JP2006167580A - Particulate for catalyst - Google Patents

Particulate for catalyst Download PDF

Info

Publication number
JP2006167580A
JP2006167580A JP2004363036A JP2004363036A JP2006167580A JP 2006167580 A JP2006167580 A JP 2006167580A JP 2004363036 A JP2004363036 A JP 2004363036A JP 2004363036 A JP2004363036 A JP 2004363036A JP 2006167580 A JP2006167580 A JP 2006167580A
Authority
JP
Japan
Prior art keywords
catalyst
fine particles
particles
metal
crystalline carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004363036A
Other languages
Japanese (ja)
Other versions
JP4707382B2 (en
Inventor
Yoichi Ishihara
庸一 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2004363036A priority Critical patent/JP4707382B2/en
Publication of JP2006167580A publication Critical patent/JP2006167580A/en
Application granted granted Critical
Publication of JP4707382B2 publication Critical patent/JP4707382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particulate for catalysts which has high oxidation-reduction activities and can be easily separated from a dispersion medium when used in a liquid phase reaction such as a water treatment. <P>SOLUTION: The particulate for catalysts having metal particulate carried on crystalline carbon particles is characterized in that the average particle size of the particulate for catalysts is in a range of 5 nm-10 μm and the amount to be carried of the metal particulate in the particulate for catalysts is in a range of 1-50 wt.%. The average particle size of the metal particulate is in a range of 1-50 nm and the average particle size (primary particle size) of the crystalline carbon particle is 5-500 nm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属微粒子を炭素粒子に担持させた触媒用微粒子であって、特に、水処理用触媒、電極触媒、アルコール、べンゼン等の酸化反応触媒として好適な触媒用微粒子に関する。   The present invention relates to catalyst fine particles in which metal fine particles are supported on carbon particles, and particularly to catalyst fine particles suitable as an oxidation reaction catalyst for water treatment catalysts, electrode catalysts, alcohols, benzene, and the like.

従来、酸化還元反応用の触媒成分として、種々の金属、合金が用いられており、これらの金属、合金は単独で、または担体に担持して用いられている。金属や合金を比表面積の高い担体に担持すれば金属が高分散し、活性の高い触媒が得られることは良く知られている。また、金属と単体の組み合わせによっては、選択性、触媒寿命等が向上することがあることも知られている。
液相で触媒が用いられる場合には、触媒自体が高活性であることに加えて、活性金属成分が溶媒に溶出しないことや、高分散することが求められている。
Conventionally, various metals and alloys have been used as catalyst components for oxidation-reduction reactions, and these metals and alloys are used alone or supported on a carrier. It is well known that when a metal or alloy is supported on a carrier having a high specific surface area, the metal is highly dispersed and a highly active catalyst can be obtained. It is also known that selectivity, catalyst life, etc. may be improved depending on the combination of a metal and a simple substance.
When a catalyst is used in a liquid phase, in addition to the high activity of the catalyst itself, it is required that the active metal component does not elute into the solvent and is highly dispersed.

べンゼンの酸化反応触媒としては、例えば、K.Otsuka etal., Catal.Today, 57, 71 (2000)に、電極触媒が記載されている。
また、アリル型アルコールの酸化反応触媒としては、例えば、K.Ebitani et al.,Langmuir,15,3562(1999)に、金属クラスター触媒が記載されている。
As an oxidation reaction catalyst for benzene, an electrode catalyst is described in, for example, K. Otsuka etal., Catal. Today, 57, 71 (2000).
Moreover, as an oxidation reaction catalyst of an allylic alcohol, a metal cluster catalyst is described in, for example, K. Ebitani et al., Langmuir, 15, 3562 (1999).

また、本願出願人は、水処理用触媒として、特開2004−97893号公報(特許文献1)において、無機酸化物担体および/またはカーボン担体に、Pt、Au、Ag、Pd、Ru、Cu、Ni、W、V、Mo、Feから選ばれる1種または2種以上の金属微粒子および/または合金微粒子が担持されてなる、平均粒子径が5nm〜20μmの範囲にある硝酸性窒素含有水処理用触媒を開示している。
しかしながら、前記した各触媒はさらに活性の向上が求められている。
特開2004−97893号公報
In addition, as a water treatment catalyst, the applicant of the present application disclosed in Japanese Patent Application Laid-Open No. 2004-97893 (Patent Document 1) that Pt, Au, Ag, Pd, Ru, Cu, For treatment of nitrate-containing nitrogen-containing water having an average particle diameter of 5 nm to 20 μm in which one or more metal fine particles and / or alloy fine particles selected from Ni, W, V, Mo, and Fe are supported. A catalyst is disclosed.
However, each catalyst described above is required to have further improved activity.
JP 2004-97893 A

本発明は、酸化還元活性が高く、かつ、水処理等の液相反応に用いた場合には分散媒から容易に分離することのできる触媒用微粒子を提供することを目的としている。   An object of the present invention is to provide fine particles for a catalyst that have high redox activity and can be easily separated from a dispersion medium when used in a liquid phase reaction such as water treatment.

本発明は、結晶性炭素粒子に金属微粒子が担持された触媒用微粒子であって、該触媒用微粒子の平均粒子径が5nm〜10μmの範囲にあり、触媒用微粒子中の金属微粒子の担持量が金属として1〜50重量%の範囲にあることを特徴とするものである。
前記金属がPt、Au、Ag、Pd、Ru、Cu、Ni、W、V、Mo、Fe、Rh、Co、Sn、Ti、In、Al、Ta、Sb、Crから選ばれる1種または2種以上の金属または合金であることが好ましく、前記金属微粒子の平均粒子径が1〜50nmの範囲にあることが好ましい。
前記結晶性炭素粒子の平均粒子径(一次粒子径)が5〜500nmの範囲にあることが好ましく、前記結晶性炭素粒子の比表面積が20〜3000m2/gの範囲にあることが好ましい。
The present invention provides catalyst fine particles in which metal fine particles are supported on crystalline carbon particles, the average particle diameter of the catalyst fine particles is in the range of 5 nm to 10 μm, and the amount of metal fine particles supported in the catalyst fine particles is The metal is in the range of 1 to 50% by weight.
The metal is one or two selected from Pt, Au, Ag, Pd, Ru, Cu, Ni, W, V, Mo, Fe, Rh, Co, Sn, Ti, In, Al, Ta, Sb, Cr The above metal or alloy is preferable, and the average particle size of the metal fine particles is preferably in the range of 1 to 50 nm.
The average particle diameter (primary particle diameter) of the crystalline carbon particles is preferably in the range of 5 to 500 nm, and the specific surface area of the crystalline carbon particles is preferably in the range of 20 to 3000 m 2 / g.

前記結晶性炭素粒子の結晶構造がグラファイト構造であり、結晶子間距離が1〜30nmの範囲にあることが好ましい。
前記結晶性炭素粒子が、カーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、黒鉛から選ばれる1種または2種以上の結晶性炭素化合物からなることが好ましい。
It is preferable that the crystalline structure of the crystalline carbon particles is a graphite structure and the distance between crystallites is in the range of 1 to 30 nm.
The crystalline carbon particles are preferably composed of one or more crystalline carbon compounds selected from carbon black, acetylene black, carbon nanotube, carbon nanohorn, carbon fiber, and graphite.

本発明の触媒用微粒子は、比表面積の高い結晶性炭素粒子に平均粒子径の小さい金属微粒子が担持されているので、酸化還元活性が高い。また、前記結晶性炭素粒子が疎水性を有していれば、水処理触媒等として用いた場合、処理水と容易に分離することができる。   The fine particles for a catalyst of the present invention have high redox activity because metal fine particles having a small average particle diameter are supported on crystalline carbon particles having a high specific surface area. If the crystalline carbon particles have hydrophobicity, they can be easily separated from treated water when used as a water treatment catalyst or the like.

以下、本発明に係る触媒用微粒子の最良の形態について説明する。
本発明に係る触媒用微粒子は、金属微粒子が結晶性炭素粒子に担持されてなり、平均粒子径が5nm〜10μmの範囲にある。
金属微粒子
本発明における金属微粒子としては、Pt、Au、Ag、Pd、Ru、Cu、Ni、W、V、Mo、Fe、Rh、Co、Sn、Ti、In、Al、Ta、Sb、Crから選ばれる1種または2種以上の金属または合金であることが好ましい。
水処理用触媒の金属微粒子なら、Pt、Au、Ag、Pd、Ru、Cu、Ni、W、V、Mo、またはFeが好ましい。電極触媒の金属微粒子なら、Au、Ag、Pd、Pt、Rh、Cu、Fe、Ni、Co、Sn、Ti、In、Al、Ta、Sb、Ru、Mo、Crが好ましい。アルコール、べンゼン等の酸化反応触媒の金属微粒子なら、Pd,Ru,Pt等が好ましい。
Hereinafter, the best mode of the catalyst fine particles according to the present invention will be described.
The catalyst fine particles according to the present invention have metal fine particles supported on crystalline carbon particles and have an average particle diameter in the range of 5 nm to 10 μm.
Metal fine particles The metal fine particles in the present invention include Pt, Au, Ag, Pd, Ru, Cu, Ni, W, V, Mo, Fe, Rh, Co, Sn, Ti, In, Al, Ta, Sb, and Cr. It is preferable that it is 1 type, or 2 or more types of metals or alloys chosen.
Pt, Au, Ag, Pd, Ru, Cu, Ni, W, V, Mo, or Fe are preferable for the metal fine particles of the water treatment catalyst. For the metal fine particles of the electrode catalyst, Au, Ag, Pd, Pt, Rh, Cu, Fe, Ni, Co, Sn, Ti, In, Al, Ta, Sb, Ru, Mo, and Cr are preferable. Pd, Ru, Pt and the like are preferable for metal fine particles of an oxidation reaction catalyst such as alcohol and benzene.

好ましい2成分以上の組み合わせとしては、Pd-Cu、Pd-Au、Pd-W、Pd-V、Pd-Mo、Pd-Fe、Pd-Cu/Pd、Pd-Cu-Ru、Pd-Cu-Fe、Pd-Cu-Au、Pt-Cu、Pt-Au、Pt-W、Pt-V、Pt-Mo、Pt-Fe、Pt-Cu/Pd、Pt-Cu-Ru、Pt-Cu-Fe、Pt-Cu-Au等が挙げられる。
なお、ここで合金とは、2種以上の金属成分が均一に混合しているもの(上記において例えば「Pd-Cu」と表記)に限らず、混合物であるもの(上記において「Cu/Pd」と表記)も含んで意味している。また、これらの金属成分は結晶性であっても非晶質であってもよい。
Preferred combinations of two or more components include Pd-Cu, Pd-Au, Pd-W, Pd-V, Pd-Mo, Pd-Fe, Pd-Cu / Pd, Pd-Cu-Ru, Pd-Cu-Fe , Pd-Cu-Au, Pt-Cu, Pt-Au, Pt-W, Pt-V, Pt-Mo, Pt-Fe, Pt-Cu / Pd, Pt-Cu-Ru, Pt-Cu-Fe, Pt -Cu-Au and the like.
Here, the alloy is not limited to an alloy in which two or more kinds of metal components are uniformly mixed (for example, expressed as “Pd—Cu” in the above), but an alloy (in the above, “Cu / Pd”). This also includes These metal components may be crystalline or amorphous.

金属微粒子の平均粒子径は1〜50nm、さらには1〜10nmの範囲にあることが好ましい。平均粒子径が1nm未満の場合は、初期性能は高いが、再生等を繰り返すことによって移動して他の金属微粒子と凝集する傾向があり、長期にわたって初期性能を維持することが困難である。平均粒子径が50nmを越えると、反応物、酸化剤あるいは還元剤等の吸着量が低下するとともに活性化能も低下し、酸化還元活性が低下する。
金属微粒子の粒子径は、例えば、FE-TEM(STEM-HAADF法)により測定することができる。
The average particle diameter of the metal fine particles is preferably in the range of 1 to 50 nm, more preferably 1 to 10 nm. When the average particle size is less than 1 nm, the initial performance is high, but it tends to move and aggregate with other metal fine particles by repeating regeneration and the like, and it is difficult to maintain the initial performance over a long period of time. When the average particle diameter exceeds 50 nm, the amount of adsorbed reactants, oxidizing agent, reducing agent, etc. decreases, the activation ability also decreases, and the oxidation-reduction activity decreases.
The particle diameter of the metal fine particles can be measured by, for example, FE-TEM (STEM-HAADF method).

結晶性炭素粒子
本発明における結晶性炭素粒子としては、カーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、黒鉛などが挙げられる。このような結晶性炭素粒子は金属微粒子との結合力が強く、処理中の金属の処理液への溶出を抑制することができ、また担体から容易に脱離することがなく、このため長期処理が可能である。
一方、活性炭のような無定形炭素粒子(非結晶性炭素粒子)は、化学的安定性、機械的強度(安定性)が低い上に、粒子径が大きく親水性が高い場合があり、本発明の触媒用微粒子の担体としては、不適当である。
Crystalline carbon particles Examples of the crystalline carbon particles in the present invention include carbon black, acetylene black, carbon nanotube, carbon nanohorn, carbon fiber, and graphite. Such crystalline carbon particles have a strong binding force with the metal fine particles, can suppress elution of the metal being processed into the processing solution, and do not easily desorb from the carrier, and thus can be treated for a long time. Is possible.
On the other hand, amorphous carbon particles (non-crystalline carbon particles) such as activated carbon have low chemical stability and mechanical strength (stability) and may have a large particle size and high hydrophilicity. It is unsuitable as a catalyst fine particle support.

結晶性炭素粒子の平均粒子径(一次粒子径)は5〜500nm、さらには10〜100nmの範囲にあることが好ましい。平均粒子径(一次粒子径)が5nm未満の場合は、結晶性が低いためか、前記結晶性炭素粒子を用いる効果が不充分となる傾向がある。平均粒子径(一次粒子径)が500nmを超えると、比表面積が低く、金属微粒子を高分散した状態に担持することができないために、即ち、担体表面で金属微粒子が凝集した状態となるため充分な活性が得られないことがある。
なお、ここで結晶性炭素粒子の平均粒子径を一次粒子径と規定したのは、触媒用微粒子の担体として用いる結晶性炭素粒子は、概ね触媒用微粒子の粒子径と同じく平均粒子径が5nm〜1μmの範囲にあれば凝集体であっても非凝集体であってもよく、このときの非凝集体を一次粒子として意味したものである。
The average particle diameter (primary particle diameter) of the crystalline carbon particles is preferably in the range of 5 to 500 nm, more preferably 10 to 100 nm. When the average particle size (primary particle size) is less than 5 nm, the effect of using the crystalline carbon particles tends to be insufficient because of low crystallinity. When the average particle diameter (primary particle diameter) exceeds 500 nm, the specific surface area is low, and the metal fine particles cannot be supported in a highly dispersed state, that is, the metal fine particles are aggregated on the support surface. Activity may not be obtained.
Here, the average particle diameter of the crystalline carbon particles is defined as the primary particle diameter because the crystalline carbon particles used as the carrier for the catalyst fine particles have an average particle diameter of about 5 nm to about the same as the particle diameter of the catalyst fine particles. If it exists in the range of 1 micrometer, it may be an aggregate or a non-aggregate, and the non-aggregate at this time is meant as a primary particle.

結晶性炭素粒子の比表面積は20〜3000m2/g、さらには500〜2000m2/gの範囲にあることが好ましい。比表面積が20m2/g未満の場合は、所定量の金属微粒子を担持した場合、金属微粒子が結晶性炭素粒子の表面で凝集した状態となるため充分な活性が得られないことがある。比表面積が3000m2/gを超えるものは、微粒子の集合体であり、結晶性が低く、酸化還元活性や後述する疎水性等の結晶性炭素粒子を用いる効果が不充分となる傾向がある。 The specific surface area of crystalline carbon particles 20~3000m 2 / g, more preferably in the range of 500~2000m 2 / g. When the specific surface area is less than 20 m 2 / g, when a predetermined amount of metal fine particles is supported, the metal fine particles are aggregated on the surface of the crystalline carbon particles, so that sufficient activity may not be obtained. Those having a specific surface area exceeding 3000 m 2 / g are aggregates of fine particles, have low crystallinity, and tend to have insufficient effects of using crystalline carbon particles such as redox activity and hydrophobicity described later.

前記結晶性炭素粒子は、触媒用微粒子が液相反応に用いられる場合において、当該分散媒や溶媒との親和性が低いものであることが好ましい。即ち、分散媒や溶媒が水あるいは水と相溶性の高い分散媒等であれば、結晶性炭素粒子は疎水性であることが好ましく、他方、分散媒や溶媒が親油性であれば、結晶性炭素粒子は親水性であることが好ましい。本発明の触媒用微粒子の担体として先に列挙したものは、疎水性の結晶性炭素粒子である。
例えば、担体としての結晶性炭素粒子が疎水性であると、反応終了後あるいは必要に応じて反応を停止した後、処理水表面に触媒が分離して浮遊するから、セラミックスフィルター等の特別の装置を用いることなく、触媒を分離することが可能である。特に、微細な粒子の場合には、通常の方法で分離が困難であっても、容易に分離することができる。
なお、結晶性炭素粒子の粒子径が大きく、通常の方法で容易に分離できる場合には、結晶性炭素粒子を硝酸などの酸で処理して親水性にして用いることも可能である。
The crystalline carbon particles preferably have a low affinity with the dispersion medium or solvent when the catalyst fine particles are used in a liquid phase reaction. That is, if the dispersion medium or solvent is water or a dispersion medium highly compatible with water, the crystalline carbon particles are preferably hydrophobic. On the other hand, if the dispersion medium or solvent is lipophilic, the crystalline carbon particles are crystalline. The carbon particles are preferably hydrophilic. What has been enumerated above as the carrier for the catalyst fine particles of the present invention is hydrophobic crystalline carbon particles.
For example, if the crystalline carbon particles as the support are hydrophobic, the catalyst separates and floats on the surface of the treated water after the reaction is completed or after the reaction is stopped if necessary. It is possible to separate the catalyst without using. In particular, fine particles can be easily separated even if separation by a normal method is difficult.
In addition, when the particle diameter of the crystalline carbon particles is large and can be easily separated by a usual method, the crystalline carbon particles can be treated with an acid such as nitric acid to be made hydrophilic.

本発明に用いる結晶性炭素粒子はグラファイト構造を有し、結晶子径が2〜100nmの範囲にあり、結晶子間距離が1〜30nm、さらには1〜10nmの範囲にあることが好ましい。
結晶子間距離が1nm未満となることはなく、結晶子間距離が30nmを超えるものは結晶性が不充分で、酸化還元活性や後述する疎水性等の結晶性炭素粒子を用いる効果が不充分となる傾向がある。
The crystalline carbon particles used in the present invention have a graphite structure, a crystallite diameter in the range of 2 to 100 nm, and a distance between crystallites in the range of 1 to 30 nm, more preferably 1 to 10 nm.
When the distance between crystallites is not less than 1 nm, and the distance between crystallites exceeds 30 nm, the crystallinity is insufficient, and the effect of using crystalline carbon particles such as redox activity and hydrophobicity described later is insufficient. Tend to be.

触媒用微粒子
本発明に係る触媒用微粒子は、平均粒子径が5nm〜1μm、さらには10nm〜0.5μmの範囲にあることが好ましい。
触媒用微粒子の平均粒子径が5nm未満のものは、凝集する傾向が強く、触媒の調製が困難であったり、得られたとしても凝集して分散性が低下し、充分な性能を発揮できないことがある。平均粒子径が1μmを越えると、液相反応等で用いる場合、分散媒等の循環あるいは撹拌が弱くなると沈降することがあり、さらに反応物との接触効率が低下して充分な酸化還元活性が得られないことがある。
Catalyst fine particles The catalyst fine particles according to the present invention preferably have an average particle size in the range of 5 nm to 1 μm, more preferably 10 nm to 0.5 μm.
If the average particle size of the catalyst fine particles is less than 5 nm, the tendency to agglomerate is strong, and it is difficult to prepare the catalyst, or even if obtained, it agglomerates and the dispersibility is lowered, so that sufficient performance cannot be exhibited. There is. When the average particle diameter exceeds 1 μm, when used in a liquid phase reaction or the like, it may settle when the circulation or stirring of the dispersion medium or the like is weakened, and the contact efficiency with the reactants is further reduced, resulting in sufficient redox activity. It may not be obtained.

触媒用微粒子中の金属微粒子の担持量は、金属として1〜50重量%、さらには2〜20重量%の範囲にあることが好ましい。担持量が1重量%未満の場合は、酸化還元活性が不充分となる。担持量が50重量%を越えると、担持することが困難であるとともに、仮に担持できても酸化還元活性がさらに向上することもないので、経済性が低下する。また、担持した金属微粒子同士が互いに合体して粒子成長することがあり、活性が低下することがある。   The amount of the metal fine particles supported in the catalyst fine particles is preferably in the range of 1 to 50% by weight, more preferably 2 to 20% by weight as the metal. When the loading is less than 1% by weight, the redox activity is insufficient. If the loading amount exceeds 50% by weight, it is difficult to carry, and even if it can be carried, the oxidation-reduction activity is not further improved, so the economic efficiency is lowered. In addition, the supported metal fine particles may coalesce with each other to grow particles, which may reduce the activity.

触媒用微粒子の製造方法
本発明に係る触媒用微粒子は、前記した粒子径範囲にあり、分散媒に分散した場合でも沈降等することなく反応物と効率的に接触し、充分な酸化還元活性が得られれば、特に制限はなく従来公知の方法を用いて製造することができる。
以下、本発明の触媒用微粒子の製造方法を3つ例示的に説明する。
Production method of catalyst fine particles The catalyst fine particles according to the present invention are in the above-mentioned particle size range, and even when dispersed in a dispersion medium, they efficiently contact with the reactants without being settled, and have sufficient redox activity. If it is obtained, there is no particular limitation, and it can be produced using a conventionally known method.
Hereinafter, three examples of the method for producing catalyst fine particles of the present invention will be described.

第1の製造方法
前記した結晶性炭素粒子の分散液を調製する。これに、所定量の1種または2種以上の金属塩水溶液を加え、結晶性炭素粒子に金属塩水溶液を吸収させ、次いで乾燥し、その後200〜800℃の温度で、還元ガス例えばH2、NH3雰囲気下で通常0.5〜6時間程度還元処理することによって触媒用微粒子を得ることができる。
金属塩としては、硝酸パラジウム、塩化パラジウム、酢酸パラジウム、テトラアンミンパラジウム、塩化白金、硝酸銀、塩化銅、硝酸ニッケル、酢酸ルテニウムなど、前記した金属の塩で水に可溶な塩を用いることができる。
乾燥方法としては、凍結乾燥、噴霧乾燥、静置乾燥、ロータリーエバポレーター等、従来公知の方法を採用することができる。
上記において、還元温度が200℃未満の時は、金属塩の還元が不充分となり、金属微粒子の生成が不充分となる。還元温度が800℃を越えると、金属微粒子が粒子成長しすぎたり、触媒用微粒子が強く凝集して分散性が低下することがあり、充分な酸化還元活性が得られないことがある。好ましい還元温度は250〜600℃の範囲である。
First Production Method A dispersion of crystalline carbon particles described above is prepared. A predetermined amount of one or more metal salt aqueous solutions are added thereto, the crystalline carbon particles absorb the metal salt aqueous solution, and then dried, and then at a temperature of 200 to 800 ° C., a reducing gas such as H 2 , The fine particles for catalyst can be obtained by reducing treatment for about 0.5 to 6 hours under NH 3 atmosphere.
As the metal salt, water-soluble salts such as palladium nitrate, palladium chloride, palladium acetate, tetraammine palladium, platinum chloride, silver nitrate, copper chloride, nickel nitrate, and ruthenium acetate can be used.
As a drying method, conventionally known methods such as freeze drying, spray drying, stationary drying, and rotary evaporator can be employed.
In the above, when the reduction temperature is less than 200 ° C., the reduction of the metal salt is insufficient and the generation of metal fine particles is insufficient. If the reduction temperature exceeds 800 ° C., the metal fine particles may grow too much, or the catalyst fine particles may be strongly aggregated and the dispersibility may be lowered, and sufficient redox activity may not be obtained. A preferable reduction temperature is in the range of 250 to 600 ° C.

第2の製造方法
前記した結晶性炭素粒子の分散液を調製する。これに、所定量の1種または2種以上の金属塩水溶液を加え、ついで還元剤(水素化硼素ナトリウム(NaBH4)、次亜リン酸ソーダ、ヒドラジン、硫酸第一鉄等)を加え、結晶性炭素粒子上に金属を析出させる。ついで、必要に応じてオートクレーブ処理(100〜300℃で水熱処理)する。オートクレーブ処理により、溶液中に析出した金属微粒子を結晶性炭素粒子上に析出させることができる。
最後に金属微粒子が担持された結晶性炭素粒子を濾過分離し、第1の方法と同様にして乾燥した後、加熱処理(好ましくは不活性ガスまたは還元ガス雰囲気下で加熱処理)することによって触媒用微粒子を得る。
Second Production Method A dispersion of crystalline carbon particles as described above is prepared. To this, a predetermined amount of one or more metal salt aqueous solutions are added, followed by a reducing agent (sodium borohydride (NaBH 4 ), sodium hypophosphite, hydrazine, ferrous sulfate, etc.) Metal is deposited on the conductive carbon particles. Then, autoclaving (hydrothermal treatment at 100 to 300 ° C.) is performed as necessary. By the autoclave treatment, the metal fine particles deposited in the solution can be deposited on the crystalline carbon particles.
Finally, the crystalline carbon particles carrying the metal fine particles are separated by filtration, dried in the same manner as in the first method, and then heat-treated (preferably heat-treated in an inert gas or reducing gas atmosphere). Fine particles are obtained.

第3の製造方法
例えば、パラジウム−銅合金の微粒子であれば、硝酸パラジウムと硝酸銅との混合水溶液に、生成する金属微粒子の分散安定化剤としてのクエン酸の水溶液に還元剤として硫酸第一鉄を溶解した溶液を添加して、Pd-Cu合金微粒子分散液を調製する。このPd-Cu合金微粒子分散液に結晶性炭素粒子の分散液を混合してPd-Cu合金微粒子を結晶性炭素粒子担体に担持した触媒用微粒子分散液を調製する。なお、このときの担持は、互いの粒子のゼータ電位の差により、結晶性炭素粒子の表面にPd-Cu合金微粒子が担持されるものであって、金属微粒子のゼータ電位は負、結晶性炭素粒子のゼータ電位は正である。
最後に金属微粒子が担持された結晶性炭素粒子を濾過分離し、第1の方法と同様にして乾燥し、ついで加熱処理(好ましくは不活性ガスまたは還元ガス雰囲気下で加熱処理)することによって触媒用微粒子を得る。
Third production method For example, in the case of fine particles of a palladium-copper alloy, a mixed aqueous solution of palladium nitrate and copper nitrate, an aqueous solution of citric acid as a dispersion stabilizer of the generated fine metal particles, a first sulfuric acid as a reducing agent A solution in which iron is dissolved is added to prepare a Pd—Cu alloy fine particle dispersion. A dispersion of crystalline carbon particles is mixed with this Pd—Cu alloy fine particle dispersion to prepare a fine particle dispersion for catalyst in which Pd—Cu alloy fine particles are supported on a crystalline carbon particle carrier. In this case, the loading is such that the Pd—Cu alloy fine particles are supported on the surface of the crystalline carbon particles due to the difference in zeta potential between the particles, and the zeta potential of the metal fine particles is negative, the crystalline carbon The zeta potential of the particles is positive.
Finally, the crystalline carbon particles carrying the metal fine particles are separated by filtration, dried in the same manner as in the first method, and then heat-treated (preferably heat-treated in an inert gas or reducing gas atmosphere). Fine particles are obtained.

上記各製造方法によって、平均粒子径が5nm〜1μm、さらには10nm〜0.5μmの範囲にある触媒用微粒子が得られる。
また、触媒用微粒子中の金属微粒子の含有量は1〜50重量%、さらには2〜20重量%の範囲とすることができる。
以下に示す実施例により、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
By the above production methods, fine particles for catalyst having an average particle diameter in the range of 5 nm to 1 μm, and further 10 nm to 0.5 μm are obtained.
Further, the content of the metal fine particles in the catalyst fine particles can be in the range of 1 to 50% by weight, more preferably 2 to 20% by weight.
The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples.

触媒(1)の調製
純水100gに、合金微粒子を構成するパラジウムと銅の重量比が70/30となるように硝酸パラジウム2水和塩7.4g及び硝酸銅3水和塩4.9gを溶解した金属塩水溶液に、安定化剤として濃度30重量%のクエン酸三ナトリウム水溶液265gと還元剤として濃度25重量%の硫酸第一鉄水溶液129g(硝酸パラジウムと硝酸銅の合計モル数の2倍量のモル数に相当)を加え、窒素雰囲気下で20時間攪拌して合金微粒子の分散液を得た。合金微粒子の平均粒子径は4nmであった。
得られた分散液を遠心分離器により水洗して不純物を除去した後、水に分散させ、濃度10重量%の合金微粒子(1)の分散液とし、これに結晶性炭素化合物としてカーボンブラック(キャボット(株)製:Vulcan XC-72R、平均粒子径31nm、比表面積230m2/g、結晶子径3.3nm)5gを純水495gに均一に混合した分散液を添加し、この混合液のpHを6に調整して1時間撹拌した。ついで、この混合液を100℃で乾燥させ触媒(1)を調製した。触媒(1)の金属担持量は20重量であった。
Preparation of catalyst (1) In 100 g of pure water, 7.4 g of palladium nitrate dihydrate and 4.9 g of copper nitrate trihydrate are dissolved so that the weight ratio of palladium and copper constituting the alloy fine particles is 70/30. 265 g of a 30 wt% trisodium citrate aqueous solution as a stabilizer and 129 g of a 25 wt% ferrous sulfate aqueous solution as a reducing agent (twice the total number of moles of palladium nitrate and copper nitrate) The mixture was stirred for 20 hours under a nitrogen atmosphere to obtain a dispersion of alloy fine particles. The average particle size of the alloy fine particles was 4 nm.
The obtained dispersion was washed with water by a centrifugal separator to remove impurities, and then dispersed in water to obtain a dispersion of alloy fine particles (1) having a concentration of 10% by weight, and carbon black (cabot) as a crystalline carbon compound. Co., Ltd .: Vulcan XC-72R, average particle size of 31 nm, specific surface area of 230 m 2 / g, crystallite size of 3.3 nm) was added to a dispersion in which 5 g of pure water was uniformly mixed with 495 g of pure water. Was adjusted to 6 and stirred for 1 hour. Next, this mixed solution was dried at 100 ° C. to prepare catalyst (1). The metal loading of catalyst (1) was 20 weight.

撥水浮遊性(1)の評価
得られた触媒(1)5gを100mlの水に分散させ、200rpmで5分間撹拌した後、撹拌を停止し、触媒(1)の浮遊状態を観察し、以下の基準により評価した。結果を表1に示す。
触媒(1)が全量水面上に浮遊していた。 :◎
触媒(1)の80%以上が水面上に浮遊し、他は水中に分散していた。 :○
触媒(1)の50%〜80%未満が水面上に浮遊し、他は水中に分散していた。 :△
触媒(1)の50未満が水面上に浮遊し、他は水中に分散あるいは沈降していた。:×
Evaluation of water repellency floatability (1) 5 g of the obtained catalyst (1) was dispersed in 100 ml of water, stirred at 200 rpm for 5 minutes, then the stirring was stopped, and the floating state of the catalyst (1) was observed. It was evaluated according to the criteria. The results are shown in Table 1.
The entire amount of catalyst (1) was floating on the water surface. : ◎
More than 80% of the catalyst (1) floated on the water surface and the others were dispersed in water. : ○
50% to less than 80% of the catalyst (1) floated on the water surface, and the others were dispersed in water. : △
Less than 50 of catalyst (1) floated on the surface of the water, and the others were dispersed or settled in water. : ×

硝酸性窒素含有水の処理
硝酸ナトリウム(関東化学(株)製:特級)61.3gを純水に溶解して硝酸性窒素含有水25kgを調製した。このときの硝酸性窒素の含有量はNとして400ppmであった。
ついで、水処理槽に硝酸性窒素含有水を投入し、硝酸性窒素含有水を循環させながらこれに触媒(1)1000gを分散させた。このときの硝酸性窒素含有水中の触媒(1)の分散濃度は3.8重量%である。
ついで水素ガスを水処理槽の下部から注入し、水処理槽を200rpmで攪拌しながら硝酸性窒素含有水を処理した。処理条件は、液温25℃、液循環量70L/min、液圧力0.45MPa、水素圧力0.45MPa 、水素の注入流量0.48NL/minである。なお、水処理中は濃度1重量%の硫酸にて、硝酸性窒素含有水のpHを5〜6の範囲に調整した。
Treatment of nitrate nitrogen-containing water 61.3 g of sodium nitrate (manufactured by Kanto Chemical Co., Ltd .: special grade) was dissolved in pure water to prepare 25 kg of nitrate nitrogen-containing water. At this time, the content of nitrate nitrogen was 400 ppm as N.
Next, nitrate nitrogen-containing water was introduced into the water treatment tank, and 1000 g of catalyst (1) was dispersed in the water while circulating the nitrate nitrogen-containing water. At this time, the dispersion concentration of the catalyst (1) in nitrate nitrogen-containing water is 3.8% by weight.
Next, hydrogen gas was injected from the lower part of the water treatment tank, and the nitrate nitrogen-containing water was treated while stirring the water treatment tank at 200 rpm. The processing conditions are a liquid temperature of 25 ° C., a liquid circulation rate of 70 L / min, a liquid pressure of 0.45 MPa, a hydrogen pressure of 0.45 MPa, and a hydrogen injection flow rate of 0.48 NL / min. During the water treatment, the pH of the nitrate nitrogen-containing water was adjusted to a range of 5 to 6 with sulfuric acid having a concentration of 1% by weight.

水素ガスの供給開始後、5分毎に処理液を採取し、窒素分析装置(ブランルーベ(株)製:AAS−III)により硝酸性窒素(NO3+NO2)およびNH3の分析を行った。
硝酸性窒素の還元は85分(NO3+NO2が0ppmとなった時点)で終了し、このときの副生NH3濃度、水素の供給量、および水素利用率(N2生成、NH3副生)、水素未利用率を表1に示した。
The treatment liquid was sampled every 5 minutes after the start of the supply of hydrogen gas, and nitrate nitrogen (NO 3 + NO 2 ) and NH 3 were analyzed using a nitrogen analyzer (Blanlube Co., Ltd .: AAS-III).
The reduction of nitrate nitrogen was completed in 85 minutes (when NO 3 + NO 2 became 0 ppm). At this time, the concentration of by-product NH 3 , the supply amount of hydrogen, and the hydrogen utilization rate (N 2 production, NH 3 Table 1 shows the hydrogen unused rate.

触媒(2)の調製
実施例1において、結晶性炭素化合物としてカーボンブラック(ケッチェンブラックインターナショナル(株)製:ケッチェンブラックEC、平均粒子径30nm、比表面積820m2/g、結晶子径3.0nm)を用いた以外は同様にして、触媒(2)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(2)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性(1)の評価結果を表1に示した。
Preparation of catalyst (2) In Example 1, carbon black (manufactured by Ketjen Black International Co., Ltd .: Ketjen Black EC, average particle size 30 nm, specific surface area 820 m 2 / g, crystallite size 3. Catalyst (2) was prepared in the same manner except that 0 nm) was used.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated under the same conditions as in Example 1 except that the catalyst (2) was used. The results of these treatments and the evaluation results of water repellency floatability (1) are shown in Table 1.

触媒(3)の調製
実施例1において、結晶性炭素化合物としてカーボンブラック(ケッチェンブラックインターナショナル(株)製:ケッチェンブラックEC600JD、平均粒子径31nm、比表面積1280m2/g、結晶子径3.1nm)を用いた以外は同様にして触媒(3)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(3)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性(1)の評価結果を表1に示した。
Preparation of catalyst (3) In Example 1, carbon black (manufactured by Ketjen Black International Co., Ltd .: Ketjen Black EC600JD, average particle size 31 nm, specific surface area 1280 m 2 / g, crystallite size 3. Catalyst (3) was prepared in the same manner except that 1 nm) was used.
Treatment of nitrate nitrogen-containing water In Example 1, the nitrate nitrogen-containing water was treated under the same conditions except that the catalyst (3) was used. The results of these treatments and the evaluation results of water repellency floatability (1) are shown in Table 1.

触媒(4)の調製
実施例1において、結晶性炭素化合物としてカーボンブラック(電気化学工業(株)製:デンカブラック FX−35、平均粒子径26nm、比表面積133m2/g、結晶子径4.3nm)を用いた以外は同様にして触媒(4)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(4)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性(1)の評価結果を表1に示した。
Preparation of Catalyst (4) In Example 1, as a crystalline carbon compound, carbon black (manufactured by Denki Kagaku Kogyo Co., Ltd .: Denka Black FX-35, average particle size 26 nm, specific surface area 133 m 2 / g, crystallite size 4. Catalyst (4) was prepared in the same manner except that 3 nm) was used.
Treatment of nitrate nitrogen-containing water In Example 1, the nitrate nitrogen-containing water was treated under the same conditions except that the catalyst (4) was used. The results of these treatments and the evaluation results of water repellency floatability (1) are shown in Table 1.

触媒(5)の調製
実施例1において、結晶性炭素化合物としてカーボンブラック(電気化学工業(株)製:デンカブラック OAB−100、平均粒子径37nm、比表面積88m2/g、結晶子径5.7nm)を用いた以外は同様にして触媒(5)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(5)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性(1)の評価結果を表1に示した。
Preparation of catalyst (5) In Example 1, carbon black (manufactured by Denki Kagaku Kogyo Co., Ltd .: Denka Black OAB-100, average particle size 37 nm, specific surface area 88 m 2 / g, crystallite size 5. Catalyst (5) was prepared in the same manner except that 7 nm) was used.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated under the same conditions as in Example 1 except that the catalyst (5) was used. The results of these treatments and the evaluation results of water repellency floatability (1) are shown in Table 1.

触媒(6)の調製
実施例3において、合金微粒子を構成するパラジウムと銅の重量比が90/10となるように硝酸パラジウムおよび硝酸銅を加えた以外は同様にして、濃度10重量%の合金微粒子(2)の分散液とした。合金微粒子の平均粒子径は3nmであった。
ついで、合金微粒子(2)の分散液を用いた以外は同様にして触媒(6)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(6)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性(1)の評価結果を表1に示した。
Preparation of catalyst (6) In Example 3, in the same manner except that palladium nitrate and copper nitrate were added so that the weight ratio of palladium to copper constituting the alloy fine particles was 90/10, the concentration was 10. A dispersion of weight percent alloy fine particles (2) was obtained. The average particle size of the alloy fine particles was 3 nm.
Next, a catalyst (6) was prepared in the same manner except that the dispersion of alloy fine particles (2) was used.
Treatment of nitrate nitrogen-containing water In Example 1, the nitrate nitrogen-containing water was treated under the same conditions except that the catalyst (6) was used. The results of these treatments and the evaluation results of water repellency floatability (1) are shown in Table 1.

触媒(7)の調製
実施例3において、合金微粒子を構成するパラジウムと銅の重量比が50/50となるように硝酸パラジウムおよび硝酸銅を加えた以外は同様にして、濃度10重量%の合金微粒子(3)の分散液とした。合金微粒子の平均粒子径は5nmであった。
ついで、合金微粒子(3)の分散液を用いた以外は同様にして触媒(7)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(7)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性(1)の評価結果を表1に示した。
Preparation of catalyst (7) In Example 3, in the same manner except that palladium nitrate and copper nitrate were added so that the weight ratio of palladium to copper constituting the alloy fine particles was 50/50, the concentration was 10. A dispersion of the alloy fine particles (3) by weight% was obtained. The average particle size of the alloy fine particles was 5 nm.
Next, a catalyst (7) was prepared in the same manner except that the dispersion of alloy fine particles (3) was used.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated under the same conditions as in Example 1 except that the catalyst (7) was used. The results of these treatments and the evaluation results of water repellency floatability (1) are shown in Table 1.

触媒(8)の調製
純水100gに、合金微粒子を構成するパラジウムと銅の重量比が70/30となるように硝酸パラジウム2水和塩7.4g及び硝酸銅3水和塩4.9gを溶解した金属塩水溶液に、安定化剤として濃度30重量%のクエン酸三ナトリウム水溶液265gと還元剤として濃度25重量%の硫酸第一鉄水溶液258g(硝酸パラジウムと硝酸銅の合計モル数の4倍量のモル数に相当)を加え、窒素雰囲気下で20時間攪拌して合金微粒子の分散液を得た。合金微粒子の平均粒子径は10nmであった。
得られた分散液を遠心分離器により水洗して不純物を除去した後、水に分散させ、濃度10重量%の合金微粒子(4)の分散液を得た。ついで、合金微粒子(4)の分散液を用いた以外は実施例3と同様にして触媒(8)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(8)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性(1)の評価結果を表1に示した。
Preparation of catalyst (8) In 100 g of pure water, 7.4 g of palladium nitrate dihydrate and 4.9 g of copper nitrate trihydrate were added so that the weight ratio of palladium and copper constituting the alloy fine particles was 70/30. In a dissolved metal salt aqueous solution, 265 g of a trisodium citrate aqueous solution having a concentration of 30% by weight as a stabilizer and 258 g of a ferrous sulfate aqueous solution having a concentration of 25% by weight as a reducing agent (four times the total number of moles of palladium nitrate and copper nitrate) The resulting mixture was stirred under a nitrogen atmosphere for 20 hours to obtain a dispersion of alloy fine particles. The average particle size of the alloy fine particles was 10 nm.
The obtained dispersion was washed with water using a centrifugal separator to remove impurities, and then dispersed in water to obtain a dispersion of alloy fine particles (4) having a concentration of 10% by weight. Next, a catalyst (8) was prepared in the same manner as in Example 3 except that the dispersion liquid of alloy fine particles (4) was used.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated under the same conditions as in Example 1 except that the catalyst (8) was used. The results of these treatments and the evaluation results of water repellency floatability (1) are shown in Table 1.

触媒(9)の調製
純水100gに、合金微粒子を構成するパラジウムと銅と銀の重量比が63/27/10となるように硝酸パラジウム2水和塩7.4g、硝酸銅3水和塩4.9g、硝酸銀1.8gを溶解した金属塩水溶液に、安定化剤として濃度30重量%のクエン酸三ナトリウム水溶液265gと還元剤として濃度25重量%の硫酸第一鉄水溶液129g(硝酸パラジウムと硝酸銅と硝酸銀の合計モル数の1.9倍量のモル数に相当)を加え、窒素雰囲気下で20時間攪拌して合金微粒子の分散液を得た。合金微粒子の平均粒子径は5nmであった。
得られた分散液を遠心分離器により水洗して不純物を除去した後、水に分散させ、濃度10重量%の合金微粒子(5)の分散液を得た。ついで、合金微粒子(5)の分散液を用いた以外は実施例3と同様にして触媒(9)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(9)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性(1)の評価結果を表1に示した。
Preparation of catalyst (9) In 100 g of pure water, 7.4 g of palladium nitrate dihydrate salt and copper nitrate were added so that the weight ratio of palladium, copper and silver constituting the alloy fine particles was 63/27/10. In a metal salt aqueous solution in which 4.9 g of trihydrate salt and 1.8 g of silver nitrate are dissolved, 265 g of a trisodium citrate aqueous solution with a concentration of 30% by weight as a stabilizer and 129 g of an aqueous ferrous sulfate solution with a concentration of 25% by weight as a reducing agent. (Corresponding to 1.9 times the total number of moles of palladium nitrate, copper nitrate and silver nitrate) was added and stirred for 20 hours under a nitrogen atmosphere to obtain a dispersion of alloy fine particles. The average particle size of the alloy fine particles was 5 nm.
The obtained dispersion was washed with water using a centrifugal separator to remove impurities, and then dispersed in water to obtain a dispersion of alloy fine particles (5) having a concentration of 10% by weight. Next, a catalyst (9) was prepared in the same manner as in Example 3 except that the dispersion liquid of alloy fine particles (5) was used.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated under the same conditions as in Example 1 except that the catalyst (9) was used. The results of these treatments and the evaluation results of water repellency floatability (1) are shown in Table 1.

触媒(10)の調製
実施例3において、予めカーボンブラック(ケッチェンブラックインターナショナル(株)製:ケッチェンブラックEC600JD、平均粒子径31nm、比表面積1280m2/g、結晶子径3.1nm)を硝酸に分散させ60℃で12時間攪拌した後、遠心分離器により水洗し、乾燥して親水性化したカーボンブラック(平均粒子径31nm、比表面積1250m2/g、結晶子径3.0nm)を結晶性炭素化合物として用いた以外は同様にして触媒(10)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(10)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性(1)の評価結果を表1に示した。
Preparation of catalyst (10) In Example 3, carbon black (manufactured by Ketjen Black International Co., Ltd .: Ketjen Black EC600JD, average particle size 31 nm, specific surface area 1280 m 2 / g, crystallite size 3.1 nm) After stirring at 60 ° C. for 12 hours, the mixture was washed with water using a centrifugal separator and dried to make it hydrophilic (average particle size 31 nm, specific surface area 1250 m 2 / g, crystallite size 3.0 nm). A catalyst (10) was prepared in the same manner except that it was used as a functional carbon compound.
Treatment of nitrate nitrogen-containing water The nitrate nitrogen-containing water was treated under the same conditions as in Example 1 except that the catalyst (10) was used. The results of these treatments and the evaluation results of water repellency floatability (1) are shown in Table 1.

アリルアルコールの酸化反応
実施例10と同様にして調製した触媒(10)9.0gを酢酸150mlとサイナミルアルコール6.1g(0.045mol)が入った反応容器に添加し、60℃で3時間、酸素雰囲気下攪拌しながら反応させた。反応後に攪拌を停止したところ触媒は液面に浮遊した。反応液をガスクロマトグラフィーにより分析し、生成したサイナムアルデヒドを定量した。生成したサイナムアルデヒドは47.8gで、収率は81%であった。これらの評価結果を表2に示した。
Oxidation reaction of allyl alcohol 9.0 g of the catalyst (10) prepared in the same manner as in Example 10 was added to a reaction vessel containing 150 ml of acetic acid and 6.1 g (0.045 mol) of sinamyl alcohol, and at 60 ° C. for 3 hours. The reaction was allowed to stir in an oxygen atmosphere. When the stirring was stopped after the reaction, the catalyst floated on the liquid surface. The reaction solution was analyzed by gas chromatography, and the produced cynamaldehyde was quantified. The produced cynamaldehyde was 47.8 g, and the yield was 81%. The evaluation results are shown in Table 2.

撥油浮遊性(2)の評価
触媒(10)5gを100mlのベンゼンに分散させ、200rpmで5分間撹拌した後、撹拌を停止し、触媒(10)の浮遊状態を観察し、以下の基準により評価した。結果を表2に示す。
触媒(10)が全量液面上に浮遊していた。 :◎
触媒(10)の80%以上が液面上に浮遊し、他は液中に分散していた。 :○
触媒(10)の50%〜80%未満が液面上に浮遊し、他は液中に分散していた。 :△
触媒(10)の50未満が液面上に浮遊し、他は液中に分散あるいは沈降していた。:×
Evaluation of oil repellency floatability (2) Disperse 5 g of catalyst (10) in 100 ml of benzene, stir at 200 rpm for 5 minutes, stop stirring, observe the floating state of catalyst (10), and observe the following criteria evaluated. The results are shown in Table 2.
The entire amount of the catalyst (10) was floating on the liquid surface. : ◎
More than 80% of the catalyst (10) floated on the liquid surface, and the others were dispersed in the liquid. : ○
50% to less than 80% of the catalyst (10) floated on the liquid surface, and the others were dispersed in the liquid. : △
Less than 50 of the catalyst (10) floated on the liquid surface, and the others were dispersed or settled in the liquid. : ×

比較例1Comparative Example 1

触媒(R1)の調製
実施例1において、カーボンブラックの代わりに活性炭(和光純薬工業(株)製:活性炭素粉末、平均粒子径50μm、比表面積1155m2/g、結晶子径2nm以下)を用いた以外は同様にして触媒(R1)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(R1)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性(1)の評価結果を表1に示した。
Preparation of catalyst (R1) In Example 1, instead of carbon black, activated carbon (manufactured by Wako Pure Chemical Industries, Ltd .: activated carbon powder, average particle size 50 μm, specific surface area 1155 m 2 / g, crystallite size 2 nm or less) A catalyst (R1) was prepared in the same manner except that it was used.
Treatment of nitrate nitrogen-containing water In Example 1, the nitrate nitrogen-containing water was treated under the same conditions except that the catalyst (R1) was used. The results of these treatments and the evaluation results of water repellency floatability (1) are shown in Table 1.

比較例2Comparative Example 2

触媒(R2)の調製
純水100gに、金属換算で濃度が10重量%となり、合金微粒子を構成する銅とパラジウムの重量比が2/1となるように硝酸銅および硝酸パラジウムを加え、これに、無定形炭素微粒子(御国色素(株)製:平均粒子径109nm)190gを加えて1時間撹拌した。次いで、凍結乾燥した後、H2−N2混合ガス雰囲気下、250℃で2時間加熱処理して触媒(R2)を調製した。
硝酸性窒素含有水の処理
実施例1において、触媒(R2)を用いた以外は同様の条件で硝酸性窒素含有水の処理を実施した。これらの処理の結果および撥水浮遊性(1)の評価結果を表1に示した。
Preparation of catalyst (R2) To 100 g of pure water, copper nitrate and palladium nitrate were added so that the concentration in terms of metal was 10% by weight and the weight ratio of copper and palladium constituting the alloy fine particles was 2/1. Then, 190 g of amorphous carbon fine particles (manufactured by Mikuni Dyeing Co., Ltd .: average particle size 109 nm) were added and stirred for 1 hour. Next, after lyophilization, a catalyst (R2) was prepared by heat treatment at 250 ° C. for 2 hours in an H 2 —N 2 mixed gas atmosphere.
Treatment of nitrate nitrogen-containing water In Example 1, the nitrate nitrogen-containing water was treated under the same conditions except that the catalyst (R2) was used. The results of these treatments and the evaluation results of water repellency floatability (1) are shown in Table 1.

比較例3Comparative Example 3

アリルアルコールの酸化反応
比較例1と同様にして調製した触媒(R1)を用いた以外は実施例11と同様にしてアリルアルコールの酸化反応を行い、結果を表2に示した。また、撥油浮遊性(2)の評価を行い、結果を表2に示した。
Allyl alcohol oxidation reaction Allyl alcohol oxidation reaction was carried out in the same manner as in Example 11 except that the catalyst (R1) prepared in the same manner as in Comparative Example 1 was used. The results are shown in Table 2. The oil repellency floatability (2) was evaluated and the results are shown in Table 2.

Figure 2006167580
Figure 2006167580

Figure 2006167580
Figure 2006167580

Claims (7)

結晶性炭素粒子に金属微粒子が担持された触媒用微粒子であって、該触媒用微粒子の平均粒子径が5nm〜10μmの範囲にあり、触媒用微粒子中の金属微粒子の担持量が金属として1〜50重量%の範囲にあることを特徴とする触媒用微粒子。
Catalyst fine particles in which fine metal particles are supported on crystalline carbon particles, the average particle diameter of the fine catalyst particles is in the range of 5 nm to 10 μm, and the supported amount of the fine metal particles in the fine catalyst particles is 1 to Fine particles for catalyst, characterized by being in the range of 50% by weight.
前記金属がPt、Au、Ag、Pd、Ru、Cu、Ni、W、V、Mo、Fe、Rh、Co、Sn、Ti、In、Al、Ta、Sb、Crから選ばれる1種または2種以上の金属または合金であることを特徴とする請求項1に記載の触媒用微粒子。
The metal is one or two selected from Pt, Au, Ag, Pd, Ru, Cu, Ni, W, V, Mo, Fe, Rh, Co, Sn, Ti, In, Al, Ta, Sb, Cr The fine particle for catalyst according to claim 1, which is the metal or alloy described above.
前記金属微粒子の平均粒子径が1〜50nmの範囲にあることを特徴とする請求項1または2に記載の触媒用微粒子。
The fine particles for catalyst according to claim 1 or 2, wherein the metal fine particles have an average particle diameter in the range of 1 to 50 nm.
前記結晶性炭素粒子の平均粒子径(一次粒子径)が5〜500nmの範囲にあることを特徴とする請求項1〜3のいずれかに記載の触媒用微粒子。
The fine particles for catalyst according to any one of claims 1 to 3, wherein the crystalline carbon particles have an average particle size (primary particle size) in the range of 5 to 500 nm.
前記結晶性炭素粒子の比表面積が20〜3000m2/gの範囲にあることを特徴とする請求項1〜4のいずれかに記載の触媒用微粒子。
5. The catalyst fine particles according to claim 1, wherein the crystalline carbon particles have a specific surface area in the range of 20 to 3000 m 2 / g.
前記結晶性炭素粒子の結晶構造がグラファイト構造であり、結晶子間距離が1〜30nmの範囲にあることを特徴とする請求項1〜5のいずれかに記載の触媒用微粒子。
The fine particles for catalyst according to any one of claims 1 to 5, wherein the crystalline carbon particles have a graphite structure and a crystallite distance is in the range of 1 to 30 nm.
前記結晶性炭素粒子が、カーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンファイバー、黒鉛から選ばれる1種または2種以上の結晶性炭素化合物からなる請求項1〜6のいずれかに記載の触媒用微粒子。
The said crystalline carbon particle consists of 1 type, or 2 or more types of crystalline carbon compounds chosen from carbon black, acetylene black, a carbon nanotube, carbon nanohorn, a carbon fiber, and graphite. Fine particles for catalyst.
JP2004363036A 2004-12-15 2004-12-15 Nitrate nitrogen-containing water treatment catalyst and method for producing the same Active JP4707382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363036A JP4707382B2 (en) 2004-12-15 2004-12-15 Nitrate nitrogen-containing water treatment catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363036A JP4707382B2 (en) 2004-12-15 2004-12-15 Nitrate nitrogen-containing water treatment catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006167580A true JP2006167580A (en) 2006-06-29
JP4707382B2 JP4707382B2 (en) 2011-06-22

Family

ID=36668882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363036A Active JP4707382B2 (en) 2004-12-15 2004-12-15 Nitrate nitrogen-containing water treatment catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4707382B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172574A (en) * 2007-12-25 2009-08-06 Jgc Catalysts & Chemicals Ltd Metal particle carrying catalyst and its manufacturing method
JP2011101880A (en) * 2009-11-10 2011-05-26 Korea Inst Of Energy Research Cellulose catalyst with metal catalyst nanoparticle supported on the surface of surface-treated native cellulose fiber, and method of manufacturing the same
JP2011177646A (en) * 2010-03-01 2011-09-15 Japan Atomic Energy Agency Catalyst for decomposing nitrate ion reductively
JP2012050924A (en) * 2010-08-31 2012-03-15 National Institute Of Advanced Industrial Science & Technology Catalyst and method for gasifying lignin with supercritical water used as reaction field
CN103545536A (en) * 2013-10-22 2014-01-29 上海交通大学 Carbon fiber supported metal catalyst as well as preparation method and application thereof
JP2015009224A (en) * 2013-07-01 2015-01-19 荏原工業洗浄株式会社 Treatment method for chemical cleaning waste liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183614A (en) * 1995-11-10 1997-07-15 Dsm Nv Preparation of hydroxyl ammonium salt
JP2002159851A (en) * 2000-11-24 2002-06-04 Japan Science & Technology Corp Adsorbent, catalyst, and catalyst carrier comprising single-layer carbon nanohorn
JP2003036859A (en) * 2001-07-24 2003-02-07 Asahi Glass Co Ltd Solid polymer type fuel cell and its fabrication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183614A (en) * 1995-11-10 1997-07-15 Dsm Nv Preparation of hydroxyl ammonium salt
JP2002159851A (en) * 2000-11-24 2002-06-04 Japan Science & Technology Corp Adsorbent, catalyst, and catalyst carrier comprising single-layer carbon nanohorn
JP2003036859A (en) * 2001-07-24 2003-02-07 Asahi Glass Co Ltd Solid polymer type fuel cell and its fabrication method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172574A (en) * 2007-12-25 2009-08-06 Jgc Catalysts & Chemicals Ltd Metal particle carrying catalyst and its manufacturing method
JP2011101880A (en) * 2009-11-10 2011-05-26 Korea Inst Of Energy Research Cellulose catalyst with metal catalyst nanoparticle supported on the surface of surface-treated native cellulose fiber, and method of manufacturing the same
US9254483B2 (en) 2009-11-10 2016-02-09 Korea Institute Of Energy Research Catalysts having metal nano-particle catalyst supported on surface-treated natural cellulose fibers and preparation method thereof
US9259728B2 (en) 2009-11-10 2016-02-16 Korea Institute Of Energy Research Catalysts having metal nano-particle catalyst supported on surface-treated natural cellulose fibers and preparation method thereof
JP2011177646A (en) * 2010-03-01 2011-09-15 Japan Atomic Energy Agency Catalyst for decomposing nitrate ion reductively
JP2012050924A (en) * 2010-08-31 2012-03-15 National Institute Of Advanced Industrial Science & Technology Catalyst and method for gasifying lignin with supercritical water used as reaction field
JP2015009224A (en) * 2013-07-01 2015-01-19 荏原工業洗浄株式会社 Treatment method for chemical cleaning waste liquid
CN103545536A (en) * 2013-10-22 2014-01-29 上海交通大学 Carbon fiber supported metal catalyst as well as preparation method and application thereof

Also Published As

Publication number Publication date
JP4707382B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP5105602B2 (en) Method for producing noble metal alloy catalyst and catalyst prepared thereby
JP5628225B2 (en) Metal-containing colloidal particle-supported carrier and method for producing the same
JP4649281B2 (en) Treatment method for nitrate-containing water
JP6653875B2 (en) Method for producing platinum catalyst and fuel cell using the same
JP5665743B2 (en) Continuous production method of catalyst
JP3870282B2 (en) Dispersed and stabilized liquid containing catalyst nanoparticles
CN109482177A (en) A kind of nano-noble metal catalyst preparation method
JP2007123195A (en) Method of manufacturing catalyst
JP7157456B2 (en) PdRu Solid Solution Nanoparticles, Manufacturing Method and Catalyst Therefor, Method for Controlling Crystal Structure of PtRu Solid Solution Nanoparticles, and AuRu Solid Solution Nanoparticles and Manufacturing Method Therefor
JP5539091B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
JP5398082B2 (en) Method for preparing ruthenium catalyst for cycloolefin production, method for producing cycloolefin, and production apparatus
JP4707382B2 (en) Nitrate nitrogen-containing water treatment catalyst and method for producing the same
JP5506075B2 (en) Platinum ordered lattice catalyst for fuel cell and method for producing the same
JP5548548B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
CN112186199B (en) Catalyst for solid polymer fuel cell and preparation method thereof
JP2010089032A (en) Metal-particle supporting catalyst, and method of producing the same
JP2003320249A (en) Metal-carrying catalyst and production of the same and solid polymer electrolyte type fuel cell using the same
JP2002001095A (en) Colloidal solution and method for producing colloidal solution
JP2002248350A (en) Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell
RU2446009C1 (en) Method of preparing platinum-ruthenium electrocatalysts
WO2016143784A1 (en) Method for manufacturing platinum catalyst, and fuel cell using same
JP3978470B2 (en) Cathode catalyst for fuel cell and fuel cell using the same
CN114937782B (en) Supported metal-based catalyst and preparation method thereof
CN115555017B (en) Dechlorination type carbon five petroleum resin hydrogenation catalyst and preparation method thereof
CN114150342B (en) Superfine platinum-based alloy nanowire, preparation method and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R150 Certificate of patent or registration of utility model

Ref document number: 4707382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250