JP2008010329A - Conductive synthetic resin rod body, and its manufacturing method - Google Patents

Conductive synthetic resin rod body, and its manufacturing method Download PDF

Info

Publication number
JP2008010329A
JP2008010329A JP2006180582A JP2006180582A JP2008010329A JP 2008010329 A JP2008010329 A JP 2008010329A JP 2006180582 A JP2006180582 A JP 2006180582A JP 2006180582 A JP2006180582 A JP 2006180582A JP 2008010329 A JP2008010329 A JP 2008010329A
Authority
JP
Japan
Prior art keywords
conductive
synthetic resin
rod
ultrafine
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006180582A
Other languages
Japanese (ja)
Other versions
JP4958146B2 (en
Inventor
Hirobumi Takase
博文 高瀬
Hidemi Ito
秀己 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2006180582A priority Critical patent/JP4958146B2/en
Publication of JP2008010329A publication Critical patent/JP2008010329A/en
Application granted granted Critical
Publication of JP4958146B2 publication Critical patent/JP4958146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive synthetic resin rod body exhibiting excellent surface resistivity even when it is molded by extruding a thermosetting synthetic resin composition containing an extra-fine conductive fiber; and its manufacturing method. <P>SOLUTION: An extruded rod body 3 formed by extruding an extra-fine conductive fiber-containing thermosetting resin composition is brought into contact with a heated sizing die 4 to set a surface thereof in a temperature range from a temperature of a glass transition temperature of the composition to a temperature 30°C higher than a melting-point temperature thereof, or/and to set viscosity thereof in a viscosity range not smaller than 5.0×10<SP>3</SP>Pa s and not larger than 1.0×10<SP>7</SP>Pa s. By this heating, the extra-fine conductive fiber is exposed from the surface, projected from the surface and included in the inside smaller than 100 nm from the surface, and a conductive layer 1 is formed, whereby this conductive synthetic resin rod body A can be manufactured. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、カーボンナノチューブなどの極細導電繊維を含有する導電層が形成された導電性合成樹脂棒体と、その製造方法に関する。   The present invention relates to a conductive synthetic resin rod formed with a conductive layer containing ultrafine conductive fibers such as carbon nanotubes, and a method for producing the same.

従来より合成樹脂に導電材を含有させた制電性棒体が製造されていて、これを制電性部材を接続する制電性溶接棒として使用したり(特許文献1,2)、切削してボルトやナットやワッシャーなどを作製したり、電子写真機器、静電気記録機器、自動改札機、券売機、ATM、医療機器などの導電性ロールなどとして使用されている。このような制電性棒体に使用される導電材は、酸化亜鉛や酸化錫などの導電性粒子(特許文献1)、又は金属粉やカーボン繊維や金属繊維(特許文献2)などが使用されている。
一方、カーボンナノチューブを使用した制電性合成樹脂板も知られていて、該カーボンナノチューブが1本又は1束ずつに分散して制電層内に含有されて透明性に優れた樹脂板となされている。そして、この樹脂板はカーボンナノチューブ含有塗液を塗布したフィルムを樹脂基板に重ねてプレスし一体化することで得られている(特許文献3)。
特開昭60−4032号公報 特開平7−223264号公報 特開2004−230690号公報
Conventionally, antistatic rods containing conductive material in synthetic resin have been manufactured, and this can be used as antistatic welding rods for connecting antistatic members (Patent Documents 1 and 2) or by cutting. Bolts, nuts, washers, and the like, and are used as conductive rolls for electrophotographic equipment, electrostatic recording equipment, automatic ticket gates, ticket vending machines, ATMs, medical equipment, and the like. As the conductive material used in such an antistatic rod, conductive particles such as zinc oxide and tin oxide (Patent Document 1), metal powder, carbon fiber, metal fiber (Patent Document 2), and the like are used. ing.
On the other hand, an antistatic synthetic resin plate using carbon nanotubes is also known, and the carbon nanotubes are dispersed in one or one bundle and contained in the antistatic layer to form a resin plate having excellent transparency. ing. And this resin board is obtained by putting the film which apply | coated the coating solution containing a carbon nanotube on a resin substrate, pressing and integrating (patent document 3).
JP 60-4032 A JP-A-7-223264 JP 2004-230690 A

しかしながら、上記特許文献1の金属粒子を含有する導電性棒体は、該金属粒子が使用中に摩擦により脱落する恐れがあるし、多量に含有させないと制電性能を発揮できず機械的強度が低下し、切削加工時に刃物を傷めるという問題が内在していた。また、特許文献2の金属粉を含有する制電性発泡シートであっても金属粉などが脱落したりするし、カーボン繊維であれば脱落は若干良くなるが該繊維の直径が太くて多量含有させる必要があった。
一方、特許文献3には、押出により制電性合成樹脂板を得る方法は記載がないし、棒体であればプレス方式を採用できないので導電性合成樹脂棒体を製造することはできなかった。
However, the conductive rod containing the metal particles of Patent Document 1 may drop off due to friction during use, and if it is not contained in a large amount, the antistatic performance cannot be exhibited and the mechanical strength is low. The problem is that the tool is lowered and the blade is damaged during the cutting process. Moreover, even if it is the antistatic foam sheet containing the metal powder of patent document 2, metal powder etc. will fall off, and if it is a carbon fiber, dropout will become a little better, but the diameter of this fiber is thick and contains abundantly It was necessary to let them.
On the other hand, Patent Document 3 does not describe a method of obtaining an antistatic synthetic resin plate by extrusion, and a conductive synthetic resin rod body could not be manufactured because a press method cannot be adopted if it is a rod body.

本発明は上記の問題に対処するためになされたもので、その目的とするところは、カーボンナノチューブなどの極細導電繊維を含有させて、良好な制電乃至導電性能を発揮する導電性合成樹脂棒体、及び該棒体の製造方法を提供することにある。   The present invention has been made in order to address the above-described problems, and the object of the present invention is to provide a conductive synthetic resin rod that contains a fine conductive fiber such as a carbon nanotube and exhibits good antistatic or conductive performance. It is providing the manufacturing method of a body and this rod.

上記目的を達成するため、本発明に係る第1の導電性合成樹脂棒体は、熱可塑性合成樹脂棒体であって、該棒体の少なくとも表面に極細導電繊維が含有された導電層が形成されていることを特徴とするものである。   In order to achieve the above object, a first conductive synthetic resin rod according to the present invention is a thermoplastic synthetic resin rod, and a conductive layer containing ultrafine conductive fibers is formed on at least the surface of the rod. It is characterized by being.

本発明の第2の導電性合成樹脂棒体は、熱可塑性合成樹脂棒体であって、極細導電繊維を含有しない芯材層と、該芯材層を被覆する極細導電繊維が含有された導電層とからなることを特徴とするものである。   The second conductive synthetic resin rod of the present invention is a thermoplastic synthetic resin rod, and is a conductive material containing a core material layer that does not contain an ultrafine conductive fiber and an ultrafine conductive fiber that covers the core material layer. It consists of layers.

上記の各導電性合成樹脂棒体において、極細導電繊維が導電層の表面に露出するか、又は表面から突出するか、又は表面から100nm未満の内部に含有されていることが好ましい。また、導電層が切削された表面を有することも好ましい。更に、導電層が極細導電繊維を含有する熱可塑性合成樹脂棒体又は芯材層を被覆する極細導電繊維が含有された表面層を加熱して、表面抵抗率を低下させて形成されていることも好ましい。   In each of the conductive synthetic resin rods described above, it is preferable that the ultrafine conductive fiber is exposed on the surface of the conductive layer, protrudes from the surface, or is contained within less than 100 nm from the surface. It is also preferable that the conductive layer has a cut surface. Furthermore, the conductive layer is formed by heating the surface layer containing the ultrafine conductive fiber covering the thermoplastic synthetic resin rod or the core material layer containing the ultrafine conductive fiber to reduce the surface resistivity. Is also preferable.

本発明の第1の導電性合成樹脂棒体の製造方法は、極細導電繊維を含有する熱可塑性合成樹脂組成物を押出して熱可塑性合成樹脂棒体となし、該棒体の少なくとも表面を加熱して、極細導電繊維を前記棒体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とするものである。   The first method for producing a conductive synthetic resin rod of the present invention is to form a thermoplastic synthetic resin rod by extruding a thermoplastic synthetic resin composition containing ultrafine conductive fibers, and heating at least the surface of the rod. Then, the conductive layer having a reduced surface resistivity is formed by exposing the ultrafine conductive fiber to the surface of the rod or projecting from the surface, or containing the ultrafine conductive fiber in the interior of less than 100 nm from the surface. It is characterized by.

本発明の第2の導電性合成樹脂棒体の製造方法は、極細導電繊維を含有する熱可塑性合成樹脂組成物と極細導電繊維を含有しない熱可塑性合成樹脂組成物とを共押出して、極細導電繊維を含有しない熱可塑性合成樹脂組成物よりなる芯材層を極細導電繊維を含有する熱可塑性合成樹脂組成物よりなる表面層で被覆してなる合成樹脂多層棒体となし、該多層棒体の少なくとも表面を加熱して、極細導電繊維を前記多層棒体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とするものである。   According to the second method for producing a conductive synthetic resin rod of the present invention, a thermoplastic synthetic resin composition containing ultrafine conductive fibers and a thermoplastic synthetic resin composition not containing ultrafine conductive fibers are coextruded to produce ultrafine conductive materials. A synthetic resin multi-layer rod body in which a core layer made of a thermoplastic synthetic resin composition containing no fiber is coated with a surface layer made of a thermoplastic synthetic resin composition containing ultrafine conductive fibers. At least the surface was heated to expose the ultrafine conductive fibers on the surface of the multilayer bar, or to protrude from the surface, or to be contained within less than 100 nm from the surface to reduce the surface resistivity. A conductive layer is formed.

上記の各導電性合成樹脂棒体の製造方法において、前記合成樹脂棒体又は前記合成樹脂多層棒体の表面を切削した後に、少なくとも切削表面を加熱して表面抵抗率を低下させた導電層を形成することが好ましい。また、前記合成樹脂棒体又は前記合成樹脂多層棒体の加熱が、極細導電繊維を含有する熱可塑性合成樹脂組成物のガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲で行なわれるか、又は、前記合成樹脂棒体又は前記合成樹脂多層棒体の加熱が、極細導電繊維を含有する熱可塑性合成樹脂組成物の粘度が5.0×10Pa・s以上1.0×10Pa・s未満の範囲となる温度範囲で行われることが好ましい。 In the method for producing each conductive synthetic resin rod described above, a conductive layer having a reduced surface resistivity by heating at least the cutting surface after cutting the surface of the synthetic resin rod or the synthetic resin multilayer rod. It is preferable to form. The synthetic resin rod or the synthetic resin multilayer rod is heated in a temperature range from the glass transition temperature of the thermoplastic synthetic resin composition containing ultrafine conductive fibers to a temperature 30 ° C. higher than the melting temperature. Or when the synthetic resin rod or the synthetic resin multilayer rod is heated, the viscosity of the thermoplastic synthetic resin composition containing ultrafine conductive fibers is 5.0 × 10 3 Pa · s or more and 1.0 ×. It is preferable to be performed in a temperature range that is less than 10 7 Pa · s.

また、前記合成樹脂棒体又は前記合成樹脂多層棒体が押出された後にサイジング金型に移送されて形状が整形されると共に、該サイジング金型の前側部で前記棒体表面を加熱して表面抵抗率を低下させた導電層を形成すると共に、該サイジング金型の後側部で冷却して固化することが好ましい。   Further, after the synthetic resin rod body or the synthetic resin multilayer rod body is extruded, it is transferred to a sizing mold and shaped, and the surface of the rod body is heated by the front side portion of the sizing mold. It is preferable to form a conductive layer having a reduced resistivity and to solidify by cooling at the rear side of the sizing mold.

本発明において、導電層とはその表面抵抗率が10Ω/□以上1012Ω/□未満である層を示す。
また、「表面抵抗率を低下させた導電層」又は「表面抵抗率が低下した導電層」とは、押出された棒体の表面抵抗率が1012Ω/□以上であれば、これを1012Ω/□未満の表面抵抗率に低下させることを意味し、押出された棒体の表面抵抗率が1012Ω/□未満であれば、これをさらに低下させた表面抵抗率となすことを意味する。
In the present invention, the conductive layer refers to a layer having a surface resistivity of 10 1 Ω / □ or more and less than 10 12 Ω / □.
Further, the “conductive layer with reduced surface resistivity” or “conductive layer with reduced surface resistivity” means that if the surface resistivity of the extruded rod is 10 12 Ω / □ or more, it is 10 This means that the surface resistivity is reduced to less than 12 Ω / □, and if the surface resistivity of the extruded rod is less than 10 12 Ω / □, the surface resistivity is further reduced. means.

また、上記極細導電繊維を含有する熱可塑性合成樹脂組成物のガラス転移温度と融点は、該組成物の示差走査熱量を測定することにより求めることができ、ガラス転移温度は、転移前の基線の直線部分と転移領域の変曲点の接線を外挿して得られる交点の温度を示し、融点は、融解ピークの両側の最大傾斜の点で引いた接線の交点の温度を示す。
また、上記粘度は、動的粘弾性測定装置にて剪断速度1sec−1の剪断速度で得られた値を示す。
なお、上記融点は、極細導電繊維を含有する熱可塑性樹脂合成組成物に使用される熱可塑性合成樹脂が結晶性であれば上記示差走査熱量を測定することで求めることができるが、非晶性であれば示差走査熱量で測定することができないので、合成樹脂棒体又は前記合成樹脂多層棒体の加熱は上記粘度範囲となる温度範囲でなされる。
The glass transition temperature and melting point of the thermoplastic synthetic resin composition containing the ultrafine conductive fiber can be determined by measuring the differential scanning calorific value of the composition. The temperature of the intersection obtained by extrapolating the tangent of the inflection point of the straight line portion and the transition region is indicated, and the melting point indicates the temperature of the intersection of the tangent drawn at the maximum slope points on both sides of the melting peak.
Moreover, the said viscosity shows the value obtained with the shear rate of 1 sec < -1 > shear rate with the dynamic-viscoelasticity measuring apparatus.
The melting point can be determined by measuring the differential scanning calorific value if the thermoplastic synthetic resin used in the thermoplastic resin composition containing ultrafine conductive fibers is crystalline, but is amorphous. Then, since it cannot be measured by the differential scanning calorific value, the synthetic resin rod or the synthetic resin multilayer rod is heated in the temperature range within the above viscosity range.

本発明の第1の導電性合成樹脂棒体であると、該棒体の少なくとも表面に極細導電繊維を含有する導電層が形成されているので、表面抵抗率を10Ω/□以上1012Ω/□未満にすることができるし、また、該極細導電繊維が細くて長いので導電層から脱落する恐れが少なくなり、脱落による導電性能の低下や脱落した繊維による弊害をなくすことができる。そして、該導電性合成樹脂棒体の全体に極細導電繊維が含有されて導電層を形成していると、これを切削などしてボルトなどの導電性切削加工体とすることもできる。 In the first conductive synthetic resin rod of the present invention, the conductive layer containing ultrafine conductive fibers is formed on at least the surface of the rod, so that the surface resistivity is 10 1 Ω / □ or more and 10 12. Moreover, since the ultrafine conductive fiber is thin and long, the possibility of falling off from the conductive layer is reduced, and the deterioration of the conductive performance due to dropping and the harmful effects caused by the dropped fiber can be eliminated. And when the electroconductive synthetic resin rod body contains ultrafine conductive fibers to form a conductive layer, it can be cut into a conductive cutting body such as a bolt.

また、本発明の第2の導電性合成樹脂棒体であると、芯材層が導電層で被覆されているので、導電性性能以外の性能を該芯材層で付与させることができる。そして、極細導電繊維の脱落する恐れが少なくて導電性能の低下や脱落した繊維による弊害をなくすことができるし、表面抵抗率を10Ω/□以上1012Ω/□未満に長期間維持することもできる。 Moreover, since the core material layer is coat | covered with the conductive layer in the 2nd conductive synthetic resin rod body of this invention, performances other than electroconductive performance can be provided with this core material layer. In addition, there is little risk of the ultrafine conductive fibers falling off, and it is possible to eliminate the deterioration of the conductive performance and the harmful effects caused by the dropped fibers, and the surface resistivity is maintained at 10 1 Ω / □ or more and less than 10 12 Ω / □ for a long time. You can also

これらの導電性合成樹脂棒体の導電層に含有される極細導電繊維が、表面に露出又は表面から突出すると該極細導電繊維により直接導電路が良好に形成されるし、極細導電繊維が表面から100nm未満の内部に含有されているとトンネル効果により静電気や印加電圧が該極細導電繊維にまで達して導電路が形成されて、表面抵抗率を10Ω/□以上1012Ω/□未満にすることが容易になされる。 When the fine conductive fibers contained in the conductive layer of these conductive synthetic resin rods are exposed on the surface or protrude from the surface, a direct conductive path is formed well by the fine conductive fibers, and the fine conductive fibers are exposed from the surface. If contained within less than 100 nm, static electricity and applied voltage reach the ultrafine conductive fiber due to the tunnel effect, and a conductive path is formed, and the surface resistivity is 10 1 Ω / □ or more and less than 10 12 Ω / □. Easy to do.

また、これらの導電性合成樹脂棒体の導電層が切削された表面を有していると、切削により該棒体を真円形状になすこともできるので、例えば導電性ロールに使用すると、該ロール上を移送する物体を確実に支持して揺らすことなく搬送できるし、帯電防止機能により上記ロールで搬送される物体に付着する埃を軽減できる。   In addition, if the conductive layer of these conductive synthetic resin rods has a cut surface, the rod can be made into a perfect circle by cutting. For example, when used in a conductive roll, The object transported on the roll can be reliably supported and transported without shaking, and dust attached to the object transported by the roll can be reduced by the antistatic function.

さらに、導電層が加熱することで形成されると、該加熱により、極細導電繊維が表面に露出したり、表面から突出したり、表面から100nm未満の内部に含有したりした導電層とすることができるので、押出された棒体の表面抵抗率を低下させて10Ω/□以上1012Ω/□未満となされた導電性棒体とすることができる。 Furthermore, when the conductive layer is formed by heating, the heating can form a conductive layer in which the ultrafine conductive fiber is exposed on the surface, protrudes from the surface, or is contained within less than 100 nm from the surface. Therefore, the surface resistivity of the extruded rod body can be reduced to a conductive rod body of 10 1 Ω / □ or more and less than 10 12 Ω / □.

本発明の第1の導電性合成樹脂棒体の製造方法であると、押出された熱可塑性合成樹脂棒体(以下、押出棒体とも記す)を加熱することで、極細導電繊維を表面に露出させたり、表面から突出させたり、表面から100nm未満の内部に含有させたりすることができるので、該押出棒体の少なくとも表面部分に導電層を形成することができる。このように、表面を加熱することで極細導電繊維を上記状態になさしめる理由は、現時点では定かではないが、出願人は次のように推測している。   According to the first method for producing a conductive synthetic resin rod of the present invention, by heating an extruded thermoplastic synthetic resin rod (hereinafter also referred to as an extruded rod), the fine conductive fibers are exposed on the surface. Can be made to protrude, protrude from the surface, or be contained in the interior of less than 100 nm from the surface, so that the conductive layer can be formed on at least the surface portion of the extruded rod body. Thus, although the reason why the ultrafine conductive fiber is brought into the above state by heating the surface is not clear at present, the applicant presumes as follows.

押出された合成樹脂棒体は、その表面近傍に含まれていた極細導電繊維が押出時に成形金型内面からの剪断力を受けて、歪を有した状態で含有されていると共に、押出方向に強制的に配列・配向させられている。そのため、極細導電繊維の含有量が少ないか又は/及び分散が悪いと、該繊維同士の接触が余り得られず1012Ω/□以上の表面抵抗率を示す。しかし、極細導電繊維の含有量が多いか又は/及び分散が良好であると、歪を有した状態で配列・配向しても該繊維同士の接触がある程度得られて、1012Ω/□未満の表面抵抗率を示す。 In the extruded synthetic resin rod, the ultrafine conductive fibers contained in the vicinity of the surface are subjected to a shearing force from the inner surface of the molding die at the time of extrusion and are contained in a distorted state, and in the extrusion direction. It is forcibly arranged and oriented. Therefore, if the content of the ultrafine conductive fiber is small or / and the dispersion is poor, the contact between the fibers is not obtained so much and a surface resistivity of 10 12 Ω / □ or more is exhibited. However, if the content of the ultrafine conductive fiber is large or / and the dispersion is good, even if the fibers are arranged and oriented in a strained state, the fibers can be contacted to some extent, and less than 10 12 Ω / □ The surface resistivity is shown.

このような表面抵抗率を示す押出棒体を、押出直後にサイジング金型などにより加熱したり、押出後直ちにサイジング金型などにより加熱したり、押出成形後に再加熱したりして、少なくとも表面近傍が極細導電繊維含有熱可塑性合成樹脂組成物のガラス転移温度の温度から融点温度より30℃高い温度の温度範囲(以下、加熱温度範囲とも記す)になされるか、又は/及び、該組成物の粘度が5.0×10Pa・s以上1.0×10Pa・s未満の範囲(以下、加熱粘度範囲とも記す)となる温度範囲になされる。その結果、表面近傍の極細導電繊維含有熱可塑性合成樹脂組成物が軟化して低粘度となり、表面近傍に含有され且つ歪を有していた極細導電繊維が、この歪を解消しようとして、該組成物の内部でランダムに3次元方向に動いて無配向状態となり、近接して含有されていた極細導電繊維同士がお互いに接触する機会が増加すると共に、軟化組成物量が少なくて動きを抑制することが少ない表面方向に動いて、表面に露出するか、更に動いて表面から突出するか、又は露出乃至突出するまでの歪がなくて表面から100nm未満の内部にまで動いて固定された状態となるためである、と推測している。
そのために、該表面又は/及び表面近傍には、極細導電繊維が十分に接触して表面抵抗率を低下させた導電層が形成され、本発明の導電性合成樹脂棒体を製造することができるのである。
なお、導電層に含有されている極細導電繊維は、上記各状態が混在して導電層を形成している場合があることは当然である。
At least near the surface, the extruded rod body showing such surface resistivity is heated by a sizing die immediately after extrusion, heated by a sizing die immediately after extrusion, or reheated after extrusion. Is made within a temperature range of the glass transition temperature of the thermoplastic synthetic resin composition containing ultrafine conductive fibers 30 ° C. higher than the melting point temperature (hereinafter also referred to as a heating temperature range), and / or The viscosity is in a temperature range in which the viscosity is in the range of 5.0 × 10 3 Pa · s to less than 1.0 × 10 7 Pa · s (hereinafter also referred to as a heating viscosity range). As a result, the ultrafine conductive fiber-containing thermoplastic synthetic resin composition in the vicinity of the surface is softened to have a low viscosity, and the ultrafine conductive fiber that is contained in the vicinity of the surface and has a strain is intended to eliminate this strain. Randomly move in the three-dimensional direction inside the object to become non-oriented, increase the chance that the ultra-fine conductive fibers contained in close contact with each other, and reduce the amount of softening composition to suppress movement Moves in the direction of the surface with a little, exposed to the surface, further moves and protrudes from the surface, or moves from the surface to the inside of less than 100 nm without any distortion until exposed or protruded, and becomes a fixed state. I guess that is because.
Therefore, on the surface or / and in the vicinity of the surface, a conductive layer in which the ultrafine conductive fiber is sufficiently in contact and the surface resistivity is lowered is formed, and the conductive synthetic resin rod of the present invention can be manufactured. It is.
In addition, naturally the ultrafine conductive fiber contained in the conductive layer may form the conductive layer by mixing the above states.

そして、極細導電繊維が表面に露出又は表面から突出すると該極細導電繊維により直接導電路が良好に形成されるし、極細導電繊維が表面から100nm未満の内部に含有されているとトンネル効果により静電気や印加電圧が該極細導電繊維にまで達して導電路が形成され、いずれの場合でも表面抵抗率が低下した導電層が形成される。そのため、加熱される前は1012Ω/□以上の高い表面抵抗率を示していても、加熱された後は表面抵抗率が低下して1012Ω/□未満の表面抵抗率を示す本発明の導電性合成樹脂棒体を製造することができる。また、加熱される前に012Ω/□未満の表面抵抗率を示したものは、加熱された後は該表面抵抗率がさらに低下した導電層が形成されて、本発明の導電性合成樹脂棒体を製造することができる。 When the ultrafine conductive fiber is exposed on the surface or protrudes from the surface, a direct conductive path is well formed by the ultrafine conductive fiber. When the ultrafine conductive fiber is contained within less than 100 nm from the surface, the tunnel effect causes static electricity. Or the applied voltage reaches the ultrafine conductive fiber to form a conductive path, and in any case, a conductive layer having a reduced surface resistivity is formed. Therefore, the present invention shows a surface resistivity of less than 10 12 Ω / □ after heating, even if it shows a high surface resistivity of 10 12 Ω / □ or more before being heated. The conductive synthetic resin rod body can be manufactured. In addition, those having a surface resistivity of less than 0 12 Ω / □ before being heated are formed with a conductive layer having a further reduced surface resistivity after being heated. A rod can be manufactured.

さらに、押出棒体の内部まで加熱されて上記加熱温度範囲及び/又は加熱粘度範囲になされると、該押出棒体の内部の極細導電繊維もランダムに三次元方向に動いてお互いが接触して押出棒体全体が表面抵抗率が低下した導電層となり、表面抵抗率と共に体積抵抗率も低下した導電性合成樹脂棒体を製造することができる。   Furthermore, when the inside of the extruded rod body is heated to the above heating temperature range and / or the heating viscosity range, the ultrafine conductive fibers inside the extruded rod body also move in a three-dimensional direction at random and come into contact with each other. The entire extruded rod body becomes a conductive layer with reduced surface resistivity, and a conductive synthetic resin rod body with reduced volume resistivity as well as surface resistivity can be produced.

本発明の第2の導電性合成樹脂棒体の製造方法であると、熱可塑性合成樹脂からなる芯材層を極細導電繊維が含有された熱可塑性樹脂組成物の表面層で被覆した合成樹脂多層棒体(以下、押出多層棒体とも記す)を共押出しで容易に製造できる。そして、該押出多層棒体を押出直後にサイジング金型などにより加熱したり、押出後直ちにサイジング金型などにより加熱したり、押出成形後に再加熱したりして、該押出多層棒体の少なくとも表面層を加熱して上記加熱温度範囲及び/又は上記加熱粘度範囲になされると、前述のように、極細導電繊維が押出多層棒体の表面に露出したり、表面から突出したり、表面から100nm未満の内部に含有したりして、表面又は/及び表面近傍に表面抵抗率を低下させた導電層を形成することができて、本発明の導電性合成樹脂棒体を製造することができる。   In the second method for producing a conductive synthetic resin rod of the present invention, a synthetic resin multilayer in which a core layer made of a thermoplastic synthetic resin is coated with a surface layer of a thermoplastic resin composition containing ultrafine conductive fibers A rod (hereinafter also referred to as an extruded multilayer rod) can be easily manufactured by coextrusion. And at least the surface of the extruded multilayer bar is heated by a sizing mold or the like immediately after extrusion, heated by a sizing mold or the like immediately after extrusion, or reheated after extrusion. When the layer is heated to the above heating temperature range and / or the above heating viscosity range, as described above, the ultrafine conductive fibers are exposed on the surface of the extruded multilayer bar, protrude from the surface, or less than 100 nm from the surface. The conductive layer with reduced surface resistivity can be formed on the surface or / and in the vicinity of the surface, and the conductive synthetic resin rod of the present invention can be produced.

この押出多層棒体は、表面層を形成する極細導電繊維含有熱可塑性樹脂組成物が共押出成形金型からの剪断力を受けて、極細導電繊維は歪を有して含有されていると共に押出し方向に強制的に配列・配向させられ、前述の如く、極細導電繊維の含有量と分散状態とにより表面抵抗率が1012Ω/□以上になる場合とそれ以下になる場合とがある。しかし、いずれの場合であっても、この表面層を加熱することで、上記に記載したように、歪を有して表面層に含有されていた極細導電繊維がランダムに3次元方向に動き無配向状態となってお互いが接触して表面抵抗率が低下し、10Ω/□以上1012Ω/□未満の表面抵抗率となされた導電層が形成されて、本発明の導電性合成樹脂棒体を製造することができる。この押出多層棒体の加熱は、極細導電繊維が含有されている表面層のみでよいので効率よく行なうことができる。また、内部の芯材層は加熱する必要がないために、変形するほどに長時間加熱する必要がなく、押出多層棒体の形状を維持することも容易にできる。 In this extruded multi-layered bar, the ultrafine conductive fiber-containing thermoplastic resin composition forming the surface layer is subjected to shearing force from the coextrusion mold, and the ultrafine conductive fiber is contained with strain and extruded. Depending on the content and dispersion state of the ultrafine conductive fibers, the surface resistivity may be 10 12 Ω / □ or more and may be less than that, as described above. However, in any case, by heating this surface layer, as described above, the ultrafine conductive fibers contained in the surface layer with strain do not move randomly in the three-dimensional direction. A conductive layer having a surface resistivity of 10 1 Ω / □ or more and less than 10 12 Ω / □ is formed by contacting each other in an oriented state, and the conductive synthetic resin of the present invention is formed. A rod can be manufactured. The extruded multilayer bar can be heated efficiently because only the surface layer containing the ultrafine conductive fibers is required. Moreover, since it is not necessary to heat an internal core material layer, it is not necessary to heat so long as it deform | transforms, and it can also maintain the shape of an extrusion multilayer bar body easily.

上記の各製造方法において、押出された合成樹脂棒体又は合成樹脂多層棒体の表面を切削した後に、該切削表面を加熱して表面抵抗率を低下させた導電層を形成することによっても本発明の導電性合成樹脂棒体を得ることができる。そのため、真円形状をなした導電性合成樹脂棒体とすることができ、電子写真機器、静電気記録機器、自動改札機、券売機、ATM、医療機器、搬送装置などの導電性ロールとしても使用することができる。   In each of the above production methods, the surface of the extruded synthetic resin rod or the synthetic resin multilayer rod is cut, and then the cut surface is heated to form a conductive layer having a reduced surface resistivity. The conductive synthetic resin rod of the invention can be obtained. Therefore, it can be used as a conductive synthetic resin rod having a perfect circle shape, and can also be used as a conductive roll for electrophotographic equipment, electrostatic recording equipment, automatic ticket gates, ticket vending machines, ATMs, medical equipment, transport equipment, etc. can do.

また、上記加熱が、極細導電繊維を含有する熱可塑性樹脂組成物の上記加熱温度範囲で行なわれると、押出棒体又は押出多層棒体の少なくとも表面を前記温度範囲にすることができて、樹脂組成物を十分軟化させて極細導電繊維の動きを可能ならしめることができる。また、上記加熱が上記加熱粘度範囲となるように行なわれると、極細導電繊維が低粘度となった組成物中を動くことができるようになる。このような加熱温度範囲又は/及び加熱粘度範囲に加熱されると、極細導電繊維の動きを良好に行なわせることができるので、該極細導電繊維が表面に露出、又は表面から突出、又は100nm未満の内部に含有され易くなって、表面抵抗率を低下させた導電層を形成させることが極めて容易になる。   Further, when the heating is performed within the heating temperature range of the thermoplastic resin composition containing ultrafine conductive fibers, at least the surface of the extruded rod body or the extruded multilayer rod body can be brought to the temperature range, and the resin The composition can be sufficiently softened to allow movement of the fine conductive fibers. In addition, when the heating is performed within the heating viscosity range, the ultrafine conductive fibers can move in the composition having a low viscosity. When heated in such a heating temperature range and / or a heating viscosity range, the fine conductive fibers can be favorably moved, so that the fine conductive fibers are exposed on the surface, protrude from the surface, or less than 100 nm. It becomes extremely easy to form a conductive layer having a reduced surface resistivity.

また、上記加熱がサイジング金型で行なわれると、押出された合成樹脂棒体又は合成樹脂多層棒体の整形も同じサイジング金型内で行なわれるので、外観良好な導電性合成樹脂棒体とすることができる。そして、該サイジング金型の前側部で押出棒体又は押出多層棒体を加熱して前記加熱温度範囲及び/又は加熱粘度範囲になされると共に後側部で冷却されるので、前側部で押出棒体又は押出多層棒体に含有されている極細導電繊維が動いて、上記と同様の理由で、該表面又は/及び表面近傍に表面抵抗率が低下した導電層が形成されて、引き続いて、後側部で冷却されて極細導電繊維が上記状態で固定されて固化されるので、外観が良好で且つ表面抵抗率を低下させた導電層を有する本発明の導電性合成樹脂棒体を製造することができる。   Further, when the heating is performed in the sizing mold, the extruded synthetic resin bar or the synthetic resin multilayer bar is shaped in the same sizing mold, so that the conductive synthetic resin bar having a good appearance is obtained. be able to. And since an extrusion rod body or an extrusion multilayered rod body is heated by the front side part of this sizing metal mold, it is made into the above-mentioned heating temperature range and / or heating viscosity range, and it is cooled at the back side part, so an extrusion bar at the front side part For the same reason as described above, a conductive layer with reduced surface resistivity is formed on the surface or / and in the vicinity of the surface. Manufacturing the conductive synthetic resin rod body of the present invention having a conductive layer with good appearance and reduced surface resistivity since the ultrafine conductive fibers are fixed in the above state and solidified by being cooled at the side portion Can do.

以下、図面を参照して本発明の具体的な実施形態を詳述する。しかし、本発明はこれらに限定されるものではない。
図1は本発明の導電性合成樹脂棒体であり、(1)は斜視図を、(2)はそのX−X線断面図を示す。図2は導電性合成樹脂棒体に含有される極細導電繊維の分散状態を示す説明図である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to these.
FIG. 1 shows a conductive synthetic resin rod according to the present invention, wherein (1) shows a perspective view and (2) shows a cross-sectional view taken along line XX. FIG. 2 is an explanatory view showing a dispersion state of ultrafine conductive fibers contained in the conductive synthetic resin rod.

図1の導電性合成樹脂棒体A(以下、導電性棒体Aと記載することもある)は、極細導電繊維を含有する熱可塑性合成樹脂からなる直径が1〜300mmの断面略円形形状の長尺丸棒体であって、その外周表面の表面抵抗率は10Ω/□以上1012Ω/□未満となされている。この導電性合成樹脂棒体Aは、熱可塑性合成樹脂に、押出成形に必要な公知の添加剤を加えると共に極細導電繊維2を添加した極細導電繊維含有熱可塑性合成樹脂組成物を用いて、押出成形法にて成形された単一層からなるものであり、全体が導電層1となされている。 The conductive synthetic resin rod A in FIG. 1 (hereinafter sometimes referred to as conductive rod A) has a substantially circular cross section with a diameter of 1 to 300 mm made of a thermoplastic synthetic resin containing ultrafine conductive fibers. It is a long round bar, and the surface resistivity of its outer peripheral surface is 10 1 Ω / □ or more and less than 10 12 Ω / □. This conductive synthetic resin rod A is extruded by using a thermoplastic synthetic resin composition containing ultrafine conductive fibers to which a known additive necessary for extrusion molding is added to a thermoplastic synthetic resin and to which ultrafine conductive fibers 2 are added. It consists of a single layer molded by a molding method, and the whole is a conductive layer 1.

上記熱可塑性合成樹脂としては、例えばポリエチレン、ポリプロピレン等のオレフィン系樹脂、ポリ塩化ビニル、ポリメチルメタクリレート、ポリビニルアセテート、ポリスチレン等のビニル系樹脂、ポリカーボネート、結晶性または非晶質ポリエチレンテレフタレート、ポリアリレート、ポリブチレンテレフタレート、芳香族ポリエステル等のエステル系樹脂、ABS樹脂、ポリエーテルエーテルケトン、ポリエーテルサルホン、ポリイミド、ポリアセタール、ポリエーテルイミド、ポリアミドイミド、ボリスチレン、ポリアミド、結晶ポリマー、トリアセチルセルロース、これらの樹脂の共重合体樹脂などの熱可塑性樹脂、或はこれらの樹脂が混合された混合樹脂などが用いられる。また、これらの樹脂に加えられる添加剤としては、抗酸化剤、ブロッキング防止剤、紫外線吸収剤、安定剤、抗菌剤、難燃剤、顔料、染料などの各樹脂に一般に添加されるものが使用される。   Examples of the thermoplastic synthetic resin include olefin resins such as polyethylene and polypropylene, vinyl resins such as polyvinyl chloride, polymethyl methacrylate, polyvinyl acetate, and polystyrene, polycarbonate, crystalline or amorphous polyethylene terephthalate, polyarylate, Ester resins such as polybutylene terephthalate, aromatic polyester, ABS resin, polyether ether ketone, polyether sulfone, polyimide, polyacetal, polyether imide, polyamide imide, polystyrene, polyamide, crystalline polymer, triacetyl cellulose, these A thermoplastic resin such as a resin copolymer resin or a mixed resin obtained by mixing these resins is used. In addition, as additives added to these resins, those generally added to each resin such as antioxidants, antiblocking agents, ultraviolet absorbers, stabilizers, antibacterial agents, flame retardants, pigments, dyes, etc. are used. The

上記極細導電繊維2としては、カーボンナノチューブ、カーボンナノホーン、カーボンナノワイヤー、カーボンナノファイバー、グラファイトフィブリルなどの極細長炭素繊維、白金、金、銀、ニッケル、シリコンなどの金属ナノチューブ、金属ナノワイヤーなどの極細長金属繊維、酸化亜鉛などの金属酸化物ナノチューブ、金属酸化物ナノワイヤーなどの金属酸化物などの極細長金属酸化物繊維などの、直径が0.3〜100nmで、長さが0.1〜20μm、好ましくは長さが0.1〜10μmの各繊維が用いられる。これらの極細導電繊維は凝集することなく均一に分散されて、お互いに接触して導電層1のなかに含有されていることが好ましい。   Examples of the ultrafine conductive fiber 2 include ultrafine carbon fibers such as carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, and graphite fibrils, metal nanotubes such as platinum, gold, silver, nickel, and silicon, and metal nanowires. Extra-long metal fibers, ultra-long metal oxide fibers such as metal oxide nanotubes such as zinc oxide, metal oxides such as metal oxide nanowires, etc., have a diameter of 0.3 to 100 nm and a length of 0.1 Each fiber having a length of ˜20 μm, preferably 0.1 to 10 μm is used. These ultrafine conductive fibers are preferably dispersed uniformly without agglomeration and contained in the conductive layer 1 in contact with each other.

これらの極細導電繊維2のなかで、極細長炭素繊維が好ましく、特にカーボンナノチューブが最も好ましく用いられる。該カーボンナノチューブは、繊維直径が0.3〜80nmと細く、凝集することなく分散して互いに接触させることにより導電性を良好に発揮させることができる。このカーボンナノチューブには、中心軸線の周りに直径が異なり円筒状に閉じた複数のカーボン壁を同心的に備えた多層カーボンナノチューブと、中心軸線の周りに単層の円筒状に閉じたカーボン壁を備えた単層カーボンナノチューブとがあるが、いずれのカーボンナノチューブも好ましく用いられる。そして、多層カーボンナノチューブは1本ずつ分離して分散させることができるが、単層カーボンナノチューブは現時点では1本ずつ分離して分散させることが困難で複数本が集まって束になったものを1束ずつ分離して分散させることができる。なお、単層カーボンナノチューブが1本ずつ分離して分散したものを除外するものではない。   Of these ultrafine conductive fibers 2, ultrafine carbon fibers are preferable, and carbon nanotubes are most preferably used. The carbon nanotubes have a fine fiber diameter of 0.3 to 80 nm and can exhibit good conductivity by being dispersed and brought into contact with each other without agglomeration. The carbon nanotube has a multi-walled carbon nanotube concentrically provided with a plurality of carbon walls closed in a cylindrical shape with different diameters around the central axis, and a carbon wall closed in a single-layered cylindrical shape around the central axis. There are single-walled carbon nanotubes provided, and any carbon nanotube is preferably used. Multi-walled carbon nanotubes can be separated and dispersed one by one, but single-walled carbon nanotubes are currently difficult to separate and disperse one by one. The bundles can be separated and dispersed. It is not excluded that single-walled carbon nanotubes are separated and dispersed one by one.

これらの極細導電繊維2は、導電層1の中に0.01〜20.0質量%、好ましくは0.01〜10.0質量%、更に好ましくは0.1〜5.0質量%含有されて、均一に分散されている。極細導電繊維2の含有量が多くなり過ぎると、成形性や機械的強度が悪くなり、またコストも高くなる。そのため、出来るだけ分散を良くして、少ない含有量で表面抵抗率を良好に発揮させることが好ましい。このため、極細導電繊維2がカーボンナノチューブであれば、これを0.01〜10.0質量%含有させ1本ずつ又は1束ずつに分離して分散させることが望ましいのである。特に、上記単層カーボンナノチューブであれば0.01〜8.0質量%、多層カーボンナノチューブであれば0.01〜10.0質量%含有させることが望ましい。   These ultrafine conductive fibers 2 are contained in the conductive layer 1 in an amount of 0.01 to 20.0 mass%, preferably 0.01 to 10.0 mass%, more preferably 0.1 to 5.0 mass%. And evenly distributed. If the content of the ultrafine conductive fiber 2 is excessive, the moldability and mechanical strength are deteriorated, and the cost is increased. For this reason, it is preferable to improve the dispersion as much as possible so that the surface resistivity can be satisfactorily exhibited with a small content. For this reason, if the ultrafine conductive fiber 2 is a carbon nanotube, it is desirable to contain 0.01 to 10.0% by mass of this and separate and disperse them one by one or one bundle. In particular, it is desirable to contain 0.01 to 8.0% by mass for the single-walled carbon nanotube, and 0.01 to 10.0% by mass for the multi-walled carbon nanotube.

上記極細導電繊維2は、導電層1の内部では、該繊維2の分散状態を示す図2(1)(2)(3)の説明図で明らかなように、均一に分散し且つランダムに三次元方向に向いてお互いが接触して表面抵抗率を低下させて導電層1を形成している場合と、図2(4)(5)(6)の説明図で示すように、押出方向に配列・配向して1012Ω/□以上の高い表面抵抗率を示して導電層を形成していない場合と、図2(7)(8)(9)の説明図で示すように、押出方向に配列・配向しているが或る程度接触して表面抵抗率の高い導電層を形成している場合とがある。 As shown in FIGS. 2 (1), (2), and (3) showing the dispersion state of the fibers 2, the ultrafine conductive fibers 2 are uniformly dispersed and randomly tertiary in the conductive layer 1. When the conductive layer 1 is formed by contacting each other in the original direction to reduce the surface resistivity, and in the extruding direction as shown in the explanatory diagrams of FIGS. 2 (4) (5) (6) As shown in the explanatory diagrams of FIGS. 2 (7), (8), and (9), when the conductive layer is not formed by arranging and orienting and exhibiting a high surface resistivity of 10 12 Ω / □ or more, the extrusion direction In some cases, a conductive layer having a high surface resistivity is formed by contact to some extent.

しかし、導電層1の表面及び/又は表面近傍では、内部とは異なり、いずれの場合であっても、図2(1)(4)(7)に示すように、極細導電繊維2が表面にランダムに露出しているか、又は/及び、図2(2)(5)(8)示すように、その表面からランダムに突出しているか、又は/及び、図2(3)(6)(9)に示すように、その表面に露出も突出もしていないが表面から100nm未満の深さtの内部に含有され、換言すれば表面から深さt(最大で100nm)までの間には極細導電繊維が含有されずにいるか、の何れかの状態で分散して、表面抵抗率が低下した導電層1を形成している。即ち、表面近傍の極細導電繊維2の端部又は中間部が配列・配向することなくランダムに三次元的に分散して湾曲して、表面に露出又は/及び表面から突出又は/及び100nm未満の内部に含有され、他の部分が導電層1の内部に埋没して固定されている。   However, the surface of the conductive layer 1 and / or the vicinity of the surface is different from the inside, and in any case, as shown in FIGS. 2 (1), (4), and (7), the ultrafine conductive fibers 2 are on the surface. It is randomly exposed or / and protrudes randomly from its surface as shown in FIGS. 2 (2) (5) (8) or / and FIGS. 2 (3) (6) (9) As shown in FIG. 4, the surface is not exposed or protruded but is contained within a depth t of less than 100 nm from the surface. In other words, between the surface and the depth t (100 nm at the maximum), the ultrafine conductive fiber The conductive layer 1 is formed in such a manner that it is not contained or is dispersed in any state to reduce the surface resistivity. That is, the end or middle part of the ultrafine conductive fiber 2 in the vicinity of the surface is randomly distributed and curved three-dimensionally without being arranged or oriented, and is exposed on the surface or / and protrudes from the surface or / and less than 100 nm. It is contained inside and the other part is buried and fixed inside the conductive layer 1.

そして、図2(1)(2)(3)の状態であると、表面及び/又は表面近傍の極細導電繊維2は内部の極細導電繊維2とも接触して導電性棒体Aの全体に導電路が形成されて、表面抵抗率を低下させた導電層1により棒体の全体が形成されていて、表面抵抗率も体積抵抗率も良好にすることができる。一方、図2(4)(5)(6)の状態であると、表面及び/又は表面近傍は表面抵抗率が低下した導電層1とすることができるが、内部は配向して接触がし難くて抵抗率が低下するので、表面抵抗率は良好であるが体積抵抗率は高いものとなる。さらに、図2(7)(8)(9)の状態であると、表面及び/又は表面近傍は表面抵抗率が低下した導電層1とすることができるが、内部は表面抵抗率が低下せずに押出棒体の値を示すこととなって、体積抵抗率は押出棒体のそれと略同じとなって向上はしない。なお、これらの各状態が混在した状態で導電層1に含有されていてもよいことは言うまでもない。   2 (1) (2) (3), the surface and / or the ultrafine conductive fiber 2 in the vicinity of the surface is in contact with the internal fine conductive fiber 2 to conduct the entire conductive rod A. The entire rod body is formed by the conductive layer 1 having a reduced surface resistivity formed by a path, and the surface resistivity and volume resistivity can be improved. On the other hand, in the state of FIGS. 2 (4), (5), and (6), the surface and / or the vicinity of the surface can be the conductive layer 1 having a reduced surface resistivity, but the inside is oriented and contacted. Since it is difficult and the resistivity is lowered, the surface resistivity is good but the volume resistivity is high. Furthermore, in the state of FIGS. 2 (7), (8), and (9), the surface and / or the vicinity of the surface can be the conductive layer 1 with reduced surface resistivity, but the inside has reduced surface resistivity. Therefore, the value of the extruded rod body is shown, and the volume resistivity is substantially the same as that of the extruded rod body and does not improve. Needless to say, these states may be contained in the conductive layer 1 in a mixed state.

このように極細導電繊維2を分散させて良好な導電路を形成させるためには、その分散度を高め、接触頻度を高める必要がある。そのために、各極細導電繊維2が絡み合うことなく1本ずつ分離した状態で、又は/及び、複数本集まって束になったものが1束ずつ分離した状態で導電層1に分散させることが好ましく、このように分散させると、少ない含有量であっても、広い範囲に極細導電繊維2が分散して存在し、お互いが接触し易くなる。そのために、極細導電繊維2の含有量を0.01〜20.0質量%、好ましくは0.1〜10.0質量%としも、お互いが接触して十分な導電路が形成される。   Thus, in order to disperse the ultrafine conductive fibers 2 to form a good conductive path, it is necessary to increase the degree of dispersion and increase the contact frequency. Therefore, it is preferable to disperse in the conductive layer 1 in a state where each ultrafine conductive fiber 2 is separated one by one without being entangled, and / or in a state where a bundle of a plurality of bundles is separated one by one. When dispersed in this way, even if the content is small, the ultrafine conductive fibers 2 are dispersed and present in a wide range so that they can easily come into contact with each other. Therefore, even if the content of the ultrafine conductive fiber 2 is 0.01 to 20.0% by mass, preferably 0.1 to 10.0% by mass, a sufficient conductive path is formed by contact with each other.

この導電性棒体Aのように、極細導電繊維2が該導電性棒体Aの表面に露出したり、表面から突出したり、表面から100nm未満の内部に含有されて、10Ω/□以上1012Ω/□未満の表面抵抗率に低下した導電層1が形成することができる。そして、表面抵抗率が10Ω/□以上1012Ω/□未満であると制電機能を発揮し、表面に帯電した静電気は露出又は突出している極細導電繊維2に接触し、表面及び/又は内部の極細導電繊維同士が接触して形成された導電路を流れて導電層1の端部にまで達し、該端部で放電して除電する。また、表面抵抗率が10Ω/□以上10Ω/□未満であると導電体としての作用をなし、電気を流すことができるようになる。また、極細導電繊維2が表面から100nm未満の内部に含有されていると、トンネル効果により表面に帯電した静電気が該極細導電繊維2にまで達して制電機能を発揮するし、電気が通電されるとトンネル効果で同様に内部の該極細導電繊維2にまで通電して導電層1を流れて、導電体として作用する。 Like this conductive rod A, the ultrafine conductive fiber 2 is exposed on the surface of the conductive rod A, protrudes from the surface, or is contained within less than 100 nm from the surface, and is 10 1 Ω / □ or more. A conductive layer 1 having a reduced surface resistivity of less than 10 12 Ω / □ can be formed. When the surface resistivity is 10 5 Ω / □ or more and less than 10 12 Ω / □, the antistatic function is exhibited, and static electricity charged on the surface comes into contact with the exposed or protruding ultrafine conductive fibers 2, and Alternatively, it flows through a conductive path formed by contact between the inside ultra-fine conductive fibers, reaches the end of the conductive layer 1, and discharges at the end to discharge. Further, when the surface resistivity is 10 1 Ω / □ or more and less than 10 5 Ω / □, it acts as a conductor and allows electricity to flow. In addition, if the ultrafine conductive fiber 2 is contained within less than 100 nm from the surface, the static electricity charged on the surface due to the tunnel effect reaches the ultrafine conductive fiber 2 to exert the antistatic function, and electricity is energized. In the same way, the tunnel effect causes the ultrafine conductive fiber 2 inside to flow through the conductive layer 1 and act as a conductor.

このような導電性合成樹脂棒体Aは、例えば図3に示す製造方法により製造することができる。図3(1)は全体の工程を示す説明図、(2)はそのM−M線断面図、(3)はそのN−N線断面図である。また、図4は押出された熱可塑性合成樹脂棒体内における極細導電繊維2の分散状態を示す説明図である。   Such a conductive synthetic resin rod A can be manufactured, for example, by the manufacturing method shown in FIG. FIG. 3A is an explanatory view showing the entire process, FIG. 3B is a sectional view taken along line MM, and FIG. 3C is a sectional view taken along line NN. FIG. 4 is an explanatory view showing a dispersion state of the ultrafine conductive fibers 2 in the extruded thermoplastic synthetic resin rod.

まず、予め、熱可塑性合成樹脂と極細導電繊維2と、必要なら押出成形に必要な上記各添加剤を、均一に混合した極細導電繊維含有熱可塑性合成樹脂組成物を作製する。   First, an ultrafine conductive fiber-containing thermoplastic synthetic resin composition in which the thermoplastic synthetic resin, the ultrafine conductive fiber 2 and, if necessary, the above-described additives necessary for extrusion molding are uniformly mixed is prepared in advance.

そして、図3(1)に示すように、該極細導電繊維含有熱可塑性樹脂組成物を公知の押出機31に供し、スクリュー32で可塑化・溶融して、押出成形金型33により一定の直径を有する断面丸形状の熱可塑性合成樹脂棒体3(以下、押出棒体3とも記す)を押出す。   Then, as shown in FIG. 3 (1), the ultrafine conductive fiber-containing thermoplastic resin composition is supplied to a known extruder 31, plasticized and melted with a screw 32, and fixed with an extrusion mold 33. A thermoplastic synthetic resin rod 3 having a round cross-section (hereinafter also referred to as an extruded rod 3) is extruded.

この押出棒体3は、押出時に、押出成形金型33の押出流路の内面からの剪断力を受けて、極細導電繊維2の含有量が少ないか又は/及び分散が悪いと、図4(1)に示すように、極細導電繊維2も押出方向Eに強制的に配列・配向させられて、歪を有して含有され、極細導電繊維2同士の接触が余り得られずに、1012Ω/□以上の表面抵抗率を示して導電性は有さない。しかし、極細導電繊維2の含有量が多いか又は/及び分散がよいと、図4(2)に示すように、極細導電繊維2が例え押出方向Eに強制的に配列・配向させられても、該繊維2同士の接触がある程度得られて、1012Ω/□未満の表面抵抗率を示す。この配列・配向の傾向は押出成形金型33の押出流路内面に接して押出される押出棒体3の外周面側ほど大きく配向させられて、大きな歪を有している。 When this extruded rod body 3 receives a shearing force from the inner surface of the extrusion flow path of the extrusion mold 33 during extrusion and the content of the ultrafine conductive fiber 2 is small or / and the dispersion is poor, FIG. as shown in 1), the ultra fine conductive fibers 2 may be forcibly arranged and oriented in the extrusion direction E, it is contained with a distortion, to not obtained much contact of the ultra fine conductive fibers 2 to each other, 10 12 It exhibits a surface resistivity of Ω / □ or more and has no electrical conductivity. However, if the content of the ultrafine conductive fiber 2 is large or / and the dispersion is good, even if the ultrafine conductive fiber 2 is forcibly arranged and oriented in the extrusion direction E as shown in FIG. A certain degree of contact between the fibers 2 is obtained, and the surface resistivity is less than 10 12 Ω / □. This tendency of arrangement / orientation is greatly oriented toward the outer peripheral surface side of the extruded rod body 3 extruded in contact with the inner surface of the extrusion flow path of the extrusion mold 33 and has a large strain.

続いて、この押出棒体3を引取ロールRで引き取ることにより、押出直後に、押出成形金型33に接触して配置されているサイジング金型4に導く。
該サイジング金型4は、図3(2)(3)に示すように、内部に設計直径寸法に合致する丸筒状のサイジング通路41が形成されている。そして、図3(2)に示すように、そのサイジング通路41の前側部44の周囲に加熱媒体供給源(不図示)に接続された加熱流路42が設けられていて、その加熱流路42に加熱油、熱水、水蒸気、加圧水蒸気などの加熱媒体を循環させて、サイジング通路41の内表面を極細導電繊維含有熱可塑性樹脂組成物のガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲(加熱温度範囲)に、好ましくは融点よりも30℃低い温度から融点よりも30℃高い温度の温度範囲に加熱するか、又は/及び、前記組成物の粘度が5.0×10Pa・s以上1.0×10Pa・s未満の範囲となる粘度範囲(加熱粘度範囲)に、好ましくは1.0×10Pa・s以上から5.0×10Pa・s未満の粘度範囲となるように加熱されている。そして、サイジング通路41の後側部45の周囲に冷却媒体供給源(不図示)に接続された冷却流路43が設けられていて、その冷却流路43に水、冷却水、冷却ガスなどの冷却媒体を循環させてサイジング通路41の内表面が冷却されている。
Subsequently, the extruded rod body 3 is pulled by the take-up roll R, and immediately after the extrusion, the extruded rod body 3 is guided to the sizing mold 4 arranged in contact with the extrusion mold 33.
As shown in FIGS. 3 (2) and (3), the sizing mold 4 has a round cylindrical sizing passage 41 that matches the design diameter. As shown in FIG. 3 (2), a heating channel 42 connected to a heating medium supply source (not shown) is provided around the front side portion 44 of the sizing passage 41, and the heating channel 42 is provided. A heating medium such as heating oil, hot water, water vapor, and pressurized water vapor is circulated to the inner surface of the sizing passage 41, which is 30 ° C. higher than the melting point temperature from the glass transition temperature of the thermoplastic resin composition containing ultrafine conductive fibers. Heating to a temperature range (heating temperature range), preferably from a temperature 30 ° C. below the melting point to a temperature range 30 ° C. higher than the melting point, or / and the viscosity of the composition is 5.0 × The viscosity range (heated viscosity range) is 10 3 Pa · s or more and less than 1.0 × 10 7 Pa · s, preferably 1.0 × 10 4 Pa · s or more to 5.0 × 10 6 Pa · s. Heat to a viscosity range of less than s Has been. A cooling passage 43 connected to a cooling medium supply source (not shown) is provided around the rear side 45 of the sizing passage 41, and water, cooling water, cooling gas, etc. are provided in the cooling passage 43. The inner surface of the sizing passage 41 is cooled by circulating the cooling medium.

このようなサイジング金型4に押出棒体3が押出直後に移送されると、該押出棒体3はサイジング通路41に接触して直径が微調整されて設計寸法にサイジングされて整形される。そして、サイジング金型4の前側部44の加熱されたサイジング通路41の内面に接して、押出棒体3の少なくとも外周表面が加熱され、前記加熱温度範囲又は/及び加熱粘度範囲となされ、外周表面が軟化して低粘度化する。この状態になると、極細導電繊維2が歪をなくそうとして動いて、配列・配向状態からランダムな三次元方向に分散した状態となって、表面に露出したり、表面から突出したり、表面から100nm未満の内部に含有されて、表面抵抗率が低下した導電層1が形成された押出棒体3となる。   When the extruded rod body 3 is transferred to such a sizing die 4 immediately after extrusion, the extruded rod body 3 comes into contact with the sizing passage 41 and is finely adjusted in diameter and sized to a design dimension and shaped. Then, at least the outer peripheral surface of the extruded rod body 3 is heated in contact with the inner surface of the heated sizing passage 41 of the front side portion 44 of the sizing mold 4 to reach the heating temperature range and / or the heating viscosity range, and the outer peripheral surface. Softens to lower the viscosity. In this state, the ultra-fine conductive fibers 2 move in an attempt to eliminate distortion, and are dispersed in an array / orientation state in a random three-dimensional direction, exposed to the surface, protruding from the surface, or 100 nm from the surface. It becomes the extrusion stick | rod body 3 in which the electroconductive layer 1 contained in the inside of less than and the surface resistivity fell was formed.

なお、極細導電繊維含有熱可塑性樹脂組成物の熱可塑性樹脂が非晶質樹脂であれば、該組成物の融点温度が測定できないので、予め前記組成物の粘度が上記加熱粘度範囲となる温度範囲を事前の予備試験で調べ、この温度範囲になるように設定すればよい。また、結晶性樹脂であっても、この加熱粘度範囲となる温度範囲に設定してもよい。
また、上記加熱流路42に変えて、他の公知の手段で加熱してもよく、例えば、高周波や電気ヒーターなどにより加熱することもでき、この場合は加熱流路の代わりに高周波発生装置を設けたり、電気ヒーターを内蔵させておけばよい。
In addition, if the thermoplastic resin of the ultrafine conductive fiber-containing thermoplastic resin composition is an amorphous resin, the melting point temperature of the composition cannot be measured, so the temperature range in which the viscosity of the composition falls within the heating viscosity range in advance. May be set in such a temperature range by examining in a preliminary test. Moreover, even if it is crystalline resin, you may set to the temperature range used as this heating viscosity range.
Further, instead of the heating flow path 42, it may be heated by other known means. For example, it can be heated by a high frequency or an electric heater. In this case, a high frequency generator is used instead of the heating flow path. It can be provided or an electric heater can be built in.

続いて、該押出棒体3をサイジング金型4の後側部45に導き、冷却流路43で冷却されたサイジング通路41の内面に接触させて冷却して押出棒体3を保形・固化すると、前記極細導電繊維2が上記状態を維持して固定され、その後、切断機Kで切断されると、10Ω/□以上1012Ω/□未満の範囲に表面抵抗率が低下した導電層1を有する本発明の導電性合成樹脂棒体Aを製造することができる。 Subsequently, the extruded bar 3 is guided to the rear side 45 of the sizing die 4, brought into contact with the inner surface of the sizing passage 41 cooled by the cooling channel 43, and cooled to keep the extruded bar 3 shaped and solidified. Then, when the ultrafine conductive fiber 2 is fixed while maintaining the above state, and then cut with a cutting machine K, the conductivity whose surface resistivity is reduced to a range of 10 1 Ω / □ or more and less than 10 12 Ω / □. The conductive synthetic resin rod A of the present invention having the layer 1 can be produced.

なお、図3では、加熱流路42と冷却流路43とを連続的に設けて、押出棒体3を加熱後に直ちに冷却して急激に表面温度を冷却させているが、加熱流路42と冷却流路43との間に中間温度となるような別の流路を1つ乃至複数設けて、徐々に冷却するようにしてもよい。   In FIG. 3, the heating flow path 42 and the cooling flow path 43 are continuously provided, and the extruded rod body 3 is cooled immediately after heating to rapidly cool the surface temperature. One or a plurality of other flow paths that have an intermediate temperature may be provided between the cooling flow path 43 and the cooling flow path 43 may be gradually cooled.

このように、押出棒体3の少なくとも表面をサイジング金型4の前側部44に接触させて加熱し、上記加熱温度範囲又は/及び上記加熱粘度範囲にすることで極細導電繊維2を上記状態になさしめる理由は、前記したように、押出された押出棒体3の少なくとも表面近傍に含まれている極細導電繊維2は、押出時に押出成形金型33の押出流路面からの強い剪断力を受けて押出方向Eに強制的に配列・配向されて、歪を有した状態で含有される。そして、表面及び/又は表面近傍が加熱により軟化して低粘度化し、極細導電繊維2が動くことが可能な状態になると、極細導電繊維2が歪をなくそうとしてランダムに3次元的方向に動いて無配向状態となり、近接して含有されていた極細導電繊維2同士がお互いに接触する機会が著しく増加すると共に、動きを抑制する軟化樹脂組成物量の少ない表面方向に動いて上記状態で分散し、その後、冷却されて固定されるためである。   In this way, at least the surface of the extruded rod body 3 is brought into contact with the front side portion 44 of the sizing mold 4 and heated, and the ultrafine conductive fiber 2 is brought into the above state by setting the heating temperature range or / and the heating viscosity range. As described above, the reason is that, as described above, the ultrafine conductive fibers 2 included at least near the surface of the extruded extruded body 3 are subjected to a strong shearing force from the extrusion flow path surface of the extrusion mold 33 during extrusion. Thus, they are forcibly arranged and oriented in the extrusion direction E, and are contained in a strained state. Then, when the surface and / or the vicinity of the surface is softened by heating to become a low viscosity and the fine conductive fiber 2 can move, the fine conductive fiber 2 randomly moves in a three-dimensional direction so as to eliminate distortion. In the non-orientated state, the chances that the ultrafine conductive fibers 2 contained in proximity to each other greatly increase and move in the surface direction where the amount of the softening resin composition that suppresses movement is small and dispersed in the above state. After that, it is cooled and fixed.

そのため、加熱前に1012Ω/□以上の表面抵抗率を示した押出棒体3は、加熱により1012Ω/□未満の表面抵抗率を有する導電性棒体Aを製造することができる。一方、加熱前に1012Ω/□未満の表面抵抗率を示した押出棒体3は、加熱により、これより表面抵抗率を低下させた導電性棒体Aを製造することができる。
この加熱による表面抵抗率の低下は、一般的には1桁乃至10桁の範囲でなされる。そのため、例えば、加熱前に1012Ω/□の表面抵抗率を示した押出棒体3は、加熱により1011Ω/□から10Ω/□の範囲の表面抵抗率を有する導電性棒体Aとなる。
For this reason, the extruded rod body 3 having a surface resistivity of 10 12 Ω / □ or more before heating can produce a conductive rod A having a surface resistivity of less than 10 12 Ω / □ by heating. On the other hand, the extruded rod 3 showing a surface resistivity of less than 10 12 Ω / □ before heating can produce a conductive rod A having a reduced surface resistivity by heating.
This reduction in surface resistivity due to heating is generally in the range of 1 to 10 digits. Therefore, for example, the extruded rod 3 that exhibited a surface resistivity of 10 12 Ω / □ before heating is a conductive rod having a surface resistivity in the range of 10 11 Ω / □ to 10 2 Ω / □ by heating. A.

そして、押出棒体3の加熱により上記加熱温度範囲又は/及び上記加熱粘度範囲になる部分が表面又は/及び表面近傍のみであれば、極細導電繊維2は図2(4)(5)(6)(7)(8)(9)に示すような分散状態となり、表面には表面抵抗率が低下した導電層1が形成されて押出棒体3の表面抵抗率が低下するが、内部は押出状態の配列・配向を維持した導電性棒体Aとなる。しかし、内部まで加熱されると、表面も内部も一様に軟化・低粘度化し極細導電繊維2全体が動いて、図2(1)(2)(3)に示すように、表面も内部も表面抵抗率が低下した導電層1となり、表面抵抗率も体積抵抗率も低下した導電性棒体Aとすることができる。   And if the part which becomes the said heating temperature range or / and the said heating-viscosity range by the heating of the extrusion rod body 3 is only the surface or / and the surface vicinity, the ultrafine conductive fiber 2 will be FIG.2 (4) (5) (6 ) (7) (8) (9) The dispersion state as shown in FIG. 9 is obtained, and the conductive layer 1 having a reduced surface resistivity is formed on the surface and the surface resistivity of the extruded rod 3 is lowered. The conductive rod A maintains the arrangement and orientation of the state. However, when heated to the inside, both the surface and the interior are uniformly softened and lowered in viscosity, and the entire ultrafine conductive fiber 2 moves. As shown in FIGS. 2 (1), (2), and (3), both the surface and the interior are moved. The conductive layer 1 has a reduced surface resistivity, and the conductive rod A can have a reduced surface resistivity and volume resistivity.

上記押出棒体3の少なくとも表面を、上記加熱温度範囲又は/及び上記加熱粘度範囲に曝しておく時間は、極細導電繊維2が動いて上記状態になる必要があるので、1分以上、好ましくは1〜20分間、より好ましくは5〜15分間保っておくことが望ましい。   The time for which at least the surface of the extruded rod 3 is exposed to the heating temperature range or / and the heating viscosity range needs to be 1 minute or more, preferably because the ultrafine conductive fiber 2 needs to move to the above state. It is desirable to keep it for 1 to 20 minutes, more preferably 5 to 15 minutes.

そして、押出棒体3が加熱されても、サイジング金型4のサイジング通路41内に保持されているので、押出棒体3が例え軟化温度や融点温度以上に加熱されてもサイジング通路41により保形されて断面丸棒形状にサイジングされ整形される。そして、同じサイジング金型4の後側部45で引き続いて冷却・固化されるので、その形状を保つことができ、外観の良好な導電性棒体Aを製造することができる。
また、押出直後に、サイジング金型4で加熱されるので、表面の加熱が迅速に行なわれて上記加熱温度範囲又は/及び加熱粘度範囲となされて容易に軟化・低粘度にすることができる。そのため、表面に表面抵抗率が低下した導電層1を形成し易く、本発明の導電性合成樹脂棒体Aを容易に製造することができる。
Even if the extruded rod body 3 is heated, it is held in the sizing passage 41 of the sizing die 4, so that even if the extruded rod body 3 is heated above the softening temperature or the melting point temperature, it is retained by the sizing passage 41. Shaped and sized and shaped into a round bar shape. And since it cools and solidifies continuously by the rear side part 45 of the same sizing metal mold | die 4, the shape can be maintained and the electroconductive rod A with a favorable external appearance can be manufactured.
Moreover, since it heats with the sizing metal mold | die 4 immediately after extrusion, the surface is heated rapidly and can be made into the said heating temperature range or / and a heating viscosity range, and can be easily softened and low-viscosity. Therefore, it is easy to form the conductive layer 1 having a reduced surface resistivity on the surface, and the conductive synthetic resin rod A of the present invention can be easily manufactured.

図5は本発明の他の製造方法を示す全体の工程を示す説明図である。
本製造方法は、押出成形金型33とサイジング金型4とを僅かの間隔を隔てて配置した点で図3に示した製造方法と異なり、他の配置や押出機31やサイジング金型4や成形条件などは前記製造方法と同じであるので、同一符号を付した説明を省略する。
FIG. 5 is an explanatory view showing the entire process showing another manufacturing method of the present invention.
This manufacturing method is different from the manufacturing method shown in FIG. 3 in that the extrusion mold 33 and the sizing mold 4 are arranged at a slight interval, and other arrangements, the extruder 31, the sizing mold 4, and the like. Since the molding conditions and the like are the same as those in the manufacturing method, description with the same reference numerals is omitted.

この製造方法によると、押出棒体3は押出された後、直ちに僅かの間隔を隔てたサイジング金型4に移送される。そして、サイジング金型4に移送された後は、前記と同様に、押出棒体4の直径が微調整されて整形される共に、前側部44で加熱されて前記加熱温度範囲又は/及び加熱粘度範囲となされて極細導電繊維2が動いて、表面に露出したり、表面から突出したり、表面から100nm未満の内部に含有されて、表面抵抗率が低下した導電層1が形成され、更に後側部45で冷却されて、本発明の導電性合成樹脂棒体Aを製造することができる。   According to this manufacturing method, the extruded rod 3 is immediately transferred to the sizing mold 4 with a slight gap after being extruded. Then, after being transferred to the sizing mold 4, the diameter of the extruded rod body 4 is finely adjusted and shaped in the same manner as described above, and is heated at the front side portion 44 to be in the heating temperature range or / and the heating viscosity. As a result, the fine conductive fiber 2 moves and is exposed on the surface, protrudes from the surface, or is contained within less than 100 nm from the surface, and the conductive layer 1 having a reduced surface resistivity is formed. It can cool by the part 45 and can manufacture the electroconductive synthetic resin rod A of this invention.

図6は本発明の他の導電性合成樹脂棒体を示しており、(1)は斜視図、(2)はそのY−Y線断面図である。また、図7は極細導電繊維の分散状態を示す説明図である。   FIG. 6 shows another conductive synthetic resin rod of the present invention, where (1) is a perspective view and (2) is a cross-sectional view taken along line YY. Moreover, FIG. 7 is explanatory drawing which shows the dispersion | distribution state of an ultrafine conductive fiber.

図6に示す導電性合成樹脂棒体B(以下、導電性棒体Bとも記す)は、熱可塑性合成樹脂からなり且つ極細導電繊維を含有しない芯材層5と、その外周面を被覆した極細導電繊維2を含有する導電層1とからなる直径1〜300mmの断面丸形状の2層構造の長尺合成樹脂多層棒体である。なお、芯材層5の外周面に極細導電繊維の含有量を変えた導電層や他の性能を発揮する機能層などを介して導電層1を被覆した多層構造としてもよい。   A conductive synthetic resin rod B (hereinafter also referred to as conductive rod B) shown in FIG. 6 is made of a thermoplastic synthetic resin and does not contain ultrafine conductive fibers, and an ultrafine coating on the outer peripheral surface thereof. It is a long synthetic resin multi-layered rod having a two-layer structure having a round cross section with a diameter of 1 to 300 mm, and comprising a conductive layer 1 containing a conductive fiber 2. In addition, it is good also as a multilayered structure which coat | covered the conductive layer 1 via the outer peripheral surface of the core material layer 5 through the conductive layer which changed content of ultrafine conductive fiber, the functional layer which exhibits other performance, etc.

上記芯材層5は、熱可塑性合成樹脂、必要なら該合成樹脂の押出成形に必要な上記各添加剤が添加された組成物を押出して形成された層であり、極細導電繊維2は含有されていない。
該芯材層5に用いられる熱可塑性樹脂としては、前記導電性棒体Aに使用された樹脂が好ましく使用される。その中でも、この芯材層5は導電層1で被覆されて一体化させる必要があるので、導電層1に使用される熱可塑性樹脂と同一、或は相溶性のある樹脂を用いることが、相互の密着接合性を高めるうえで好ましい。この芯材層5の直径は、導電性棒体Bの直径から導電層1の厚さを差し引いた寸法である約1〜300mm程度となされている。
The core material layer 5 is a layer formed by extruding a thermoplastic synthetic resin, and if necessary, a composition to which the respective additives necessary for extrusion molding of the synthetic resin are added, and the ultrafine conductive fiber 2 is contained. Not.
As the thermoplastic resin used for the core material layer 5, the resin used for the conductive rod A is preferably used. Among these, the core material layer 5 needs to be coated and integrated with the conductive layer 1. Therefore, it is possible to use a resin that is the same as or compatible with the thermoplastic resin used for the conductive layer 1. It is preferable for improving the tight bondability. The diameter of the core material layer 5 is about 1 to 300 mm, which is a dimension obtained by subtracting the thickness of the conductive layer 1 from the diameter of the conductive rod B.

また、導電性合成樹脂棒体Bの導電層1は、前記導電性合成樹脂棒体Aの導電層1と同じであり、これに含有されている極細導電繊維2、その分散状態、表面への露出、表面からの突出、表面から100nm未満の深さtの内部に含有される各状態も同じであるので、同一符号を付して説明を省略する。しかし、該導電層1の厚さは、外周表面に被覆されて表面抵抗率を10Ω/□以上1012Ω/□未満とするためのものであるので、0.05〜5.0mm、好ましくは1〜3mmと薄くしても十分である。 Further, the conductive layer 1 of the conductive synthetic resin rod B is the same as the conductive layer 1 of the conductive synthetic resin rod A, and the ultrafine conductive fiber 2 contained therein, its dispersed state, and the surface Since each state contained in the exposure, the protrusion from the surface, and the depth t of less than 100 nm from the surface is the same, the same reference numerals are given and the description is omitted. However, since the thickness of the conductive layer 1 is for coating the outer peripheral surface to make the surface resistivity 10 1 Ω / □ or more and less than 10 12 Ω / □, 0.05 to 5.0 mm, It is preferable to make it as thin as 1 to 3 mm.

そして、導電層1は、多層共押出成形法などの公知の製法により得られた多層構造の押出棒体(押出多層棒体)の極細導電繊維2を含有する表面層の少なくとも表面を、前記押出棒体3と同様に加熱して、図7(1)(2)(3)に示すように、極細導電繊維2を該押出多層棒体の表面に露出させたり、表面から突出させたり、表面から100nm未満の深さtの内部に含有させて、表面抵抗率を低下させて形成したものである。即ち、導電層1は表面層の略全厚さの極細導電繊維2の分散状態が変化して形成されたものである。しかし、表面層の表層部分のみの極細導電繊維2の状態が変化して導電層1となされたものを除外するものではない。
極細導電繊維2が加熱により上記状態となる理由は、前記押出棒体3を加熱して状態が変化する理由と同様であるので説明を省略する。
The conductive layer 1 has at least the surface of the surface layer containing the ultrafine conductive fibers 2 of an extruded rod body (extruded multilayer rod body) having a multilayer structure obtained by a known production method such as a multilayer coextrusion molding method. As shown in FIGS. 7 (1), (2), and (3), the fine conductive fibers 2 are exposed on the surface of the extruded multilayer bar, protruded from the surface, To be contained within a depth t of less than 100 nm to reduce the surface resistivity. That is, the conductive layer 1 is formed by changing the dispersion state of the ultrafine conductive fibers 2 having almost the entire thickness of the surface layer. However, this does not exclude a case where the state of the ultrafine conductive fiber 2 only in the surface layer portion of the surface layer is changed to be the conductive layer 1.
The reason why the ultrafine conductive fiber 2 is brought into the above state by heating is the same as the reason that the extruded rod body 3 is heated to change the state, and the description thereof will be omitted.

この導電性棒体Bの芯材層5は、導電層1と異なる熱可塑性樹脂を用いてもよいし、絶縁性を有しても導電性を有してもよいし、また、機械的強度を高めた組成物で形成されてもよいし、樹脂再生品を使用して形成されてもよいし、更にはガラス補強材を添加した組成物で形成されてもよいし、芯材層を多層にしてもよいし、その他の如何なる構成にしてもよいので、該芯材層5により導電性棒体Bに導電性以外の必要な性能を付与することができる。また、導電層1は該導電性棒体Bに導電性を付与するためであるので、必要以上に厚くする必要はなく、薄くできる分、極細導電繊維2の含有量を少なくでき、安価な導電性棒体Bにすることもできる。   The core material layer 5 of the conductive rod B may use a thermoplastic resin different from that of the conductive layer 1, may have insulating properties or conductivity, and may have mechanical strength. May be formed from a resin-recycled product, or may be formed from a composition to which a glass reinforcing material is added, or the core material layer may be formed of a multilayer. In addition, since any other configuration may be used, the core material layer 5 can impart necessary performance other than conductivity to the conductive rod B. In addition, since the conductive layer 1 is for imparting conductivity to the conductive rod B, it is not necessary to make it thicker than necessary. It can also be a sex rod B.

この導電性棒体Bは、例えば図8に示す方法により製造することができる。図8(1)は全体の工程を示す説明図、(2)はそのP−P線断面図、(3)はそのQ−Q線断面図である。   The conductive rod B can be manufactured, for example, by the method shown in FIG. FIG. 8A is an explanatory view showing the entire process, FIG. 8B is a sectional view taken along the line PP, and FIG. 8C is a sectional view taken along the line Q-Q.

まず予め、熱可塑性合成樹脂と極細導電繊維2と、必要なら該樹脂の押出成形に必要な上記各添加剤とを、均一に混合して極細導電繊維含有熱可塑性合成樹脂組成物を作製する。一方、熱可塑性合成樹脂に、必要なら上記添加剤を均一に混合した熱可塑性合成樹脂組成物を作製する。   First, a thermoplastic synthetic resin, ultrafine conductive fibers 2 and, if necessary, the above-described additives necessary for extrusion molding of the resin are uniformly mixed to prepare a thermoplastic synthetic resin composition containing ultrafine conductive fibers. On the other hand, a thermoplastic synthetic resin composition is prepared by uniformly mixing the above-described additives with a thermoplastic synthetic resin, if necessary.

そして、図8(1)に示すように、一方の押出機61に上記熱可塑性樹脂組成物を供すると共に、他方の押出機62に上記極細導電繊維含有熱可塑性樹脂組成物を供し、これを共押出金型63から断面丸形状に共押出して、図8(2)の断面図に示す、熱可塑性樹脂組成物から芯材層5の外周表面に極細導電繊維含有熱可塑性樹脂組成物からなる表面層11が被覆された、2層構造の長尺押出多層棒体6を押出す。   Then, as shown in FIG. 8 (1), one of the extruders 61 is provided with the thermoplastic resin composition, and the other extruder 62 is provided with the ultrafine conductive fiber-containing thermoplastic resin composition. A surface made of a thermoplastic resin composition containing ultrafine conductive fibers from the thermoplastic resin composition to the outer peripheral surface of the core material layer 5 as shown in the sectional view of FIG. A long extruded multilayer bar 6 having a two-layer structure coated with the layer 11 is extruded.

このように共押出されると、共押出金型63の押出流路内面からの剪断力を受け、特に、押出流路内面に接して押出される表面層11は、該表面層11を形成する樹脂も該表面層11に含有されている極細導電繊維2も押出方向に強い剪断力を受けて、前記押出棒体3における分散状態と同様に(図4参照)、極細導電繊維2は押出方向に強制的に配列・配向させられて、大きな歪を有した状態で含有されることとなる。そのため、前記の如く、極細導電繊維2の含有量と分散状態により、表面抵抗率が1012Ω/□以上になる場合とそれ未満になる場合とがある。 When coextruded in this way, the surface layer 11 that receives the shearing force from the inner surface of the extrusion flow path of the coextrusion die 63 and is extruded in contact with the inner surface of the extrusion flow path forms the surface layer 11 in particular. Both the resin and the ultrafine conductive fiber 2 contained in the surface layer 11 are subjected to a strong shearing force in the extrusion direction, and the ultrafine conductive fiber 2 is in the extrusion direction as in the dispersed state in the extruded rod 3 (see FIG. 4). Therefore, it is contained in a state having a large strain. Therefore, as described above, the surface resistivity may be 10 12 Ω / □ or more and may be less than that depending on the content and dispersion state of the ultrafine conductive fibers 2.

続いて、この押出多層棒体6を、共押出金型63に接して配置されている、図3に示したサイジング金型と同じ構造のサイジング金型4に移送し、サイジング通路41に接触させながら引取りロールRにて引取ると、その加熱された前側部44により少なくとも表面層11の表面が加熱されて前記加熱温度範囲又は/及び前記加熱粘度範囲となされ、軟化して低粘度化する。そのため、前記と同様に、表面層11に歪を有して含有されていた極細導電繊維2が歪を解消しようとして該低粘度化した組成物中を動いてランダムに三次元的に分散した状態となり、表面層11の表面に露出したり、表面から突出したり、表面から100nm未満の内部に含有されるようになって表面抵抗率が低下し、該表面抵抗率が10Ω/□以上1012Ω/□未満の範囲となされた導電層1に変化する。 Subsequently, the extruded multilayer bar 6 is transferred to a sizing die 4 having the same structure as the sizing die shown in FIG. However, when it is taken up by the take-up roll R, at least the surface of the surface layer 11 is heated by the heated front side portion 44 to be in the heating temperature range or / and the heating viscosity range, and is softened to lower the viscosity. . Therefore, in the same manner as described above, the ultrafine conductive fiber 2 contained in the surface layer 11 with strain moves in the low-viscosity composition in an attempt to eliminate the strain and is randomly dispersed three-dimensionally. And exposed to the surface of the surface layer 11, protruding from the surface, or contained within less than 100 nm from the surface, the surface resistivity is reduced, and the surface resistivity is 10 1 Ω / □ or more 10 The conductive layer 1 is changed to a range of less than 12 Ω / □.

続いて、該押出多層棒体6をサイジング金型4の後側部45に導き、前記と同様に、冷却して固化すると、前記極細導電繊維2が上記状態を維持して固定された導電層1となり、その後、切断機Kで切断されて、本発明の二層構造の断面丸形状の導電性棒体Bを製造することができる。
なお、42は加熱流路、43は冷却流路を示す。
Subsequently, when the extruded multilayer bar 6 is guided to the rear side 45 of the sizing die 4 and cooled and solidified in the same manner as described above, the conductive layer in which the ultrafine conductive fibers 2 are fixed while maintaining the above state. 1 and then cut with a cutting machine K to produce a two-layered conductive bar B having a round cross section of the present invention.
Reference numeral 42 denotes a heating channel, and 43 denotes a cooling channel.

上記の製造方法は、共押出金型63とサイジング金型4とを接触させて配置させているが、図5に示すように、これらの共押出金型63とサイジング金型4とを僅かの間隔を隔てて配置させた製造方法によっても同様に製造することができる。   In the manufacturing method described above, the coextrusion die 63 and the sizing die 4 are placed in contact with each other, but as shown in FIG. It can manufacture similarly also by the manufacturing method arrange | positioned at intervals.

図9は本発明の他の導電性合成樹脂棒体を示し、(1)は縦断面図、(2)は横断面図である。   FIG. 9 shows another conductive synthetic resin rod of the present invention, wherein (1) is a longitudinal sectional view and (2) is a transverse sectional view.

該導電性合成樹脂棒体C(以下、導電性棒体Cとも記す)は、その全体に極細導電繊維2を含有する熱可塑性合成樹脂の導電層1からなっていて、その外周表面は切削された切削表面12となされた単層構造の直径約1〜300mmの断面真円形状の長尺導電性棒体である。なお、図9においては、切削された部分を一点鎖線にて示している。
このような切削は、電子写真機器、静電気記録機器、自動改札機、券売機、ATM、医療機器、搬送装置などの導電性ロールとして真円形状の導電性棒体が必要な場合や、導電性ボルトなどの他の棒状形状にする場合などに必要な加工である。
The conductive synthetic resin rod C (hereinafter also referred to as conductive rod C) is composed of a thermoplastic synthetic resin conductive layer 1 containing ultrafine conductive fibers 2 as a whole, and its outer peripheral surface is cut. This is a long conductive rod having a single-layer structure with a diameter of about 1 to 300 mm and a perfect circular shape in cross section. In FIG. 9, the cut portion is indicated by a one-dot chain line.
Such cutting can be performed when a round conductive bar is required as a conductive roll for electrophotographic equipment, electrostatic recording equipment, automatic ticket gates, ticket vending machines, ATMs, medical equipment, conveyors, etc. This is necessary for making other rod shapes such as bolts.

導電層1に含有されている極細導電繊維2は、前記と同様に、切削表面12に露出したり、切削表面12から突出したり、切削表面12から100μm未満の内部に含有させられていて、その表面抵抗率を低下させて10Ω/□以上1012Ω/□未満となされている。
該導電層1に含有されている極細導電繊維2の分散状態、加熱により表面抵抗率が低下する理由などは前記導電性合成樹脂棒体A、Bの導電層1と同じであるので、同一符号を付して説明を省略する。
As described above, the ultrafine conductive fiber 2 contained in the conductive layer 1 is exposed to the cutting surface 12, protrudes from the cutting surface 12, or is contained in the inside of the cutting surface 12 less than 100 μm. The surface resistivity is lowered to 10 1 Ω / □ or more and less than 10 12 Ω / □.
The dispersion state of the ultrafine conductive fibers 2 contained in the conductive layer 1 and the reason why the surface resistivity is reduced by heating are the same as those of the conductive layer 1 of the conductive synthetic resin rods A and B. The description is omitted.

この導電性棒体Cは、例えば図10に示す方法により製造することができる。図10(1)は押出棒体の製造工程を示し、(2)は切削乃至加熱工程を示す。   The conductive rod C can be manufactured, for example, by the method shown in FIG. FIG. 10 (1) shows the manufacturing process of the extruded rod body, and (2) shows the cutting or heating process.

上記極細導電繊維含有熱可塑性合成樹脂組成物を押出機71に供して、押出金型72より断面円形形状に押出した後、直ちに僅かの間隔を隔てて配置されたサイジング金型73に移送される。該サイジング金型73はサイジング通路74全長に亘り冷却流路(不図示)が設けられて冷却されていて、このサイジング通路74に移送された押出棒体は整形されると共に冷却されて、一定直径寸法になされた極細導電繊維含有熱可塑性合成樹脂棒体75(以下、押出成形棒体75ともいう)を押出成形する。
なお、Rは引取りロール、Kは切断機を示す。
この押出成形棒体75は、図10(2)に拡大して示すように、極細導電繊維2が押出方向Eに強制的に配列、配向していて、大きな歪を有した状態で含有されている。そのため、前記の如く、極細導電繊維2の含有量と分散状態により、表面抵抗率が1012Ω/□以上の場合と1012Ω/□未満の場合とがある。
The above-mentioned ultrafine conductive fiber-containing thermoplastic synthetic resin composition is supplied to an extruder 71 and extruded from an extrusion die 72 into a circular cross section, and immediately transferred to a sizing die 73 arranged at a slight interval. . The sizing mold 73 is cooled by being provided with a cooling channel (not shown) over the entire length of the sizing passage 74, and the extruded rod transferred to the sizing passage 74 is shaped and cooled to have a constant diameter. An ultrafine conductive fiber-containing thermoplastic synthetic resin rod 75 (hereinafter also referred to as an extrusion-molded rod 75) having the dimensions is extruded.
R represents a take-up roll, and K represents a cutting machine.
As shown in an enlarged view of FIG. 10 (2), the extruded rod body 75 is contained in a state in which the fine conductive fibers 2 are forcibly arranged and oriented in the extrusion direction E and have a large strain. Yes. Therefore, as described above, the surface resistivity may be 10 12 Ω / □ or more and less than 10 12 Ω / □ depending on the content and dispersion state of the ultrafine conductive fiber 2.

続いて、該押出成形棒体75の外周面を切削して押出切削棒体7とする。この切削される寸法(厚さ)dは、押出成形棒体75全体に極細導電繊維2が含有しているために、必要とする直径寸法となるように切削することができるが、通常は0.04〜4.5mm程度である。   Subsequently, the outer peripheral surface of the extruded rod body 75 is cut to obtain an extruded cutting rod body 7. The dimension (thickness) d to be cut can be cut so as to have a required diameter dimension because the ultrafine conductive fiber 2 is contained in the entire extruded rod body 75, but is usually 0. .About 0.4 to 4.5 mm.

続いて、押出切削棒体7を上記加熱温度範囲又は/及び上記加熱粘度範囲となる温度に加熱された加熱室76に移送して、押出切削棒体7の少なくとも切削表面12を上記加熱温度範囲又は/及び上記加熱粘度範囲となす。この状態になされると、前記の如く、歪を有し配向して含有されていた極細導電繊維2が動いて、切削表面12に露出したり、切削表面12から突出したり、切削表面12から100μm未満の内部に含有した状態となり、表面抵抗率を低下させた導電層1が形成される。この加熱室76にて加熱される時間は、押出切削棒体7の大きさにより異なるが、極細導電繊維2が動いて上記状態になる必要があるので1分以上、好ましくは1〜20分、更に好ましくは5〜15分程度加熱することが望ましい。
なお、77はヒーターなどの加熱源、78は搬送ベルトを示す。
Subsequently, the extruded cutting bar 7 is transferred to the heating chamber 76 heated to the heating temperature range or / and the heating viscosity range, and at least the cutting surface 12 of the extruded cutting bar 7 is moved to the heating temperature range. Or / and the heating viscosity range. In this state, as described above, the ultrafine conductive fibers 2 having a strain and orientation are moved, exposed to the cutting surface 12, protruded from the cutting surface 12, or 100 μm from the cutting surface 12. Thus, the conductive layer 1 having a lower surface resistivity is formed. Although the time heated in this heating chamber 76 changes with the magnitude | sizes of the extrusion cutting rod body 7, since it is necessary to move the ultrafine conductive fiber 2 to the said state, it is 1 minute or more, Preferably it is 1 to 20 minutes, More preferably, it is desirable to heat for about 5 to 15 minutes.
Reference numeral 77 denotes a heating source such as a heater, and 78 denotes a conveyor belt.

続いて、前記加熱室76から移送されて冷却されると、極細導電繊維2が上記状態で固化して、10Ω/□以上1012Ω/□未満となされた導電層1が形成された、本発明の切削された導電性合成樹脂棒体Cを製造することができる。 Subsequently, when transferred from the heating chamber 76 and cooled, the ultrafine conductive fiber 2 was solidified in the above state, and the conductive layer 1 having a density of 10 1 Ω / □ or more and less than 10 12 Ω / □ was formed. The cut conductive synthetic resin rod C of the present invention can be manufactured.

上記の製造方法は、押出金型72とサイジング金型73とを僅かの間隔を隔てて配置させているが、図3に示すように、これらの押出金型72とサイジング金型73とを接触させて配置させた製造方法によっても同様に製造することができる。   In the manufacturing method described above, the extrusion mold 72 and the sizing mold 73 are arranged at a slight interval. As shown in FIG. 3, the extrusion mold 72 and the sizing mold 73 are brought into contact with each other. The same manufacturing method can be used by the manufacturing method arranged.

図11は本発明の他の導電性合成樹脂棒体を示し、(1)は縦断面図、(2)は横断面図である。   FIG. 11 shows another conductive synthetic resin rod of the present invention, wherein (1) is a longitudinal sectional view and (2) is a transverse sectional view.

該導電性合成樹脂棒体D(以下、導電性棒体Dとも記す)は、熱可塑性合成樹脂からなり且つ極細導電繊維を含有しない芯材層5と、その外周面を被覆した極細導電繊維2を含有する導電層1とからなっていて、導電性棒体Dの外周表面は切削表面12となされた2層構造の直径約1〜300mmの断面真円形状の長尺導電性棒体である。なお、図11においては、切削された部分を一点鎖線にて示している。
このような切削は、電子写真機器、静電気記録機器、自動改札機、券売機、ATM、医療機器、搬送装置などの導電性ロールとして真円形状の導電性棒体が必要な場合に、導電層1の厚さの範囲内で行なわれる。
The conductive synthetic resin rod D (hereinafter also referred to as conductive rod D) is made of a thermoplastic synthetic resin and does not contain ultrafine conductive fibers, and the fine conductive fibers 2 covering the outer peripheral surface thereof. The conductive bar 1 is a long conductive bar having a two-layer structure with a diameter of about 1 to 300 mm and a round cross-section having a diameter of about 1 to 300 mm. . In addition, in FIG. 11, the cut part is shown with the dashed-dotted line.
Such cutting is performed when a conductive bar having a perfect circle shape is required as a conductive roll for electrophotographic equipment, electrostatic recording equipment, automatic ticket gates, ticket vending machines, ATMs, medical equipment, transport devices, etc. 1 in the thickness range.

導電層1に含有されている極細導電繊維2は、切削表面12に露出したり、切削表面12から突出したり、切削表面12から100μm未満の内部に含有させられていて、その表面抵抗率を低下させて10Ω/□以上1012Ω/□未満となされている。該導電性棒体Dは、その直径を約1〜300mmとなされ、導電層1の厚さを0.04〜4.9mm、好ましくは0.04〜2.0mmとされている。
該導電層1に含有されている極細導電繊維2、その分散状態、加熱により表面抵抗率が低下する理由などは前記導電性合成樹脂棒体A、Bの導電層1と同じであるので、同一符号を付して説明を省略する。
The ultrafine conductive fiber 2 contained in the conductive layer 1 is exposed to the cutting surface 12, protrudes from the cutting surface 12, or is contained within the cutting surface 12 less than 100 μm, and its surface resistivity is lowered. And 10 1 Ω / □ or more and less than 10 12 Ω / □. The diameter of the conductive rod D is about 1 to 300 mm, and the thickness of the conductive layer 1 is 0.04 to 4.9 mm, preferably 0.04 to 2.0 mm.
The conductive fibers 1 contained in the conductive layer 1, the dispersion state thereof, the reason why the surface resistivity is lowered by heating, and the like are the same as those of the conductive synthetic resin rods A and B. The reference numerals are attached and the description is omitted.

この導電性棒体Dは、例えば図12に示す方法により製造することができる。図12(1)は押出多層棒体の製造工程を示し、(2)は切削乃至加熱工程を示す。   The conductive rod D can be manufactured by, for example, the method shown in FIG. FIG. 12 (1) shows a manufacturing process of an extruded multilayer bar, and (2) shows a cutting or heating process.

上記熱可塑性合成樹脂組成物を一方の押出機81に供すると共に上記極細導電繊維含有熱可塑性合成樹脂組成物を他方の押出機82に供して、共押出金型83より共押出した後、直ちに僅かの間隔を隔てて配置されたサイジング金型84に移送される。該サイジング金型84はサイジング通路85全長に亘り冷却流路(不図示)が設けられて冷却されていて、このサイジング通路85に移送された押出多層棒体は整形されると共に冷却されて、合成樹脂よりなる芯材層5の外周表面を極細導電繊維含有熱可塑性合成樹脂組成物からなる表面層11で覆った一定直径寸法になされた二層構造の断面円形形状の長尺極細導電繊維含有熱可塑性合成樹脂棒体86(以下、押出成形多層棒体86とも記す。図12(2)の拡大断面図参照)を押出成形する。なお、Rは引取りロール、Kは切断機を示す。
この押出成形多層棒体86の表面層11は、図12(2)に拡大して示すように、極細導電繊維2が押出方向Eに強制的に配列、配向していて、大きな歪を有した状態で含有されている。そのため、該押出成形多層棒体86の表面抵抗率は、前記の如く極細導電繊維2の含有量と分散状態により1012Ω/□以上の場合と、それ未満の場合とがある。
The thermoplastic synthetic resin composition was supplied to one extruder 81 and the thermoplastic conductive resin composition containing ultrafine conductive fibers was supplied to the other extruder 82 and coextruded from the coextrusion die 83, and immediately after Are transferred to a sizing mold 84 arranged at an interval of. The sizing mold 84 is cooled by being provided with a cooling flow path (not shown) over the entire length of the sizing passage 85, and the extruded multi-layer rod transferred to the sizing passage 85 is shaped and cooled to be synthesized. Heat containing long fine fine conductive fibers having a circular shape of a two-layer structure having a constant diameter dimension in which the outer peripheral surface of the core layer 5 made of resin is covered with a surface layer 11 made of a thermoplastic synthetic resin composition containing fine fine conductive fibers A plastic synthetic resin rod body 86 (hereinafter also referred to as an extrusion-molded multilayer rod body 86; see the enlarged sectional view of FIG. 12 (2)) is extruded. R represents a take-up roll, and K represents a cutting machine.
The surface layer 11 of the extrusion-molded multilayer bar 86 had a large strain as the ultrafine conductive fibers 2 were forcibly arranged and oriented in the extrusion direction E as shown in an enlarged view in FIG. It is contained in the state. Therefore, the surface resistivity of the extruded multilayer rod 86 may be 10 12 Ω / □ or more depending on the content and dispersion state of the ultrafine conductive fiber 2 as described above.

続いて、該押出成形多層棒体86の表面層11の外周表面を切削して切削表面層13となされた押出切削多層棒体8を作製する。この切削される寸法(厚さ)dは、表面層11の厚さ寸法以内とする必要があり、通常は0.04〜4.5mm程度である。   Then, the outer peripheral surface of the surface layer 11 of the extrusion-molded multilayer bar 86 is cut to produce the extruded cut multilayer bar 8 that is the cut surface layer 13. The dimension (thickness) d to be cut must be within the thickness dimension of the surface layer 11, and is usually about 0.04 to 4.5 mm.

続いて、押出切削多層棒体8を前記加熱温度範囲又は/及び前記加熱粘度範囲となる温度に保温された加熱室87に移送して1〜20分間、好ましくは5〜15分間加熱し、押出切削多層棒体8の切削表面層13の少なくとも表面を上記加熱温度範囲又は/及び上記加熱粘度範囲となす。この状態になされると、前記の如く、歪を有し配向して含有されていた極細導電繊維2が動いて、切削表面12に露出したり、切削表面12から突出したり、切削表面12から100nm未満の内部に含有されて、表面抵抗率を低下させた導電層1が形成される。
なお、88はヒーターなどの加熱源、89は搬送ベルトを示す。
Subsequently, the extrusion-cut multilayer bar 8 is transferred to the heating chamber 87 kept at the temperature within the heating temperature range and / or the heating viscosity range, and heated for 1 to 20 minutes, preferably 5 to 15 minutes. At least the surface of the cutting surface layer 13 of the cutting multilayer bar 8 is set to the heating temperature range and / or the heating viscosity range. In this state, as described above, the ultrafine conductive fibers 2 having a strain and orientation are moved to be exposed to the cutting surface 12, projecting from the cutting surface 12, or 100 nm from the cutting surface 12. The conductive layer 1 which is contained in less than the inside and has a reduced surface resistivity is formed.
Reference numeral 88 denotes a heating source such as a heater, and 89 denotes a conveyor belt.

続いて、前記加熱室87から移送されて冷却されると、極細導電繊維2が上記状態で固化して、10Ω/□以上1012Ω/□未満となされた導電層1が形成されて、切削された多層構造の本発明の導電性合成樹脂棒体Dを製造することができる。 Subsequently, when transferred from the heating chamber 87 and cooled, the ultrafine conductive fiber 2 is solidified in the above-described state, and the conductive layer 1 having a density of 10 1 Ω / □ or more and less than 10 12 Ω / □ is formed. The conductive synthetic resin rod D of the present invention having a cut multilayer structure can be produced.

なお、切削加工された導電性合成樹脂棒体C、Dは、本発明の導電性棒体A、Bの外周表面を切削などすることにより製造することもできる。この場合は、極細導電繊維2が表面に露出した状態で固定された導電層1が形成されることとなる。   The cut conductive synthetic resin rods C and D can also be produced by cutting the outer peripheral surfaces of the conductive rods A and B of the present invention. In this case, the conductive layer 1 fixed with the ultrafine conductive fibers 2 exposed on the surface is formed.

上記の製造方法は、共押出金型83とサイジング金型84とを僅かの間隔を隔てて配置させているが、図8に示すように、これらの共押出金型83とサイジング金型84とを接触させて配置させた製造方法によっても同様に製造することができる。   In the manufacturing method described above, the co-extrusion mold 83 and the sizing mold 84 are arranged at a slight interval. As shown in FIG. It can manufacture similarly also by the manufacturing method arrange | positioned by contacting.

上記各製造方法においては、サイジング金型にて加熱と冷却とを同一金型内で行なわせたが、2つまたはこれ以上の金型を採用して製造することもできる。例えば、成形金型から押出された押出棒体や押出多層棒体を加熱された加熱金型に導いて表面抵抗率が低下した導電層を形成し、続いて冷却された冷却金型に導くことにより、導電性合成樹脂棒体を製造することもできる。   In each of the above manufacturing methods, heating and cooling are performed in the same mold using a sizing mold, but two or more molds may be employed for manufacturing. For example, an extruded bar or extruded multilayer bar extruded from a molding die is led to a heated heated die to form a conductive layer having a reduced surface resistivity, and then led to a cooled cooling die. Thus, a conductive synthetic resin rod can be produced.

次に、本発明の更に具体的な実施例を説明する。   Next, more specific examples of the present invention will be described.

(実施例1)
市販のポリプロピレン樹脂と、直径が10〜20nmである多層カーボンナノチューブ(CNT社製)とを均一に混合して、多層カーボンナノチューブが3.5質量%含有された多層カーボンナノチューブ含有ポリプロピレン樹脂組成物を作製した。このポリプロピレン樹脂の融点温度は172℃であった。
(Example 1)
A commercially available polypropylene resin and a multi-walled carbon nanotube having a diameter of 10 to 20 nm (manufactured by CNT) are uniformly mixed to obtain a multi-walled carbon nanotube-containing polypropylene resin composition containing 3.5% by mass of the multi-walled carbon nanotube. Produced. The melting point temperature of this polypropylene resin was 172 ° C.

この組成物を丸棒押出成形機に供し、直径が50mmである断面丸形状の押出棒体を押出しし、サイジング金型に導いた。該サイジング金型は、その外周面の前側部に加熱流路を後側部に冷却流路が設けられていて、その前側部を200℃に加熱し、後側部を70℃に冷却していた。押出棒体を該サイジング金型の前側部にて約8分間接触加熱させた後に、後側部で約2分間接触冷却させて固化し、切断機で切断することにより、実施例1の導電性棒体を得た。   This composition was subjected to a round bar extrusion molding machine, and an extruded bar body having a round cross section having a diameter of 50 mm was extruded and led to a sizing mold. The sizing mold is provided with a heating channel on the front side of the outer peripheral surface and a cooling channel on the rear side, heating the front side to 200 ° C. and cooling the rear side to 70 ° C. It was. The extruded rod body was contact-heated at the front side of the sizing mold for about 8 minutes, then contact-cooled at the rear side for about 2 minutes, solidified, and cut by a cutting machine, whereby the conductivity of Example 1 was obtained. A rod was obtained.

この多層カーボンナノチューブ含有ポリプロピレン樹脂組成物の200℃における粘度を、動的粘弾性測定装置(Pear社製Modular Compact Rheameter MCR300)にて測定したところ、剪断速度1sec−1のとき5.5×10Pa・sであった。 The viscosity of this multi-walled carbon nanotube-containing polypropylene resin composition at 200 ° C. was measured with a dynamic viscoelasticity measuring device (Modal Compact Rheometer MCR300 manufactured by Pear), and 5.5 × 10 3 when the shear rate was 1 sec −1. Pa · s.

(比較例1)
上記組成物を、前側部も後側部も冷却された実施例1と同じサイジング金型を用いて押出棒体を冷却した以外は、実施例1と同様にして、比較例1の押出成形棒体を得た。
(Comparative Example 1)
Extrusion rod of Comparative Example 1 in the same manner as in Example 1 except that the composition was cooled using the same sizing mold as in Example 1 in which both the front side and the rear side were cooled. Got the body.

これらの実施例1と比較例1との各棒体について、それぞれ表面抵抗率を測定した。その結果、実施例1の棒体は2.3×10Ω/□の表面抵抗率を示し導電機能を発揮したが、比較例1の棒体は1.0×1014Ω/□以上の表面抵抗率しか示さずに、制電機能も導電機能も示さなかった。
このことより、サイジング金型で加熱した後で冷却することにより、冷却しただけの棒体に比べて11桁も表面抵抗率が低下することがわかる。
The surface resistivity was measured for each rod of Example 1 and Comparative Example 1. As a result, the rod body of Example 1 exhibited a surface resistivity of 2.3 × 10 3 Ω / □ and exhibited a conductive function, but the rod body of Comparative Example 1 was 1.0 × 10 14 Ω / □ or more. Only the surface resistivity was shown, and neither the antistatic function nor the conductive function was shown.
From this, it can be seen that the surface resistivity decreases by 11 digits compared to a rod that has only been cooled by cooling after heating with a sizing mold.

尚、表面抵抗率は三菱化学(株)製の低抵抗測定器とロレスタGPと高抵抗測定器ハイレスタUPで測定した値である。ロレスタGPは10−2〜10Ω/□の、ハイレスタUPは10〜1014の範囲の表面抵抗率の測定に用いる測定器であり、それぞれの表面抵抗率に応じて使い分けた。 The surface resistivity is a value measured with a low resistance measuring instrument, Loresta GP, and a high resistance measuring instrument Hiresta UP manufactured by Mitsubishi Chemical Corporation. The Loresta GP is a measuring instrument used for measuring the surface resistivity in the range of 10 −2 to 10 7 Ω / □, and the Hiresta UP is in the range of 10 6 to 10 14 , and was used properly according to each surface resistivity.

(実施例2)
比較例1の押出成形体の周面を約1mm切削して、直径約48mmの切削押出棒体を作製し、該切削押出棒体を200℃に加熱保温された加熱室に10分放置した後に冷却して、実施例2の導電性切削棒体を得た。
該導電性切削棒体の表面抵抗率を測定したところ、3.3×10Ω/□の表面抵抗率を示した。
(Example 2)
After cutting the peripheral surface of the extrusion molded body of Comparative Example 1 by about 1 mm to produce a cutting extrusion rod body having a diameter of about 48 mm, the cutting extrusion rod body was left in a heating chamber heated and kept at 200 ° C. for 10 minutes. After cooling, the conductive cutting bar of Example 2 was obtained.
When the surface resistivity of the conductive cutting rod was measured, it showed a surface resistivity of 3.3 × 10 4 Ω / □.

本発明に係る導電性合成樹脂棒体を示し、(1)はその斜視図、(2)はX−X線断面図である。The conductive synthetic resin rod concerning this invention is shown, (1) is the perspective view, (2) is XX sectional drawing. その導電性合成樹脂棒体内における極細導電繊維の分散状態を示す説明図である。It is explanatory drawing which shows the dispersion | distribution state of the ultrafine conductive fiber in the conductive synthetic resin rod. 本発明に係る導電性合成樹脂棒体の製造方法を示し、(1)は全体の工程を示す説明図、(2)はそのM−M線断面図、(3)はそのN−N線断面図である。The manufacturing method of the conductive synthetic resin rod which concerns on this invention is shown, (1) is explanatory drawing which shows the whole process, (2) is the MM sectional view, (3) is the NN sectional view FIG. その製造方法にて押出された熱可塑性合成樹脂棒体内における極細導電繊維の分散状態を示す説明図である。It is explanatory drawing which shows the dispersion | distribution state of the ultrafine conductive fiber in the thermoplastic synthetic resin rod body extruded with the manufacturing method. 本発明に係る他の導電性合成樹脂棒体の製造方法を示す全体の工程の説明図である。It is explanatory drawing of the whole process which shows the manufacturing method of the other electroconductive synthetic resin rod which concerns on this invention. 本発明に係る他の導電性合成樹脂棒体を示し、(1)はその斜視図、(2)はそのY−Y線断面図である。The other conductive synthetic resin rod body concerning this invention is shown, (1) is the perspective view, (2) is the YY sectional view taken on the line. その導電性合成樹脂棒体内における極細導電繊維の分散状態を示す説明図である。It is explanatory drawing which shows the dispersion | distribution state of the ultrafine conductive fiber in the conductive synthetic resin rod. 本発明に係る他の導電性合成樹脂棒体の製造方法を示し、(1)は全体の工程を示す説明図、(2)はそのP−P線断面図、(3)はそのQ−Q線断面図である。The manufacturing method of the other electroconductive synthetic resin rod which concerns on this invention is shown, (1) is explanatory drawing which shows the whole process, (2) is the PP sectional view, (3) is the QQ It is line sectional drawing. 本発明に係るさらに他の導電性合成樹脂棒体を示し、(1)は縦断面図、(2)は横断面図である。FIG. 2 shows still another conductive synthetic resin rod according to the present invention, wherein (1) is a longitudinal sectional view and (2) is a transverse sectional view. 本発明に係るさらに他の導電性合成樹脂棒体の製造方法を示し、(1)は押出棒体の製造工程を示す説明図、(2)は切削乃至加熱工程を示す説明図である。The manufacturing method of the further another conductive synthetic resin rod which concerns on this invention is shown, (1) is explanatory drawing which shows the manufacturing process of an extrusion rod, (2) is explanatory drawing which shows a cutting thru | or a heating process. 本発明に係るさらに他の導電性合成樹脂棒体を示し、(1)は縦断面図、(2)は横断面図である。FIG. 2 shows still another conductive synthetic resin rod according to the present invention, wherein (1) is a longitudinal sectional view and (2) is a transverse sectional view. 本発明に係るさらに他導電性合成樹脂棒体の製造方法を示し、(1)は押出多層棒体の製造工程を示す説明図、(2)は切削乃至加熱工程を示す説明図である。The manufacturing method of the another electroconductive synthetic resin rod which concerns on this invention is shown, (1) is explanatory drawing which shows the manufacturing process of an extrusion multilayer bar, (2) is explanatory drawing which shows a cutting thru | or a heating process.

符号の説明Explanation of symbols

A、B、C、D 導電性合成樹脂棒体
1 導電層
2 極細導電繊維
3 押出棒体
4 サイジング金型
5 芯材層
6 押出多層棒体
7 押出切削棒体
8 押出切削多層棒体
11 表面層
12 切削表面
A, B, C, D Conductive synthetic resin rod 1 Conductive layer 2 Extra fine conductive fiber 3 Extruded rod 4 Sizing mold 5 Core material layer 6 Extruded multilayer rod 7 Extruded cutting rod 8 Extruded cut multilayer rod 11 Surface Layer 12 Cutting surface

Claims (11)

熱可塑性合成樹脂棒体であって、該棒体の少なくとも表面に極細導電繊維が含有された導電層が形成されていることを特徴とする導電性合成樹脂棒体。   A conductive synthetic resin rod, which is a thermoplastic synthetic resin rod, wherein a conductive layer containing ultrafine conductive fibers is formed on at least the surface of the rod. 熱可塑性合成樹脂棒体であって、極細導電繊維を含有しない芯材層と、該芯材層を被覆する極細導電繊維が含有された導電層とからなることを特徴とする導電性合成樹脂棒体。   A thermoplastic synthetic resin rod comprising a core material layer not containing ultrafine conductive fibers and a conductive layer containing ultrafine conductive fibers covering the core material layer body. 導電層に含有された極細導電繊維が、導電層の表面に露出するか、又は表面から突出するか、又は表面から100nm未満の内部に含有されていることを特徴とする請求項1又は請求項2に記載の導電性合成樹脂棒体。   The ultrafine conductive fiber contained in the conductive layer is exposed on the surface of the conductive layer, protrudes from the surface, or is contained in the interior of less than 100 nm from the surface. The conductive synthetic resin rod according to 2. 導電層が切削された表面を有することを特徴とする請求項1ないし請求項3のいずれかに記載の導電性合成樹脂棒体。   The conductive synthetic resin rod according to claim 1, wherein the conductive layer has a cut surface. 導電層が、極細導電繊維を含有する熱可塑性合成樹脂棒体又は芯材層を被覆する極細導電繊維が含有された表面層を加熱して、表面抵抗率を低下させて形成されたことを特徴とする請求項1ないし請求項4のいずれかに記載の導電性合成樹脂棒体。   The conductive layer is formed by heating the surface layer containing the ultrafine conductive fiber covering the thermoplastic synthetic resin rod or the core material layer containing the ultrafine conductive fiber to reduce the surface resistivity. The conductive synthetic resin rod according to any one of claims 1 to 4. 極細導電繊維を含有する熱可塑性合成樹脂組成物を押出して熱可塑性合成樹脂棒体となし、該棒体の少なくとも表面を加熱して、極細導電繊維を前記棒体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とする導電性合成樹脂棒体の製造方法。   Extruding a thermoplastic synthetic resin composition containing ultrafine conductive fibers to form a thermoplastic synthetic resin rod, heating at least the surface of the rod to expose the ultrafine conductive fibers on the surface of the rod, or A method for producing a conductive synthetic resin rod, characterized in that a conductive layer having a reduced surface resistivity is formed by projecting from the surface or by being contained in the interior of less than 100 nm from the surface. 極細導電繊維を含有する熱可塑性合成樹脂組成物と極細導電繊維を含有しない熱可塑性合成樹脂組成物とを共押出して、極細導電繊維を含有しない熱可塑性合成樹脂組成物よりなる芯材層を極細導電繊維を含有する熱可塑性合成樹脂組成物よりなる表面層で被覆してなる合成樹脂多層棒体となし、該多層棒体の少なくとも表面を加熱して、極細導電繊維を前記多層棒体の表面に露出させるか、又はその表面から突出させるか、又はその表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とする導電性合成樹脂棒体の製造方法。   Co-extrusion of a thermoplastic synthetic resin composition containing ultrafine conductive fibers and a thermoplastic synthetic resin composition not containing ultrafine conductive fibers to form a core layer made of a thermoplastic synthetic resin composition not containing ultrafine conductive fibers A synthetic resin multilayer rod formed by coating with a surface layer made of a thermoplastic synthetic resin composition containing conductive fibers, and at least the surface of the multilayer rod is heated to convert the ultrafine conductive fibers to the surface of the multilayer rod. Of the conductive synthetic resin rod, wherein the conductive layer having a reduced surface resistivity is formed by being exposed to the surface, protruding from the surface, or contained in the interior of the surface less than 100 nm from the surface. Production method. 前記合成樹脂棒体又は前記合成樹脂多層棒体の表面を切削した後に、少なくとも切削表面を加熱して表面抵抗率を低下させた導電層を形成することを特徴とする請求項6又は請求項7に記載の導電性合成樹脂棒体の製造方法。   8. The conductive layer having a reduced surface resistivity is formed by heating at least the cutting surface after cutting the surface of the synthetic resin rod or the synthetic resin multilayer rod. The manufacturing method of the electroconductive synthetic resin rod as described in 1 .. 前記合成樹脂棒体又は前記合成樹脂多層棒体の加熱が、極細導電繊維を含有する熱可塑性樹脂組成物のガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲で行なわれることを特徴とする請求項6ないし請求項8のいずれかに記載の導電性合成樹脂棒体の製造方法。   The heating of the synthetic resin rod or the synthetic resin multilayer rod is performed in a temperature range of 30 ° C. higher than the melting point temperature from the glass transition temperature of the thermoplastic resin composition containing ultrafine conductive fibers. A method for producing a conductive synthetic resin rod according to any one of claims 6 to 8. 前記合成樹脂棒体又は前記合成樹脂多層棒体の加熱が、極細導電繊維を含有する熱可塑性樹脂組成物の粘度が5.0×10Pa・s以上1.0×10Pa・s未満の範囲となる温度範囲で行われることを特徴とする請求項6ないし請求項8のいずれかに記載の導電性合成樹脂棒体の製造方法。 When the synthetic resin rod or the synthetic resin multilayer rod is heated, the viscosity of the thermoplastic resin composition containing ultrafine conductive fibers is 5.0 × 10 3 Pa · s or more and less than 1.0 × 10 7 Pa · s. The method for producing a conductive synthetic resin rod according to any one of claims 6 to 8, wherein the method is carried out in a temperature range that falls within the range. 前記合成樹脂棒体又は前記合成樹脂多層棒体が押出された後にサイジング金型に移送されて形状が整形されると共に、該サイジング金型の前側部で前記棒体表面を加熱して表面抵抗率を低下させた導電層を形成すると共に、該サイジング金型の後側部で冷却して固化することを特徴とする請求項6ないし請求項10のいずれかに記載の導電性合成樹脂棒体の製造方法。   After the synthetic resin rod body or the synthetic resin multilayer rod body is extruded, it is transferred to a sizing mold and shaped, and the surface of the rod body is heated at the front side of the sizing mold. The conductive synthetic resin rod according to any one of claims 6 to 10, wherein a conductive layer having a reduced content is formed and cooled and solidified at a rear side of the sizing mold. Production method.
JP2006180582A 2006-06-30 2006-06-30 Conductive synthetic resin rod and method for producing the same Active JP4958146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180582A JP4958146B2 (en) 2006-06-30 2006-06-30 Conductive synthetic resin rod and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006180582A JP4958146B2 (en) 2006-06-30 2006-06-30 Conductive synthetic resin rod and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008010329A true JP2008010329A (en) 2008-01-17
JP4958146B2 JP4958146B2 (en) 2012-06-20

Family

ID=39068340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180582A Active JP4958146B2 (en) 2006-06-30 2006-06-30 Conductive synthetic resin rod and method for producing the same

Country Status (1)

Country Link
JP (1) JP4958146B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529617A (en) * 2008-07-29 2011-12-08 ユニヴェルシテ ポール サバティエ トゥールーズ トロワ Conductive solid composite material and method for obtaining the same
JP2013539583A (en) * 2010-01-15 2013-10-24 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー CNT-infused fibers as self-shielding wires for reinforced transmission lines
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
US9163354B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US9241433B2 (en) 2009-04-24 2016-01-19 Applied Nanostructured Solutions, Llc CNT-infused EMI shielding composite and coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11353947A (en) * 1998-06-09 1999-12-24 Takiron Co Ltd Antistatic resin molding and secondary molding thereof
JP2005132016A (en) * 2003-10-31 2005-05-26 Idemitsu Kosan Co Ltd Sandwich injection-molded article and sandwich injection molding method
JP2006171336A (en) * 2004-12-15 2006-06-29 Takiron Co Ltd Transparent electrode member for image display, and the image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11353947A (en) * 1998-06-09 1999-12-24 Takiron Co Ltd Antistatic resin molding and secondary molding thereof
JP2005132016A (en) * 2003-10-31 2005-05-26 Idemitsu Kosan Co Ltd Sandwich injection-molded article and sandwich injection molding method
JP2006171336A (en) * 2004-12-15 2006-06-29 Takiron Co Ltd Transparent electrode member for image display, and the image display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529617A (en) * 2008-07-29 2011-12-08 ユニヴェルシテ ポール サバティエ トゥールーズ トロワ Conductive solid composite material and method for obtaining the same
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
US9241433B2 (en) 2009-04-24 2016-01-19 Applied Nanostructured Solutions, Llc CNT-infused EMI shielding composite and coating
JP2013539583A (en) * 2010-01-15 2013-10-24 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー CNT-infused fibers as self-shielding wires for reinforced transmission lines
US9163354B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same

Also Published As

Publication number Publication date
JP4958146B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4958146B2 (en) Conductive synthetic resin rod and method for producing the same
JP6860774B2 (en) Fused Deposition Modeling Filament Manufacturing Method for 3D Printers
JP5343564B2 (en) Conductive film and method for producing the same
Sanatgar et al. Morphological and electrical characterization of conductive polylactic acid based nanocomposite before and after FDM 3D printing
JP5770962B2 (en) Oriented nanofibers embedded in a polymer matrix
JP4896422B2 (en) Method for producing fine carbon fiber-containing resin composition
JP2007297501A (en) Conductive molded product and its manufacturing method
US20090283196A1 (en) Multilayered Polymeric Structure
WO2018143175A1 (en) Filament resin molded article
JP2008126468A (en) Conductive net and its manufacturing method
JP2008126469A (en) Conductive resin molding and its manufacturing method
JP2008051241A (en) Conductive synthetic resin molding and conductive roll using the same
Wu et al. The orientation and inhomogeneous distribution of carbon nanofibers and distinctive internal structure in polymer composites induced by 3D-printing enabling electromagnetic shielding regulation
Thomas Enhancing the electrical and mechanical properties of graphene nanoplatelet composites for 3D printed microsatellite structures
JP4454426B2 (en) Conductive film for in-mold molding
JPS61127199A (en) Conductive composite body and manufacture thereof
JPS61127198A (en) Conductive composite body and manufacture thereof
JP2007296724A (en) Method for producing conductive extruded article
JP2004202948A (en) Laminate
JP4589834B2 (en) Method for manufacturing conductive molded article and conductive molded article
JP2007296725A (en) Method for producing conductive injection-molded article
KR102083427B1 (en) Cellulose nanofibres-based electroconductive composite having carbon nanotubes inserted into crystalline or non-crystalline regions of cellulose nanofibers to form an electric pathway network
EP3447083B1 (en) Carbon nanotube enhanced polymers and methods for manufacturing the same
Dönmez et al. Influence of injection molding parameters on electrical resistivity of carbon nanotube reinforced polycarbonate
WO2009069565A1 (en) Molded articles, process for producing the molded articles, and use of the molded articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4958146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250