含んでいてもよい 。 また樹脂自体が固体の場合、 有機溶媒、 反応性希釈剤中に溶解したものでもよ い。  The resin used in the present invention may be any resin that imparts fluidity to the metal-containing composition before the metal-containing composition is cured, and is in a state where the resins are solidified at the stage of curing. A curable resin such as a resin is preferable, but a thermoplastic resin or the like may be used in combination or alone. Other resins may be contained as long as they do not contradict the spirit of the present invention. When the resin itself is a solid, it may be dissolved in an organic solvent or a reactive diluent.
硬化性樹脂としては、 エポキシ系硬化性樹脂、 フエノール系硬化性樹脂、 メラ ミン系硬化性樹脂およびシリコーン系硬化性樹脂からなる群から選ばれた少なく とも 1種の硬化性樹脂が好ましい。 熱可塑性樹脂としては、 アクリル樹脂、 ポリ エチレン、 ポリスチレン、 ポリプロピレン、 ポリ塩化ビニル、 ポリイミド、 ポリ アミドおよびポリべンゾイミダゾ一ルからなる群から選ばれた少なくとも 1種の 熱可塑性樹脂が好ましい。  As the curable resin, at least one curable resin selected from the group consisting of an epoxy curable resin, a phenol curable resin, a melamine curable resin, and a silicone curable resin is preferable. As the thermoplastic resin, at least one kind of thermoplastic resin selected from the group consisting of acrylic resin, polyethylene, polystyrene, polypropylene, polyvinyl chloride, polyimide, polyamide and polybenzoimidazole is preferable.
本発明において使用する金属含有組成物には、 本発明の趣旨に反しない限り、 上記以外の金属粒子や導電性粒子、 各種の添加剤等を共存させてもよい。 添加剤 等としては、 エネルギー線硬化や熱硬化等の硬化開始剤や硬化促進剤、 増感剤、 増粘剤、 強度補強剤等を挙げることができる。  In the metal-containing composition used in the present invention, metal particles other than those described above, conductive particles, various additives, and the like may be coexistent, as long as the purpose of the present invention is not violated. Examples of the additives include curing initiators such as energy ray curing and heat curing, curing accelerators, sensitizers, thickeners, and strength reinforcing agents.
本発明に係る電子デバイスの電気的接続用導電性組成物は、 回路基板等の電子 デバイスの電気的接続部位であるビアホール、 スルーホールおよび配線等に利用 すると効果が大きい。 具体的には、 (1 ) プリント配線板のスルーホールに充填 、 硬化、 表面研磨を行うことで各層間の回路の接続を行う部位、 (2 ) プリント 配線板でのレーザービアやフォトビア等で作られる非貫通孔に、 充填、 硬化、 表 面研磨を行うことで各層間の回路の接続をする部位、 (3 ) 半導体の裏面接続用 の貫通孔に、 充填、 硬化、 表面研磨を行うことで回路の接続を図る部位、 (4 ) 半導体の放熱用非貫通孔に充填し、 硬化する部位、 (5 ) 半導体パッケージゃプ リン卜配線板において金属含有組成物を印刷し、 硬化することで形成されるバン プと呼ばれる突起状の電極部位、 ( 6 ) プリント配線板の層間接続において内層 材の回路上に印刷、 硬化により形成される導電性円錐状突起部位、 (7 ) プリン ト配線板や半導体パッケージの部品の実装時に用いられるハンダ接続の代替とし て用いられる電気的接続部位、 (8 ) 印刷配線板として、 導体回路を印刷硬化す ることにより形成される導体回路部位、 (9 ) 部品を内臓したプリント配線板の 場合においてレーザーなどを用いて部品の電極に達する非貫通孔を設け、 その非 貫通孔に充填し、 硬化研磨し、 部品電極との接続を図る部位への適用を挙げるこ とができる。 ' The conductive composition for electrical connection of an electronic device according to the present invention has a great effect when used for via holes, through holes, wiring, and the like, which are electrical connection sites of an electronic device such as a circuit board. Specifically, (1) Filling through holes in printed wiring boards Filling, hardening, and surface polishing of the parts that connect circuits between each layer by performing hardening and surface polishing, and (2) non-through holes made by laser vias and photo vias on printed wiring boards (3) A part to connect the circuit by filling, hardening and polishing the through hole for connecting the back surface of the semiconductor, (3) A non-penetration for heat dissipation of the semiconductor (5) Printed and cured metal-containing composition on semiconductor package printed wiring board, and bump-shaped electrode sites called bumps, (6) Print Conductive conical projections formed by printing and curing on the circuit of the inner layer material in the interlayer connection of the wiring board, (7) Used as an alternative to the solder connection used when mounting printed wiring boards and semiconductor package components Ira (8) printed circuit board, printed circuit board, printed circuit board, printed circuit board, (9) part of printed circuit board with built-in parts using laser, etc. A non-through hole that reaches the electrode is provided, and the non-through hole is filled, hardened and polished, and applied to a portion to be connected to a component electrode. '
これらの半導体デバイスは、 たとえば次のようにして作製することができる。 内層銅電極部位を形成してあるプリント基板にレーザー光を照射し、 プリント 基板内部の銅電極部分まで、 孔を空け、 レーザー光により溶解蒸発したプリント 基板材料である絶縁性樹脂残留物質を除去し、 有底銅電極部位を具備してなる非 貫通孔を備えたプリン卜基板を作製する。  These semiconductor devices can be manufactured, for example, as follows. The printed circuit board on which the inner layer copper electrode portion is formed is irradiated with laser light, holes are drilled up to the copper electrode portion inside the printed circuit board, and the residual insulating resin, which is the printed circuit board material dissolved and evaporated by the laser light, is removed. Then, a print substrate having a non-through hole having a bottomed copper electrode portion is manufactured.
ついで、 この非貫通孔に前記金属含有組成物をスクリーン印刷にて充填する。 この後、 熱を付与することにより前記金属含有組成物を硬化させ、 更にプリント 基板面を研磨処理することにより、 当該硬化物により生じていたプリント基板上 の凹凸部位を無くし、 プリント基板表面の平坦化を図る。  Next, the non-through holes are filled with the metal-containing composition by screen printing. Thereafter, the metal-containing composition is cured by applying heat, and the surface of the printed circuit board is further polished to remove irregularities on the printed circuit board caused by the cured product. Plan.
更に、 このプリント基板表面に露出している硬化物部位表面に銅メツキ処理を 行い電極を付与し、 回路部分と接続を図る。  Furthermore, copper plating is applied to the surface of the cured material portion exposed on the surface of the printed circuit board, electrodes are provided, and connection is made with the circuit portion.
また、 上記の銅メツキに代わり、 当該金属含有組成物をスクリーン印刷し、 熱 硬化させ、 導電回路 (配線) を形成することもできる。  Instead of the copper plating, the metal-containing composition may be screen-printed and heat-cured to form a conductive circuit (wiring).
次に本発明の実施例及び比較例を詳述する。 例 1〜3 1 , 3 3, 3 5〜 4 1は 実施例である。 例 3 2 , 3 4中の番号 1〜2 3は実施例であり、 番号 2 4, 2 5 は比較例である。 以下においては、 単に%と表示される場合、 特に断らない限り 、 質量%を意味するものとする。 Z値とは遠心力場内の 1点に作用する力の大小 を比較するため、 遠心加速度と重力加速度との比として定義した無次元数を意味 する。 以下の実施例で使用した測定や評価は下記の方法によった。 Next, examples and comparative examples of the present invention will be described in detail. Examples 1-31, 33, 35-41 are This is an example. The numbers 1 to 23 in Examples 32 and 34 are examples, and the numbers 24 and 25 are comparative examples. In the following, when simply expressed as%, it means mass% unless otherwise specified. The Z value is a dimensionless number defined as the ratio of the centrifugal acceleration to the gravitational acceleration in order to compare the magnitude of the force acting on one point in the centrifugal force field. The measurements and evaluations used in the following examples were based on the following methods.
(粒径測定)  (Particle size measurement)
粉末をシクロへキサンに添加し、 日機装社製マイクロトラック 9 3 4 0— U P Aを使用し、 レーザー光を用いる動的光散乱法により測定した。  The powder was added to cyclohexane, and the measurement was performed by a dynamic light scattering method using laser light using Microtrack 9340-UPA manufactured by Nikkiso Co., Ltd.
透過型電子顕微鏡による観察には日立製作所性透過型電子顕微鏡 H— 9 0 0 0 を使用した。 走査型電子顕微鏡による観察には日立製作所製走査型電子顕微鏡 S —8 0 0を使用した。  For observation with a transmission electron microscope, a Hitachi transmission electron microscope H-90000 was used. For observation with a scanning electron microscope, a scanning electron microscope S-800 manufactured by Hitachi, Ltd. was used.
(硬化組成物の作製)  (Preparation of cured composition)
金属含有組成物の 1 0 0質量部に 6質量部のィミダゾール系潜在性硬化剤を加 え、 1 6 O で 6 0分熱処理して硬化 (架橋) 組成物を得た。  6 parts by mass of an imidazole-based latent curing agent was added to 100 parts by mass of the metal-containing composition, and heat-treated with 16 O for 60 minutes to obtain a cured (crosslinked) composition.
なお、 この硬化組成物は、 本発明に係る導電性組成物の範疇に属するが、 この ことは、 本発明に係る導電性組成物が上記条件で作製されたもののみを意味する ものではない。 上記態様に述べた本発明の要件を満たす限り、 他のどのような条 件で作製された硬化組成物であつても、 本発明の範疇に属する。  This cured composition belongs to the category of the conductive composition according to the present invention, but this does not mean only the conductive composition according to the present invention prepared under the above conditions. As long as the requirements of the present invention described in the above embodiment are satisfied, any other cured composition belonging to the present invention belongs to the scope of the present invention.
(硬化組成物の断面観察)  (Cross-section observation of cured composition)
金属含有組成物の熱処理で得た硬化組成物を切断し、 0 . 1 mm2の断面面積 上にある金属または金属と導電性粒子とによって構成される針状形状、 樹枝形状 、 いがぐり形状および不定形連結形状等の形状を、 日立製作所製走査型電子顕微 鏡 S 8 0 0を使用し、 5 0 0倍、 1 0 0 0倍、 5 0 0 0倍、 1 0 0 0 0倍のいず れかの倍率で観察した。 The cured composition obtained in the heat treatment of the metal-containing composition cut, 0. 1 mm 2 of the needle-shaped constituted by a metal or metals and electrically conductive particles present on the cross-sectional area, dendritic shape, burr shape and not Using a scanning electron microscope S800 manufactured by Hitachi, Ltd., the shape such as the fixed connection shape can be set to 500,000, 500,000, or 100,000 times. Observed at some magnification.
[例 1 ]  [Example 1 ]
(金属粒子粉 Aの調製)  (Preparation of metal particle powder A)
金属粒子粉 Aとしての A g超微粒子粉を次のようにして調製した。 ガラス容器 内で、 蒸留水 1 0 0 0 gに硫酸鉄 (I I ) 七水和物 1 9 4 gとクェン酸三ナトリ ゥムニ水和物 362 gとを溶解した。 これに 10 %の硝酸銀水溶液 625 gを添 加し撹拌した。 添加直後に A g超微粒子が生成した。 Ag ultrafine particle powder as metal particle powder A was prepared as follows. In a glass container, add 1904 g of iron (II) sulfate heptahydrate and 900 ml of trinatric citrate to 100 g of distilled water 362 g of Pemuni hydrate were dissolved. To this, 625 g of a 10% aqueous solution of silver nitrate was added and stirred. Immediately after the addition, ultrafine Ag particles were formed.
その後、 この液を 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出し、 この固形物に蒸留水 1000 g を加え、 再解膠を施した。  After that, this solution was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, the supernatant was discarded, the precipitated solid was taken out, 1000 g of distilled water was added to the solid, and the deflocculation was performed. did.
この解膠液に 18 %のクェン酸三ナトリゥム水溶液 100 gを添加し、 沈殿操 作を行った。 この沈殿物を含む液を 5000 r pmで 3分間遠心分離処理し、 前 記と同様な方法により沈殿固形物と上澄みとを分離し、 得られた固形物に蒸留水 500 gを添加した後に限外濾過により脱塩濃縮処理を行い、 Ag固形分換算で 9. 8 %の A gゾル液 375 gを得た。  100 g of an 18% aqueous solution of trisodium citrate was added to the deflocculant to perform a precipitation operation. The liquid containing the precipitate is centrifuged at 5000 rpm for 3 minutes, the precipitated solid is separated from the supernatant by the same method as described above, and 500 g of distilled water is added to the obtained solid. A desalting and concentration treatment was performed by external filtration to obtain 375 g of a 9.8% Ag sol solution in terms of Ag solid content.
このゾル液に 5 %濃度のステアリン酸のエタノール溶液を 375 g添加し、 撹 拌を行った後、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄 み液を廃棄し、 沈殿した固形物を取り出し、 この固形物を減圧室温乾燥し、 Ag 超微粒子の粉末を得た。  To this sol, 375 g of a 5% ethanol solution of stearic acid was added, and the mixture was stirred, centrifuged at 5000 rpm (Z value: 2742) for 3 minutes, and the supernatant was discarded. The precipitated solid was taken out, and this solid was dried under reduced pressure at room temperature to obtain ultrafine Ag powder.
この粉末の粒径を測定したところ、 平均粒径は 10 nmであった。 図 14には 、 その粒度分布を示す。 図 15に例示する透過型電子顕微鏡により観察された観 察像 (50万倍) もこの平均粒径によく一致していた。  When the particle size of this powder was measured, the average particle size was 10 nm. FIG. 14 shows the particle size distribution. The observation image (500,000-fold) observed by the transmission electron microscope illustrated in FIG. 15 was also in good agreement with the average particle size.
[例 2]  [Example 2]
(金属粒子粉 Aの調製)  (Preparation of metal particle powder A)
金属粒子粉 Aとしての Pd超微粒子を次のようにして調製した。 ガラス容器内 で、 蒸留水 10000 gに硫酸鉄 (I I) 七水和物 970 gとクェン酸三ナ卜リ ゥムニ水和物 1800 gとを溶解した。 これに 1 %の硝酸パラジウム (I I) 水 溶液 2000 gを添加し撹拌した。 添加 10分後に P d超微粒子が生成した。 その後限外濾過により脱塩濃縮処理を行い、 Pd固形分換算で 1. 5%の ゾル液 500 gを得た。 このゾル液に 2 %濃度のステアリン酸のエタノール溶液 を 500 g添加し、 撹拌を行った後、 5000 r pm (Z値 2742) で 3分間 遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出し、 この固形物を 減圧室温乾燥し、 Pd超微粒子の粉末を得た。 この粉末の平均粒径は 1 Onmで あった。 Ultrafine Pd particles as metal particle powder A were prepared as follows. In a glass container, 970 g of iron (II) sulfate heptahydrate and 1800 g of trinatum citrate hydrate were dissolved in 10,000 g of distilled water. To this, 2000 g of a 1% aqueous solution of palladium (II) nitrate was added and stirred. Ten minutes after the addition, ultrafine Pd particles were formed. Thereafter, desalting and concentration treatment was performed by ultrafiltration to obtain 500 g of a 1.5% sol solution in terms of Pd solid content. To this sol was added 500 g of a 2% ethanol solution of stearic acid, and the mixture was stirred.The mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded. The solid was taken out, and the solid was dried under reduced pressure at room temperature to obtain ultrafine Pd powder. The average particle size of this powder is 1 Onm there were.
[例 3 ]  [Example 3]
(金属粒子粉 Aの調製)  (Preparation of metal particle powder A)
金属粒子粉 Aとしての Au超微粒子を次のようにして調製した。 ガラス容器内 で、 蒸留水 10000 gに塩ィ匕金酸を 10. 4 g、 ヒドロキシプロピルセルロー ス (平均分子量 25000) を 1 g溶解した。 これに 1. 12 %濃度の水酸化力 リウム水溶液 950 gおよび 36 %濃度のホルムアルデヒド水溶液 150 gの混 合物を添加し撹拌した。 添加直後に A u超微粒子が生成した。  Au ultrafine particles as metal particle powder A were prepared as follows. In a glass container, 10.4 g of salted lauric acid and 1 g of hydroxypropyl cellulose (average molecular weight: 25,000) were dissolved in 10,000 g of distilled water. To this was added a mixture of 950 g of a 1.12% aqueous solution of potassium hydroxide and 150 g of a 36% aqueous solution of formaldehyde, followed by stirring. Immediately after the addition, ultrafine Au particles were generated.
その後、 溶液を 40°Cに加温し 1時間撹拌して、 さらに限外濾過により脱塩濃 縮処理を行い、 A u固形分換算で 1. 2 %の A uゾル液 300 gを得た。  Thereafter, the solution was heated to 40 ° C, stirred for 1 hour, and subjected to ultrafiltration for desalination and concentration to obtain 300 g of a 1.2% Au solid sol solution in terms of Au solid content. .
このゾル液に 1 %濃度のステアリン酸のエタノール溶液を 500 g添加し撹拌 を行った後、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄み 液を廃棄し、 沈殿した固形物を取り出し、 この固形物を減圧室温乾燥し、 Au超 微粒子の粉末を得た。 この粉末の平均粒径は 1 Onmであった。  To this sol was added 500 g of a 1% ethanol solution of stearic acid, and the mixture was stirred.Then, the mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes. The solid was dried under reduced pressure at room temperature to obtain powder of ultrafine Au particles. The average particle size of this powder was 1 Onm.
[例 4]  [Example 4]
(金属粒子粉 Aの調製)  (Preparation of metal particle powder A)
金属粒子粉 Aとしての R u超微粒子を次のようにして調製した。 ガラス容器内 で、 蒸留水 10000 gに塩化ルテニウム三水和物 (Ru40%) を 12. 5 g 溶解した。 これに 3%の水素化ホウ素ナトリウム水溶液 1000 gを添加し撹拌 した。 添加直後に Ru超微粒子が生成した。  Ru ultrafine particles as metal particle powder A were prepared as follows. In a glass container, 12.5 g of ruthenium chloride trihydrate (Ru40%) was dissolved in 10,000 g of distilled water. To this, 1000 g of a 3% aqueous sodium borohydride solution was added and stirred. Immediately after the addition, ultrafine particles of Ru were formed.
その後、 限外濾過により脱塩濃縮処理を行い、 Ru固形分換算で 1. 5%の uゾル液 310 gを得た。 このゾル液に 3 %濃度のステアリン酸のエタノール溶 液を 270 g添加し撹拌を行った後、 5000 r pm (Z値 2742) で 3分間 遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出し、 この固形物を 減圧室温乾燥し、 Ru超微粒子の粉末を得た。 この粉末の平均粒径は 5 nmであ つた。  Thereafter, desalting and concentration treatment was performed by ultrafiltration to obtain 310 g of a 1.5% u-sol solution in terms of Ru solid content. After adding 270 g of 3% ethanol solution of stearic acid to this sol solution and stirring, the mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, the supernatant was discarded, and the precipitated solid The solid was taken out, and the solid was dried under reduced pressure at room temperature to obtain ultrafine Ru powder. The average particle size of this powder was 5 nm.
[例 5]  [Example 5]
(金属粒子粉 Aの調製) 金属粒子粉 Aとしての Ag— Pd超微粒子 (合金) を次のようにして調製した 。 ガラス容器内で、 蒸留水 1000 gに硫酸鉄 (I I) 七水和物 194 gとクェ ン酸三ナトリゥムニ水和物 362 gとを溶解した。 これに 10 %の硝酸銀水溶液 625 gと 1 %の硝酸パラジウム (I I) 水溶液 200 gとの混合溶液を添加し 撹拌した。 添加直後に A g-P d超微粒子が生成した。 (Preparation of metal particle powder A) Ag-Pd ultrafine particles (alloy) as metal particle powder A were prepared as follows. In a glass container, 194 g of iron (II) sulfate heptahydrate and 362 g of trinatridimni hydrate were dissolved in 1000 g of distilled water. A mixed solution of 625 g of a 10% aqueous silver nitrate solution and 200 g of a 1% aqueous palladium (II) nitrate solution was added thereto, followed by stirring. Immediately after the addition, ultrafine AgPd particles were formed.
その後、 溶液を 5 O O O r pm (Z値 2742) で 3分間遠心分離を い、 上 澄み液を廃棄し、 沈殿した固形物を取り出し、 この固形物に蒸留水 1000 gを 加え、 再解膠を施した。  After that, the solution was centrifuged at 5 OOO rpm (Z value 2742) for 3 minutes, the supernatant was discarded, the precipitated solid was removed, 1000 g of distilled water was added to the solid, and deflocculation was performed. gave.
さらにこの解膠溶液に 18 %のクェン酸三ナトリゥム水溶液 100 gを添加し 、 沈殿操作を行った。 この沈殿物を含む溶液を 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 前記と同様な方法により沈殿固形物と上澄みを分離し 、 得られた固形物に蒸留水 500 gを添加した後に、 限外濾過により脱塩濃縮処 理を行い、 固形分換算で 8. 5%の Ag— Pdゾル液 80 gを得た。  Further, 100 g of an 18% aqueous solution of trisodium citrate was added to the deflocculating solution to perform a precipitation operation. The solution containing the precipitate was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, the precipitated solid and the supernatant were separated by the same method as described above, and 500 g of distilled water was added to the obtained solid. After that, desalting and concentration treatment was performed by ultrafiltration to obtain 80 g of an 8.5% Ag-Pd sol solution in terms of solid content.
このゾル液に 8 %濃度のステアリン酸のエタノール溶液を 160 g添加し撹拌 を行った後、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄み 液を廃棄し、 沈殿した固形物を取り出し、 この固形物を減圧室温乾燥し、 Ag— P d超微粒子の粉末を得た。 この粉末の平均粒径は 1 Onmであった。  160 g of 8% ethanol solution of stearic acid was added to this sol, and the mixture was stirred.Then, the mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded. The solid was dried under reduced pressure at room temperature to obtain powder of ultrafine Ag—Pd particles. The average particle size of this powder was 1 Onm.
[例 6]  [Example 6]
(金属粒子粉 Aの調製)  (Preparation of metal particle powder A)
金属粒子粉 Aとしての P t超微粒子を次のようにして調製した。 ガラス容器内 で、 蒸留水 10000 gに硫酸鉄 (I I) 七水和物 970 gとクェン酸三ナ卜リ ゥムニ水和物 1800 gを溶解した。 これに 1 %の塩化白金酸水溶液 2000 g を添加し撹拌した。 添加 15分後に P t超微粒子が生成した。  Ultrafine Pt particles as metal particle powder A were prepared as follows. In a glass container, 970 g of iron (II) sulfate heptahydrate and 1800 g of tri-n-trinimudium citrate were dissolved in 10,000 g of distilled water. To this, 2000 g of a 1% aqueous solution of chloroplatinic acid was added and stirred. 15 minutes after the addition, ultrafine Pt particles were formed.
その後限外濾過により脱塩濃縮処理を行い、 P t固形分換算で 1. 5 %の P d ゾル液 300 gを得た。 このゾル ί夜に 5 %濃度のステアリン酸のエタノール溶液 を 500 g添加し撹拌を行った後、 5000 r pm (Z値 2742) で 3分間遠 心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出し、 この固形物を減 圧室温乾燥し、 P t超微粒子の粉末を得た。 この粉末の平均粒径は 8 nmであつ た。 Thereafter, desalting and concentration treatment was performed by ultrafiltration to obtain 300 g of a 1.5% Pd sol solution in terms of Pt solid content. The sol was added with 500 g of a 5% strength solution of stearic acid in ethanol at night, stirred, centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded and sedimented. The solid was taken out, and the solid was dried under reduced pressure at room temperature to obtain powder of ultrafine Pt particles. The average particle size of this powder is 8 nm. Was.
[例 7 ]  [Example 7]
(金属粒子粉 Aの調製)  (Preparation of metal particle powder A)
金属粒子粉 Aとしての Re超微粒子を次のようにして調製した。 ガラス容器内 で、 蒸留水 10000 gに三塩化レニウム (Re 40%) を 10. 5 g溶解した 。 これに 3%の水素化ホウ素ナトリウム水溶液 1000 gを添加し撹拌した。 添 加直後に R e超微粒子が生成した。  Ultra fine particles of Re as metal particle powder A were prepared as follows. In a glass container, 10.5 g of rhenium trichloride (Re 40%) was dissolved in 10,000 g of distilled water. To this, 1000 g of a 3% aqueous sodium borohydride solution was added and stirred. Immediately after the addition, ultra fine particles of Re were generated.
その後、 限外濾過により脱塩濃縮処理を行い、 Re固形分換算で 1. 5%の R eゾル液 160 gを得た。 このゾル液に 5 %濃度のステアリン酸のエタノール溶 液を 500 g添加し撹拌を行った後、 5000 r pm (Z値 2742) で 3分間 遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出し、 この固形物を 減圧室温乾燥し、 Re超微粒子の粉末を得た。 この粉末の平均粒径は 1 Onmで あった。  Thereafter, desalting and concentration treatment was performed by ultrafiltration to obtain 160 g of a 1.5% Re solid sol solution in terms of Re solid content. 500 g of a 5% ethanol solution of stearic acid was added to the sol, and the mixture was stirred.Then, the mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded. The solid was taken out, and this solid was dried under reduced pressure at room temperature to obtain a powder of ultrafine Re particles. The average particle size of this powder was 1 Onm.
[例 8]  [Example 8]
(金属粒子粉 Aの調製)  (Preparation of metal particle powder A)
金属粒子粉 Aとしての Os超微粒子を次のようにして調製した。 ガラス容器内 で、 蒸留水 10000 gに三塩化ォスミゥム三水和物 (O s含有量 64%) を 1 0. 5 g溶解した。 これに 3 %の水素化ホウ素ナトリウム水溶液 1000 gを添 加し撹拌した。 添加直後に〇s超微粒子が生成した。  Os ultrafine particles as metal particle powder A were prepared as follows. In a glass container, 10.5 g of osmium trichloride trihydrate (Os content: 64%) was dissolved in 10,000 g of distilled water. To this, 1000 g of a 3% aqueous sodium borohydride solution was added and stirred. Immediately after the addition, Δs ultrafine particles were formed.
その後、 限外濾過により脱塩濃縮処理を行い、 Os固形分換算で 1. 5%の O sゾル液 280 gを得た。 このゾル液に 5 %濃度のステアリン酸のエタノ一ル溶 液を 500 g添加し撹拌を行った後、 5000 r pm (Z値 2742) で 3分間 遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出し、 この固形物を 減圧室温乾燥し、 Os超微粒子の粉末を得た。 この粉末の平均粒径は 10 nmで めった。  Thereafter, desalting and concentration treatment was performed by ultrafiltration to obtain 280 g of a 1.5% Os sol solution in terms of Os solid content. 500 g of a 5% ethanol solution of stearic acid was added to the sol, and the mixture was stirred.Then, the mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded. The solid thus obtained was taken out, and the solid was dried under reduced pressure at room temperature to obtain powder of ultrafine Os particles. The average particle size of this powder was 10 nm.
[例 9]  [Example 9]
(金属粒子粉 Aの調製)  (Preparation of metal particle powder A)
金属粒子粉 Aとしての I r超微粒子を次のようにして調製した。 ガラス容器内 で、 蒸留水 10000 gに三塩化ィリジゥム水和物 ( I r含有量 53%) を 10 . 5 g溶解した。 これに 3%の水素化ホウ素ナトリウム水溶液 1000 gを添加 し撹拌した。 添加直後に I r r超微粒子が生成した。 Ir ultrafine particles as metal particle powder A were prepared as follows. In a glass container Then, 10.5 g of iridium trichloride hydrate (Ir content 53%) was dissolved in 10,000 g of distilled water. To this, 1000 g of a 3% aqueous sodium borohydride solution was added and stirred. Immediately after the addition, ultra fine particles of I rr were formed.
その後、 P艮外濾過により脱塩濃縮処理を行い、 I r固形分換算で 1. 5%の I rゾル液 200 gを得た。 このゾル液に 5 %濃度のステアリン酸のエタノール溶 液を 500 g添加し撹拌を行った後、 5000 r pm (Z値 2742) で 3分間 遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出し、 この固形物を 減圧室温乾燥し、 I r超微粒子の粉末を得た。 この粉末の平均粒径は 15 nmで あった。  After that, desalting and concentration treatment was performed by filtration through a P-Goro filter to obtain 200 g of a 1.5% Ir sol solution in terms of Ir solid content. 500 g of a 5% ethanol solution of stearic acid was added to the sol, and the mixture was stirred.Then, the mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded. The solid was taken out and dried at room temperature under reduced pressure to obtain Ir ultrafine powder. The average particle size of this powder was 15 nm.
[例 10]  [Example 10]
(金属粒子粉 Aの調製)  (Preparation of metal particle powder A)
金属粒子粉 Aとしての A — Ru超微粒子 (合金) を次のようにして調製した 。 ガラス容器内で、 蒸留水 10000 gに塩化ルテニウム三水和物 (Ru40% ) 12. 5 gと塩ィ匕金酸 10. 4gとを溶解した。 これに 3 %の水素化ホウ素ナ トリウム水溶液 2000 gを添加し撹拌した。 添加直後に Au_ Ru超微粒子が 生成した。  A—Ru ultrafine particles (alloy) as metal particle powder A were prepared as follows. In a glass container, 12.5 g of ruthenium chloride trihydrate (Ru40%) and 10.4 g of salted diacid were dissolved in 10,000 g of distilled water. To this, 2000 g of a 3% sodium borohydride aqueous solution was added and stirred. Immediately after the addition, Au_Ru ultrafine particles were generated.
その後、 限外濾過により脱塩濃縮処理を行い、 Au— Ru固形分換算で 1. 5 %の A U— R uゾル液 350 gを得た。 このゾル液に 3 %濃度のステアリン酸の エタノール溶液を 800 g添加し撹拌を行った後、 5000 r pm (Z値 274 2) で 3分間遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出し、 この固形物を減圧室温乾燥し、 Au— Ru超微粒子の粉末を得た。 この粉末の平 均粒径は 10 nmであった。  Thereafter, desalting and concentration treatment was performed by ultrafiltration to obtain 350 g of a 1.5% Au-Ru sol solution in terms of Au-Ru solid content. 800 g of a 3% ethanol solution of stearic acid was added to the sol, and the mixture was stirred.Then, the mixture was centrifuged at 5,000 rpm (Z value 274-2) for 3 minutes, and the supernatant was discarded. The solid was removed and the solid was dried under reduced pressure at room temperature to obtain Au-Ru ultrafine powder. The average particle size of this powder was 10 nm.
[例 11 ]  [Example 11]
(金属粒子粉 Aの調製)  (Preparation of metal particle powder A)
金属粒子粉 Aとしての Au— Pd超微粒子 (合金) を次のようにして調製した 。 ガラス容器内で、 蒸留水 10000 gに塩化金酸 10. 4 gを溶解した。 これ に 1 %の硝酸パラジウム (I I) 水溶液 2000 gを添加し撹拌した。 さらに、 この混合溶液に、 3 %の水素化ホウ素ナトリゥム水溶液 2000 gを添加し撹拌 した。 添加直後に A u-P d超微粒子が生成した。 Au-Pd ultrafine particles (alloy) as metal particle powder A were prepared as follows. In a glass container, 10.4 g of chloroauric acid was dissolved in 10,000 g of distilled water. To this, 2000 g of a 1% aqueous solution of palladium (II) nitrate was added and stirred. Furthermore, 2000 g of a 3% aqueous sodium borohydride solution was added to this mixed solution, and the mixture was stirred. did. Immediately after the addition, AuPd ultrafine particles were formed.
その後、 限外濾過により脱塩濃縮処理を行い、 Au_Pd固形分換算で 1. 5 %の Au— Pdゾル夜 300 gを得た。 このゾル ¾ に 3%濃度のステアリン酸の エタノール溶液を 800 g添加し撹拌を行った後、 5000 r pm (Z値 274 2) で 3分間遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出し、 この固形物を減圧室温乾燥し、 Au_Pd超微粒子の粉末を得た。 この粉末の平 均粒径は 10 nmであった。  After that, desalting and concentration treatment was performed by ultrafiltration to obtain 300 g of a 1.5% Au-Pd sol at night in terms of Au_Pd solid content. To this sol was added 800 g of a 3% ethanol solution of stearic acid, and the mixture was stirred.The mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded. The solid was taken out, and the solid was dried under reduced pressure at room temperature to obtain Au_Pd ultrafine powder. The average particle size of this powder was 10 nm.
[例 12]  [Example 12]
(金属粒子粉 Aの調製)  (Preparation of metal particle powder A)
金属粒子粉 Aとしての Au— Ag超微粒子 (合金) を次のようにして調製した 。 ガラス容器内で、 カリウムにより pHを 13に調整したアルカリ性溶液 100 0 gに水酸化金 10. 5 gを溶解した。 これに 5 %濃度の硝酸銀水溶液 200 g を添加し撹拌した。 さらに、 この混合溶液に、 クェン酸三ナトリウム二水和物 3 0 gを添加し撹拌した。 この溶液を 95 °Cまで加温し、 撹拌したところ、 Au— A g超微粒子が生成した。  Au-Ag ultrafine particles (alloy) as metal particle powder A were prepared as follows. In a glass container, 10.5 g of gold hydroxide was dissolved in 1000 g of an alkaline solution whose pH was adjusted to 13 with potassium. To this was added 200 g of a 5% aqueous solution of silver nitrate and stirred. Further, 30 g of trisodium citrate dihydrate was added to the mixed solution, followed by stirring. The solution was heated to 95 ° C and stirred, and Au-Ag ultrafine particles were formed.
その後、 限外濾過により脱塩濃縮処理を行い、 Au_Ag固形分換算で 1. 5 %の Au— Agゾル液 100 gを得た。 このゾル液に 3%濃度のステアリン酸の エタノール溶液を 800 g添加し撹拌を行った後、 5000 r pm (Z値 274 2) で 3分間遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出し、 この固形物を減圧室温乾燥し、 Au— A g超微粒子の粉末を得た。 この粉末の平 均粒径は 10 nmであった。  Thereafter, desalting and concentration treatment was performed by ultrafiltration to obtain 100 g of a 1.5% Au-Ag sol solution in terms of Au_Ag solid content. 800 g of a 3% ethanol solution of stearic acid was added to the sol solution, and the mixture was stirred.Then, the mixture was centrifuged at 5,000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded. The solid was taken out and the solid was dried under reduced pressure at room temperature to obtain Au-Ag ultrafine particles. The average particle size of this powder was 10 nm.
[例 13]  [Example 13]
(金属粒子粉 Aの調製)  (Preparation of metal particle powder A)
金属粒子粉 Aとしての I n超微粒子を次のようにして調製した。 ガラス容器内 で、 蒸留水 10000 gに三塩化ルテニウム三水和物 12. 5 gを溶解した。 こ の溶液を 90°Cに加熱し、 撹拌しながら、 3%の水素化ホウ素ナトリウム水溶液 2000 gを添加した。 添加直後に I n超微粒子が生成した。  Ultrafine In particles as metal particle powder A were prepared as follows. In a glass container, 12.5 g of ruthenium trichloride trihydrate was dissolved in 10,000 g of distilled water. This solution was heated to 90 ° C., and 2,000 g of a 3% aqueous sodium borohydride solution was added with stirring. Immediately after the addition, ultrafine In particles were formed.
その後、 限外濾過により脱塩濃縮処理を行い、 I n固形分換算で 1. 5%の I nゾル液 250 gを得た。 このゾル液に 3 %濃度のステアリン酸のエタノール溶 液を 800 g添加し撹拌を行った後、 5000 r pm (Z値 2742) で 3分間 遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出し、 この固形物を 減圧室温乾燥し、 I n超微粒子の粉末を得た。 この粉末の平均粒径は 10 nmで めった。 After that, desalting and concentration treatment was performed by ultrafiltration, and 1.5% of I 250 g of n sol was obtained. 800 g of a 3% ethanol solution of stearic acid was added to the sol solution, and the mixture was stirred.Then, the mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, the supernatant was discarded, and the precipitated solid The solid was taken out and dried at room temperature under reduced pressure to obtain a powder of ultrafine In particles. The average particle size of this powder was 10 nm.
[Ml 4]  [Ml 4]
(金属粒子粉 Bの調製)  (Preparation of metal particle powder B)
金属粒子粉 Bとしての A g粒子を次のようにして調製した。 比表面積が 0. 6 m2/gの Ag粉 10 gにアルコール 80 g、 ァセチルアセトン 5 gを加え、 サ ンドミルで 200分間解膠処理を行い、 Ag懸濁液 90 gを得た。 得られた懸濁 液を、 1000 r pm (Z値 110) で 3分間遠心分離処理を行い、 粗大粒子を 沈降させ、 上澄み懸濁液を分離した。 この上澄み懸濁液に、 3%濃度のステアリ ン酸のエタノール溶液を 800 g添加し、 撹拌を行った後、 5000 r pm (Z 値 2742) で 3分間遠心分離を行い、 上澄み液を廃棄し、 沈殿した固形物を取 り出した。 この固形物を減圧室温乾燥し、 A g粒子の粉末を得た。 この粉末の平 均粒径は 900 nmであった。 走査型電子顕微鏡により観察された観察像もこの 平均粒径によく一致していた。 Ag particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetylacetone were added to 10 g of Ag powder having a specific surface area of 0.6 m 2 / g, and pulverized by a sand mill for 200 minutes to obtain 90 g of an Ag suspension. The obtained suspension was centrifuged at 1000 rpm (Z value 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated. 800 g of a 3% strength solution of stearyl acid in ethanol was added to the supernatant suspension, and the mixture was stirred.The mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded. The precipitated solid was removed. This solid was dried under reduced pressure at room temperature to obtain a powder of Ag particles. The average particle size of this powder was 900 nm. Observed images observed with a scanning electron microscope were also in good agreement with this average particle size.
[例 15]  [Example 15]
(金属粒子粉 Bの調製)  (Preparation of metal particle powder B)
金属粒子粉 Bとしての Ru粒子を次のようにして調製した。 比表面積が 0. 1 m2Zgの Ru粉 8 gにアルコール 80 g、 ァセチルアセトン 5 gを加え、 サン ドミルで 500分間解膠処理を行い、 Ru懸濁液 90 gを得た。 得られた懸濁液 を、 1000 r pm (Z値 110) で 3分間遠心分離処理を行い、 粗大粒子を沈 降させ、 上澄み懸濁液を分離した。 この上澄み懸濁液に 3 %濃度のステアリン酸 のエタノール溶液を 500 g添加し撹拌を行った後、 5000 r pm (Z値 27 42) で 3分間遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出し た。 この固形物を減圧室温乾燥し、 Ruの粉末を得た。 この粉末の平均粒径は 1 000 nmであった。 [例 16] Ru particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetylacetylacetone were added to 8 g of Ru powder having a specific surface area of 0.1 m 2 Zg, and pulverized by a sand mill for 500 minutes to obtain 90 g of a Ru suspension. The obtained suspension was centrifuged at 1000 rpm (Z value: 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated. 500 g of a 3% ethanol solution of stearic acid was added to the supernatant suspension, and the mixture was stirred.The mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded. The solid was removed. The solid was dried under reduced pressure at room temperature to obtain a Ru powder. The average particle size of this powder was 1,000 nm. [Example 16]
(金属粒子粉 Bの調製)  (Preparation of metal particle powder B)
金属粒子粉 Bとしての N i粒子を次のようにして調製した。 カルポニルニッケ ルの分解によって生成した比表面積が 0. 1 An^Zgの N i粉 8 gにアルコー ル 80 g、 ァセチルァセトン 5 gを加え、 サンドミルで 500分間解膠処理を行 レ N i懸濁液 90 gを得た。 得られた懸濁液を 1000 r pm (Z値 1 10) で 3分間遠心分離処理を行い、 粗大粒子を沈降させ、 上澄み懸濁液を分離した。 この上澄み懸濁液に 3%濃度のステアリン酸のエタノール溶液を 800 g添加し 撹拌を行った後、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上 澄み液を廃棄し、 沈殿した固形物を取り出した。 この固形物を減圧室温乾燥し、 N iの粉末を得た。 この粉末の平均粒径は 1500 nmであった。  Ni particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetylacetone are added to 8 g of Ni powder having a specific surface area of 0.1 An ^ Zg generated by decomposition of carbonynickel, and pulverized by a sand mill for 500 minutes. 90 g were obtained. The obtained suspension was centrifuged at 1000 rpm (Z value: 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated. 800 g of a 3% strength solution of stearic acid in ethanol was added to the supernatant suspension, and the mixture was stirred.The mixture was centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded. The solid was removed. The solid was dried under reduced pressure at room temperature to obtain a Ni powder. The average particle size of this powder was 1500 nm.
[例 17]  [Example 17]
(金属粒子粉 Bの調製)  (Preparation of metal particle powder B)
金属粒子粉 Bとしての S n粒子を次のようにして調製した。 アトマイズ法によ つて生成した比表面積が 0. 3m2/gの S n粉 8 gにアルコール 80 g、 ァセ チルァセトン 5 gを加え、 サンドミルで 500分間解膠処理を行い、 S n懸濁液 90 gを得た。 得られた懸濁液を、 1000 r pm (Z値 110) で 3分間遠心 分離処理を行い、 粗大粒子を沈降させ、 上澄み懸濁液を分離した。 この上澄み懸 濁液に 3 %濃度のステアリン酸のエタノール溶液を 800 g添加し撹拌を行った 後、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄み液を廃棄 し、 沈殿した固形物を取り出した。 この固形物を減圧室温乾燥し、 Snの粉末を 得た。 この粉末の平均粒径は 1200 nmであった。 Sn particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetyl acetone were added to 8 g of Sn powder having a specific surface area of 0.3 m 2 / g produced by the atomization method, and pulverized by a sand mill for 500 minutes to obtain a Sn suspension. 90 g were obtained. The obtained suspension was subjected to centrifugation at 1000 rpm (Z value 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated. 800 g of a 3% ethanol solution of stearic acid was added to the supernatant suspension, and the mixture was stirred and centrifuged at 5000 rpm (Z value 2742) for 3 minutes.The supernatant was discarded and sedimented. The solid was removed. The solid was dried under reduced pressure at room temperature to obtain Sn powder. The average particle size of this powder was 1200 nm.
[例 18]  [Example 18]
(金属粒子粉 Bの調製)  (Preparation of metal particle powder B)
金属粒子粉 Bとしての A 1粒子を次のようにして調製した。 アトマイズ法によ つて生成した比表面積が 0. lm2/gの A 1粉 8 gにアルコール 80 g、 ァセ チルァセトン 5 gを加え、 サンドミルで 500分間解膠処理を行い、 A 1懸濁液 90 gを得た。 得られた懸濁液を、 l O O O r pm (Z値 110) で 3分間遠心 分離処理を行い、 粗大粒子を沈降させ、 上澄み懸濁液を分離した。 この上澄み懸 濁液に 3%濃度のステアリン酸のエタノール溶液を 800 g添加し撹拌を行った 後、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄み液を廃棄 し、 沈殿した固形物を取り出した。 この固形物を減圧室温乾燥し、 A 1の粉末を 得た。 この粉末の平均粒径は 1500 nmであった。 A1 particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetyl acetone were added to 8 g of A1 powder having a specific surface area of 0.1 lm 2 / g produced by the atomizing method, and pulverized by a sand mill for 500 minutes. 90 g were obtained. Centrifuge the obtained suspension at l OOO r pm (Z value 110) for 3 minutes Separation treatment was performed to settle coarse particles, and the supernatant suspension was separated. 800 g of a 3% strength solution of stearic acid in ethanol was added to the supernatant suspension, and the mixture was stirred.After centrifugation at 5000 rpm (Z value 2742) for 3 minutes, the supernatant was discarded and sedimented. The solid was removed. This solid was dried under reduced pressure at room temperature to obtain A1 powder. The average particle size of this powder was 1500 nm.
[例 19]  [Example 19]
(金属粒子粉 Bの調製)  (Preparation of metal particle powder B)
金属粒子粉 Bとしての Zn粒子を次のようにして調製した。 アトマイズ法によ つて生成した比表面積が 0. lm2Zgの Zn粉 8 gにアルコール 80 g、 ァセ チルァセトン 5 gを加え、 サンドミルで 500分間解膠処理を行い、 Z n懸濁液 90 gを得た。 得られた懸濁液を、 l O O O r pm (Z値 110) で 3分間遠心 分離処理を行い、 粗大粒子を沈降させ、 上澄み懸濁液を分離した。 この上澄み懸 濁液に 3%濃度のステアリン酸のエタノール溶液を 800 g添加し撹拌を行った 後、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄み液を廃棄 し、 沈殿した固形物を取り出した。 この固形物を減圧室温乾燥し、 Znの粉末を 得た。 この粉末の平均粒径は 1500 nmであった。 Zn particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetyl aceton were added to 8 g of Zn powder having a specific surface area of 0.1 lm 2 Zg produced by the atomization method, and pulverized by a sand mill for 500 minutes to obtain a Zn suspension of 90 g. Got. The obtained suspension was subjected to centrifugal separation at l OOO rpm (Z value 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated. 800 g of a 3% strength solution of stearic acid in ethanol was added to the supernatant suspension, and the mixture was stirred.After centrifugation at 5000 rpm (Z value 2742) for 3 minutes, the supernatant was discarded and sedimented. The solid was removed. This solid was dried under reduced pressure at room temperature to obtain Zn powder. The average particle size of this powder was 1500 nm.
[例 20]  [Example 20]
(金属粒子粉 Bの調製)  (Preparation of metal particle powder B)
金属粒子粉 Bとしての W粒子を次のようにして調製した。 電解還元析出法によ つて生成した比表面積が 0. lm2Zgの W粉 8 gにアルコール 80 g、 ァセチ ルァセトン 5 gを加え、 サンドミルで 500分間解膠処理を行い、 W懸濁液 90 gを得た。 得られた懸濁液を、 1000 r pm (Z値 110) で 3分間遠心分離 処理を行い、 粗大粒子を沈降させ、 上澄み懸濁液を分離した。 この上澄み懸濁液 に 3 %濃度のステアリン酸のエタノール溶液を 800 g添加し撹拌を行った後、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出した。 この固形物を減圧室温乾燥し、 Wの粉末を得た。 この粉末の平均粒径は 1900 nmであった。 W particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetylaceton are added to 8 g of W powder having a specific surface area of 0.1 lm 2 Zg produced by the electrolytic reduction precipitation method, and pulverized by a sand mill for 500 minutes to obtain a W suspension of 90 g. Got. The obtained suspension was centrifuged at 1000 rpm (Z value: 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated. 800 g of a 3% ethanol solution of stearic acid was added to the supernatant suspension, and the mixture was stirred and centrifuged at 5000 rpm (Z value 2742) for 3 minutes.The supernatant was discarded and precipitated. The solid was removed. This solid was dried under reduced pressure at room temperature to obtain a W powder. The average particle size of this powder was 1900 nm.
[例 21] (金属粒子粉 Bの調製) [Example 21] (Preparation of metal particle powder B)
金属粒子粉 Bとしての I n粒子を次のようにして調製した。 電解析出法によつ て生成した比表面積が 0. lm2/gの I n粉 8 gにアルコール 80 g、 ァセチ ルアセトン 5 gを加え、 サンドミルで 500分間解膠処理を行い、 I n懸濁液 9 0 gを得た。 得られた懸濁液を、 1000 r pm (Z値 110) で 3分間遠心分 離処理を行い、 粗大粒子を沈降させ、 上澄み懸濁液を分離した。 この上澄み懸濁 液に 3 %濃度のステアリン酸のエタノール溶液を 800 g添加し撹拌を行った後 、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄み液を廃棄し 、 沈殿した固形物を取り出した。 この固形物を減圧室温乾燥し、 I nの粉末を得 た。 この粉末の平均粒径は 1800 nmであった。 In particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetylacetone are added to 8 g of In powder having a specific surface area of 0.1 lm 2 / g produced by the electrolytic deposition method, and pulverized by a sand mill for 500 minutes. 90 g of a suspension was obtained. The obtained suspension was centrifuged at 1000 rpm (Z value 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated. 800 g of a 3% ethanol solution of stearic acid was added to the supernatant suspension, and the mixture was stirred and centrifuged at 5000 rpm (Z value 2742) for 3 minutes.The supernatant was discarded and sedimented. The solid was removed. The solid was dried under reduced pressure at room temperature to obtain In powder. The average particle size of this powder was 1800 nm.
[例 22 ]  [Example 22]
(金属粒子粉 Bの調製)  (Preparation of metal particle powder B)
金属粒子粉 Bとしての Cu粒子を次のようにして調製した。 電解析出法によつ て生成した比表面積が 0. 2m2Zgの Cu粉 8 gにアルコール 80 g、 ァセチ ルアセトン 5 gを加え、 サンドミルで 500分間解膠処理を行い、 Cu懸濁液 9 0 gを得た。 得られた懸濁液を、 l O O O r pm (Z値 110) で 3分間遠心分 離処理を行い、 粗大粒子を沈降させ、 上澄み懸濁液を分離した。 この上澄み懸濁 液に 3 %濃度のステアリン酸のエタノール溶液を 500 g添加し撹拌を行った後 、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄み液を廃棄し 、 沈殿した固形物を取り出した。 この固形物を減圧室温乾燥し、 Cuの粉末を得 た。 この粉末の平均粒径は 1500 nmであった。 Cu particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetylacetone are added to 8 g of Cu powder having a specific surface area of 0.2 m 2 Zg generated by the electrolytic deposition method, and pulverized by a sand mill for 500 minutes. 0 g was obtained. The resulting suspension was subjected to centrifugation at l OOO rpm (Z value 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated. To this supernatant suspension, 500 g of a 3% ethanol solution of stearic acid was added and stirred, followed by centrifugation at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was discarded and precipitated. The solid was removed. The solid was dried under reduced pressure at room temperature to obtain a Cu powder. The average particle size of this powder was 1500 nm.
[例 23]  [Example 23]
(金属粒子粉 Bの調製)  (Preparation of metal particle powder B)
金属粒子粉 Bとしての Co粒子を次のようにして調製した。 還元析出法によつ て生成した比表面積が 0. 2m2/gの Co粉 8 gにアルコール 80 g、 ァセチ ルァセトン 5 gを加え、 サンドミルで 500分間解膠処理を行い、 C o懸濁液 9 0 gを得た。 得られた懸濁液を、 l O O O r pm (Z値 110) で 3分間遠心分 離処理を行い、 粗大粒子を沈降させ、 上澄み懸濁液を分離した。 この上澄み懸濁 液に 3 %濃度のステアリン酸のエタノール溶液を 450 g添加し撹拌を行つた後 、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄み液を廃棄し 、 沈殿した @形物を取り出した。 この固形物を減圧室温乾燥し、 Coの粉末を得 た。 この粉末の平均粒径は 1900 nmであった。 Co particles as metal particle powder B were prepared as follows. 80 g of alcohol and 5 g of acetylaceton are added to 8 g of Co powder having a specific surface area of 0.2 m 2 / g produced by the reductive precipitation method, and pulverized by a sand mill for 500 minutes to obtain a Co suspension. 90 g were obtained. The resulting suspension was subjected to centrifugation at l OOO rpm (Z value 110) for 3 minutes to precipitate coarse particles, and the supernatant suspension was separated. This supernatant suspension The solution was mixed with 450 g of a 3% ethanol solution of stearic acid and stirred, and then centrifuged at 5000 rpm (Z value 2742) for 3 minutes.The supernatant was discarded and the precipitated @ form was removed. I took it out. This solid was dried under reduced pressure at room temperature to obtain a Co powder. The average particle size of this powder was 1900 nm.
[例 24]  [Example 24]
(導電性粒子粉 Cの調製)  (Preparation of conductive particle powder C)
導電性粒子粉 Cとしての A g粒子を次のようにして調製した。 比表面積が 0. 02m2Zgの Ag粉 10 gにアルコール 80 g、 ァセチルアセトン 5 gを加え 、 サンドミルで 30分間解膠処理を行い、 A g懸濁液 90 gを得た。 得られた懸 濁液を、 5000 r pm (Z値 2742) で 3分間遠心分離処理を行い、 粒子を 沈降させた。 この沈殿物を 3 %濃度のステアリン酸のエタノール溶液 800 gに 添加し、 超音波で 100分分散処理を行ったあと、 5000 rpm (Z値 274 2) で 3分間遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出した 。 この固形物を減圧室温乾燥し、 導電性粒子の A g粉末を得た。 この粉末の平均 粒径は 5 mであった。 走査型電子顕微鏡により観察された観察像もこの平均粒 径によく一致していた。 Ag particles as conductive particle powder C were prepared as follows. 80 g of alcohol and 5 g of acetylacetone were added to 10 g of Ag powder having a specific surface area of 0.02 m 2 Zg, and pulverized by a sand mill for 30 minutes to obtain 90 g of an Ag suspension. The obtained suspension was centrifuged at 5000 rpm (Z value: 2742) for 3 minutes to sediment the particles. This precipitate was added to 800 g of a 3% ethanol solution of stearic acid, subjected to ultrasonic dispersion for 100 minutes, and then centrifuged at 5000 rpm (Z value 274 2) for 3 minutes to remove the supernatant. It was discarded and the precipitated solid was removed. The solid was dried under reduced pressure at room temperature to obtain an Ag powder of conductive particles. The average particle size of this powder was 5 m. Observed images observed with a scanning electron microscope were also in good agreement with this average particle size.
[例 25]  [Example 25]
(導電性粒子粉 Cの調製)  (Preparation of conductive particle powder C)
導電性粒子粉 Cとしての R u粒子を次のようにして調製した。 比表面積が 0. 0311127 の1 11粉10 gにアルコール 80 g、 ァセチルアセトン 5 gを加え 、 サンドミルで 30分間解膠処理を行い、 11懸濁液90 を得た。 得られた懸 濁液を 5 O O O r pm (Z値 2742) で 3分間遠心分離処理を行い、 粒子を沈 降させた。 この沈殿物を 3%濃度のステアリン酸のエタノール溶液 800 gに添 加し、 超音波で 100分分散処理を行ったあと、 5000 r pm (Z値 2742 ) で 3分間遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出した。 この固形物を減圧室温乾燥し、 導電性粒子の Ru粉末を得た。 この粉末の平均粒 径は 16 mであった。 Ru particles as conductive particle powder C were prepared as follows. Alcohol 80 g, the § cetyl acetone 5 g was added to 1 11 flour 10 g of a specific surface area of 0.03111 2 7, for 30 minutes peptization treatment in a sand mill to obtain a 11 suspension 90. The resulting suspension was centrifuged at 5 OOO rpm (Z value 2742) for 3 minutes to sediment the particles. This precipitate is added to 800 g of a 3% ethanol solution of stearic acid, dispersed by ultrasonic waves for 100 minutes, and then centrifuged at 5000 rpm (Z value 2742) for 3 minutes. Was discarded and the precipitated solid was removed. This solid was dried under reduced pressure at room temperature to obtain Ru powder of conductive particles. The average particle size of this powder was 16 m.
[例 26] (導電性粒子粉 Cの調製) [Example 26] (Preparation of conductive particle powder C)
導電性粒子粉 Cとしての C u粒子を次のようにして調製した。 比表面積が 0. 04m2Zgの電解析出法により生成された Cu粉 10 gにアルコール 80 g、 ァセチルアセトン 5 gを加え、 サンドミルで 30分間解膠処理を行い、 Cu懸濁 液 90 gを得た。 得られた懸濁液を、 5000 r pm (Z値 2742) で 3分間 遠心分離処理を行い、 粒子を沈降させた。 この沈殿物を 3%濃度のステアリン酸 のエタノール溶液 800 gに添加し、 超音波で 100分分散処理を行ったあと、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄み?夜を廃棄し、 沈殿した固形物を取り出した。 この固形物を減圧室温乾燥し、 導電性粒子の Cu 粉末を得た。 この粉末の平均粒径は 20 mであった。 Cu particles as conductive particle powder C were prepared as follows. 80 g of alcohol and 5 g of acetylacetone are added to 10 g of Cu powder produced by the electrolytic deposition method with a specific surface area of 0.04 m 2 Zg, deflocculated in a sand mill for 30 minutes, and 90 g of the Cu suspension Got. The resulting suspension was centrifuged at 5000 rpm (Z value 2742) for 3 minutes to sediment the particles. This precipitate is added to 800 g of a 3% ethanol solution of stearic acid, dispersed by ultrasonic waves for 100 minutes, and then centrifuged at 5000 rpm (Z value 2742) for 3 minutes. The night was discarded and the precipitated solid was removed. The solid was dried under reduced pressure at room temperature to obtain Cu powder of conductive particles. The average particle size of this powder was 20 m.
[例 27 ]  [Example 27]
(導電性粒子粉 Cの調製)  (Preparation of conductive particle powder C)
導電性粒子粉 Cとしての I TO (錫固溶型酸化インジウム) 粒子を次のように して調製した。 ガラス容器内で、 蒸留水 1000 gに塩ィ匕錫 ( I V) (無水) 5 gを加え溶解液とした。 また、 別の蒸留水 1000 gに三塩化インジウム (無水 ) 40 gを加え溶解液とした。 この 2種類の溶解液を混合した後、 40 °Cに保つ た 1. 12%の水酸化カリウム水溶液中に混合液を滴下添加し、 水酸化物を得た 。 この水酸化物を含有する溶液.をさらに、 90°Cに加温し 6時間撹拌した。 この 加温処理により溶液中の水酸化物は凝集構造を形成した。  ITO (tin solid solution type indium oxide) particles as conductive particle powder C were prepared as follows. In a glass container, 5 g of Shii-Dani Tin (IV) (anhydrous) was added to 1000 g of distilled water to prepare a solution. Further, 40 g of indium trichloride (anhydrous) was added to another 1000 g of distilled water to prepare a solution. After mixing these two types of dissolution solutions, the mixture was added dropwise to a 1.12% aqueous potassium hydroxide solution kept at 40 ° C. to obtain a hydroxide. The solution containing the hydroxide was further heated to 90 ° C. and stirred for 6 hours. By this heating treatment, the hydroxide in the solution formed an aggregated structure.
得られた凝集構造を形成したインジウム一錫水酸化物から不純イオン分を脱塩 操作により除去した後、 窒素雰囲気下で 800°Cで 2時間焼成し、 錫含有酸化ィ ンジゥム粉を得た。 得られた錫含有酸化インジウム粉 10 gを pH 5. 5に調整 した硝酸酸性水溶液 50 gに添加後、 サンドミルで 5分間解膠処理を行い、 錫含 有酸化ィンジゥム固形分換算で 12 %の錫含有酸化ィンジゥム懸濁液 40 gを得 た。  Impurity ions were removed by desalting from the obtained indium monotin hydroxide having an aggregated structure, followed by baking at 800 ° C. for 2 hours in a nitrogen atmosphere to obtain a tin-containing indium oxide powder. After adding 10 g of the obtained tin-containing indium oxide powder to 50 g of an aqueous nitric acid solution adjusted to pH 5.5, the mixture was pulverized with a sand mill for 5 minutes to obtain a tin-containing zinc oxide of 12% in terms of solid content. 40 g of an indium oxide-containing suspension was obtained.
得られた懸濁液を、 5000 r pm (Z値 2742) で 3分間遠心分離処理を 行い、 粒子を沈降させた。 この沈殿物を 3 %濃度のステアリン酸のエタノール溶 液 800 gに添加し、 超音波で 100分分散処理を行ったあと、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物 を取り出した。 この固形物を減圧室温乾燥し、 導電性粒子の I TO粉末を得た。 この粉末の平均粒径は 2 imであった。 The obtained suspension was centrifuged at 5000 rpm (Z value 2742) for 3 minutes to sediment the particles. This precipitate is added to 800 g of a 3% ethanol solution of stearic acid, and the mixture is ultrasonically dispersed for 100 minutes. (Z value: 2742), centrifuged for 3 minutes, the supernatant was discarded, and the precipitated solid was taken out. The solid was dried under reduced pressure at room temperature to obtain ITO powder of conductive particles. The average particle size of this powder was 2 im.
[例 28]  [Example 28]
(導電性粒子粉 Cの調製)  (Preparation of conductive particle powder C)
導電性粒子粉 Cである ATO (アンチモン固溶型酸化錫) 粒子を次のようにし て調製した。 ガラス容器内で、 蒸留水 1000 gに酒石酸カリウムアンチモニル 5 gを加え溶解液とした。 また、 別の蒸留水 1000 gに塩化錫 ( I V) (無水 ) 40 gを加え溶解液とした。 この 2種類の溶解液を混合した後、 40 °Cに保つ た 1. 5 %の水酸化力リゥム水溶液中に混合液を滴下添加し、 錫一アンチモン水 酸化物を得た。 この水酸化物を含有する溶液をさらに、 90°Cに加温し 6時間撹 拌した。 この加温処理により溶液中の水酸化物は凝集構造を形成した。  ATO (antimony solid solution type tin oxide) particles, which are conductive particle powder C, were prepared as follows. In a glass container, 5 g of potassium antimonyl tartrate was added to 1000 g of distilled water to prepare a solution. In addition, tin chloride (IV) (anhydrous) 40 g was added to another 1000 g of distilled water to prepare a solution. After mixing the two kinds of dissolving solutions, the mixture was added dropwise to a 1.5% aqueous solution of hydroxylated water kept at 40 ° C. to obtain tin-antimony hydroxide. The solution containing the hydroxide was further heated to 90 ° C. and stirred for 6 hours. By this heating treatment, the hydroxide in the solution formed an aggregated structure.
得られた凝集構造を形成した水酸化物から不純ィォン分を脱塩操作により除去 した後、 大気雰囲気下で 550°Cで 2時間焼成し、 アンチモン含有酸化錫粉を得 た。  Impurity ions were removed from the obtained hydroxide having an aggregated structure by desalting, and then calcined at 550 ° C. for 2 hours under an air atmosphere to obtain antimony-containing tin oxide powder.
得られたアンチモン含有酸化錫粉 10 gを pH4. 5に調整した硝酸酸性水溶 液 50 gに添加後、 サンドミルで 5分間解膠処理を行い、 アンチモン含有酸化錫 固形分換算で 16%のアンチモン含有酸化錫粒子ゾル液 35 gを得た。  After adding 10 g of the obtained antimony-containing tin oxide powder to 50 g of an aqueous nitric acid solution adjusted to pH 4.5, the mixture was peptized for 5 minutes by a sand mill, and contained 16% antimony in terms of solid content of antimony-containing tin oxide. 35 g of tin oxide particle sol was obtained.
得られた懸濁液を、 5000 rpm (Z値 2742) で 3分間遠心分離処理を 行い、 粗大粒子を沈降させた。 この沈殿物を 3%濃度のステアリン酸のェタノ一 ル溶液 800 gに添加し、 超音波で 100分分散処理を行ったあと、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄み液を廃棄し、 沈殿した固 形物を取り出した。 この固形物を減圧室温乾燥し、 導電性粒子の ATO粉末を得 た。 この粉末の平均粒径は 3 n mであつた。  The obtained suspension was centrifuged at 5000 rpm (Z value 2742) for 3 minutes to precipitate coarse particles. This precipitate was added to 800 g of a 3% ethanol solution of stearic acid in ethanol, and subjected to a dispersion treatment with ultrasonic waves for 100 minutes, followed by centrifugation at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant was removed. The liquid was discarded, and the precipitated solid was removed. The solid was dried under reduced pressure at room temperature to obtain ATO powder of conductive particles. The average particle size of this powder was 3 nm.
[例 29]  [Example 29]
(導電性粒子粉 Cの調製)  (Preparation of conductive particle powder C)
導電性粒子粉 Cである Ru02 (酸化ルテニウム) 粒子を次のようにして調製 した。 ガラス容器内で、 蒸留水 1000 gに塩化ルテニウム三水和物 (Ru40 %) を 12. 5 g加え溶解液とした。 40 °Cに保つた 1. 5 %の水酸化ナトリウ ム水溶液中に、 塩化ルテニウムの溶解液を滴下添加し、 水酸化物を得た。 この水 酸化物を含有する溶液をさらに、 90°Cに加温し 6時間撹拌した。 この加温処理 により溶液中の水酸化物は凝集構造を形成した。 The Ru0 2 (ruthenium oxide) particles are conductive particles powder C was prepared as follows. In a glass container, add ruthenium chloride trihydrate (Ru40 %) Was added to obtain a solution. A solution of ruthenium chloride was added dropwise to a 1.5% aqueous sodium hydroxide solution kept at 40 ° C to obtain a hydroxide. The solution containing the hydroxide was further heated to 90 ° C. and stirred for 6 hours. By this heating treatment, the hydroxide in the solution formed an aggregated structure.
得られた凝集構造を形成したルテニウム水酸化物から不純イオン分を脱塩操作 により除去した後、 大気下で 800°Cで 2時間焼成し、 酸化ルテニウム粉を得た 。 得られた酸化ルテニウム粉 5 gを pH5. 5に調整した硝酸酸性水溶液 50 g に添加後、 サンドミルで 5分間解膠処理を行い、 酸化ルテニウム固形分換算で 3 %の酸化ルテニウム懸濁液 40 gを得た。 得られた懸濁液を、 5000 r pm ( Z値 2742) で 3分間遠心分離処理を行い、 粗大粒子を沈降させた。  Impurity ions were removed by desalting from the resulting ruthenium hydroxide having formed an aggregated structure, and then calcined at 800 ° C for 2 hours in the atmosphere to obtain ruthenium oxide powder. After adding 5 g of the obtained ruthenium oxide powder to 50 g of an aqueous nitric acid solution adjusted to pH 5.5, the mixture was peptized with a sand mill for 5 minutes, and 40 g of a 3% ruthenium oxide suspension in terms of ruthenium oxide solids was added. Got. The obtained suspension was centrifuged at 5000 rpm (Z value: 2742) for 3 minutes to precipitate coarse particles.
この沈殿物を 3%濃度のステアリン酸のエタノール溶液 800 gに添加し、 超 音波で 100分分散処理を行ったあと、 5000 r pm (Z値 2742) で 3分 間遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物を取り出した。 この固形 物を減圧室温乾燥し、 導電性粒子の Ru〇2 (酸化ルテニウム) 粉末を得た。 こ の粉末の平均粒径は 10 mであった。 This precipitate is added to 800 g of a 3% ethanol solution of stearic acid, dispersed by ultrasonication for 100 minutes, centrifuged at 5000 rpm (Z value 2742) for 3 minutes, and the supernatant is removed. Was discarded and the precipitated solid was removed. The solid was dried under reduced pressure at room temperature to obtain Ru〇 2 (ruthenium oxide) powder of conductive particles. The average particle size of this powder was 10 m.
[例 30]  [Example 30]
(導電性粒子粉 Cの調製)  (Preparation of conductive particle powder C)
導電性粒子粉 Cであるカーボンナノチューブを次のようにして調製した。 ァ一 ク放電法によって得られたカーボンナノチューブ (チューブ長さ 0. 5 m〜2 5 m, 直径 0. 3〜2 nm) のカーボンナノチューブ粉 10 gを 3 %濃度のス テアリン酸のエタノール溶液 800 gに添加し、 超音波で 100分分散処理を行 つたあと、 5000 r pm (Z値 2742) で 3分間遠心分離処理し、 上澄み液 を廃棄し、 沈殿した固形物を取り出した。 この固形物を減圧室温乾燥し、 導電性 粒子のカーボンナノチューブ粉末を得た。 この粉末の平均粒径は 19 mであつ た。  A carbon nanotube as the conductive particle powder C was prepared as follows. 10 g of carbon nanotube powder of carbon nanotubes (tube length 0.5 m to 25 m, diameter 0.3 to 2 nm) obtained by the arc discharge method is a 3% concentration of stearic acid in ethanol 800 g, ultrasonically dispersed for 100 minutes, centrifuged at 5000 rpm (Z value 2742) for 3 minutes, the supernatant was discarded, and the precipitated solid was removed. The solid was dried under reduced pressure at room temperature to obtain carbon nanotube powder of conductive particles. The average particle size of this powder was 19 m.
[例 31]  [Example 31]
(導電性粒子粉 Cの調製)  (Preparation of conductive particle powder C)
導電性粒子粉 Cであるグラフアイト構造を一部有する導電性カーボンを次のよ うにして調製した。 粒子中に一部グラフアイト構造を有する導電性カーボン (商 品名:ケッチェンブラック) の 1 0 gを 3 %濃度のステアリン酸のエタノール溶 液 8 0 0 gに添加し、 超音波で 1 0 0分分散処理を行ったあと、 5 0 0 0 r p m ( Z値 2 7 4 2 ) で 3分間遠心分離処理し、 上澄み液を廃棄し、 沈殿した固形物 を取り出した。 この固形物を減圧室温乾燥し、 グラフアイト構造を一部有する導 電性カーボンの粉末を得た。 この粉末の平均粒径は 3 mであった。 The conductive carbon having a graphite structure, which is a conductive particle powder C, is as follows. It was prepared as follows. 100 g of conductive carbon (trade name: Ketjen Black) having a partially graphite structure in the particles is added to 800 g of a 3% -concentration ethanol solution of stearic acid, and ultrasonically added to 100 g. After the minute dispersion treatment, the mixture was centrifuged at 500 rpm (Z value: 2742) for 3 minutes, the supernatant was discarded, and the precipitated solid was taken out. The solid was dried under reduced pressure at room temperature to obtain a conductive carbon powder partially having a graphite structure. The average particle size of this powder was 3 m.
[例 3 2 ]  [Example 3 2]
(電気的接続用金属含有組成物の調製)  (Preparation of metal-containing composition for electrical connection)
前記記載の金属粒子粉末 Aと、 金属粒子粉末 Bと、 樹脂と、 場合によっては導 電性粒子粉 Cとを、 表 1の組成比率で混合し、 自動乳鉢で 1時間粗混練を行った その後、 3本ロールによる混練を 6 0分間実施し、 さらに遠心脱泡装置で 1時 間脱泡処理を行い、 電子デバイスの電気的接続用金属含有組成物を調製した。 番号 1〜2 3は、 粘度が 8 0 0 d P a · s程度の範囲にあり、 流動性に優れて いた。  The above-described metal particle powder A, metal particle powder B, resin, and in some cases, conductive particle powder C were mixed at a composition ratio shown in Table 1, and roughly kneaded in an automatic mortar for 1 hour. Then, kneading with three rolls was carried out for 60 minutes, and defoaming treatment was further performed for 1 hour with a centrifugal defoaming apparatus to prepare a metal-containing composition for electrical connection of an electronic device. Nos. 1 to 23 had a viscosity in the range of about 800 dPa · s and were excellent in fluidity.
なお、 粒度分布を測定した結果、 番号 1〜2 3の例は、 粒径が 2 0 n m以下の 金属粒子の濃度と、 粒径が 5 0 nm以上 2 0 0 0 nm以下の金属粒子の濃度と、 粒径が 2 0 0 0 nmを超え 2 0 m以下の導電性粒子の濃度とに関する、 上記態 様 3の要件を満たしていた。  In addition, as a result of measuring the particle size distribution, the examples of numbers 1 to 23 show the concentration of metal particles with a particle size of 20 nm or less and the concentration of metal particles with a particle size of 50 nm or more and 200 nm or less. And the concentration of the conductive particles having a particle diameter of more than 2000 nm and not more than 20 m satisfied the requirement of the above-described embodiment 3.
また、 これらの粒度分布には、 番号 3についての図 1 6の累積粒度分布の変曲 点の位置からから理解できるように、 2 0 n m以下の粒径領域と 5 0 nm以上 2 0 0 0 nm以下の粒径領域とにそれぞれピークが存在し、 場合によってはさらに 2 0 0 0 nmを超え 2 0 m以下の粒径領域にもピークが存在していた。  In addition, as can be understood from the position of the inflection point of the cumulative particle size distribution in FIG. 16 for No. 3 in these particle size distributions, a particle size region of 20 nm or less and a particle size of 50 nm or more A peak was present in each of the particle size regions of less than nm and, in some cases, a peak was also present in a particle size region of more than 2000 nm and less than 20 m.
[例 3 3 ]  [Example 33]
(電気的接続用金属含有組成物の、 塗布性、 印刷性、 充填性評価) 表 1の番号 1〜 8について、 スクリーン印刷により、 深さ 3 0 / m、 直径 5 0 mのビアホールを有する、 線幅が 1 5 mの配線パターンを作製したが、 いず れも良好なパ夕一ンが得られた。 [例 34] (Evaluation of applicability, printability, and fillability of metal-containing composition for electrical connection) Regarding numbers 1 to 8 in Table 1, by screen printing, a via hole having a depth of 30 / m and a diameter of 50 m was obtained. Wiring patterns with a line width of 15 m were produced, and in all cases, good patterns were obtained. [Example 34]
(硬化組成物の評価)  (Evaluation of cured composition)
図 27の側面図, 28の平面図に示すように、 厚さ 5. 0 mmのガラスェポキ シ基板に設けられた、 2個の孔の組みごとに厚さ 15 zmの銅電極 101で連結 してなる孔径 50 urn, 深さ 60 /imのビアホール 102に表 1に示す組成の金 属含有組成物のペーストをスクリーン印刷法により充填し、 上記 「硬化組成物の 作製」 の条件に従い、 処理し、 硬化 (架橋) 組成物を適用した基板を得た。  As shown in the side view of Fig. 27 and the plan view of 28, each pair of two holes provided on a 5.0 mm thick glass epoxy board is connected by a 15 zm thick copper electrode 101. A via-hole 102 having a pore size of 50 urn and a depth of 60 / im was filled with a paste of a metal-containing composition having the composition shown in Table 1 by a screen printing method, and processed according to the conditions of the above-mentioned "Preparation of a cured composition". A substrate to which the curing (crosslinking) composition was applied was obtained.
その後、 研磨により基板上の余分なペーストを除去し、 化学銅メツキ、 電気銅 メツキ、 配線パターン化を順に行い、 厚さ 30 mの銅電極 103を作製し、 3 000孔が直列に連結したデージーチェーン回路基板を形成した。  After that, the excess paste on the substrate is removed by polishing, chemical copper plating, electrolytic copper plating, and wiring patterning are performed in this order to produce a copper electrode 103 with a thickness of 30 m, and a daisy line with 3 000 holes connected in series. A chain circuit board was formed.
得られたデージーチェーン回路基板について、 上記 3000孔の端同士の抵抗 値を測定することにより、 孔に充填された硬化組成物の抵抗値 (初期抵抗値) を 測定した。  With respect to the obtained daisy chain circuit board, the resistance value (initial resistance value) of the cured composition filled in the holes was measured by measuring the resistance value between the ends of the 3000 holes.
また、 冷風吹き込み式恒温槽と吹き込み式熱風恒温槽とを使用し、 デージーチ ェ一ン回路基板について、 1サイクルがー 65°CX 30分と 125°CX 30分と の組み命わせよりなる冷熱衝撃試験を 1000サイクル実施した後、 上記 300 0孔の端同士の抵抗値を測定した。 一 65°CX30分と 125°CX30分との切 り替えは自動的に行われ、 1回の切り替えに要する時間は 3秒 Z回程度であつた 得られた初期抵抗値と冷熱衝撃試験後の抵抗値の変化率とを表 2に示す。 実施 例は比較例に比し、 いずれも導電性と耐久性とに優れていることが理解できる。 なお、 硬化組成物の抵抗値は、 具体的には次のようにして求めた。  In addition, using a cold air blowing type thermostat and a blowing hot air thermostat, the daisy chain circuit board has one cycle of -65 ° C for 30 minutes and 125 ° C for 30 minutes. After 1000 cycles of the test, the resistance value between the ends of the 3000 holes was measured. (I) Switching between 65 ° C for 30 minutes and 125 ° C for 30 minutes is performed automatically, and the time required for one switch is about 3 seconds Z times. Table 2 shows the rate of change of the resistance value. It can be understood that all of the examples are more excellent in conductivity and durability than the comparative examples. The resistance of the cured composition was specifically determined as follows.
(a) 上記 3000孔の端同士の抵抗値をペース卜が充填されている孔の数 ( 3000) で除して、 1個のピア孔に埋められた硬化組成物の抵抗値を算出する  (a) The resistance value of the cured composition filled in one pier hole is calculated by dividing the resistance value between the ends of the 3,000 holes by the number of holes filled with the paste (3000).
(b) 1個のビア孔あたりの抵抗値に、 電気が流れる方向に垂直となる面の断 面積 (すなわち直径が 50 のビア孔の断面積) を乗じ、 電気が流れる方向に 平行となる方向の距離 (すなわちビア孔の深さ方向の距離である 60 m) で除 して、 ビア孔一個に充填された硬化組成物の抵抗値を算出する。 · (b) The direction parallel to the direction in which electricity flows by multiplying the resistance value per via hole by the cross-sectional area of the surface perpendicular to the direction in which electricity flows (that is, the cross-sectional area of a via hole with a diameter of 50). Divided by the distance of the via hole (ie, Then, the resistance value of the cured composition filled in one via hole is calculated. ·
[例 35]  [Example 35]
(硬化組成物の断面観察)  (Cross-section observation of cured composition)
金属含有組成物の熱処理で得た、 本発明に係る電子デバイスの電気的接続用導 電性組成物である硬化組成物を切断し、 0. 1mm2の断面面積上を観察した結 果、 図 1〜13に示したような、 針状形状、 樹枝形状、 いがぐり形状および不定 形連結形状が観察された。 図 17〜 20, 図 29, 30は、 日立製作所製走査型 電子顕微鏡 S— 800を使用して撮影した断面写真である。 図 17は 1000倍 、 図 18は 10000倍、 図 19は 5000倍、 図 20, 29, 30は 1000 0倍の倍率で撮影した。 As a result of cutting the cured composition obtained by the heat treatment of the metal-containing composition, which is a conductive composition for electrical connection of an electronic device according to the present invention, and observing a cross-sectional area of 0.1 mm 2 , FIG. Needle-like, tree-like, burrow-like and irregularly connected shapes as shown in 1 to 13 were observed. Figures 17-20, 29, and 30 are cross-sectional photographs taken using a Hitachi S-800 scanning electron microscope. Figure 17 was taken at 1000x, Figure 18 was taken at 10,000x, Figure 19 was taken at 5000x, and Figures 20, 29 and 30 were taken at 10000x.
[例 36]  [Example 36]
図 21は上記 (1) , (2) , (8) の例を示すモデル図である。 図 21にお いて、 本発明に係る電子デバイスの電気的接続用導電性組成物は、 絶縁性基板 1 6上に設けられた、 導体回路を印刷硬化することにより形成された導体回路部位 である配線パターン 11、 内部に設けられた配線パターン 14、 化学メツキ層 1 5で被覆されたスルーホール内の導電充填材 12、 化学メツキ層 15で被覆され た非貫通孔内の導電充填材 13として使用されている。  FIG. 21 is a model diagram showing an example of the above (1), (2), and (8). In FIG. 21, the conductive composition for electrical connection of an electronic device according to the present invention is a conductor circuit portion formed on the insulating substrate 16 by printing and curing the conductor circuit. Used as wiring pattern 11, wiring pattern 14 provided inside, conductive filler in through hole covered with chemical plating layer 15, and conductive filler 13 in non-through hole covered with chemical plating layer 15. Have been.
[例 37 ]  [Example 37]
図 22は上記 (3) , (4) の例を示すモデル図である。 図 22において、 本 発明に係る電子デバイスの電気的接続用導電性組成物は、 シリコンウェハ一 21 とパッシベーション膜 22とを貫通する、 裏面接続用の貫通孔 23と放熱用非貫 通孔 24とに使用されている。  FIG. 22 is a model diagram showing an example of the above (3) and (4). In FIG. 22, the conductive composition for electrical connection of an electronic device according to the present invention includes a through hole 23 for back surface connection, a non-through hole 24 for heat radiation, which penetrates the silicon wafer 21 and the passivation film 22. Used in
[例 38 ]  [Example 38]
図 23は上記 (5) の例を示すモデル図である。 図 23において、 本発明に係 る電子デバイスの電気的接続用導電性組成物は、 半導体パッケージ 31をプリン ト基板 34に実装する際におけるバンプ 32として使用されている。 番号 33は 封止材を表す。  FIG. 23 is a model diagram showing an example of the above (5). In FIG. 23, the conductive composition for electrical connection of an electronic device according to the present invention is used as a bump 32 when a semiconductor package 31 is mounted on a print substrate 34. Number 33 represents a sealing material.
[例 39 ] 図 2 4は上記 (6 ) の例を示すモデル図である。 図 2 4において、 本発明に係 る電子デバイスの電気的接続用導電性組成物は、 絶縁性基板 1 6上に設けられた 配線パターン 1 1 , 内部に設けられた配線パターン 1 4の他に、 配線パターン 1 1と配線パターン 1 4との間に設けられる導電性円錐状突起部位 4 1に使用され ている。 [Example 39] FIG. 24 is a model diagram showing an example of the above (6). In FIG. 24, the conductive composition for electrical connection of an electronic device according to the present invention includes a wiring pattern 11 provided on an insulating substrate 16 and a wiring pattern 14 provided inside. The conductive conical projections 41 provided between the wiring patterns 11 and 14 are used.
[例 4 0 ]  [Example 40]
図 2 5は上記 (7 ) の例を示すモデル図である。 図 2 5において、 本発明に係 る電子デバイスの電気的接続用導電性組成物は、 半導体パッケージ 3 1をプリン ト基板 3 4に実装する際における、 金バンプ 5 1上のハンダ接続部 5 2における ハンダの代替材料として使用されている。  FIG. 25 is a model diagram showing an example of the above (7). In FIG. 25, the conductive composition for electrical connection of an electronic device according to the present invention includes a solder connection portion 5 2 on a gold bump 5 1 when the semiconductor package 3 1 is mounted on a print substrate 3 4. It is used as a substitute material for soldering.
[例 4 1 ]  [Example 4 1]
図 2 6は上記 (9 ) の例を示すモデル図である。 図 2 6において、 本発明に係 る電子デバイスの電気的接続用導電性組成物は、 プリント基板 3 4上の配線パ夕 —ン 1 1とプリント基板 3 4内の埋め込み受動素子であるキャパシ夕 6 1の電極 6 2とを接続する非貫通孔内に充填された電気的接続材料 6 3として使用されて いる。 FIG. 26 is a model diagram showing an example of the above (9). In FIG. 26, the conductive composition for electrical connection of an electronic device according to the present invention is composed of a wiring pattern 11 on a printed circuit board 34 and a capacitor, which is an embedded passive element in the printed circuit board 34. It is used as an electrical connection material 63 filled in a non-through hole connecting the electrode 61 with the electrode 62.
表 1— 1 Table 1—1
組成 構成物特性 杳 1 番号 2 番号 3 番号 4 番号 5 . 番号 6 番号 7 番号 8 番号 9 番号 10 金属粒子粉 A 金属含有組成物中 2.5 4.5 10 40 80 5 7 5 8 5 害 1】合(質 %) Composition Constituent properties 1 No. 2 No. 3 No. 4 No. 5. No. 6 No. 7 No. 8 No. 9 No. 10 Metal particle powder A In metal-containing composition 2.5 4.5 10 40 80 5 7 5 8 5 Harm 1 %)
平均 ¾ίΐ圣 (nm) 10 7 15 12 10 10 5 10 8 10 個数累積積算 90% 16 8.7 20 18 . 16 16 18 20 15 20 時の ¾ί径 (nm)  Average ¾ίΐ 圣 (nm) 10 7 15 12 10 10 5 10 8 10 Cumulative number of pieces 90% 16 8.7 20 18. 16 16 18 20 15 20 Diameter at 20 (nm)
元素名 Ag Ag Ag Ag Ag Au Ru Pd Pt Re 金属粒子粉 B 金属含有組成物中 56 60.5 70 40 10 60.5 60.5 60.5 60.5 60.5 害!!合(質真%)  Element name Ag Ag Ag Ag Ag Au Ru Pd Pt Re Metal particle powder B In metal-containing composition 56 60.5 70 40 10 60.5 60.5 60.5 60.5 60.5 Damage! Pass (Quality%)
平均粒径 (nm) 900 900 900 1500 1800 1100 1000 1200 1200 1400 個数累積積算 10% 100 100 100 100 200 80 250 100 100 200 時の ¾i (nm)  Average particle size (nm) 900 900 900 1500 1800 1100 1000 1200 1200 1400 Cumulative count 10% 100 100 100 100 200 80 250 100 100 200 時 i (nm)
個数累積積算 90% 1800 1800 1800 2000 2000 1600 2000 1800 1800 2000 時の粒径(nm)  90% 1800 1800 1800 2000 2000 1600 2000 1800 1800 1800 2000 Particle size (nm)
元素名 Ag Ag Ag Cu Cu Ag Ru Ag Ag Ru Element name Ag Ag Ag Cu Cu Ag Ru Ag Ag Ru
3¾雷性粒子粉 r;余属舍: &組成物中 31 25 10 5 3 25 25 25 25 25 割合 (質量%) 3¾ Lightning particle powder r; Surplus: 31 25 10 5 3 25 25 25 25 25 ratio (% by mass)
平均粒径 ( m) 5 5 5 6 6 5 10 4 5 6 元素または、物質名 Ag Ag Ag Cu Cu Ag Ru02 Ag Ag Ag 樹脂 樹脂種類 エポキシエポキシエポキシエポキシエポキシエポキシエポキシエポキシエポキシエポキシ 樹脂 樹脂 樹脂 樹脂 樹脂 樹脂 樹脂 樹脂 樹脂 樹脂 Average particle size (m) 5 5 5 6 6 5 10 4 5 6 Element or substance name Ag Ag Ag Cu Cu Ag Ru02 Ag Ag Ag resin Resin type Epoxy Epoxy Epoxy Epoxy Epoxy Epoxy Epoxy Epoxy resin Epoxy resin Epoxy resin Epoxy resin Epoxy resin Resin Resin Resin Resin
表 1— 2 Table 1-2
Figure imgf000041_0001
Figure imgf000041_0001
表 1— 3 Table 1-3
組成 構成物特性 番号 21 番号 22 番号 23 番号 24 番号 25 金属粒子粉 A 金属含有組成物中 5 4 5 0 1 平均 ¾ί (nm) 10 12 12 10 個数累積積算 90% 14 16 16 一 15 時 权 1 (nm) Composition Constituent properties No. 21 No. 22 No. 23 No. 24 No. 25 Metal particle powder A In metal-containing composition 5 4 5 0 1 Average ¾ί (nm) 10 12 12 10 Cumulative number of pieces 90% 14 16 16 15:00 時 1 (nm)
元素名 Ag Ag Ag 一 Ag 金属粒子粉 B 金属含有組成物中 60.5 60.5 60.5 20 0  Element name Ag Ag Ag-Ag Metal particle powder B In metal-containing composition 60.5 60.5 60.5 20 0
割合(筧: %)  Proportion (Kakehi:%)
平均粒径 (nm) 1900 1600 1200 1800 - 個数累積積算 10% 1200 1000 300 800  Average particle size (nm) 1900 1600 1200 1800-Cumulative count 10% 1200 1000 300 800
時の ¾i (nm)  ¾i at time (nm)
個数累積積算 90% 2000 2000 1800 2000 - 時の粒径(nm.)  90% 2000 2000 1800 2000-Particle size at hour (nm.)
元素名 Mo Mo Ag Cu 導 性粒子粉 c金属含有組成物中 25 25 25 45 75  Element name Mo Mo Ag Cu Conductive particle powder c In metal-containing composition 25 25 25 45 75
割合 (質量%)  Ratio (% by mass)
平均粒径 (jU m) 3 3 19 20 20 元素または、物質名 ATO ゲラファ仆 力-ホ'ンナノ Cu Cu  Average particle size (jU m) 3 3 19 20 20 Element or substance name ATO
チュ-ブ  Tube
樹脂 樹脂種類 フエノール系シリコーン ホ。リイミド エポキシエポキシ 硬化樹 系硬化 及びェポ樹脂 樹脂 脂 樹脂 キシ樹 Resin Resin type Phenolic silicone e. Liimide Epoxy epoxy Cured resin Cured resin and epoxy resin Resin Resin Resin Kishi tree
脂. Fat.
表 2— 1 Table 2-1
項目 番号 1 番号 2 番号 3 番号 4 番号 5 番号 6 番号 7 番号 8 番号 9 番号 10 初期抵抗値(i S3 cm) 50 9 8 9 10 9 12 40 20 55 冷熱衝撃試験後の抵 5 4 -2 - 3 - 3 1 0 8 6 7 抗値変化率(%) 表 2— 2  Item No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 Initial resistance value (i S3 cm) 50 9 8 9 10 9 12 40 20 55 Resistance after thermal shock test 5 4 -2- 3-3 1 0 8 6 7 Resistance change rate (%) Table 2-2
項目 番号 1 1 番号 12 番号 13 番号 14 番号 15 番号 16 番号 17 番号 18 番号 19 番号 20 初期抵抗値( Q cm) 9 10 9 75 75 90 75 43 55 80 冷熱衝撃試験後の抵 6 8 2 6 4 3 0 12 15 12 抗値変化率(%) 表 2— 3  Item No. 1 1 No. 12 No. 13 No. 14 No. 15 No. 16 No. 17 No. 18 No. 19 No. 20 Initial resistance (Q cm) 9 10 9 75 75 90 75 43 55 80 Resistance after thermal shock test 6 8 2 6 4 3 0 12 15 12 Change rate of resistance value (%) Table 2-3
項目 番号 21 番号 22 番号 23 番号 24 番号 25  Item No. 21 No. 22 No. 23 No. 24 No. 25
初期抵抗値( Ω cm) 75 56 20 4000 2500 Initial resistance value (Ωcm) 75 56 20 4000 2500
冷熱衝撃試験後の抵 1 1 10 5 絶縁化 絶縁化 Resistance after thermal shock test 1 1 10 5 Insulation Insulation
抗値変化率(%) Resistance value change rate (%)
産業上の利用可能性 Industrial applicability
本発明により、 導電性と耐久性とにすぐれ、 かつ、 塗布性、 印刷性、 充填性に も優れた電子デバィスの電気的接続用導電性組成物および、 この導電性組成物電 気的接続部位に適用してなる信頼性の高い電子デバイスが得られる。  Advantageous Effects of Invention According to the present invention, a conductive composition for electrical connection of electronic devices, which is excellent in conductivity and durability, and excellent in applicability, printability, and filling property, and a conductive composition electrical connection site A highly reliable electronic device that is applied to a semiconductor device can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1. 電子デバイスの電気的接続用導電性組成物において、 1. In a conductive composition for electrical connection of an electronic device,
平均粒径が 20 nm以下の金属粒子粉 (金属粒子粉 A) と平均粒径が 50 nm 以上 200 O nm以下の金属粒子粉 (金属粒子粉 B) と、 樹脂と、 場合によって はさらに平均粒径が 2000 nmを超え 20 x m以下の導電性粒子粉 (導電性粒 子粉 C) とを含む金属含有組成物にエネルギー付与してなる、 電子デバイスの電 気的接続用導電性組成物であつて、  Metal particle powder having an average particle diameter of 20 nm or less (metal particle powder A), metal particle powder having an average particle diameter of 50 nm or more and 200 O nm or less (metal particle powder B), resin, and, in some cases, further average particles A conductive composition for electrical connection of electronic devices, obtained by applying energy to a metal-containing composition containing conductive particle powder (conductive particle powder C) having a diameter of more than 2000 nm and 20 xm or less. hand,
当該導電性組成物の任意に選択した 0. 1mm2の断面の少なくとも一つに、 金属または金属と導電性粒子とによって構成される針状形状、 樹枝形状、 いがぐ り形状および不定形連結形状からなる群から選ばれた少なくとも一つの形状が 1 個以上新たに生じていることを特徴とする電子デバイスの電気的接続用導電性組 成物。 At least one of the 0.1 mm 2 cross sections of the electrically conductive composition selected as above has a needle-like, tree-like, scrambled-shape, or irregular connection composed of metal or metal and conductive particles. A conductive composition for electrical connection of electronic devices, wherein at least one new shape selected from the group consisting of shapes is newly generated.
2. 前記金属含有組成物中の金属粒子粉 Aの濃度を a質量%、 金属粒子粉 Bの濃 度を b質量%、 導電性粒子粉 Cの濃度を c質量%とした場合、  2. When the concentration of the metal particle powder A in the metal-containing composition is a mass%, the concentration of the metal particle powder B is b mass%, and the concentration of the conductive particle powder C is c mass%,
a : bが 3 : 97〜 90 : 10の間にあり、  a: b is between 3:97 and 90:10,
(a + b) : cが 100 ·· 0〜 60 : 40の間にあり、  (a + b): c is between 100 ... 0-60: 40,
50≤ (a + b + c) ≤95である、  50≤ (a + b + c) ≤95,
請求の範囲 1に記載の電子デバイスの電気的接続用導電性組成物。 2. The conductive composition for electrical connection of an electronic device according to claim 1.
3. 金属粒子と樹脂と、 場合によっては導電性粒子とを含み、 金属粒子と導電性 粒子との総量に対し、 粒径が 20 nm以下の金属粒子と粒径が 50 nm以上 20 00 nm以下の金属粒子との量割合が質量比で 3 : 97〜90 : 10の間にあり 、 粒径が 20 nm以下の金属粒子と粒径が 50 nm以上 2000 nm以下の金属 粒子とを合計で 60〜100質量%の割合で含み、 2000 nmを超え 20 urn 以下の導電性粒子を 40〜 0質量%の割合で含む金属含有組成物にエネルギー付 与してなる、 電子デバィスの電気的接続用導電性組成物であつて、  3. Metal particles having a particle size of 20 nm or less and a particle size of 50 nm or more and 20000 nm or less with respect to the total amount of the metal particles and the conductive particles, including metal particles, a resin, and, in some cases, conductive particles. The mass ratio between the metal particles and the metal particles is between 3:97 and 90:10 in mass ratio, and the total of metal particles having a particle size of 20 nm or less and metal particles having a particle size of 50 nm or more and 2000 nm or less is 60 in total. Conductivity for electrical connection of electronic devices by applying energy to a metal-containing composition containing conductive particles of more than 2000 nm and not more than 20 urn in a ratio of 40 to 0% by mass. An acidic composition,
当該導電性組成物の任意に選択した 0. 1 mm2の断面の少なくとも一つに、 金属または金属と導電性粒子とによって構成される針状形状、 樹枝形状、 いがぐ り形状および不定形連結形状からなる群から選ばれた少なくとも一つの形状が 1 個以上新たに生じていることを特徴とする電子デバイスの電気的接続用導電性組 成物。 At least one of the selected 0.1 mm 2 cross sections of the conductive composition has a needle-like shape, a tree-like shape, and an irritation shape composed of metal or metal and conductive particles. A conductive composition for electrical connection of an electronic device, wherein at least one new shape selected from the group consisting of an irregular shape and an irregular connection shape is newly generated.
4. 金属粒子と樹脂と、 場合によっては導電性粒子とを含む金属含有組成物にお いて、 当該金属含有組成物中に存在する固体粒子の動的光散乱による測定法によ る粒度分布のうち、 20 nm以下の粒径領域と 50 nm以上 2000 nm以下の 粒径領域とにそれぞれピークが存在し、 場合によってはさらに 2000 nmを超 え 20 zm以下の粒径領域にピークが存在する金属含有組成物にエネルギー付与 してなる、 電子デバィスの電気的接続用導電性組成物であつて、  4. In a metal-containing composition containing metal particles, a resin, and, in some cases, conductive particles, the particle size distribution of solid particles present in the metal-containing composition measured by dynamic light scattering. Of these, peaks exist in the particle size region of 20 nm or less and in the particle size region of 50 nm or more and 2000 nm or less, and in some cases, peaks exist in the particle size region of more than 2000 nm and 20 zm or less. A conductive composition for electrical connection of an electronic device obtained by imparting energy to the composition,
当該導電性組成物の任意に選択した 0. 1mm2の断面の少なくとも一つに、 金属または金属と導電性粒子とによって構成される針状形状、 樹枝形状、 いがぐ り形状および不定形連結形状からなる群から選ばれた少なくとも一つの形状が 1 個以上新たに生じている、 At least one of the 0.1 mm 2 cross sections of the electrically conductive composition selected as above has a needle-like, tree-like, scrambled-shape, or irregular connection composed of metal or metal and conductive particles. At least one new shape selected from the group consisting of shapes is newly generated,
電子デバィスの電気的接続用導電性組成物。 A conductive composition for electrically connecting electronic devices.
5. 前記金属含有組成物において、  5. In the metal-containing composition,
金属粒子粉 Aと金属粒子粉 Bとが、 それぞれ、 Ag, An, Ru, P d, P t , Re, O s , I r, Cu, N i、 Sn、 A 1 , Zn, I n, Co, Wおよび M oからなる群から選ばれた少なくともいずれか 1種の元素の金属粒子と当該元素 を含む合金粒子との少なくともいずれか一つを含み、  Ag, An, Ru, Pd, Pt, Re, Os, Ir, Cu, Ni, Sn, A1, Zn, In, Co , W and Mo containing at least one of metal particles of at least one element selected from the group consisting of and alloy particles containing the element,
導電性粒子粉 Cが存在する場合には当該導電性粒子粉 Cが、  When the conductive particle powder C is present, the conductive particle powder C
Ag, Au, Ru, Pd, P t, Re, O s , I r, Cu, N i、 Sn、 A 1 , Zn, I n, Co, Wおよび Moからなる群から選ばれた少なくともいずれか 1種の元素の金属粒子と、  Ag, Au, Ru, Pd, Pt, Re, Os, Ir, Cu, Ni, Sn, A1, Zn, In, Co, W and at least one selected from the group consisting of Mo Metal particles of the species element,
当該元素を含む合金粒子と、  Alloy particles containing the element,
I n, Ru, Re, Os, I r, S nからなる群から選ばれた少なくともいず れか 1種の元素を含む導電性酸化物粒子と、  A conductive oxide particle containing at least one element selected from the group consisting of In, Ru, Re, Os, Ir, and Sn;
グラフアイト、 グラフアイト構造を有するカーボン化合物およびカーボンナノ チューブからなる群から選ばれた少なくともいずれか 1種の導電性カーボン化合 物と、 At least one conductive carbon compound selected from the group consisting of graphite, a carbon compound having a graphite structure, and carbon nanotubes Things and
の少なくともいずれか一つを含む、 請求の範囲 1または 2に記載の電子デバイス の電気的接続用導電性組成物。 The conductive composition for electrical connection of an electronic device according to claim 1, comprising at least one of the following.
6. 前記金属含有組成物において、  6. In the metal-containing composition,
粒径が 20 nm以下の金属粒子と粒径が 50 nm以上 2000 nm以下の金属 粒子とが、 それぞれ、 Ag, Au, Ru, P d, P t, Re, Os, I r, Cu , N i、 Sn、 A 1 , Zn, I n, Co, Wおよび Moからなる群から選ばれた 少なくともいずれか 1種の元素の金属粒子と当該元素を含む合金粒子との少なく ともいずれか一つを含み、  Metal particles having a particle size of 20 nm or less and metal particles having a particle size of 50 nm or more and 2000 nm or less are Ag, Au, Ru, Pd, Pt, Re, Os, Ir, Cu, and Ni, respectively. , Sn, A1, Zn, In, Co, W, and Mo, including at least one of metal particles of at least one element selected from the group consisting of elements and alloy particles containing the element. ,
2000 nmを超え 20 m以下の導電性粒子が存在する場合には当該導電性 粒子が、  When conductive particles exceeding 2000 nm and 20 m or less exist, the conductive particles
Ag, An, Ru, Pd, P t, Re, Os, I r, Cu, N i、 Sn、 A 1 , Zn, I n, C o, Wおよび Moからなる群から選ばれた少なくともいずれか 1種の元素の金属粒子と、  Ag, An, Ru, Pd, Pt, Re, Os, Ir, Cu, Ni, Sn, A1, Zn, In, Co, W, and at least one selected from the group consisting of Mo Metal particles of the species element,
当該元素を含む合金粒子と、  Alloy particles containing the element,
I n, Ru, Re, Os, I r, S nからなる群から選ばれた少なくともいず れか 1種の元素を含む導電性酸化物粒子と、  A conductive oxide particle containing at least one element selected from the group consisting of In, Ru, Re, Os, Ir, and Sn;
グラフアイト、 グラフアイト構造を有するカーボン化合物およびカーボンナノ チューブからなる群から選ばれた少なくともいずれか 1種の導電性カーボン化合 物と、  At least one kind of conductive carbon compound selected from the group consisting of graphite, a carbon compound having a graphite structure, and carbon nanotubes;
の少なくともいずれか一つを含む、 請求の範囲 3または 4に記載の電子デバイス の電気的接続用導電性組成物。 The conductive composition for electrical connection of an electronic device according to claim 3, comprising at least one of the following.
7. 前記樹脂が、 エポキシ系硬化性樹脂、 フエノール系硬化性樹脂、 メラミン系 硬化性樹脂、 シリコーン系硬化性樹脂、 アクリル樹脂、 ポリエチレン、 ポリスチ レン、 ポリプロピレン、 ポリ塩化ピニル、 ポリイミド、 ポリアミドおよびポリべ ンゾィミダゾールからなる群から選ばれた少なくとも 1種の樹脂を含む、 請求の 範囲 1〜 6のいずれか 1つに記載の電子デバイスの電気的接続用導電性組成物。 7. If the resin is an epoxy-based curable resin, a phenol-based curable resin, a melamine-based curable resin, a silicone-based curable resin, an acrylic resin, polyethylene, polystyrene, polypropylene, polypinyl chloride, polyimide, polyamide, or polyamide resin. The conductive composition for electrical connection of an electronic device according to any one of claims 1 to 6, comprising at least one resin selected from the group consisting of nazomidazole.
8. 請求の範囲 1〜7のいずれか 1つに記載の導電性組成物を、 ビアホール、 ス ルーホールおよび配線からなる群から選ばれた少なくとも 1種の電気的接続部位 に適用してなる電子デバイス。 8. The conductive composition according to any one of claims 1 to 7, An electronic device applied to at least one type of electrical connection site selected from the group consisting of a through hole and a wiring.
PCT/JP2003/012011 2002-09-19 2003-09-19 Conductive composition for electrical connection of electronic device and electronic device WO2004027787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003266547A AU2003266547A1 (en) 2002-09-19 2003-09-19 Conductive composition for electrical connection of electronic device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002273232A JP2004111253A (en) 2002-09-19 2002-09-19 Conductive composition for electrical connection of electronic device, and electron device
JP2002/273232 2002-09-19

Publications (1)

Publication Number Publication Date
WO2004027787A1 true WO2004027787A1 (en) 2004-04-01

Family

ID=32024950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012011 WO2004027787A1 (en) 2002-09-19 2003-09-19 Conductive composition for electrical connection of electronic device and electronic device

Country Status (3)

Country Link
JP (1) JP2004111253A (en)
AU (1) AU2003266547A1 (en)
WO (1) WO2004027787A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749299B2 (en) 2005-01-14 2010-07-06 Cabot Corporation Production of metal nanoparticles
US20110253948A1 (en) * 2007-05-04 2011-10-20 Peratech Limited Polymer Composition
US8167393B2 (en) 2005-01-14 2012-05-01 Cabot Corporation Printable electronic features on non-uniform substrate and processes for making same
US8334464B2 (en) 2005-01-14 2012-12-18 Cabot Corporation Optimized multi-layer printing of electronics and displays
US8597397B2 (en) 2005-01-14 2013-12-03 Cabot Corporation Production of metal nanoparticles
CN114433868A (en) * 2022-02-10 2022-05-06 哈尔滨理工大学 Branched CuAu alloy nanocrystal and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111254A (en) * 2002-09-19 2004-04-08 Asahi Glass Co Ltd Metal contained composition for electrical connection of electronic device
JP5580562B2 (en) * 2009-09-09 2014-08-27 地方独立行政法人 大阪市立工業研究所 Silver-copper mixed powder and bonding method using the same
WO2011114747A1 (en) * 2010-03-18 2011-09-22 古河電気工業株式会社 Electrically conductive paste, and electrically conductive connection member produced using the paste
KR20130031414A (en) * 2011-09-21 2013-03-29 삼성전기주식회사 Conductive paste composition for low temperature firing
JP5648619B2 (en) * 2011-10-26 2015-01-07 信越化学工業株式会社 Thermally conductive silicone composition
JP5956833B2 (en) * 2012-05-29 2016-07-27 日立建機株式会社 Construction machinery
JP5880300B2 (en) 2012-06-14 2016-03-08 日立化成株式会社 Adhesive composition and semiconductor device using the same
WO2017159694A1 (en) 2016-03-15 2017-09-21 積水化学工業株式会社 Metal-containing particle, connecting material, connected structure, and method for producing connected structure
CN106298073A (en) * 2016-08-31 2017-01-04 安徽斯迈尔电子科技有限公司 A kind of preparation method of high-power resistance conductive phase powder
JP7076400B2 (en) * 2019-05-27 2022-05-27 信越化学工業株式会社 Thermally conductive silicone composition, semiconductor device and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167320A (en) * 1994-12-13 1996-06-25 Pentel Kk Conductive composition
JPH09194668A (en) * 1996-01-16 1997-07-29 Fukuda Metal Foil & Powder Co Ltd Conductive composition for solderable electrode of surface heating element
JP2001015872A (en) * 1999-06-30 2001-01-19 Kyocera Corp Wiring board insulating sheet and manufacture of wiring board using the same
JP2001101925A (en) * 1999-09-30 2001-04-13 Fukuda Metal Foil & Powder Co Ltd Conductive composition
JP2003123535A (en) * 2001-10-19 2003-04-25 Murata Mfg Co Ltd Conductive paste and laminated ceramic electronic parts

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021744A (en) * 1996-06-28 1998-01-23 Mitsuboshi Belting Ltd Copper conductor paste and substrate printed therewith
JP4155821B2 (en) * 2000-10-25 2008-09-24 ハリマ化成株式会社 Conductive metal paste and manufacturing method thereof
JP2004111254A (en) * 2002-09-19 2004-04-08 Asahi Glass Co Ltd Metal contained composition for electrical connection of electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167320A (en) * 1994-12-13 1996-06-25 Pentel Kk Conductive composition
JPH09194668A (en) * 1996-01-16 1997-07-29 Fukuda Metal Foil & Powder Co Ltd Conductive composition for solderable electrode of surface heating element
JP2001015872A (en) * 1999-06-30 2001-01-19 Kyocera Corp Wiring board insulating sheet and manufacture of wiring board using the same
JP2001101925A (en) * 1999-09-30 2001-04-13 Fukuda Metal Foil & Powder Co Ltd Conductive composition
JP2003123535A (en) * 2001-10-19 2003-04-25 Murata Mfg Co Ltd Conductive paste and laminated ceramic electronic parts

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749299B2 (en) 2005-01-14 2010-07-06 Cabot Corporation Production of metal nanoparticles
US8167393B2 (en) 2005-01-14 2012-05-01 Cabot Corporation Printable electronic features on non-uniform substrate and processes for making same
US8334464B2 (en) 2005-01-14 2012-12-18 Cabot Corporation Optimized multi-layer printing of electronics and displays
US8597397B2 (en) 2005-01-14 2013-12-03 Cabot Corporation Production of metal nanoparticles
US20110253948A1 (en) * 2007-05-04 2011-10-20 Peratech Limited Polymer Composition
US8765027B2 (en) * 2007-05-04 2014-07-01 Peratech Limited Polymer composition
CN114433868A (en) * 2022-02-10 2022-05-06 哈尔滨理工大学 Branched CuAu alloy nanocrystal and preparation method thereof
CN114433868B (en) * 2022-02-10 2023-08-15 哈尔滨理工大学 Branched CuAu alloy nanocrystalline and preparation method thereof

Also Published As

Publication number Publication date
AU2003266547A1 (en) 2004-04-08
JP2004111253A (en) 2004-04-08
AU2003266547A8 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
WO2004027787A1 (en) Conductive composition for electrical connection of electronic device and electronic device
JP2004111254A (en) Metal contained composition for electrical connection of electronic device
JP5041454B2 (en) Conductive connection member
JP4848674B2 (en) Resin metal composite conductive material and method for producing the same
JP6337909B2 (en) Manufacturing method of electronic component module
JP6099472B2 (en) Metal nanoparticle dispersion, method for producing metal nanoparticle dispersion, and bonding method
CN112437706B (en) Bonding composition, conductive body bonding structure, and method for manufacturing same
JP5774472B2 (en) Thermally reinforced electrical insulating adhesive paste
WO2007037440A1 (en) Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
WO1996024938A1 (en) Composite conductive powder, conductive paste, method of producing conductive paste, electric circuit and method of fabricating electric circuit
TWI393496B (en) Wiring board, production method therefor, and via paste
JP6333552B2 (en) Conductive particles, conductive materials, and connection structures
JP2006225691A (en) Tin-coated copper powder and electrically conductive paste using the tin-coated copper powder
TWI464749B (en) Conductive compositions
JP4922793B2 (en) Mixed conductive powder and method for producing the same, conductive paste and method for producing the same
EP3248713A1 (en) Electroconductive microparticles
WO2017038572A1 (en) Conductive paste
JP2017179428A (en) Conductive material, forming method of conducive film, circuit board, semiconductor device, and manufacturing method of semiconductor device
TWI808208B (en) Nano copper paste and film for sintered die attach and similar applications and method of manufacturing sintering powders
US20180009998A1 (en) Method of Fabricating Nano-Silver Paste Having High Bonding strength
KR20210125995A (en) Composite for pressure bonding, bonding structure of conductor, and manufacturing method thereof
US10588220B2 (en) Dry method of metallizing polymer thick film surfaces
JP6197504B2 (en) Conductive paste and substrate with conductive film
JP6669420B2 (en) Bonding composition
JP2004193250A (en) Conductive paste and semiconductor device using it

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase