JP2002020809A - Method for manufacturing metal powder - Google Patents

Method for manufacturing metal powder

Info

Publication number
JP2002020809A
JP2002020809A JP2001108533A JP2001108533A JP2002020809A JP 2002020809 A JP2002020809 A JP 2002020809A JP 2001108533 A JP2001108533 A JP 2001108533A JP 2001108533 A JP2001108533 A JP 2001108533A JP 2002020809 A JP2002020809 A JP 2002020809A
Authority
JP
Japan
Prior art keywords
powder
metal
highly crystalline
metal powder
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001108533A
Other languages
Japanese (ja)
Other versions
JP3812359B2 (en
Inventor
Yuji Akimoto
裕二 秋本
Kazuo Nagashima
和郎 永島
Hiroshi Yoshida
宏志 吉田
Hirotaka Takushima
裕孝 多久島
Masayuki Maekawa
雅之 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2001108533A priority Critical patent/JP3812359B2/en
Publication of JP2002020809A publication Critical patent/JP2002020809A/en
Application granted granted Critical
Publication of JP3812359B2 publication Critical patent/JP3812359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing spherical, fine, highly crystalline metal powder uniform in grain size, having high purity, high density and high dispersibility and suitable for thick film paste, particulaly for conductive paste for manufacturing ceramic laminated electronic parts. SOLUTION: In this method for manufacturing highly crystalline metal powder, one or more kinds selected from thermally decomposable metal compound powders are fed to a reaction vessel by using a carrier gas, and, in a state of being dispersed into a vapor phase at a concentration of <=10 g/l, the metal compound powders are heated at a temperature higher than the decomposing temperature thereof and also satisfying (Tm-200) deg.C provided that the melting point of the same metal is defined as Tm deg.C to produce the metal powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エレクトロニクス
用に適した金属粉末の製造方法、特に導体ペースト用の
導電性粉末として有用な結晶性の高い金属粉末の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal powder suitable for electronics, and more particularly to a method for producing a metal powder having high crystallinity useful as a conductive powder for a conductive paste.

【0002】[0002]

【従来の技術】エレクトロニクス回路形成用導体ペース
トに使用される導電性金属粉末としては、不純物が少な
いこと、平均粒径が0.1μm以下のものから10μm程度
までの微細な粉末であること、粒子形状及び粒径が揃っ
ており、凝集のない単分散粒子であることなどが望まれ
る。またペースト中での分散性が良いことや、不均一な
焼結を起こさないよう結晶性が良好であることも要求さ
れる。特に積層コンデンサ、積層インダクタ等の積層セ
ラミック電子部品において内部導体や外部導体の形成に
用いられる場合は、デラミネーション、クラック等の構
造欠陥を防止しかつ導体を薄膜化するために、より微細
で粒径、形状の揃ったサブミクロン粒子であることと共
に、焼成中に酸化還元による膨張収縮が起こりにくく、
かつ焼結開始温度が高い、球状で活性の低い高結晶性ま
たは単結晶の金属粉末が要求されている。
2. Description of the Related Art A conductive metal powder used in a conductor paste for forming an electronic circuit has a small amount of impurities, a fine powder having an average particle diameter of 0.1 μm or less to about 10 μm, and a particle shape. It is desired that the particles have a uniform particle size and are free from aggregation. It is also required to have good dispersibility in the paste and good crystallinity so as not to cause uneven sintering. In particular, when used for forming internal conductors and external conductors in multilayer ceramic electronic components such as multilayer capacitors and multilayer inductors, finer and finer particles are used to prevent structural defects such as delamination and cracks and to make the conductor thinner. In addition to being submicron particles with uniform diameter and shape, expansion and shrinkage due to oxidation-reduction hardly occur during firing,
In addition, there is a demand for a highly crystalline or single crystalline metal powder having a low sintering start temperature and low activity.

【0003】即ち、積層セラミック電子部品は、一般に
誘電体、磁性体等の未焼成セラミックグリーンシート
と、パラジウム、銀−パラジウム等の貴金属やニッケ
ル、銅等の卑金属の粉末を導電成分とする内部導体ペー
スト層とを交互に複数層積層し、この積層体を高温で同
時焼成することにより製造されるが、内部導体に酸化し
やすい卑金属を用いた場合、種々の問題がある。例えば
内部導体ペーストの導電成分としてニッケル粉末を用い
た場合、積層体は、通常300〜600℃程度の温度で行われ
る脱バインダ工程までは酸化性雰囲気中で加熱して、ペ
ースト中及びセラミックグリーンシート中の有機ビヒク
ルを完全に燃焼除去する。このときニッケル粉末は若干
酸化される。その後不活性雰囲気中又は還元性雰囲気中
で焼成し、必要により還元処理を行うが、脱バインダ時
に酸化したニッケル粉末を完全に還元することは難し
く、抵抗値の上昇など電気特性の低下につながる。また
この酸化還元に伴って電極の体積の膨張収縮が起こる
が、この体積変化がセラミック層の焼結収縮挙動と一致
しないことにより、デラミネーションやクラック等の構
造欠陥を引き起こし易い。またニッケル粉末は非酸化性
雰囲気中では焼結が早く、過焼結によって内部導体が不
連続膜となって抵抗値の上昇や断線を起こしたり、導体
厚みが厚くなってしまう問題があり、近年の部品の高積
層化に伴う内部導体層の薄膜化の要求に対応することが
困難である。このような酸化や過焼結は、ニッケルペー
ストを用いて外部導体を同時焼成によって形成する場合
にも同様に問題となる。従って少なくとも脱バインダ時
に酸化しにくく、かつ焼結開始温度の高い高結晶性ニッ
ケル粉末が望まれる。
[0003] That is, a multilayer ceramic electronic component generally comprises an unfired ceramic green sheet such as a dielectric or a magnetic material, and an internal conductor containing a noble metal such as palladium or silver-palladium or a base metal such as nickel or copper as a conductive component. It is manufactured by alternately laminating a plurality of layers with a paste layer and simultaneously firing the laminated body at a high temperature. However, when a base metal which is easily oxidized is used for the internal conductor, there are various problems. For example, when nickel powder is used as a conductive component of the internal conductor paste, the laminate is heated in an oxidizing atmosphere until the binder removal step which is usually performed at a temperature of about 300 to 600 ° C., and the paste and the ceramic green sheets are heated. The organic vehicle in it is completely burned off. At this time, the nickel powder is slightly oxidized. Thereafter, firing is performed in an inert atmosphere or a reducing atmosphere, and a reduction treatment is performed if necessary. However, it is difficult to completely reduce the oxidized nickel powder at the time of binder removal, leading to a decrease in electrical characteristics such as an increase in resistance. In addition, the volume of the electrode expands and contracts due to the oxidation and reduction. However, since the change in the volume does not coincide with the sintering shrinkage behavior of the ceramic layer, structural defects such as delamination and cracks are easily caused. In addition, nickel powder sinters quickly in a non-oxidizing atmosphere, and the internal conductor becomes a discontinuous film due to oversintering, causing a problem such as an increase in resistance value or disconnection, and a thicker conductor. It is difficult to respond to the demand for thinner internal conductor layers as the number of components increases. Such oxidation and oversintering also pose a problem when the external conductor is formed by simultaneous firing using a nickel paste. Therefore, a highly crystalline nickel powder which is hardly oxidized at least at the time of binder removal and has a high sintering start temperature is desired.

【0004】一方貴金属であるパラジウムは、焼成中比
較的低温で酸化し、更に高温に加熱されると還元される
性質があり、このため電極層とセラミック層との焼結収
縮挙動の不一致による構造欠陥を引き起こす。従ってパ
ラジウムやパラジウム合金の場合も酸化しにくいことが
望まれるが、耐酸化性の点では球状の高結晶性粉末、特
に単結晶粉末は非常に優れたものである。
[0004] On the other hand, palladium, which is a noble metal, has the property of being oxidized at a relatively low temperature during firing and being reduced when heated to a higher temperature. Cause defects. Therefore, palladium or a palladium alloy is also desired to be hardly oxidized. However, in terms of oxidation resistance, a spherical high crystalline powder, particularly a single crystal powder, is very excellent.

【0005】従来このような結晶性の高い金属粉末を製
造する方法として、噴霧熱分解法が知られている。噴霧
熱分解法は、特公昭63−31522号公報等に記載さ
れているように、1種又は2種以上の金属化合物を含む
溶液またはこれらを分散させた懸濁液を噴霧して微細な
液滴にし、その液滴を該金属化合物の分解温度より高い
温度、望ましくは該金属の融点近傍又はそれ以上の高温
で加熱し、金属化合物を熱分解することにより金属又は
合金の粉末を析出させる方法である。この方法によれ
ば、高結晶性または単結晶で、高密度、高分散性の真球
状金属粉末や合金粉末が得られる。また湿式還元法と異
なり固液分離の必要がないので製造が容易であり、また
純度に影響を及ぼすような添加剤や溶媒を使用しないの
で、不純物を含まない高純度の粉末が得られる利点があ
る。更に粒径のコントロールが容易であり、また生成粒
子の組成は基本的に溶液中の出発金属化合物の組成と一
致するので、組成の制御が容易であるという利点もあ
る。
Conventionally, a spray pyrolysis method has been known as a method for producing such a highly crystalline metal powder. The spray pyrolysis method is, as described in JP-B-63-31522, etc., by spraying a solution containing one or more metal compounds or a suspension in which these are dispersed to form a fine liquid. A method of depositing a metal or alloy powder by thermally decomposing the metal compound by heating the droplet at a temperature higher than the decomposition temperature of the metal compound, desirably near or above the melting point of the metal; It is. According to this method, highly crystalline or single crystal, high-density, high-dispersion spherical metal powder or alloy powder can be obtained. In addition, unlike the wet reduction method, there is no need for solid-liquid separation, so that the production is easy.Because no additives or solvents that affect the purity are used, high-purity powders containing no impurities can be obtained. is there. Further, there is an advantage that the control of the particle size is easy, and the composition of the formed particles is basically the same as the composition of the starting metal compound in the solution, so that the composition can be easily controlled.

【0006】しかしこの方法では、原料の金属化合物を
液滴とするのに溶媒または分散媒として水や、アルコー
ル、アセトン、エーテル等の有機溶媒を使用するため、
熱分解時のエネルギーロスが大きく、コストが高くなる
問題がある。即ちこのプロセスにおいては、加熱により
溶媒の蒸発と同時に金属化合物の熱分解が行われるか、
または溶媒の蒸発後、金属化合物の熱分解が行われるの
であるが、いずれにおいても溶媒を蒸発させるのに多大
なエネルギーを要する。また反応容器内において液滴の
合着や***が起こることにより、生成する粉末の粒度分
布が大きくなることがある。このため噴霧速度、キャリ
ヤガス中での液滴濃度、反応器中の滞留時間等、反応条
件の設定が難しい。また特にニッケル、鉄、コバルト、
銅などの卑金属粉末の場合、酸化防止のため、熱分解を
厳密にコントロールされた還元性または弱還元性雰囲気
で行う必要がある。さらに溶媒として水を使用する場合
は、水分の分解により発生する酸化性ガスのために高温
で酸化されやすく、結晶性の良好な粉末が得られにく
い。
However, in this method, water or an organic solvent such as alcohol, acetone, or ether is used as a solvent or a dispersion medium to form a droplet of the metal compound as a raw material.
There is a problem that energy loss at the time of thermal decomposition is large and cost is increased. That is, in this process, the thermal decomposition of the metal compound is performed simultaneously with the evaporation of the solvent by heating,
Alternatively, after the solvent is evaporated, the metal compound is thermally decomposed, and in any case, a large amount of energy is required to evaporate the solvent. In addition, due to coalescence or division of the droplets in the reaction vessel, the particle size distribution of the generated powder may increase. For this reason, it is difficult to set reaction conditions such as the spray speed, the droplet concentration in the carrier gas, and the residence time in the reactor. Also especially nickel, iron, cobalt,
In the case of a base metal powder such as copper, thermal decomposition must be performed in a strictly controlled reducing or weak reducing atmosphere in order to prevent oxidation. Further, when water is used as a solvent, it is easily oxidized at a high temperature due to an oxidizing gas generated by decomposition of water, and it is difficult to obtain a powder having good crystallinity.

【0007】気相法で金属超微粒子を製造する方法もよ
く知られている。例えばニッケル粉末を得るには、塩化
ニッケルを蒸発させ、高温で還元性ガスにより還元す
る。しかし気相からの析出反応で得られる粉末は凝集し
やすく、しかも粒子径の制御が困難である。また蒸気圧
の異なる金属の合金を、正確にコントロールされた組成
で作ることは不可能である。
A method for producing ultrafine metal particles by a gas phase method is well known. For example, to obtain nickel powder, nickel chloride is evaporated and reduced at high temperature with a reducing gas. However, the powder obtained by the precipitation reaction from the gas phase tends to aggregate, and it is difficult to control the particle size. Also, it is impossible to produce alloys of metals having different vapor pressures with precisely controlled compositions.

【0008】特表平11−503205号公報には、酸
化タングステンなどの金属化合物粉末を、還元剤を用い
て固気反応により還元する方法が記載されている。この
方法は、原料の金属化合物粉末を、ガス状還元剤及び任
意にキャリヤガスと共に、加熱した反応室を所定の飛跡
で通過させ、化学的に還元するものである。この反応
は、還元ガスが還元されるべき原料に接触することによ
り起こるので、原料が固体粉末であると、前述の気相法
と比べてガスと接触する面積が小さいため、短時間で完
全に金属にまで還元するのが難しい。サイクロンを使用
して飛跡を長くしたり粒子を破裂させるなどの手段を用
いても、未反応物や不完全な還元状態の生成物が残りや
すく、このため飛跡や還元ガスの供給方法等のプロセス
パラメータの設定が難しい。従って、エレクトロニクス
用に好適な、粒径の揃った球状の高結晶性粉末を得るこ
とは困難と考えられる。
Japanese Patent Publication No. 11-503205 describes a method for reducing a metal compound powder such as tungsten oxide by a solid-gas reaction using a reducing agent. In this method, a raw material metal compound powder is passed through a heated reaction chamber along a predetermined track together with a gaseous reducing agent and optionally a carrier gas, and is chemically reduced. Since this reaction occurs when the reducing gas comes into contact with the raw material to be reduced, if the raw material is a solid powder, the area in contact with the gas is smaller than in the above-described gas phase method, so that it is completely completed in a short time. Difficult to reduce to metal. Even when using a cyclone to lengthen tracks or burst particles, unreacted substances or products in an incompletely reduced state are likely to remain. Setting parameters is difficult. Therefore, it is considered difficult to obtain a spherical highly crystalline powder having a uniform particle size suitable for electronics.

【0009】特公昭36−9163号公報には、銀、ニ
ッケル、銅の有機多塩基酸の塩を空気中または不活性気
体中比較的低温即ち100〜500℃で熱分解させて、高純度
の金属粉末またはその混合物を製造する方法が記載され
ており、摩砕によって粒径数ミクロン以下の微細な金属
粉末を得ることも述べられている。しかしこの方法で
は、粒径の厳密なコントロールができないばかりでな
く、結晶性を上げるために金属の融点以上あるいは融点
近傍にまで加熱すると粒子形状を保つことができず、摩
砕しても粒径数ミクロン以下とすることはできなくな
る。
Japanese Patent Publication No. 36-9163 discloses that a salt of an organic polybasic acid of silver, nickel or copper is thermally decomposed in air or an inert gas at a relatively low temperature, that is, at 100 to 500 ° C. A method for producing a metal powder or a mixture thereof is described, and it is also described that a fine metal powder having a particle size of several microns or less is obtained by grinding. However, this method cannot not only control the particle size strictly, but also cannot maintain the particle shape when heated to a temperature higher than or close to the melting point of the metal in order to increase the crystallinity, and the particle size cannot be maintained even by grinding. It cannot be reduced below a few microns.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、厚膜
ペースト、特にセラミック積層電子部品を製造するため
の導体ペースト用等に適した、球状で粒度の揃った、高
純度、高密度、高分散性の微細な高結晶性金属粉末を得
ることにある。他の目的は、このような金属粉末をロー
コストかつ簡単な方法で製造する新規な方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a spherical, uniform-grain, high-purity, high-density, suitable for use as a conductor paste for producing a thick film paste, especially a ceramic laminated electronic component. An object of the present invention is to obtain a finely crystalline metal powder having high dispersibility. Another object is to provide a new method for producing such a metal powder in a low-cost and simple manner.

【0011】[0011]

【課題を解決するための手段】即ち本発明は、熱分解性
の金属化合物粉末の1種又は2種以上を、キャリヤガス
を用いて反応容器に供給し、該金属化合物粉末を10g/
l以下の濃度で気相中に分散させた状態で、その分解温
度より高く、かつ該金属の融点をTm℃としたとき(Tm
−200)℃以上の温度で加熱することにより金属粉末を
生成させることを特徴とする高結晶性金属粉末の製造方
法を要旨とするものである。
That is, according to the present invention, one or more kinds of thermally decomposable metal compound powders are supplied to a reaction vessel using a carrier gas, and the metal compound powders are added in an amount of 10 g / g.
When the metal is dispersed in the gaseous phase at a concentration of 1 l or less and its melting point is higher than its decomposition temperature and the melting point of the metal is Tm ° C (Tm
A method for producing a highly crystalline metal powder characterized by producing a metal powder by heating at a temperature of -200) ° C or higher.

【0012】また本発明は、金属化合物粉末が2種以上
の金属元素を含む金属化合物の均質な混合粉末または複
合粉末であり、金属粉末が合金粉末である、前記高結晶
性金属粉末の製造方法を要旨とするものである。更に本
発明は、上記の方法で製造された高結晶性金属粉末、及
び該高結晶性金属粉末を含む導体ペースト、並びに該導
体ペーストを用いて導体層を形成したことを特徴とする
セラミック積層電子部品を要旨とするものである。
Further, the present invention provides a method for producing a highly crystalline metal powder, wherein the metal compound powder is a homogeneous mixed powder or a composite powder of a metal compound containing two or more metal elements, and the metal powder is an alloy powder. It is the gist. Further, the present invention provides a highly laminated metal powder produced by the above-described method, a conductor paste containing the highly crystalline metal powder, and a ceramic laminated electronic device, wherein a conductor layer is formed using the conductor paste. The gist is a part.

【0013】[0013]

【発明の実施の形態】本方法で製造される金属粉末は特
に限定されるものではないが、特に例えば銅、ニッケ
ル、コバルト、鉄等の卑金属粉末や銀、パラジウム、
金、白金等の貴金属粉末の製造に好適である。原料金属
化合物粉末の選択により、複数の金属の混合粉末や合金
粉末が得られる。本発明の「金属粉末」は、このような
混合粉末、合金粉末も含むものである。
BEST MODE FOR CARRYING OUT THE INVENTION The metal powder produced by the present method is not particularly limited. For example, base metal powders such as copper, nickel, cobalt and iron, silver, palladium and the like can be used.
It is suitable for producing noble metal powders such as gold and platinum. By selecting the raw metal compound powder, a mixed powder of a plurality of metals or an alloy powder can be obtained. The “metal powder” of the present invention includes such mixed powder and alloy powder.

【0014】金属粉末の原料となる熱分解性の金属化合
物粉末としては、水酸化物、硝酸塩、硫酸塩、炭酸塩、
オキシ硝酸塩、オキシ硫酸塩、塩化物、酸化物、アンモ
ニウム錯体、リン酸塩等の無機化合物や、カルボン酸
塩、樹脂酸塩、スルホン酸塩、アセチルアセトナート、
金属の1価または多価アルコラート等の有機化合物が使
用される。ことに水酸化物、炭酸塩、カルボン酸塩、樹
脂酸塩、アセチルアセトナート、アルコラートなどは、
熱分解後有害な副生成物を生成しないので好ましい。
The pyrolytic metal compound powder used as a raw material of the metal powder includes hydroxide, nitrate, sulfate, carbonate, and the like.
Inorganic compounds such as oxynitrate, oxysulfate, chloride, oxide, ammonium complex, phosphate, carboxylate, resinate, sulfonate, acetylacetonate,
Organic compounds such as monovalent or polyvalent alcoholates of metals are used. In particular, hydroxide, carbonate, carboxylate, resinate, acetylacetonate, alcoholate, etc.
This is preferable since no harmful by-products are formed after thermal decomposition.

【0015】原料粉末として、2種以上の金属化合物粉
末を混合して使用することもできる。合金粉末を製造す
る場合は、単に合金成分金属の原料粉末を所定の組成比
で均一に混合して供給してもよいが、原料粉末の1粒子
中に複数の金属成分が一定の組成比で含まれるよう予め
複合化させた複合粉末とすることが望ましい。複合化の
方法としては、予め原料となる金属化合物粉末を混合
し、組成的に均一になるまで熱処理した後粉砕する方法
や、ゾルゲル法、共沈法など公知の方法がある。また複
塩、錯塩、金属複酸化物などを用いてもよい。
As the raw material powder, a mixture of two or more kinds of metal compound powders can be used. In the case of producing an alloy powder, the raw material powder of the alloy component metal may be simply mixed and supplied at a predetermined composition ratio, but a plurality of metal components may be contained in one particle of the raw material powder at a constant composition ratio. It is desirable to use a composite powder that has been previously composited so as to be included. As a method of compounding, there are known methods such as mixing a metal compound powder as a raw material in advance, heat-treating the mixture until the composition becomes uniform, and pulverizing the mixture, a sol-gel method, and a coprecipitation method. Further, double salts, complex salts, metal double oxides and the like may be used.

【0016】本方法では原料の熱分解性金属化合物1粒
子あたり1粒子の金属又は合金粒子が生成すると考えら
れる。このため生成する金属粒子の粒度は、金属化合物
の種類によってその比率は異なってくるが、原料粉末の
粒度にほぼ比例する。従って均一な粒径の金属粉末を得
るためには、金属化合物粉末として粒度の揃ったものを
用いる。原料粉末の粒度分布が広い場合は、気相中に分
散させる前に予め粉砕機や分級機で粉砕、解砕又は分級
を行って粒度調整しておくことが望ましい。
In the present method, it is considered that one metal or alloy particle is formed per one particle of the raw material thermally decomposable metal compound. For this reason, the ratio of the particle size of the generated metal particles differs depending on the type of the metal compound, but is substantially proportional to the particle size of the raw material powder. Therefore, in order to obtain a metal powder having a uniform particle size, a metal compound powder having a uniform particle size is used. When the particle size distribution of the raw material powder is wide, it is desirable to adjust the particle size by performing pulverization, pulverization or classification with a pulverizer or a classifier before dispersing in a gas phase.

【0017】本発明においては、固体の金属化合物粉末
を、気相中に分散させた状態で熱分解することが重要で
ある。しかも反応容器内では、原料粉末を、原料粉末及
び生成粉末が互いに衝突を起こさないような低い濃度で
分散させた状態で熱分解を行う必要がある。このため気
相中での濃度は、10g/l以下でなくてはならない。こ
れより濃度が高いと、粉末同士の衝突により粒度の揃っ
た金属粉末が得られない。分散濃度は、用いる分散装置
や熱分解装置に応じて適宜決めることができる。10g/
l以下であれば特に制限はないが、あまり低濃度になる
と生産効率が悪くなるので、0.01g/l以上とすること
が望ましい。
In the present invention, it is important that the solid metal compound powder is thermally decomposed while being dispersed in the gas phase. Moreover, in the reaction vessel, it is necessary to perform the thermal decomposition in a state where the raw material powder is dispersed at such a low concentration that the raw material powder and the produced powder do not collide with each other. For this reason, the concentration in the gas phase must be 10 g / l or less. If the concentration is higher than this, metal powder having a uniform particle size cannot be obtained due to collision of the powders. The dispersion concentration can be appropriately determined according to the dispersing device or the thermal decomposition device used. 10g /
The concentration is not particularly limited as long as it is 1 or less. However, if the concentration is too low, the production efficiency deteriorates.

【0018】原料粉末を気相中に分散させる手段は特に
限定はなく、通常の分散機が用いられる。低濃度の分散
状態を保ったままで熱分解を行うためには、例えば外側
から加熱された管状の反応容器を用い、一方の開口部か
ら原料粉末をキャリヤガスと共に一定の流速で供給して
反応容器内を通過させ、熱分解されて生成した金属粉末
を他方の開口部から回収する。粉末とキャリヤガスの混
合物の流速及び通過時間は、粉末が所定の温度に十分に
加熱されるように、用いる装置に応じて設定される。加
熱は電気炉やガス炉等で反応容器の外側から行うほか、
燃料ガスを反応容器に供給しその燃焼炎を用いてもよ
い。
The means for dispersing the raw material powder in the gas phase is not particularly limited, and an ordinary disperser is used. In order to carry out the thermal decomposition while maintaining the low-concentration dispersion state, for example, a tubular reaction vessel heated from the outside is used. And the metal powder generated by pyrolysis is collected from the other opening. The flow rate and the passage time of the mixture of the powder and the carrier gas are set according to the apparatus used so that the powder is sufficiently heated to a predetermined temperature. Heating is performed from the outside of the reaction vessel using an electric furnace or gas furnace, etc.
Fuel gas may be supplied to the reaction vessel and the combustion flame may be used.

【0019】キャリヤガスとしては、貴金属の場合は特
に制限はなく、空気、酸素、水蒸気などの酸化性ガス
や、窒素、アルゴンなどの不活性ガス、これらの混合ガ
スなどが使用される。酸化しやすいニッケル、銅等の卑
金属の場合は不活性ガスを用いるが、熱分解時の雰囲気
を弱還元性として酸化防止効果を高めるため水素、一酸
化炭素、メタンなどの還元性ガスを併用してもよい。
The carrier gas is not particularly limited in the case of a noble metal, and an oxidizing gas such as air, oxygen and water vapor, an inert gas such as nitrogen and argon, and a mixed gas thereof are used. In the case of base metals such as nickel and copper which are easily oxidized, an inert gas is used.However, a reducing gas such as hydrogen, carbon monoxide, methane, etc. is used in combination to enhance the antioxidant effect by weakly reducing the atmosphere during thermal decomposition. You may.

【0020】本発明の特徴の一つは、加熱時に厳密な雰
囲気調整を行なう必要がないことである。特に卑金属の
場合、不活性ガス中で熱分解させると一酸化炭素や水
素、メタン等を生成して還元性雰囲気を作り出すことの
できる金属化合物を原料として用いることにより、外部
から反応系に還元性ガスを供給する必要がなく、ほとん
ど酸化のない金属粉末を得る。例えばニッケル粉末を従
来の水溶液を用いた噴霧熱分解法で製造する場合は、ニ
ッケルの酸化を抑制するために通常厳密にコントロール
された量の還元性ガスを導入する必要がある。しかし本
発明の方法において例えば原料に酢酸ニッケル等のカル
ボン酸塩粉末を用い、窒素雰囲気中で熱分解を行うと、
カルボン酸根の分解により一酸化炭素と水素を発生し反
応器内は還元性雰囲気となるので、ほとんど酸化のない
ニッケル粉末が得られる。
One of the features of the present invention is that it is not necessary to strictly adjust the atmosphere during heating. In particular, in the case of base metals, a metal compound that can generate a reducing atmosphere by generating carbon monoxide, hydrogen, methane, etc. when thermally decomposed in an inert gas is used as a raw material. There is no need to supply gas, and a metal powder with almost no oxidation is obtained. For example, when nickel powder is produced by a conventional spray pyrolysis method using an aqueous solution, it is usually necessary to introduce a strictly controlled amount of a reducing gas to suppress oxidation of nickel. However, in the method of the present invention, for example, using a carboxylate powder such as nickel acetate as a raw material and performing pyrolysis in a nitrogen atmosphere,
The decomposition of the carboxylic acid radicals generates carbon monoxide and hydrogen, and the inside of the reactor becomes a reducing atmosphere, so that a nickel powder having almost no oxidation can be obtained.

【0021】本発明の方法で得られる金属粉末は、粒径
の揃った、凝集のない球状の一次粒子である。また結晶
性が良好で粒子内部に欠陥が少なく、粒界をほとんど含
まない。このため微粉末であるにもかかわらず活性が低
い。特にニッケル、鉄、コバルト、銅等の卑金属やパラ
ジウムなどの易酸化性金属でも酸化しにくく、空気中で
も安定に保存できるほか、高温まで耐酸化性を保持す
る。従って積層コンデンサの内部導体用や外部導体用の
導体ペーストに使用した場合、導電性金属の酸化による
抵抗値の上昇や、焼成中の酸化還元に起因するデラミネ
ーション、クラック等の構造欠陥の発生がなく、特性の
優れたコンデンサを製造することができる。
The metal powder obtained by the method of the present invention is a spherical primary particle having a uniform particle size and without aggregation. In addition, the crystallinity is good, there are few defects inside the grains, and almost no grain boundaries are contained. Therefore, the activity is low despite being a fine powder. In particular, base metals such as nickel, iron, cobalt, and copper, and easily oxidizable metals such as palladium are hardly oxidized, can be stably stored in the air, and maintain oxidation resistance up to high temperatures. Therefore, when used as a conductor paste for the inner conductor and outer conductor of a multilayer capacitor, the resistance value increases due to oxidation of the conductive metal, and structural defects such as delamination and cracks due to oxidation and reduction during firing occur. Therefore, a capacitor having excellent characteristics can be manufactured.

【0022】加熱温度が目的とする金属または合金の融
点をTm℃としたとき(Tm−200)℃より低いと、球状
の高結晶性金属粉末が得られない。特に、表面が平滑な
真球状の単結晶金属粉末を得るには、加熱処理を目的と
する金属または合金の融点またはそれ以上の高温で行う
ことが望ましい。なお、熱分解の際、あるいは熱分解後
に該金属が酸化物や窒化物、炭化物等を生成する場合に
は、これらが分解する条件で加熱を行う必要がある。
When the heating temperature is lower than (Tm-200) ° C. when the melting point of the target metal or alloy is Tm ° C., a spherical highly crystalline metal powder cannot be obtained. In particular, in order to obtain a spherical single crystal metal powder having a smooth surface, the heat treatment is desirably performed at a high temperature equal to or higher than the melting point of the metal or alloy to be heated. When the metal forms oxides, nitrides, carbides, or the like at the time of thermal decomposition or after thermal decomposition, it is necessary to perform heating under conditions under which these metals decompose.

【0023】[0023]

【実施例】次に、実施例及び比較例により本発明を具体
的に説明する。 実施例1 酢酸ニッケル四水和物の粉末を5Kg/hrの供給速度で気
流式粉砕機に供給し200l/minの流速の窒素ガスで粉
砕、分散させた。得られた酢酸ニッケル四水和物粉末の
平均粒径はおよそ1.0μm、最大粒径はおよそ3.0μmで
あった。気相中の酢酸ニッケル四水和物粉末濃度は0.4
g/lである。この気体−固体混合物をこの粉末濃度を
保ったまま、1550℃に加熱した電気炉内の反応管に導入
し、加熱、分解を行い、バグフィルターにて生成した粉
末を捕集した。
Next, the present invention will be specifically described with reference to Examples and Comparative Examples. Example 1 A powder of nickel acetate tetrahydrate was supplied to an air-flow type pulverizer at a supply rate of 5 kg / hr, and pulverized and dispersed with nitrogen gas at a flow rate of 200 l / min. The average particle size of the obtained nickel acetate tetrahydrate powder was approximately 1.0 μm, and the maximum particle size was approximately 3.0 μm. Nickel acetate tetrahydrate powder concentration in the gas phase is 0.4
g / l. While maintaining the powder concentration, the gas-solid mixture was introduced into a reaction tube in an electric furnace heated to 1550 ° C., heated and decomposed, and the powder generated by a bag filter was collected.

【0024】得られた粉末をX線回折計で分析したとこ
ろ、金属ニッケル単結晶粉末であることが確認された。
また走査型電子顕微鏡(SEM)で観察を行ったところ、
凝集のない真球状粒子であり、平均粒径0.5μm、最大
粒径2.0μmであった。また空気中で熱重量分析を行っ
たところ、350℃まで酸化を起こさなかった。湿式法で
得られた平均粒径0.5μmの多結晶ニッケル粉末の酸化
温度は250℃であるから、本発明のニッケル粉末は安定
した粉末であることがわかる。
When the obtained powder was analyzed with an X-ray diffractometer, it was confirmed that the powder was a metallic nickel single crystal powder.
When observed with a scanning electron microscope (SEM),
The particles were truly spherical particles without aggregation, and had an average particle size of 0.5 μm and a maximum particle size of 2.0 μm. When thermogravimetric analysis was performed in air, no oxidation occurred up to 350 ° C. Since the oxidation temperature of the polycrystalline nickel powder having an average particle diameter of 0.5 μm obtained by the wet method is 250 ° C., it is understood that the nickel powder of the present invention is a stable powder.

【0025】実施例2、3 電気炉の温度をそれぞれ1300℃、1650℃とする以外は実
施例1と同様にして、ニッケル粉末を製造した。得られ
た粉末の特性を表1に示す。 実施例4 粉砕機への供給速度を62.5Kg/hrとする以外は実施例1
と同様にして、酢酸ニッケル四水和物粉末を窒素ガスで
粉砕、分散させた。この気体−固体混合物を実施例1と
同様に1550℃に加熱された反応管に導入し、熱分解して
ニッケル粉末を製造した。なお反応管に導入する際の酢
酸ニッケル四水和物粉末の平均粒径はおよそ2.5μm、
最大粒径はおよそ6.0μmであり、また気相中の粉末濃度
は5.0g/lであった。得られた粉末の特性を表1に示
す。
Examples 2 and 3 Nickel powder was produced in the same manner as in Example 1 except that the temperatures of the electric furnaces were 1300 ° C. and 1650 ° C., respectively. Table 1 shows the properties of the obtained powder. Example 4 Example 1 except that the feed rate to the pulverizer was 62.5 kg / hr.
In the same manner as in the above, nickel acetate tetrahydrate powder was pulverized and dispersed with nitrogen gas. This gas-solid mixture was introduced into a reaction tube heated to 1550 ° C. as in Example 1, and pyrolyzed to produce a nickel powder. The average particle size of the nickel acetate tetrahydrate powder when introduced into the reaction tube is approximately 2.5 μm,
The maximum particle size was about 6.0 μm, and the powder concentration in the gas phase was 5.0 g / l. Table 1 shows the properties of the obtained powder.

【0026】実施例5、6 酢酸ニッケル四水和物粉末に代えて、それぞれギ酸ニッ
ケル二水和物粉末、シュウ酸ニッケル二水和物粉末を用
いる以外は実施例1と同様にして、ニッケル粉末を製造
した。得られた粉末の特性を表1に示す。 比較例1 粉砕機への供給速度を150Kg/hrとする以外は実施例1と
同様にして、酢酸ニッケル四水和物粉末を窒素ガスで粉
砕、分散させた。この気体−固体混合物を実施例1と同
様に1550℃に加熱された反応管に導入し、熱分解してニ
ッケル粉末を製造した。なお反応管に導入する際の酢酸
ニッケル四水和物粉末の平均粒径はおよそ5.0μmであ
り、また気相中の粉末濃度は12.0g/lであった。得ら
れた粉末をSEMで観察したところ、結晶性の高い粒子
が多数融着して巨大な不定形粒子を形成しており、粒度
分布の広いものであった。
Examples 5 and 6 The procedure of Example 1 was repeated except that nickel formate dihydrate powder and nickel oxalate dihydrate powder were used instead of nickel acetate tetrahydrate powder. Was manufactured. Table 1 shows the properties of the obtained powder. Comparative Example 1 Nickel acetate tetrahydrate powder was pulverized and dispersed with nitrogen gas in the same manner as in Example 1 except that the supply rate to the pulverizer was 150 kg / hr. This gas-solid mixture was introduced into a reaction tube heated to 1550 ° C. as in Example 1, and pyrolyzed to produce a nickel powder. The average particle size of the nickel acetate tetrahydrate powder when introduced into the reaction tube was approximately 5.0 μm, and the powder concentration in the gas phase was 12.0 g / l. Observation of the obtained powder with a SEM revealed that a large number of particles having high crystallinity were fused to form huge irregular particles, and the particles had a wide particle size distribution.

【0027】比較例2 電気炉の温度を1100℃とする以外は実施例1と同様にし
て、ニッケル粉末を製造した。得られた粉末は、表1に
示すように不定形で粒度分布が広く、また微結晶の集合
体であり、結晶性の低いものであった。耐酸化性も低か
った。 実施例7 酢酸ニッケル四水和物粉末と酢酸銅粉末を、金属成分の
重量比でNi:Cu=7:3となるように予め混合し、
実施例1と同様の方法で粉末を製造した。
Comparative Example 2 A nickel powder was produced in the same manner as in Example 1 except that the temperature of the electric furnace was changed to 1100 ° C. As shown in Table 1, the obtained powder was amorphous, had a wide particle size distribution, was an aggregate of fine crystals, and had low crystallinity. The oxidation resistance was also low. Example 7 Nickel acetate tetrahydrate powder and copper acetate powder were mixed in advance so that the weight ratio of metal components was Ni: Cu = 7: 3.
A powder was produced in the same manner as in Example 1.

【0028】得られた粉末は、X線回折により単結晶の
ニッケル‐銅合金であることが確認された。特性を表1
に示す。 実施例8 原料として塩化パラジウムの粉末を用い、反応管に導入
する際の気相中の分散濃度が1.0g/lとなるように
し、粉砕ガス及びキャリヤガスとして空気を用い、また
電気炉の温度を1600℃とする以外は実施例1と同様の方
法で粉末を製造した。
The obtained powder was confirmed to be a single crystal nickel-copper alloy by X-ray diffraction. Table 1 shows the characteristics
Shown in Example 8 Powder of palladium chloride was used as a raw material, the dispersion concentration in a gas phase when introduced into a reaction tube was adjusted to 1.0 g / l, air was used as a grinding gas and a carrier gas, and the temperature of an electric furnace was used. The powder was produced in the same manner as in Example 1 except that the temperature was changed to 1600 ° C.

【0029】得られた粉末は、X線回折により金属パラ
ジウム単結晶粉末であることが確認された。特性を表1
に示す。 実施例9 塩化パラジウム粉末と酢酸銀粉末を、金属成分の重量比
でPd:Ag=2:8となるように予め混合し、気相中
の分散濃度が0.4g/lとなるようにし、また電気炉の
温度を1400℃とする以外は実施例8と同様の方法でパラ
ジウム−銀合金単結晶粉末を得た。特性を表1に示す。
The obtained powder was confirmed to be a metal palladium single crystal powder by X-ray diffraction. Table 1 shows the characteristics
Shown in Example 9 A palladium chloride powder and a silver acetate powder were mixed in advance so that the weight ratio of the metal components was Pd: Ag = 2: 8, and the dispersion concentration in the gas phase was 0.4 g / l. A palladium-silver alloy single crystal powder was obtained in the same manner as in Example 8, except that the temperature of the electric furnace was changed to 1400 ° C. Table 1 shows the characteristics.

【0030】比較例3 電気炉の温度を900℃とする以外は実施例9と同様にし
て、粉末を製造した。得られた粉末は、表1に示すよう
に結晶性の低いパラジウム−銀合金粉末と酸化パラジウ
ム粉末の混合物であった。また実施例9と比較例3の結
果から、本発明で得られたパラジウム−銀合金粉末は耐
酸化性が極めて優れていることがわかる。
Comparative Example 3 A powder was produced in the same manner as in Example 9 except that the temperature of the electric furnace was 900 ° C. The obtained powder was a mixture of a palladium-silver alloy powder having low crystallinity and a palladium oxide powder as shown in Table 1. The results of Example 9 and Comparative Example 3 show that the palladium-silver alloy powder obtained in the present invention has extremely excellent oxidation resistance.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明の方法では、球状で、結晶性が良
く、かつ高分散性の金属粉末が容易に得られる。また原
料化合物粉末を金属の融点以上の温度で加熱することに
より、単結晶金属粉末を得ることが可能である。純度に
影響を及ぼす添加剤や溶媒を使用しないので、不純物を
含まない高純度の粉末が得られる。
According to the method of the present invention, a spherical, highly crystalline, and highly dispersible metal powder can be easily obtained. By heating the raw material compound powder at a temperature equal to or higher than the melting point of the metal, a single crystal metal powder can be obtained. Since no additives or solvents that affect the purity are used, a high-purity powder containing no impurities can be obtained.

【0033】更に本方法によれば、原料粉末の粒度コン
トロールにより粒径が揃った金属粉末を得ることがで
き、粒度の調整も容易である。従って分級工程の必要な
く、粒度分布の狭い、極めて微細な、厚膜ペーストに適
した粉末を得ることができる。また原料を溶液、懸濁液
状としないため、通常の噴霧熱分解法と比べて溶媒の蒸
発によるエネルギーロスが少なく、ローコストで簡単に
製造できる。しかも液滴の合着の問題がなく、比較的高
濃度で気相中に分散させることができるため、効率が高
い。
Further, according to the present method, a metal powder having a uniform particle size can be obtained by controlling the particle size of the raw material powder, and the particle size can be easily adjusted. Therefore, it is possible to obtain an extremely fine powder suitable for a thick film paste having a narrow particle size distribution without the need for a classification step. In addition, since the raw material is not in the form of a solution or suspension, energy loss due to evaporation of the solvent is small as compared with the usual spray pyrolysis method, and the production can be performed easily at low cost. In addition, since there is no problem of coalescence of droplets and the particles can be dispersed in the gas phase at a relatively high concentration, the efficiency is high.

【0034】更に本法は、溶媒からの酸化性ガスの発生
がないので、低酸素分圧下で合成する必要のある易酸化
性の卑金属粉末の製造に適している。しかも化合物の選
択により還元性ガスを外部から供給する必要なく、酸化
を極力抑えることができるので、反応条件の設定が簡単
である。しかも得られる金属粉末は活性が低く耐酸化性
が良好であり、このため積層コンデンサ等の導体を形成
するための導体ペーストに使用した場合、クラック等の
構造欠陥のない、信頼性の高い部品を製造することがで
きる。
Further, the present method is suitable for producing an easily oxidizable base metal powder which needs to be synthesized under a low oxygen partial pressure since no oxidizing gas is generated from the solvent. In addition, oxidation can be suppressed as much as possible without the need to supply a reducing gas from the outside by selecting a compound, so that setting of reaction conditions is simple. In addition, the resulting metal powder has low activity and good oxidation resistance. Therefore, when used as a conductor paste for forming a conductor such as a multilayer capacitor, a highly reliable component free of structural defects such as cracks can be obtained. Can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 宏志 東京都新宿区西新宿2丁目1番1号 昭栄 化学工業株式会社内 (72)発明者 多久島 裕孝 東京都新宿区西新宿2丁目1番1号 昭栄 化学工業株式会社内 (72)発明者 前川 雅之 東京都新宿区西新宿2丁目1番1号 昭栄 化学工業株式会社内 Fターム(参考) 4K017 AA04 BA02 BA03 BA05 BB02 BB05 BB06 CA01 DA01 EK05 FA13 FB03 FB05 5E001 AB03 AC09 AC10 AH01 AJ01 5G301 DA06 DA10 DA11 DD01 DE03 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Yoshida 2-1-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo Shoei Chemical Industry Co., Ltd. (72) Inventor Hirotaka Takushima 2-1-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo No. Shoei Chemical Industry Co., Ltd. (72) Inventor Masayuki Maekawa 2-1-1 Nishi Shinjuku, Shinjuku-ku, Tokyo Shoei Chemical Industry Co., Ltd. F term (reference) 4K017 AA04 BA02 BA03 BA05 BB02 BB05 BB06 CA01 DA01 EK05 FA13 FB03 FB05 5E001 AB03 AC09 AC10 AH01 AJ01 5G301 DA06 DA10 DA11 DD01 DE03

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 熱分解性の金属化合物粉末の1種又は2
種以上を、キャリヤガスを用いて反応容器に供給し、該
金属化合物粉末を10g/l以下の濃度で気相中に分散さ
せた状態で、その分解温度より高く、かつ該金属の融点
をTm℃としたとき(Tm−200)℃以上の温度で加熱す
ることにより金属粉末を生成させることを特徴とする高
結晶性金属粉末の製造方法。
1. One or two kinds of thermally decomposable metal compound powders
More than one species is supplied to a reaction vessel using a carrier gas, and the metal compound powder is dispersed in a gaseous phase at a concentration of 10 g / l or less. A method for producing a highly crystalline metal powder, characterized in that a metal powder is formed by heating at a temperature of (Cm-200) C or higher when the temperature is set to (Cm).
【請求項2】 金属化合物粉末が、2種以上の金属元素
を含む金属化合物の均質な混合粉末または複合粉末であ
り、金属粉末が合金粉末である請求項1に記載の高結晶
性金属粉末の製造方法。
2. The highly crystalline metal powder according to claim 1, wherein the metal compound powder is a homogeneous mixed powder or a composite powder of a metal compound containing two or more metal elements, and the metal powder is an alloy powder. Production method.
【請求項3】 キャリヤガスが不活性ガスであり、金属
粉末がニッケル粉末、銅粉末またはニッケル及び/又は
銅を含む合金粉末である請求項1または2に記載の高結
晶性金属粉末の製造方法。
3. The method for producing a highly crystalline metal powder according to claim 1, wherein the carrier gas is an inert gas, and the metal powder is a nickel powder, a copper powder, or an alloy powder containing nickel and / or copper. .
【請求項4】 金属化合物粉末として、不活性ガス中で
熱分解することにより熱分解時の雰囲気を還元性雰囲気
とすることのできる金属化合物粉末を用いる請求項1乃
至3のいずれかに記載の高結晶性金属粉末の製造方法。
4. The metal compound powder according to claim 1, wherein the metal compound powder is a metal compound powder capable of being thermally decomposed in an inert gas so that an atmosphere during the thermal decomposition can be made a reducing atmosphere. A method for producing a highly crystalline metal powder.
【請求項5】 金属化合物粉末が金属カルボン酸塩粉末
である請求項4に記載の高結晶性金属粉末の製造方法。
5. The method for producing a highly crystalline metal powder according to claim 4, wherein the metal compound powder is a metal carboxylate powder.
【請求項6】 金属粉末がパラジウム粉末またはパラジ
ウムを含む合金粉末である請求項1または2に記載の高
結晶性金属粉末の製造方法。
6. The method for producing a highly crystalline metal powder according to claim 1, wherein the metal powder is a palladium powder or an alloy powder containing palladium.
【請求項7】 請求項1乃至6のいずれかに記載の方法
で製造された高結晶性金属粉末。
7. A highly crystalline metal powder produced by the method according to claim 1.
【請求項8】 請求項7に記載の高結晶性金属粉末を含
む導体ペースト。
8. A conductor paste containing the highly crystalline metal powder according to claim 7.
【請求項9】 請求項8に記載の導体ペーストを用いて
導体層を形成したことを特徴とするセラミック積層電子
部品。
9. A laminated ceramic electronic component comprising a conductor layer formed by using the conductor paste according to claim 8.
JP2001108533A 2000-05-02 2001-04-06 Method for producing metal powder Expired - Lifetime JP3812359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108533A JP3812359B2 (en) 2000-05-02 2001-04-06 Method for producing metal powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000133576 2000-05-02
JP2000-133576 2000-05-02
JP2001108533A JP3812359B2 (en) 2000-05-02 2001-04-06 Method for producing metal powder

Publications (2)

Publication Number Publication Date
JP2002020809A true JP2002020809A (en) 2002-01-23
JP3812359B2 JP3812359B2 (en) 2006-08-23

Family

ID=26591424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108533A Expired - Lifetime JP3812359B2 (en) 2000-05-02 2001-04-06 Method for producing metal powder

Country Status (1)

Country Link
JP (1) JP3812359B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827758B2 (en) 2001-05-30 2004-12-07 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder
EP1398101A3 (en) * 2002-09-10 2005-03-09 Shoei Chemical Inc. Method for manufacturing metal powder by thermal decomposition
US6869461B2 (en) 2002-09-11 2005-03-22 Sumitomo Metal Mining Co., Ltd. Fine powder of metallic copper and process for producing the same
JP2006169559A (en) * 2004-12-14 2006-06-29 Sumitomo Metal Mining Co Ltd Copper alloy fine-particle and method for producing the same
WO2008041541A1 (en) 2006-10-02 2008-04-10 Shoei Chemical Inc. Nickel-rhenium alloy powder and conductor paste containing the nickel-rhenium alloy powder
WO2008041540A1 (en) 2006-10-02 2008-04-10 Shoei Chemical Inc. Nickel-rhenium alloy powder and conductor paste containing the nickel-rhenium alloy powder
EP1972397A2 (en) 2007-03-12 2008-09-24 Shoei Chemical Inc. Nickel powder, method for manufacturing same, conductor paste, and multilayer ceramic electronic component using same
US7503959B2 (en) 2005-10-19 2009-03-17 Shoei Chemical Inc. Method for manufacturing rhenium-containing alloy powder, rhenium-containing alloy powder, and conductor paste
US7704297B2 (en) 2006-04-27 2010-04-27 Shoei Chemical Inc. Nickel powder manufacturing method
EP2564957A1 (en) 2011-09-02 2013-03-06 Shoei Chemical Inc. Metal powder production method, metal powder produced thereby, conductive paste and multilayer ceramic electronic component
CN112201474A (en) * 2020-07-03 2021-01-08 成都宏科电子科技有限公司 Pure palladium inner electrode slurry for radio frequency microwave ceramic dielectric capacitor and preparation method and application thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827758B2 (en) 2001-05-30 2004-12-07 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder
US7416795B2 (en) 2001-05-30 2008-08-26 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder
EP1398101A3 (en) * 2002-09-10 2005-03-09 Shoei Chemical Inc. Method for manufacturing metal powder by thermal decomposition
US7066980B2 (en) 2002-09-10 2006-06-27 Shoei Chemical, Inc. Method for manufacturing metal powder
US6869461B2 (en) 2002-09-11 2005-03-22 Sumitomo Metal Mining Co., Ltd. Fine powder of metallic copper and process for producing the same
JP2006169559A (en) * 2004-12-14 2006-06-29 Sumitomo Metal Mining Co Ltd Copper alloy fine-particle and method for producing the same
US7503959B2 (en) 2005-10-19 2009-03-17 Shoei Chemical Inc. Method for manufacturing rhenium-containing alloy powder, rhenium-containing alloy powder, and conductor paste
US7704297B2 (en) 2006-04-27 2010-04-27 Shoei Chemical Inc. Nickel powder manufacturing method
US7785499B2 (en) 2006-10-02 2010-08-31 Shoei Chemical Inc. Nickel-rhenium alloy powder and conductor paste containing the same
WO2008041540A1 (en) 2006-10-02 2008-04-10 Shoei Chemical Inc. Nickel-rhenium alloy powder and conductor paste containing the nickel-rhenium alloy powder
US7744779B2 (en) 2006-10-02 2010-06-29 Shoei Chemical Inc. Nickel-rhenium alloy powder and conductor paste containing the same
WO2008041541A1 (en) 2006-10-02 2008-04-10 Shoei Chemical Inc. Nickel-rhenium alloy powder and conductor paste containing the nickel-rhenium alloy powder
EP1972397A2 (en) 2007-03-12 2008-09-24 Shoei Chemical Inc. Nickel powder, method for manufacturing same, conductor paste, and multilayer ceramic electronic component using same
EP2564957A1 (en) 2011-09-02 2013-03-06 Shoei Chemical Inc. Metal powder production method, metal powder produced thereby, conductive paste and multilayer ceramic electronic component
CN103008685A (en) * 2011-09-02 2013-04-03 昭荣化学工业株式会社 Metal powder production method, metal powder produced thereby, conductive paste and multilayer ceramic electronic component
US9162288B2 (en) 2011-09-02 2015-10-20 Shoei Chemical Inc. Metal powder production method, metal powder produced thereby, conductive paste and multilayer ceramic electronic component
CN112201474A (en) * 2020-07-03 2021-01-08 成都宏科电子科技有限公司 Pure palladium inner electrode slurry for radio frequency microwave ceramic dielectric capacitor and preparation method and application thereof
CN112201474B (en) * 2020-07-03 2022-09-13 成都宏科电子科技有限公司 Pure palladium inner electrode slurry for radio frequency microwave ceramic dielectric capacitor and preparation method and application thereof

Also Published As

Publication number Publication date
JP3812359B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
JP3812523B2 (en) Method for producing metal powder
EP2185304B1 (en) Method for the production of a multi-element alloy powder containing silver and at least two non-silver containing elements
US6530972B2 (en) Method for preparing metal powder
JP4218067B2 (en) Method for producing rhenium-containing alloy powder
JP3812359B2 (en) Method for producing metal powder
TWI419980B (en) Nickel-rhenium alloy powder and conductor paste containing the same
TWI418639B (en) Nickel-rhenium alloy powder and conductor paste containing the same
JP2004263205A (en) Metallic impalpable powder, manufacturing method therefor, and conductive paste using the metallic impalpable powder
JP2004099979A (en) Process for manufacturing metal powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3812359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140609

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term