JP2006107912A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2006107912A
JP2006107912A JP2004292541A JP2004292541A JP2006107912A JP 2006107912 A JP2006107912 A JP 2006107912A JP 2004292541 A JP2004292541 A JP 2004292541A JP 2004292541 A JP2004292541 A JP 2004292541A JP 2006107912 A JP2006107912 A JP 2006107912A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
material layer
siox
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004292541A
Other languages
Japanese (ja)
Other versions
JP4815777B2 (en
JP2006107912A5 (en
Inventor
Shigeki Yamate
山手  茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2004292541A priority Critical patent/JP4815777B2/en
Publication of JP2006107912A publication Critical patent/JP2006107912A/en
Publication of JP2006107912A5 publication Critical patent/JP2006107912A5/ja
Application granted granted Critical
Publication of JP4815777B2 publication Critical patent/JP4815777B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To prevent deformation of anode collectors of nonaqueous electrolyte secondary batteries using silicon or silicon oxide as an anode active material to reduce fraction defective. <P>SOLUTION: The nonaqueous secondary battery comprises a cathode, an anode, and a nonaqueous electrolyte. The anode is an active material layer supported on a collector, and the active material layer contains silicon oxide expressed by the formula SiOx, where 0<x<2. Provided that the average composition of SiOx in all of the active material layer is x=x<SB>av</SB>and composition of SiOx of the active material layer near the collector is x=x<SB>B</SB>, it is characterized by satisfying the relationship x<SB>B</SB>>x<SB>av</SB>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

非水電解質二次電池には、集電体上に黒鉛等の炭素材料を含有した合剤層を形成した負極が広く用いられているが、この非水電解質二次電池のエネルギー密度は必ずしも十分とは言えず、さらなるエネルギー密度の向上が切望されていた。
そこで、負極活物質として、炭素材料に比べて非常に大きな容量を有するケイ素又はその酸化物を用いた非水電解質二次電池が提案されている。
特開2002−313319公報
For nonaqueous electrolyte secondary batteries, negative electrodes in which a mixture layer containing a carbon material such as graphite is formed on a current collector are widely used. However, the energy density of this nonaqueous electrolyte secondary battery is not always sufficient. However, further improvement in energy density has been desired.
Therefore, a non-aqueous electrolyte secondary battery using silicon or an oxide thereof having a very large capacity as compared with a carbon material as a negative electrode active material has been proposed.
JP 2002-313319 A

しかしながら、このものでは、充放電に伴うケイ素又はその酸化物の膨張収縮が炭素材料よりも著しく大きい。そのため、負極が変形して電池内部で短絡が生じて、電池の不良率が高いという問題点があった。
本発明は上記のような事情に基づいて完成されたものであって、負極活物質としてケイ素又はその酸化物を用いた非水電解質二次電池において負極の変形を抑制し、不良率を低減することを目的とする。
However, in this material, the expansion and contraction of silicon or its oxide accompanying charge / discharge is significantly larger than that of the carbon material. As a result, the negative electrode is deformed, causing a short circuit inside the battery, resulting in a high battery defect rate.
The present invention has been completed based on the above circumstances, and suppresses deformation of the negative electrode in a nonaqueous electrolyte secondary battery using silicon or an oxide thereof as a negative electrode active material, thereby reducing the defect rate. For the purpose.

本発明者らは、負極活物質としてケイ素又はその酸化物を用いた非水電解質二次電池の負極の変形を抑制するため鋭意研究を重ね、負極活物質として酸素含有率の異なる種々の酸化ケイ素を用いた場合の負極の変形を詳細に調べたところ、酸化ケイ素の酸素含有率が低くなる程、つまり単体ケイ素に近づく程、充放電に伴う膨縮・収縮が大きくなる傾向にあり、逆に酸化ケイ素の酸素含有率が高くなる程、つまり二酸化ケイ素に近づく程、充放電に伴う膨縮が小さくなる傾向にあるという特異的な性質を見出した。
このため、集電体近傍に酸素含有率の高い酸化ケイ素を配した時に、ケイ素化合物を用いた非水電解質二次電池の特徴である高い放電量を維持しつつ、負極の変形を抑制できるという事実が判明した。
The present inventors have intensively studied to suppress deformation of the negative electrode of a non-aqueous electrolyte secondary battery using silicon or an oxide thereof as a negative electrode active material, and various silicon oxides having different oxygen contents as the negative electrode active material. When the deformation of the negative electrode was investigated in detail, the lower the oxygen content of silicon oxide, that is, the closer it was to single silicon, the greater the expansion / contraction associated with charge / discharge, and conversely The inventors have found a unique property that the higher the oxygen content of silicon oxide, that is, the closer to silicon dioxide, the smaller the expansion and contraction associated with charge and discharge.
Therefore, when silicon oxide with a high oxygen content is arranged near the current collector, it is possible to suppress deformation of the negative electrode while maintaining a high discharge amount, which is a feature of a nonaqueous electrolyte secondary battery using a silicon compound. The facts turned out.

本発明は、この知見に基づいてなされたものである。
すなわち、請求項1の発明は、正極、負極、および非水電解質を備えた非水電解質二次電池であって、前記負極が活物質層を集電体上に担持したものであり、前記活物質層が一般式SiOx(但し、0<x<2)で表されるケイ素酸化物を含有し、前記活物質層全体に含まれるSiOxの平均組成をx=xavとし、前記活物質層の集電体近傍におけるSiOxの組成をx=xとした時、x>xavの関係を満たすことを特徴とする非水電解質二次電池である。
The present invention has been made based on this finding.
That is, the invention of claim 1 is a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, wherein the negative electrode carries an active material layer on a current collector, and The material layer contains a silicon oxide represented by the general formula SiOx (where 0 <x <2), the average composition of SiOx contained in the entire active material layer is x = x av , and the active material layer when the composition of SiOx in the vicinity collector was x = x B, a non-aqueous electrolyte secondary battery, characterized by satisfying the relation of x B> x av.

請求項2の発明は、請求項1に記載のものにおいて、1.0≦xであることを特徴とする。 The invention of claim 2 is the one described in claim 1, characterized in that it is a 1.0 ≦ x B.

本発明の非水電解質二次電池によれば、集電体近傍の活物質層には酸素含有率の高い酸化ケイ素が配されているから、負極の変形が抑制され、電池の不良率を低減することができる。   According to the non-aqueous electrolyte secondary battery of the present invention, since the active material layer near the current collector is provided with silicon oxide having a high oxygen content, deformation of the negative electrode is suppressed and the defective rate of the battery is reduced. can do.

本発明の非水電解質二次電池は、正極、集電体を備えた負極、及び非水電解質を備えてなる。
図6に示すように、負極1は、活物質層3を集電体5上に担持してなる(なお、集電体の両面に活物質層を担持していてもよい)。集電体5としては、高い導電性を有し、Liと合金化しない材料、例えば、銅箔等の金属箔が用いられる。
活物質層3は、一般式SiOx(但し、0<x<2)であらわされるケイ素酸化物を含有する。さらに、活物質層全体でみたときのx値の平均値をxavとし、集電体近傍の活物質層3Aでみたときのx値をxとすると、x>xavの関係が満たされている。
The nonaqueous electrolyte secondary battery of the present invention comprises a positive electrode, a negative electrode equipped with a current collector, and a nonaqueous electrolyte.
As shown in FIG. 6, the negative electrode 1 has an active material layer 3 supported on a current collector 5 (the active material layer may be supported on both sides of the current collector). As the current collector 5, a material having high conductivity and not alloyed with Li, for example, a metal foil such as a copper foil is used.
The active material layer 3 contains a silicon oxide represented by a general formula SiOx (where 0 <x <2). Further, when the average value of x values when viewed in the entire active material layer is x av and the x value when viewed in the active material layer 3A in the vicinity of the current collector is x B , the relationship x B > x av is satisfied. Has been.

この活物質層3は、集電体5上に気相からケイ素酸化物を堆積させることで形成できる。具体的には、スパッタリング法、CVD法、及び蒸着法などの気相からの薄膜形成法により形成することができ、x>xavの関係を満たすようにするには、例えばスパッタリング法では、雰囲気ガスの酸素濃度を変化させることでx>xavとすることができる。すなわち、雰囲気ガス中の酸素濃度が時間の経過とともに減少するようにしたり、活物質層の形成開始から所定時間までは酸素濃度を所定濃度C1としそれ以降はC1よりも低い濃度C2とするようにしたりすることで形成することができる。 The active material layer 3 can be formed by depositing silicon oxide from the gas phase on the current collector 5. Specifically, it can be formed by a thin film forming method from a gas phase such as a sputtering method, a CVD method, and an evaporation method, and in order to satisfy the relationship of x B > x av , for example, in the sputtering method, By changing the oxygen concentration of the atmospheric gas, x B > x av can be established. That is, the oxygen concentration in the atmospheric gas is decreased with time, or the oxygen concentration is set to the predetermined concentration C1 from the start of the formation of the active material layer to the predetermined time, and thereafter the concentration C2 is lower than C1. Can be formed.

なお、xは、2.0>x≧1.0であることが好ましく、さらに2.0>x>1.3であることが好ましく、特に2.0>x>1.5であることが好ましい。この範囲で、負極集電体の変形が著しく抑制されるからである。 X B is preferably 2.0> x B ≧ 1.0, more preferably 2.0> x B > 1.3, and particularly 2.0> x B > 1.5. It is preferable that This is because the deformation of the negative electrode current collector is remarkably suppressed within this range.

正極は、アルミニウム、ニッケル、又はステンレス製の集電体の両面又は片面にリチウムイオンを吸蔵・放出する正極活物質を含有する正極活物質層を設けた構造となっている。正極活物質としては、特に限定されず、公知のリチウム含有複合金属酸化物、すなわち、リチウムを含むコバルト酸化物、リチウムを含むマンガン酸化物、リチウムを含むニッケル酸化物あるいはこれらの複合酸化物、混合物であれば特に限定されず、例えば、LiMO(ただし、Mは一種以上の遷移金属)で表される基本構造を有するリチウム遷移金属複合酸化物を主体とする化合物として、LiCoO、LiNiOが挙げられ、また、LiMnO、LiMn、LiMMn2−y(M=Cr,Co,Ni、ただし0≦y≦0.5)等、あるいはこれらの複合酸化物、混合物を用いることも可能である。LiMO(ただし、Mは一種以上の遷移金属)で表される基本構造を有するリチウム遷移金属複合酸化物を主体とする化合物を用いる場合は、特に放電電圧を高くする観点から遷移金属MとしてCo,Ni,Mnからなる群から選択してなる少なくとも1つ以上の元素を使用することが望ましい。 The positive electrode has a structure in which a positive electrode active material layer containing a positive electrode active material that occludes and releases lithium ions is provided on both surfaces or one surface of a current collector made of aluminum, nickel, or stainless steel. The positive electrode active material is not particularly limited, and is a known lithium-containing composite metal oxide, that is, cobalt oxide containing lithium, manganese oxide containing lithium, nickel oxide containing lithium, or a composite oxide thereof, or a mixture thereof. is not particularly limited as long as, for example, LiMO 2 (however, M is one or more transition metals) as a compound consisting mainly of lithium transition metal composite oxide having a basic structure represented by, LiCoO 2, LiNiO 2 is LiMnO 2 , LiMn 2 O 4 , LiM y Mn 2−y O 4 (M = Cr, Co, Ni, where 0 ≦ y ≦ 0.5), etc., or complex oxides and mixtures thereof. It is also possible to use it. When a compound mainly composed of a lithium transition metal composite oxide having a basic structure represented by LiMO 2 (where M is one or more transition metals) is used, Co as the transition metal M particularly from the viewpoint of increasing the discharge voltage. It is desirable to use at least one element selected from the group consisting of Ni, Mn.

非水電解質としては、非水電解液又は固体電解質のいずれも使用することができる。非水電解液を用いる場合には特に限定されず、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、ブチレンカーボネート、トリフルオロプロピレンカーボネート、2−メチル−γ−ブチルラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン、3−メチル−1,3−ジオキソラン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ジプロピルカーボネート、メチルプロピルカーボネート、エチルイソプロピルカーボネート、ジブチルカーボネート等を単独でまたは二種以上混合して使用することができる。   As the non-aqueous electrolyte, either a non-aqueous electrolyte or a solid electrolyte can be used. When using a non-aqueous electrolyte, it is not particularly limited. For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1, 2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, butylene carbonate, trifluoropropylene carbonate, 2-methyl-γ-butyllactone, acetyl-γ-butyrolactone, γ-valerolactone, 3-methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dipropyl carbonate, methyl propionate Carbonate, ethyl isopropyl carbonate, it can be mixed and used dibutyl carbonate, alone or.

非水電解液の溶質としての電解質塩は、特に限定されず例えば、LiPF6、LiClO4、LiBF、LiAsF、LiCFCO、 LiPF(CF、LiPF(C、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCFおよびLiN(COCFCF、LiPF(CFCF、LiB(C、LiBF等を単独でまたは二種以上を混合して使用することができる。 The electrolyte salt as the solute of the nonaqueous electrolytic solution is not particularly limited. For example, LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 , LiPF 3 (CF 2 CF 3 ) 3 , LiB (C 2 O 4 ) 2 , LiBF 2 C 2 O 4 and the like can be used alone or in admixture of two or more.

電解質塩の非水電解液に対する溶解量は、特に限定されないが、0.2〜2.5mol/lが好ましい。特に、0.8〜2.0mol/lとすることがより好ましい。   The amount of electrolyte salt dissolved in the non-aqueous electrolyte is not particularly limited, but is preferably 0.2 to 2.5 mol / l. In particular, it is more preferable to set it as 0.8-2.0 mol / l.

固体電解質としては、公知の固体電解質を用いることができ、例えば無機固体電解質、ポリマー固体電解質を用いることができる。   As the solid electrolyte, a known solid electrolyte can be used. For example, an inorganic solid electrolyte or a polymer solid electrolyte can be used.

以下、実施例によって本発明を更に詳しく説明するが、本発明は実施例に限定されるものではない。
<負極Aの作製>
Cu箔(Cu foil)の片面上に、次の条件でSiOxをスパッタリングで析出させて、負極Aを作製した。ターゲットにはSiOを用い、基板間距離(ターゲットとCu箔との距離)を3cm、印加電力を300W、基板温度(Cu箔の温度)を100℃として5時間スパッタリングした。なお、スパッタリング装置にはSRV4310型(神港精機社製)を使用した。
雰囲気中のAr流量を図1に示すように
0時間〜2時間;15sccm
2時間〜5時間;20sccm
とし、
雰囲気中のO流量を図1に示すように
0時間〜2時間;5sccm
2時間〜5時間;0sccm
とした。
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to an Example.
<Preparation of negative electrode A>
On one surface of Cu foil (Cu foil), SiOx was deposited by sputtering under the following conditions to produce negative electrode A. SiO was used as a target, and sputtering was performed for 5 hours with a distance between substrates (distance between the target and Cu foil) of 3 cm, an applied power of 300 W, and a substrate temperature (Cu foil temperature) of 100 ° C. In addition, SRV4310 type (made by Shinko Seiki Co., Ltd.) was used for the sputtering apparatus.
Ar flow rate in the atmosphere is 0 to 2 hours as shown in FIG. 1; 15 sccm
2 to 5 hours; 20 sccm
age,
As shown in FIG. 1, the O 2 flow rate in the atmosphere is 0 to 2 hours; 5 sccm
2 hours to 5 hours; 0 sccm
It was.

<負極Bの作製>
雰囲気中のAr流量を、図2に示すようにスパッタリングの開始時には10sccmで、この流量から2sccm・h−1で連続的に増加させる一方、雰囲気中のO流量を、スパッタリングの開始時には10sccmで、この流量から2sccm・h−1で連続的に減少させたこと以外は、負極Aと同様にして負極Bを作製した。
<Preparation of negative electrode B>
The Ar flow rate in the atmosphere is 10 sccm at the start of sputtering as shown in FIG. 2 and is continuously increased from this flow rate by 2 sccm · h −1 , while the O 2 flow rate in the atmosphere is 10 sccm at the start of sputtering. A negative electrode B was produced in the same manner as the negative electrode A, except that the flow rate was continuously decreased at 2 sccm · h −1 from this flow rate.

<負極Cの作製>
雰囲気中のAr流量を図3に示すように
0時間〜2時間;10sccm
2時間〜3時間;15sccm
3時間〜5時間;20sccm
とし、
雰囲気中のO流量を図3に示すように
0時間〜2時間;10sccm
2時間〜3時間; 5sccm
3時間〜5時間; 0sccm
としたこと以外は、負極Aと同様にして負極Cを作製した。
<Preparation of negative electrode C>
Ar flow rate in the atmosphere is 0 to 2 hours as shown in FIG. 3; 10 sccm
2 to 3 hours; 15 sccm
3 hours to 5 hours; 20 sccm
age,
As shown in FIG. 3, the O 2 flow rate in the atmosphere is 0 to 2 hours; 10 sccm
2 to 3 hours; 5 sccm
3 to 5 hours; 0 sccm
A negative electrode C was produced in the same manner as the negative electrode A, except that.

<負極Dの作製>
雰囲気中のAr流量を図4に示すように
0時間〜5時間;20sccm
とし、
雰囲気中のO流量を図4に示すように
0時間〜5時間;0sccm
としたこと以外は、負極Aと同様にして負極Dを作製した。
<Preparation of negative electrode D>
Ar flow rate in the atmosphere is 0 to 5 hours as shown in FIG. 4; 20 sccm
age,
As shown in FIG. 4, the O 2 flow rate in the atmosphere is 0 to 5 hours; 0 sccm
A negative electrode D was produced in the same manner as the negative electrode A, except that.

<負極Eの作製>
雰囲気中のAr流量を図5に示すように
0時間〜2時間;20sccm
2時間〜5時間;15sccm
とし、
雰囲気中のO流量を図5に示すように
0時間〜2時間;0sccm
2時間〜5時間;5sccm
としたこと以外は、負極Aと同様にして負極Eを作製した。
<Preparation of negative electrode E>
Ar flow rate in the atmosphere is 0 to 2 hours as shown in FIG. 5; 20 sccm
2-5 hours; 15 sccm
age,
As shown in FIG. 5, the O 2 flow rate in the atmosphere is 0 to 2 hours; 0 sccm
2 to 5 hours; 5 sccm
A negative electrode E was produced in the same manner as the negative electrode A, except that.

<負極A〜Eの分析>
まず、ESCA(Electron Spectroscopy for Chemical Analysis,X線光電子分光装置)によって、各負極表面近傍(図6の3B)におけるSiに対するOの元素比(一般式SiOxのxの値)を算出した。
具体的には、各負極をそれぞれ3分間Arイオンエッチング(電流値;15mA)した後に、ESCA装置(島津/KRATOS製 AXIS−HS)を用いて、Si(532.3eV,及び534.1eV付近)のピーク面積と、O1s(104.2eV付近)のピーク面積との面積比から表面近傍におけるSiに対するOの元素比を算出した。
<Analysis of Negative Electrodes A to E>
First, the element ratio of O to Si (the value of x in the general formula SiOx) in the vicinity of each negative electrode surface (3B in FIG. 6) was calculated by ESCA (Electron Spectroscopy for Chemical Analysis, X-ray photoelectron spectrometer).
Specifically, each negative electrode was subjected to Ar + ion etching (current value: 15 mA) for 3 minutes, and then Si (532.3 eV and 534.1 eV vicinity) using an ESCA apparatus (AXIS-HS manufactured by Shimadzu / KRATOS). ) And the area ratio of the peak area of O 1s (near 104.2 eV), the element ratio of O to Si in the vicinity of the surface was calculated.

次に、負極の厚み方向のSiに対するOの元素比を以下のようにして求めた。すなわち、負極を樹脂に包埋し、その後、厚み方向に切断して断面を露出させた。この断面をバフ研磨した後、さらにアルコールで洗浄・乾燥させた。そして、この断面をEPMA法(Electron Probe MicroAnalysis,電子線マイクロアナリシス)により線分析することにより、負極の表面近傍から集電体近傍までのSiのピーク強度とOのピーク強度との強度比を求めた。なお、この測定には、島津製作所製EPMA−C1を用いた。
そして、このようにして求められた厚み方向のEPMA法による強度比のうち表面近傍の強度比をESCAによって求められた元素比に対応させて、EPMA法による厚み方向における強度比を規格化して、表面近傍から集電体近傍までのSiに対するOの元素比(一般式SiOxのxの値)を得た。
なお、本発明において、「集電体近傍」とは、負極活物質層の厚みをaμmとした時、負極活物質層の、集電体表面からの距離が0〜0.16aμm(aμmの0倍から0.16倍)の部分をさすものとする。
Next, the element ratio of O to Si in the thickness direction of the negative electrode was determined as follows. That is, the negative electrode was embedded in resin, and then cut in the thickness direction to expose the cross section. After this section was buffed, it was further washed with alcohol and dried. This cross section is subjected to line analysis by the EPMA method (Electron Probe MicroAnalysis) to obtain the intensity ratio between the peak intensity of Si and the peak intensity of O from the vicinity of the negative electrode surface to the vicinity of the current collector. It was. For this measurement, EPMA-C1 manufactured by Shimadzu Corporation was used.
Then, the strength ratio in the thickness direction by the EPMA method is normalized by making the strength ratio in the vicinity of the surface of the strength ratio by the EPMA method in the thickness direction thus determined correspond to the element ratio determined by the ESCA, The element ratio of O to Si (the value of x in the general formula SiOx) from the vicinity of the surface to the vicinity of the current collector was obtained.
In the present invention, “in the vicinity of the current collector” means that when the thickness of the negative electrode active material layer is a μm, the distance of the negative electrode active material layer from the current collector surface is 0 to 0.16 a μm (0 μm of a μm). It is assumed to indicate the portion from double to 0.16 times.

結果を図7〜11に示す。図7は負極Aのx値を、図8は負極Bのx値を、図9は負極Cのx値を、図10は負極Dのx値を、図11は負極Eのx値を示している。
負極Aでは、図7に示されるように、Cu箔近傍のSiOxのxの値は1.5であり、Cu箔近傍から表面までの平均値1.2よりも大きくなっていることが分かる。
また、負極Bでは、図8に示されるように、Cu箔近傍のSiOxのxの値は1.8であり、Cu箔近傍から表面までの平均値1.3よりも大きくなっていることが分かる。
また、負極Cでは、図9に示されるように、Cu箔近傍のSiOxのxの値は1.8であり、Cu箔近傍から表面までの平均値1.3よりも大きくなっていることが分かる。
一方、負極Dでは、図10に示されるように、Cu箔近傍のSiOxのxの値は1.0であり、Cu箔近傍から表面までの平均値1.0と同じであることが分かる。
また、負極Eでは、図11に示されるように、Cu箔近傍のSiOxのxの値は1.0であり、Cu箔近傍から表面までの平均値1.2よりも小さくなっていることが分かる。
The results are shown in FIGS. 7 shows the x value of the negative electrode A, FIG. 8 shows the x value of the negative electrode B, FIG. 9 shows the x value of the negative electrode C, FIG. 10 shows the x value of the negative electrode D, and FIG. ing.
In the negative electrode A, as shown in FIG. 7, the value of x of SiOx in the vicinity of the Cu foil is 1.5, which is larger than the average value 1.2 from the vicinity of the Cu foil to the surface.
Further, in the negative electrode B, as shown in FIG. 8, the value of x of SiOx in the vicinity of the Cu foil is 1.8, which is larger than the average value 1.3 from the vicinity of the Cu foil to the surface. I understand.
Further, in the negative electrode C, as shown in FIG. 9, the value of x of SiOx in the vicinity of the Cu foil is 1.8, which is larger than the average value 1.3 from the vicinity of the Cu foil to the surface. I understand.
On the other hand, in the negative electrode D, as shown in FIG. 10, the value x of SiOx in the vicinity of the Cu foil is 1.0, which is the same as the average value 1.0 from the vicinity of the Cu foil to the surface.
Further, in the negative electrode E, as shown in FIG. 11, the value of x of SiOx in the vicinity of the Cu foil is 1.0, which is smaller than the average value 1.2 from the vicinity of the Cu foil to the surface. I understand.

<負極A〜Eの充放電に伴う変形の測定>
各負極を、SiOxが形成された部分が2cm×2cmとなるように切り出した。そして、SiOxが形成されていない部分にリード部を取り付けて試験極を作製した。これを用いて、3端子式のビーカー形セルで0〜2Vvs.Li/Liの範囲で充放電サイクルを3回行った。なお、対極及び参照極には金属Liを、電解液にはエチレンカーボネート(EC)とジエチルカーボネート(DEC)の体積比1:1の混合溶媒に、1mol・dm−3のLiClOを溶解したものをそれぞれ用いた。
<Measurement of deformation accompanying charging / discharging of negative electrodes A to E>
Each negative electrode was cut out so that the portion where SiO x was formed was 2 cm × 2 cm. And the lead part was attached to the part in which SiOx is not formed, and the test electrode was produced. Using this, it is 0 to 2 Vvs. The charge / discharge cycle was performed three times in the range of Li / Li + . The counter electrode and the reference electrode are made of metal Li, and the electrolyte is a solution of 1 mol · dm −3 LiClO 4 in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 1. Were used respectively.

このようにして充放電を各負極に対して行ったが、負極の変形は、膨張率によって評価した。この膨張率は、負極のCu箔面側の表面積を、充放電サイクル試験前後で求め、試験後の表面積を試験前の表面積で除して求めた。なお、Cu箔面側の表面積は、レーザー顕微鏡(キーエンス社製、型番VK−8500)で10倍の対物レンズを使用して表面プロファイルを計測し、これをレーザー顕微鏡に付属の解析ソフトウェアで解析して得た。
結果を表1に示す。なお、Cu箔の膨張率は百分率で示してある。
Thus, although charging / discharging was performed with respect to each negative electrode, the deformation | transformation of the negative electrode was evaluated by the expansion coefficient. This expansion coefficient was obtained by determining the surface area of the negative electrode Cu foil surface before and after the charge / discharge cycle test and dividing the surface area after the test by the surface area before the test. The surface area of the Cu foil surface was measured with a laser microscope (Keyence Co., model number VK-8500) using a 10x objective lens and analyzed with the analysis software attached to the laser microscope. I got it.
The results are shown in Table 1. In addition, the expansion coefficient of Cu foil is shown in percentage.

Figure 2006107912
Figure 2006107912

表1の結果から、負極A〜Cでは、負極D、Eに比べてCu箔の膨張率が抑制されていることが分かった。従って、Cu箔近傍のSiOxのxの値が、Cu箔近傍から表面までのxの平均値よりも大きい場合には、Cu箔の変形が抑制され、ひいては、電池の短絡等の不良率を低減することができることが確認された。 特に、負極B、Cでは、Cu箔の膨張率が小さいことからCu箔近傍のSiOxのxの値は、2.0>x>1.5であることが好ましいことが確認された。   From the results of Table 1, it was found that the expansion rates of the Cu foil were suppressed in the negative electrodes A to C as compared with the negative electrodes D and E. Therefore, when the value of x of SiOx in the vicinity of the Cu foil is larger than the average value of x from the vicinity of the Cu foil to the surface, the deformation of the Cu foil is suppressed, and consequently the defect rate such as a short circuit of the battery is reduced. Confirmed that you can. In particular, in the negative electrodes B and C, it was confirmed that the x value of SiOx in the vicinity of the Cu foil preferably satisfies 2.0> x> 1.5 because the expansion coefficient of the Cu foil is small.

負極Aを作製したときのAr及びO流量Ar and O 2 flow rates when the negative electrode A was produced 負極Bを作製したときのAr及びO流量Ar and O 2 flow rates when producing negative electrode B 負極Cを作製したときのAr及びO流量Ar and O 2 flow rates when producing negative electrode C 負極Dを作製したときのAr及びO流量Ar and O 2 flow rates when producing negative electrode D 負極Eを作製したときのAr及びO流量Ar and O 2 flow rates when producing negative electrode E 負極の断面図Cross section of negative electrode 負極Aのx値X value of negative electrode A 負極Bのx値X value of negative electrode B 負極Cのx値X value of negative electrode C 負極Dのx値X value of negative electrode D 負極Eのx値X value of negative electrode E

符号の説明Explanation of symbols

1…負極
3…活物質層
3A…集電体近傍の活物質層
5…集電体
DESCRIPTION OF SYMBOLS 1 ... Negative electrode 3 ... Active material layer 3A ... Active material layer near current collector 5 ... Current collector

Claims (2)

正極、負極、および非水電解質を備えた非水電解質二次電池であって、前記負極が活物質層を集電体上に担持したものであり、前記活物質層が一般式SiOx(但し、0<x<2)で表されるケイ素酸化物を含有し、前記活物質層全体に含まれるSiOxの平均組成をx=xavとし、前記活物質層の集電体近傍におけるSiOxの組成をx=xとした時、x>xavの関係を満たすことを特徴とする非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, wherein the negative electrode carries an active material layer on a current collector, and the active material layer has a general formula SiOx (provided that 0 <x <2) is contained, the average composition of SiOx contained in the entire active material layer is x = x av, and the composition of SiOx in the vicinity of the current collector of the active material layer is x = when the x B, x B> x nonaqueous electrolyte secondary battery, characterized by satisfying the relation of av. 1.0≦xであることを特徴とする請求項1に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, characterized in that a 1.0 ≦ x B.
JP2004292541A 2004-10-05 2004-10-05 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4815777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292541A JP4815777B2 (en) 2004-10-05 2004-10-05 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292541A JP4815777B2 (en) 2004-10-05 2004-10-05 Nonaqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2006107912A true JP2006107912A (en) 2006-04-20
JP2006107912A5 JP2006107912A5 (en) 2007-11-22
JP4815777B2 JP4815777B2 (en) 2011-11-16

Family

ID=36377374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292541A Expired - Fee Related JP4815777B2 (en) 2004-10-05 2004-10-05 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4815777B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164954A (en) * 2004-11-11 2006-06-22 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery using it
JP2006196447A (en) * 2004-12-16 2006-07-27 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery using it
WO2007086411A1 (en) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
WO2007094311A1 (en) 2006-02-14 2007-08-23 Matsushita Electric Industrial Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
JP2008053214A (en) * 2006-07-24 2008-03-06 Matsushita Electric Ind Co Ltd Anode for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery
JP2008198462A (en) * 2007-02-13 2008-08-28 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
WO2011132428A1 (en) 2010-04-23 2011-10-27 パナソニック株式会社 Negative electrode for lithium-ion battery, production method therefor, and lithium-ion battery
US8309252B2 (en) 2007-01-05 2012-11-13 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2013229300A (en) * 2012-03-27 2013-11-07 Tdk Corp Lithium ion secondary battery
WO2014049985A1 (en) * 2012-09-27 2014-04-03 三洋電機株式会社 Negative electrode for lithium secondary batteries, and lithium secondary battery
US8771874B2 (en) 2007-03-13 2014-07-08 Panasonic Corporation Negative electrode contacting silicon oxide active material layers for lithium secondary battery and method for producing the same
US10109856B2 (en) 2013-09-27 2018-10-23 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185127A (en) * 1999-12-24 2001-07-06 Fdk Corp Lithium secondary battery
JP2004349237A (en) * 2003-04-28 2004-12-09 Sumitomo Titanium Corp Cathode for lithium secondary battery, lithium secondary battery using cathode, deposition material used for cathode formation, and manufacturing method of cathode
JP2005100959A (en) * 2003-08-28 2005-04-14 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, manufacturing method of the same, and nonaqueous electrolyte secondary battery
JP2005166442A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Energy device and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185127A (en) * 1999-12-24 2001-07-06 Fdk Corp Lithium secondary battery
JP2004349237A (en) * 2003-04-28 2004-12-09 Sumitomo Titanium Corp Cathode for lithium secondary battery, lithium secondary battery using cathode, deposition material used for cathode formation, and manufacturing method of cathode
JP2005100959A (en) * 2003-08-28 2005-04-14 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, manufacturing method of the same, and nonaqueous electrolyte secondary battery
JP2005166442A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Energy device and manufacturing method therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164954A (en) * 2004-11-11 2006-06-22 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery using it
JP2006196447A (en) * 2004-12-16 2006-07-27 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery using it
US8110307B2 (en) 2006-01-25 2012-02-07 Panasonic Corporation Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
WO2007086411A1 (en) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
WO2007094311A1 (en) 2006-02-14 2007-08-23 Matsushita Electric Industrial Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
US8268484B2 (en) 2006-02-14 2012-09-18 Panasonic Corporation Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
US7781101B2 (en) 2006-02-14 2010-08-24 Panasonic Corporation Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
JP2008053214A (en) * 2006-07-24 2008-03-06 Matsushita Electric Ind Co Ltd Anode for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery
US8309252B2 (en) 2007-01-05 2012-11-13 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2008198462A (en) * 2007-02-13 2008-08-28 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
US8771874B2 (en) 2007-03-13 2014-07-08 Panasonic Corporation Negative electrode contacting silicon oxide active material layers for lithium secondary battery and method for producing the same
WO2011132428A1 (en) 2010-04-23 2011-10-27 パナソニック株式会社 Negative electrode for lithium-ion battery, production method therefor, and lithium-ion battery
JP5095863B2 (en) * 2010-04-23 2012-12-12 パナソニック株式会社 Negative electrode for lithium ion battery, method for producing the same, and lithium ion battery
US9391315B2 (en) 2010-04-23 2016-07-12 Panasonic Intellectual Property Management Co., Ltd. Negative electrode for lithium ion battery and method for producing the same, and lithium ion battery
JP2013229300A (en) * 2012-03-27 2013-11-07 Tdk Corp Lithium ion secondary battery
WO2014049985A1 (en) * 2012-09-27 2014-04-03 三洋電機株式会社 Negative electrode for lithium secondary batteries, and lithium secondary battery
US10109856B2 (en) 2013-09-27 2018-10-23 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries

Also Published As

Publication number Publication date
JP4815777B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
EP1978580B1 (en) Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
JP4725728B2 (en) Secondary battery
US9972835B2 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP4819409B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JP2010153258A (en) Nonaqueous electrolyte battery
JP4970266B2 (en) A method to improve the performance of Si thin film anodes for rechargeable lithium batteries
JP4909649B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP4433163B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP5012767B2 (en) Secondary battery
JP4815777B2 (en) Nonaqueous electrolyte secondary battery
JP5082714B2 (en) Positive electrode body, lithium secondary battery and manufacturing method thereof
JP4352719B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY USING THE SAME
JP2005203342A (en) Secondary battery
JP4304570B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP5421220B2 (en) Secondary battery electrolyte and secondary battery
JP4701601B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4288400B2 (en) Method for producing secondary battery electrolyte, secondary battery electrolyte, secondary battery production method, and secondary battery
JP4775621B2 (en) Nonaqueous electrolyte secondary battery
JP4265169B2 (en) Secondary battery electrolyte and secondary battery using the same
JP6319092B2 (en) Secondary battery
KR20150116222A (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP4525018B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP4203755B2 (en) Non-aqueous electrolyte secondary battery
JP4355947B2 (en) Secondary battery
JP4078864B2 (en) Negative electrode for secondary battery and secondary battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4815777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees