JP2006088114A - Hydrophilic porous membrane - Google Patents

Hydrophilic porous membrane Download PDF

Info

Publication number
JP2006088114A
JP2006088114A JP2004280198A JP2004280198A JP2006088114A JP 2006088114 A JP2006088114 A JP 2006088114A JP 2004280198 A JP2004280198 A JP 2004280198A JP 2004280198 A JP2004280198 A JP 2004280198A JP 2006088114 A JP2006088114 A JP 2006088114A
Authority
JP
Japan
Prior art keywords
porous membrane
mixture
thermoplastic resin
mass
organic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004280198A
Other languages
Japanese (ja)
Inventor
Hideto Matsuyama
秀人 松山
Noboru Kubota
昇 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004280198A priority Critical patent/JP2006088114A/en
Publication of JP2006088114A publication Critical patent/JP2006088114A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrophilic porous membrane which is suitable for the application of filtration, and is excellent in stain resistance over a long period, and its manufacturing method. <P>SOLUTION: In the method for producing the hydrophilic porous membrane, a thermoplastic resin comprising polyolefin, a copolymer of olefin and halogenated olefin, halogenated polyolefin, or a mixture of these, and an organic liquid are melted and kneaded, thereafter cooled and solidified to be melt-formed, and the porous membrane is obtained by extracting and removing the organic liquid from the obtained formed article. In the method, a nonionic surfactant of an HLB value (hydrophile-lipophile balance value) of 2-14 is added to the mixture with 2-50 mass% of the amount of thermoplastic resin to be melt kneaded. The hydrophilic porous membrane produced thereby is also disclosed. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、濾過用途に好適な、耐汚染性に優れた親水性多孔膜およびその製造方法に関する。   The present invention relates to a hydrophilic porous membrane excellent in contamination resistance suitable for filtration and a method for producing the same.

多孔膜は、広く濾過膜やバッテリーセパレーター等として用いられている。特に濾過膜としては、精密濾過膜や限外濾過膜等として産業の各方面に利用され、特に近年は河川水等を除濁して飲料水や工業用水を製造する手段や、下水の清澄化処理等に多く利用されるようになっている。
多孔膜の製造方法としては、相分離法が一般に多用されている(非特許文献1、2)。相分離法の中でも、高分子樹脂を高温で有機液体と溶融混練した後に冷却固化成形して相分離させ、その後有機液体を抽出除去して多孔膜を得る熱誘起相分離法は、基本的には熱可塑性高分子であれば常温付近に適当な溶剤がなく他の相分離法がとれない高分子樹脂にも広く適用が可能であり、また、用いる樹脂が結晶性高分子樹脂であれば結晶化度を高めて高強度にしやすい等、有用性の高い製膜方法である(非特許文献1、2)。
Porous membranes are widely used as filtration membranes and battery separators. Especially as filtration membranes, it is used in various fields of industry as microfiltration membranes and ultrafiltration membranes, and in recent years, in particular, means for producing drinking water and industrial water by turbidizing river water etc., and sewage clarification treatment It has come to be used a lot.
As a method for producing a porous membrane, a phase separation method is generally widely used (Non-Patent Documents 1 and 2). Among the phase separation methods, the heat-induced phase separation method in which a polymer resin is melt-kneaded with an organic liquid at a high temperature and then cooled, solidified and molded to cause phase separation, and then the organic liquid is extracted and removed to obtain a porous membrane is basically used. Is a thermoplastic polymer that can be widely applied to polymer resins that do not have a suitable solvent near room temperature and cannot be used for other phase separation methods. It is a highly useful film-forming method, for example, by increasing the degree of conversion and easily increasing the strength (Non-Patent Documents 1 and 2).

多孔膜の素材としては、一般にポリエチレン、ポリプロピレン、ポリフッ化ビニリデン等の疎水性熱可塑性樹脂が用いられることが多い。これは、濾過膜の主用途が水系液の濾過処理であるため、水中でも強度が発現できる疎水性樹脂を膜素材に用いることが有利であるためである。しかしながら、膜素材に疎水性樹脂を用いた場合、膜が濾過中に、濾過原水中に含まれる有機物の吸着により汚染され、濾過性能が低下することもしばしばである。この問題を解決するために、(1)膜素材に親水性樹脂を用いる(例えばエチレンービニルアルコール共重合体;特許文献1)、(2)疎水性素材から成る膜の表面に親水性物質をコーティングする(特許文献2)、等の提案がなされている。しかしながら、(1)は素材自体が親水性であるため水中での強度が低くなりがちであり、(2)はコーティングゆえの親水性物質のはがれ、脱離による使用中での親水性の低下の問題が残る。   In general, a hydrophobic thermoplastic resin such as polyethylene, polypropylene, or polyvinylidene fluoride is often used as a material for the porous film. This is because the main use of the filtration membrane is filtration of an aqueous liquid, and therefore it is advantageous to use a hydrophobic resin that can develop strength even in water as the membrane material. However, when a hydrophobic resin is used as the membrane material, the membrane is often contaminated during the filtration due to the adsorption of organic substances contained in the raw filter water, and the filtration performance is often lowered. In order to solve this problem, (1) a hydrophilic resin is used as a membrane material (for example, ethylene-vinyl alcohol copolymer; Patent Document 1), (2) a hydrophilic substance is applied to the surface of a membrane made of a hydrophobic material. The proposal of coating (patent document 2) etc. is made. However, (1) tends to have low strength in water due to the hydrophilic nature of the material itself, and (2) peels off hydrophilic substances due to coating, and decreases the hydrophilicity during use due to desorption. The problem remains.

滝澤章著、「膜」第1版、アイピーシー、平成4年1月30日、404−406頁Akira Takizawa, “Membrane” 1st edition, IPC, January 30, 1992, pages 404-406 プラスチック・機能性高分子材料編集委員会編、「プラスチック・機能性高分子材料辞典、産業調査会、2004年2月20日、672−679頁Edited by Plastics / Functional Polymer Materials Editorial Committee, “Plastics / Functional Polymer Materials Dictionary, Industry Research Committee, February 20, 2004, pages 672-679” 特開2002−136851号公報JP 2002-136851 A 特開2000−103886号公報JP 2000-103886 A

本発明は、濾過用途に好適な、長期に渡り耐汚染性に優れた親水性多孔膜およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a hydrophilic porous membrane that is suitable for filtration applications and has excellent stain resistance over a long period of time, and a method for producing the same.

本発明者らは、前記課題を解決するために鋭意努力した結果、水中での強度発現が期待できる疎水性熱可塑性樹脂(ポリオレフィン、オレフィンとハロゲン化オレフィンとの共重合体、ハロゲン化ポリオレフィン、またはこれらの混合物)を例えば熱誘起相分離法を利用して製膜する際、熱可塑性樹脂と有機液体に加えて非イオン性界面活性剤を加えて溶融混練、冷却固化成形を行った後、有機液体を抽出除去することにより、界面活性剤を強固に抽出後の膜に固定残留させることができ、疎水性熱可塑性樹脂のみでは発現しえない親水性を経時的に安定して発現させ、有機物汚染に対する高い耐性を有する親水性多孔膜を得ることができることを見出した。これらの知見に基づき、本発明を為すに至った。   As a result of diligent efforts to solve the above problems, the inventors of the present invention have developed a hydrophobic thermoplastic resin (polyolefin, copolymer of olefin and halogenated olefin, halogenated polyolefin, or For example, when a film of these mixtures) is formed using, for example, a thermally induced phase separation method, a nonionic surfactant is added to a thermoplastic resin and an organic liquid, melt kneading, cooling solidification molding, By extracting and removing the liquid, the surfactant can be firmly fixed and retained on the membrane after extraction, and the hydrophilicity that cannot be expressed only with a hydrophobic thermoplastic resin can be expressed stably over time, and organic matter It has been found that a hydrophilic porous membrane having high resistance to contamination can be obtained. Based on these findings, the present invention has been accomplished.

すなわち、本発明は、下記のとおりである。
(1)ポリオレフィン、オレフィンとハロゲン化オレフィンとの共重合体、ハロゲン化ポリオレフィン、またはこれらの混合物より成る熱可塑性樹脂と有機液体との混合物を溶融混練した後冷却固化することで溶融成形を行い、得られた成形物より有機液体を抽出除去して多孔膜を得る方法において、上記混合物にHLB値が2以上14以下の非イオン性界面活性剤を、熱可塑性樹脂量の2質量%以上50質量%以下加えて溶融混練を行うことを特徴とする親水性多孔膜の製造方法。
(2)さらに無機微粉を、混合物全体量に対し0.5質量%以上50質量%以下加えて溶融混練し、有機液体に加えて無機微粉をも抽出除去することを特徴とする(1)に記載の親水性多孔膜の製造方法。
(3)(1)または(2)に記載の製造方法により作製された、非イオン性界面活性剤を含有する、ポリオレフィン、オレフィンとハロゲン化オレフィンとの共重合体、ハロゲン化ポリオレフィン、またはこれらの混合物より成る親水性多孔膜。
That is, the present invention is as follows.
(1) Melt molding is performed by melt-kneading a polyolefin, a copolymer of an olefin and a halogenated olefin, a halogenated polyolefin, or a mixture of a thermoplastic resin composed of a mixture thereof and an organic liquid, followed by cooling and solidification, In the method of obtaining a porous film by extracting and removing an organic liquid from the obtained molded product, a nonionic surfactant having an HLB value of 2 or more and 14 or less is added to the mixture, and 2% by mass or more and 50% by mass of the thermoplastic resin amount. % Or less, and melt-kneading is performed, The manufacturing method of the hydrophilic porous membrane characterized by the above-mentioned.
(2) Further, the inorganic fine powder is added in an amount of 0.5% by mass to 50% by mass with respect to the total amount of the mixture, melt-kneaded, and the inorganic fine powder is also extracted and removed in addition to the organic liquid. The manufacturing method of the hydrophilic porous membrane of description.
(3) A polyolefin, a copolymer of an olefin and a halogenated olefin, a halogenated polyolefin, or a material containing a nonionic surfactant produced by the production method according to (1) or (2) A hydrophilic porous membrane made of a mixture.

本発明により、濾過用途に好適な、長期に渡り耐汚染性に優れた親水性多孔膜を得ることができる。   According to the present invention, it is possible to obtain a hydrophilic porous membrane that is suitable for filtration and excellent in stain resistance over a long period of time.

以下、本願発明について具体的に説明する。
本発明に用いられる親水性多孔膜の骨格素材となる熱可塑性樹脂は、ポリオレフィン、オレフィンとハロゲン化オレフィンとの共重合体、ハロゲン化ポリオレフィン、またはこれらの混合物より成る熱可塑性樹脂である。例として、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデンまたはこれらの混合物等を挙げることができる。これらの樹脂は熱可塑性であるがゆえに熱誘起相分離法による製膜手段をとることができ、また、結晶性であるため熱誘起相分離法での製膜により高強度膜を得やすく、また疎水性ゆえに水中での強度発現が期待でき、膜の骨格素材として好適である。
Hereinafter, the present invention will be specifically described.
The thermoplastic resin used as the skeleton material of the hydrophilic porous membrane used in the present invention is a thermoplastic resin made of polyolefin, a copolymer of olefin and halogenated olefin, halogenated polyolefin, or a mixture thereof. Examples include polyethylene, polypropylene, polyvinylidene fluoride, or a mixture thereof. Since these resins are thermoplastic, they can be used for film formation by the thermally induced phase separation method, and because they are crystalline, it is easy to obtain a high strength film by film formation by the thermally induced phase separation method. Since it is hydrophobic, it can be expected to exhibit strength in water, and is suitable as a membrane skeleton material.

有機液体は、熱可塑性樹脂と混合した際に、常温では熱可塑性樹脂を溶解しないが、高温では溶解する濃度領域を持つ液体であることが好ましく、(溶解温度にて液状であればよく、必ずしも室温で液状である必要はない)単一液体でなく混合液体であってもよい。例えば熱可塑性樹脂がポリエチレンの場合、有機液体の例として、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ジ(2−エチルヘキシル)、フタル酸ジイソデシル等のフタル酸エステル類、流動パラフィン等のパラフィン類やこれらの混合物等を挙げることができる。単独では高温で溶解しない液体を、溶解できる液体(例えば前記フタル酸エステル類や流動パラフィン等)と混合して高温で溶解できるようにして有機液体として用いることもできる。また、熱可塑性樹脂がポリフッ化ビニリデンの場合、有機液体の例として、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジシクロヘキシル、フタル酸ジヘプチル、シクロヘキサノン、ガンマブチルラクトン、エチレンカーボネイト、プロピレンカーボネイトやこれらの混合物等を挙げることができる。単独では高温で溶解しない液体(例えばフタル酸ジ(2−エチルヘキシル)等)を、溶解できる液体(例えばフタル酸ジブチル等)と混合して高温で溶解できるようにして有機液体として用いることもできる。   The organic liquid is preferably a liquid having a concentration region that does not dissolve the thermoplastic resin at room temperature but dissolves at a high temperature when mixed with the thermoplastic resin. It need not be liquid at room temperature) and may be a mixed liquid rather than a single liquid. For example, when the thermoplastic resin is polyethylene, examples of the organic liquid include dibutyl phthalate, dioctyl phthalate, di (2-ethylhexyl) phthalate, diisodecyl phthalate, paraffins such as liquid paraffin, and the like. And the like. A liquid that does not dissolve at a high temperature alone can be mixed with a liquid that can be dissolved (for example, the above phthalates or liquid paraffin) so that it can be dissolved at a high temperature and used as an organic liquid. When the thermoplastic resin is polyvinylidene fluoride, examples of organic liquids include dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dicyclohexyl phthalate, diheptyl phthalate, cyclohexanone, gamma butyl lactone, ethylene carbonate, propylene carbonate, A mixture thereof can be exemplified. A liquid that does not dissolve alone at high temperature (for example, di (2-ethylhexyl) phthalate) can be mixed with a liquid that can be dissolved (for example, dibutyl phthalate) to dissolve at high temperature and used as an organic liquid.

有機液体としては、フタル酸エステル系物(フタル酸エステル単独物、フタル酸エステル同士の混合物、フタル酸エステルを50質量%以上、好ましくは70質量%以上含むフタル酸エステルと他の有機物との混合物)を用いることが、添加した非イオン性界面活性剤を最終的に多孔膜中に有効に残留させるうえで好ましい。   Examples of the organic liquid include phthalate esters (phthalates alone, mixtures of phthalates, and mixtures of phthalates and other organic substances containing 50 wt% or more, preferably 70 wt% or more of phthalates. ) Is preferably used to effectively leave the added nonionic surfactant finally in the porous membrane.

これら熱可塑性樹脂と有機液体に加えて、非イオン性界面活性剤を加えて溶融混練させる点が、本願発明の特徴である。界面活性剤(表面活性剤)は、化学大辞典編集委員会編、化学大辞典7縮刷版、共立出版、1964年1月15日、539−540頁、や、藤本武彦著、全訂版新・界面活性剤入門、三洋化成、昭和56年10月1日、3−24頁、に記述されているように、1分子中に親水基と親油基の双方を持つ有機化合物で、親水基の種類により、陰イオン性界面活性剤、陽イオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤に分類される。これら各種界面活性剤の中で、多孔膜に残留後、濾過時に荷電性物質に対しても非吸着性(すなわち耐汚染性)を発現できる非イオン性界面活性剤が、本願発明に用いられる。非イオン性界面活性剤の特性は、HLB値で表現できる。HLB値は、界面活性剤の持つ親水部分と親油部分との量的バランスを示すもので、値が大きいほど親水性にバランスが傾く。従って、親水性の効果を強めるためには用いる界面活性剤のHLB値は大きいほど好ましい。一方、溶融混練混合物中の非イオン性界面活性剤を有効に疎水性熱可塑性樹脂よりなる多孔膜骨格中に強固に残留させるためには、HLB値が小さくて疎水性熱可塑性樹脂とのなじみが良い方が好ましい。従って、用いる非イオン性界面活性剤のHLB値は、2以上14以下である。好ましくはHLB値が4以上10以下である。より好ましくは、HLB値が6を超え10以下である。また、HLB値を14以下、好ましくは10以下にすることで、溶融混合物の冷却固化に一般的に多用されている水浴中への非イオン性界面活性剤の流出を抑制することができる。   A feature of the present invention is that, in addition to these thermoplastic resin and organic liquid, a nonionic surfactant is added and melt kneaded. Surfactants (surfactants) are edited by the Editorial Committee of the Chemistry Dictionary, the Seventh Edition of the Chemistry Dictionary, Kyoritsu Shuppan, pp. 539-540, January 15, 1964, and Takehiko Fujimoto, new revised version.・ An organic compound having both a hydrophilic group and a lipophilic group in one molecule as described in Introduction to Surfactants, Sanyo Kasei, October 1, 1981, pages 3-24. Depending on the type, anionic surfactants, cationic surfactants, nonionic surfactants, and amphoteric surfactants are classified. Among these various surfactants, a nonionic surfactant that can exhibit non-adsorption property (that is, contamination resistance) with respect to a charged substance at the time of filtration after remaining in the porous membrane is used in the present invention. The characteristics of the nonionic surfactant can be expressed by an HLB value. The HLB value indicates a quantitative balance between the hydrophilic part and the lipophilic part of the surfactant, and the larger the value, the more the balance of the hydrophilicity is inclined. Therefore, in order to strengthen the hydrophilic effect, the higher the HLB value of the surfactant used, the better. On the other hand, in order to effectively retain the nonionic surfactant in the melt-kneaded mixture in the porous membrane skeleton made of the hydrophobic thermoplastic resin, the HLB value is small and the familiarity with the hydrophobic thermoplastic resin is required. The better one is preferable. Therefore, the HLB value of the nonionic surfactant to be used is 2 or more and 14 or less. Preferably, the HLB value is 4 or more and 10 or less. More preferably, the HLB value is more than 6 and 10 or less. Further, by setting the HLB value to 14 or less, preferably 10 or less, it is possible to suppress the outflow of the nonionic surfactant into a water bath generally used for cooling and solidifying the molten mixture.

HLB値は、グリフィンのHLBの定義を用いて計算できる。グリフィンのHLBの定義およびHLB値の例は、前記の藤本武彦著、全訂版新・界面活性剤入門、三洋化成、昭和56年10月1日の128−132頁に記載されている。非イオン性界面活性剤の具体例およびHLB値については、前記の藤本武彦著、全訂版新・界面活性剤入門、三洋化成、昭和56年10月1日、89−132頁に記載例がある。   The HLB value can be calculated using the Griffin HLB definition. The definition of HLB of Griffin and an example of the HLB value are described in the above-mentioned book by Takehiko Fujimoto, the all-new edition, Introduction to Surfactant, Sanyo Kasei, pp. 128-132, Oct. 1, 1981. Specific examples of nonionic surfactants and HLB values are described in the above-mentioned Takehiko Fujimoto's new edition, Introduction to surfactants, Sanyo Kasei, October 1, 1981, pages 89-132. is there.

非イオン性界面活性剤を加える量は、非イオン性界面活性剤の添加効果(多孔膜に残留して親水性を発現する)を得る観点から、熱可塑性樹脂量に対して2質量%以上であり、一方、得られる親水性多孔膜の強度保持の観点から、熱可塑性樹脂量に対し50質量%以下である。好ましくは、5質量%以上20質量%以下である。2質量%以上の非イオン性界面活性剤を添加すれば、抽出除去工程を経た後も多孔膜中に充分残存する。抽出工程を経て多孔膜中に残留した非イオン性界面活性剤は、親油部が疎水性熱可塑性樹脂からなる多孔膜骨格中に強固に固定され、一方親水部は疎水性熱可塑性樹脂とはなじみがよくないために孔表面に出て、経時的に安定な親水性が発現されるものと推測される。   The amount of the nonionic surfactant to be added is 2% by mass or more based on the amount of the thermoplastic resin from the viewpoint of obtaining the effect of adding the nonionic surfactant (remaining in the porous film to express hydrophilicity). On the other hand, from the viewpoint of maintaining the strength of the obtained hydrophilic porous membrane, it is 50% by mass or less based on the amount of the thermoplastic resin. Preferably, they are 5 mass% or more and 20 mass% or less. If 2% by mass or more of a nonionic surfactant is added, it remains sufficiently in the porous membrane even after the extraction and removal step. The nonionic surfactant remaining in the porous membrane after the extraction step is firmly fixed in the porous membrane skeleton whose lipophilic portion is made of a hydrophobic thermoplastic resin, while the hydrophilic portion is a hydrophobic thermoplastic resin. It is presumed that the hydrophilicity is stable over time due to coming out on the surface of the hole due to poor conformity.

熱可塑性樹脂、有機液体、非イオン性界面活性剤から成る混合物中の熱可塑性樹脂量は、得られる親水性多孔膜の強度維持の点から10質量%以上が好ましく、透水性能確保の点から50質量%以下が好ましい。溶融混練は、通常の溶融混練装置、例えば1軸や2軸の押出し機等を用い、熱可塑性樹脂が有機液体に溶解する温度以上の温度にて溶融混練することで行うことができる。得られた溶融混練物を溶融状態のまま口金(ダイ)に導き、口金から溶融状態のまま押出し、冷却することで溶融成形を行うことができる。口金の吐出部の形状により、成形物の形状を決めることができる。例えば、口金としてTダイ等を用いて溶融混練物をシート状に押出し冷却することでシート状の成形物を得ることができ、抽出により平膜状の多孔膜を得ることができる。口金として紡口を用いて溶融混練物を円環状に押出し冷却することで中空糸状の成形物を得ることができ、抽出により中空糸状の多孔膜を得ることができる。押出した溶融混練物の冷却は、空冷、水冷等の通常の冷却手段を用いて行うことができる。なお、多孔膜の形状としては、単位容積当たりに充填できる膜面積を大きくできる点から、中空糸状が好ましい。   The amount of the thermoplastic resin in the mixture composed of the thermoplastic resin, the organic liquid, and the nonionic surfactant is preferably 10% by mass or more from the viewpoint of maintaining the strength of the resulting hydrophilic porous membrane, and 50 from the viewpoint of ensuring water permeability. The mass% or less is preferable. The melt-kneading can be performed by melt-kneading at a temperature equal to or higher than the temperature at which the thermoplastic resin is dissolved in the organic liquid, using a normal melt-kneading apparatus, for example, a uniaxial or biaxial extruder. The obtained melt-kneaded product is introduced into a die (die) in a molten state, extruded from the die in a molten state, and cooled to perform melt molding. The shape of the molded product can be determined by the shape of the discharge portion of the die. For example, a melt-kneaded product is extruded into a sheet shape using a T-die or the like as a die and cooled to obtain a sheet-like molded product, and a flat membrane-like porous membrane can be obtained by extraction. A melt-kneaded product is extruded in an annular shape using a spinning nozzle as a die, and cooled to obtain a hollow fiber-like molded product, and a hollow fiber-like porous membrane can be obtained by extraction. The extruded melt-kneaded product can be cooled using a normal cooling means such as air cooling or water cooling. The shape of the porous membrane is preferably a hollow fiber shape from the viewpoint that the membrane area that can be filled per unit volume can be increased.

得られた成形物からの有機液体の抽出除去は、用いた熱可塑性樹脂を溶解あるいは変性させずにかつ有機液体とは混和し(有機液体を溶解し)、かつ添加した非イオン性界面活性剤を変性(化学変化)させない液体を用いて行うことができ、例えば、有機液体がフタル酸エステル系であれば、エチルアルコールを例示することができる。非イオン性界面活性剤は、冷却固化された時点で多孔膜に強固に固定されるため、抽出用の液体は、非イオン性界面活性剤を溶解させる性質の液体でも用いることができる。   Extraction and removal of the organic liquid from the obtained molded product is carried out without dissolving or modifying the used thermoplastic resin, mixing with the organic liquid (dissolving the organic liquid), and adding a nonionic surfactant. For example, if the organic liquid is a phthalate ester-based, ethyl alcohol can be exemplified. Since the nonionic surfactant is firmly fixed to the porous membrane when cooled and solidified, the extraction liquid can be a liquid having a property of dissolving the nonionic surfactant.

熱可塑性樹脂、有機液体、非イオン性界面活性剤に加えて無機微粉を加えて溶融混練し、冷却固化させて成形を行い、得られた成形物から有機液体に加えて無機微粉も抽出除去することで、さらに強度の高い親水性多孔膜を得ることができる。無機微粉としては、平均一次粒子径が0.5マイクロメートル以下5ナノメートル以上のシリカ微粉を好適に用いることができる。無機微粉の添加量は、熱可塑性樹脂、有機液体、非イオン性界面活性剤、無機微紛を合わせた混合物全体質量に対し0.5質量%以上50質量%以下が好ましい。無機微粉の添加量が0.5質量%以上であれば強度増強効果が高く、添加量が50質量%以下であれば溶融成形性が好適に保たれる。冷却固化後の成形物中に含まれる無機微粉を抽出除去し、得られる親水性多孔膜の透水性能を高めることが好ましい。無機微粉が添加されている場合でも、無機微粉が添加されていない場合と同様に、溶融混練、溶融押出し、冷却固化成形、有機液体の抽出を行うことができる。無機微粉の抽出除去は、有機液体の抽出除去の前、後のどちらでも行うことができる。有機液体と同じ抽出液体が使える場合は、有機液体との同時除去もできる。無機微粉がシリカ微粉の場合、成形物をアルカリ液中に浸漬し、成形物中に残存するシリカ微粉を水溶性のケイ酸塩に転化させ、次いで水洗することで抽出除去することができる。   In addition to thermoplastic resin, organic liquid, and nonionic surfactant, add inorganic fine powder, melt and knead, cool and solidify, mold, and extract and remove inorganic fine powder in addition to organic liquid. Thus, a hydrophilic porous membrane having higher strength can be obtained. As the inorganic fine powder, silica fine powder having an average primary particle diameter of 0.5 micrometer or less and 5 nanometers or more can be suitably used. The addition amount of the inorganic fine powder is preferably 0.5% by mass or more and 50% by mass or less based on the total mass of the mixture of the thermoplastic resin, the organic liquid, the nonionic surfactant, and the inorganic fine powder. If the addition amount of the inorganic fine powder is 0.5% by mass or more, the strength enhancing effect is high, and if the addition amount is 50% by mass or less, the melt moldability is suitably maintained. It is preferable to extract and remove the inorganic fine powder contained in the molded product after cooling and solidification to enhance the water permeability of the resulting hydrophilic porous membrane. Even when inorganic fine powder is added, melt kneading, melt extrusion, cooling solidification molding, and extraction of organic liquid can be performed in the same manner as when inorganic fine powder is not added. The inorganic fine powder can be extracted and removed either before or after the organic liquid is extracted and removed. When the same extraction liquid as the organic liquid can be used, it can be removed simultaneously with the organic liquid. When the inorganic fine powder is silica fine powder, the molded product can be extracted and removed by immersing the molded product in an alkaline solution, converting the silica fine powder remaining in the molded product into a water-soluble silicate, and then washing with water.

本発明について、以下に実施例によりさらに具体的に説明する。
なお、中空糸状親水性多孔膜の各種評価は、以下の測定方法により行った。
純水透水速度:10cm長の湿潤中空糸膜の一端を封止し、他端の中空部内へ注射針を入れ、25℃の環境にて注射針から0.1MPaの圧力にて25℃の純水を中空部内へ注入し、外表面から透過してくる純水の透過量を測定し、以下の式より純水透水速度を決定した。
The present invention will be described more specifically with reference to the following examples.
Various evaluations of the hollow fiber-like hydrophilic porous membrane were performed by the following measuring methods.
Pure water permeation rate: One end of a 10 cm long wet hollow fiber membrane is sealed, an injection needle is inserted into the hollow portion at the other end, and a 25 ° C. pure water is added at a pressure of 0.1 MPa from the injection needle in a 25 ° C. environment. Water was injected into the hollow portion, the amount of pure water permeated from the outer surface was measured, and the pure water permeation rate was determined from the following equation.

Figure 2006088114
Figure 2006088114

破断強度伸度:島津製作所製、商品名:AGS−J型引張り試験装置を用い、25℃雰囲気下、有効試料長50mm、引張り速度50mm/minにて測定した。
粒子阻止率:有効長20cmの湿潤中空糸に対し、粒子径既知のポリスチレンラテックス(Duke Scientific Corporation社製、商品名:Nanosphere)の0.01質量%水溶液を、内圧濾過方式、濾過圧50kPa、線速0.5m/秒にて5分間濾過し、吸光光度法により求めた原水と透過水のポリスチレンラテックス濃度より、以下の式により阻止率を決定した。
Breaking strength elongation: Made by Shimadzu Corporation, trade name: AGS-J type tensile tester was used, and the measurement was performed at 25 ° C. in an effective sample length of 50 mm and a tensile speed of 50 mm / min.
Particle blocking ratio: A 0.01% by mass aqueous solution of polystyrene latex (manufactured by Duke Scientific Corporation, trade name: Nanosphere) with a known particle diameter is used for a wet hollow fiber having an effective length of 20 cm, an internal pressure filtration method, a filtration pressure of 50 kPa, a wire Filtration was performed at a speed of 0.5 m / sec for 5 minutes, and the blocking rate was determined by the following formula from the concentration of polystyrene latex in raw water and permeated water determined by the spectrophotometric method.

Figure 2006088114
Figure 2006088114

接触角:乾燥中空糸膜を縦に半割りにし、平らに広げた後、水滴を落とし、水滴との接触角を測定した。
タンパク質水溶液濾過テスト:0.03Mクエン酸水溶液と、0.03Mリン酸水素二ナトリウム水溶液を混合してpHを4.9に調整し、さらに1.0M塩化ナトリウム水溶液を0.9質量%加えた。このようにして調整した緩衝液にウシ血清アルブミン(略称:BSA和光純薬工業製、和光1級)を0.05質量%になるように溶解した。このようにしてBSA水溶液を得た。有効長20cmの湿潤中空糸に対し、得られたBSA水溶液を内圧濾過方式、濾過圧50kPa、線速0.5m/秒にて濾過を行い、1分間当たりの透過液量の経時変化を測定した。
Contact angle: The dried hollow fiber membrane was cut in half vertically and spread flat, and then a water drop was dropped to measure the contact angle with the water drop.
Protein aqueous solution filtration test: 0.03M citric acid aqueous solution and 0.03M disodium hydrogenphosphate aqueous solution were mixed to adjust pH to 4.9, and 0.9M% 1.0M sodium chloride aqueous solution was further added. . Bovine serum albumin (abbreviation: BSA Wako Pure Chemical Industries, Wako Grade 1) was dissolved in the thus prepared buffer so as to be 0.05% by mass. In this way, an aqueous BSA solution was obtained. The obtained BSA aqueous solution was filtered through an internal pressure filtration method, a filtration pressure of 50 kPa, and a linear speed of 0.5 m / sec on a wet hollow fiber having an effective length of 20 cm, and the change over time in the amount of permeate per minute was measured. .

[実施例1]
熱可塑性樹脂として高密度ポリエチレン(旭化成ケミカルズ製、商品名:SH800、粘度平均分子量25万)20質量部、有機液体としてフタル酸ジイソデシル(和光純薬工業製、和光1級)78質量部、非イオン性界面活性剤としてソルビタンオレイン酸モノエステル(和光純薬工業製、化学用)(HLB値4.3)2質量部(熱可塑性樹脂に対して10質量%)を計量後、小型2軸押出機(井元製作所製、商品名:循環式混練押出反応機)中へ投入し、210℃にて溶融混練を行い、中空糸成形用紡口から押出した。紡口下面の外径1.6mm、内径0.8mmの円環状穴から溶融混練物を押出し、紡口下面のこの円環穴の内側にある0.6mmφの穴よりフタル酸ジイソデシルを吐出させ、紡口から押出されたこの中空状物を5mm空気中を走行させた後、40℃の水浴中に導いて冷却固化させ、20m/minの速度でかせに巻き取った。次いで、エチルアルコール中への浸漬を繰り返すことにより、中空糸状成形物よりフタル酸ジイソデシルを抽出除去した。得られた、本発明による親水性多孔中空糸膜は、外径1.2mm、内径0.8mm、純水透水速度8000L/m/h、破断強度2.4MPa、破断伸度200%、接触角74°であった。ポリスチレン粒子の阻止率を図1に、タンパク質水溶液濾過テスト結果を図2に示す。なお、接触角の値は、水中保存3ヶ月後で73°であり、作製直後からほとんど変化していなかった。
[Example 1]
20 parts by mass of high density polyethylene (made by Asahi Kasei Chemicals, trade name: SH800, viscosity average molecular weight 250,000) as a thermoplastic resin, 78 parts by mass of diisodecyl phthalate (manufactured by Wako Pure Chemical Industries, Wako Grade 1) as an organic liquid, nonionic Sorbitan oleic acid monoester (manufactured by Wako Pure Chemical Industries, Ltd., for chemical use) (HLB value 4.3) 2 parts by weight (10% by mass with respect to thermoplastic resin) as a surfactant, a small twin screw extruder (Product name: Circulation kneading extrusion reactor manufactured by Imoto Seisakusho Co., Ltd.) was melted and kneaded at 210 ° C., and extruded from a hollow fiber forming nozzle. The melt-kneaded product is extruded from an annular hole having an outer diameter of 1.6 mm and an inner diameter of 0.8 mm on the bottom surface of the spinning nozzle, and diisodecyl phthalate is discharged from a 0.6 mmφ hole inside the annular hole on the bottom surface of the spinning nozzle. The hollow product extruded from the spinning nozzle was allowed to travel in the air at 5 mm, and then led to a 40 ° C. water bath to be cooled and solidified, and wound up skeinly at a speed of 20 m / min. Subsequently, diisodecyl phthalate was extracted and removed from the hollow fiber shaped product by repeating immersion in ethyl alcohol. The obtained hydrophilic porous hollow fiber membrane according to the present invention has an outer diameter of 1.2 mm, an inner diameter of 0.8 mm, a pure water permeability of 8000 L / m 2 / h, a breaking strength of 2.4 MPa, a breaking elongation of 200%, and a contact The angle was 74 °. The blocking rate of polystyrene particles is shown in FIG. 1, and the protein aqueous solution filtration test results are shown in FIG. The value of the contact angle was 73 ° after 3 months of storage in water, and hardly changed immediately after production.

[比較例1]
フタル酸ジイソデシルの量を80質量部とし、非イオン性界面活性剤を用いなかった以外は、実施例1と同様にして多孔中空糸膜を得た。得られた多孔中空糸膜は、外径1.2mm、内径0.8mm、純水透水速度7500L/m/h、破断強度2.4MPa、破断伸度210%、接触角87°であった。ポリスチレン粒子の阻止率を図1に、タンパク質水溶液濾過テスト結果を図2に示す。図2より、実施例1の親水性多孔膜は比較例1の多孔膜よりも透過液量の経時低下が小さく、タンパク質汚染を受けにくい(耐汚染性に優れる)ことがわかる。なお、図2では透過液量の経時変化は、それぞれの多孔膜に対し初期の透過液量を100としたときの相対値の変化で表記されているが、実施例1の親水性多孔膜と比較例1の多孔膜とは、初期の透過液量の絶対値は、両者ともほぼ同じであった。
[Comparative Example 1]
A porous hollow fiber membrane was obtained in the same manner as in Example 1 except that the amount of diisodecyl phthalate was 80 parts by mass and no nonionic surfactant was used. The obtained porous hollow fiber membrane had an outer diameter of 1.2 mm, an inner diameter of 0.8 mm, a pure water permeability of 7500 L / m 2 / h, a breaking strength of 2.4 MPa, a breaking elongation of 210%, and a contact angle of 87 °. . The blocking rate of polystyrene particles is shown in FIG. 1, and the protein aqueous solution filtration test results are shown in FIG. FIG. 2 shows that the hydrophilic porous membrane of Example 1 has a smaller decrease in permeate amount with time than the porous membrane of Comparative Example 1, and is less susceptible to protein contamination (excellent stain resistance). In FIG. 2, the change with time in the permeate amount is expressed as a change in relative value when the initial permeate amount is 100 for each porous membrane. The absolute value of the initial permeate amount was almost the same for both of the porous membranes of Comparative Example 1.

[実施例2]
熱可塑性樹脂として高密度ポリエチレン(旭化成ケミカルズ製、商品名:SH800)20質量部、有機液体としてフタル酸ジ(2−エチルヘキシル)(和光純薬工業製、和光1級)78質量部、界面活性剤としてソルビタンラウリン酸モノエステル(和光純薬工業製、化学用)(HLB値8.6)2質量部(熱可塑性樹脂に対して10質量%)を計量後、小型2軸押出機(井元製作所製、商品名:循環式混練押出反応機)中へ投入し、230℃にて溶融混練を行い、中空糸成形用紡口から押出した。紡口下面の外径1.6mm、内径0.8mmの円環状穴から溶融混練物を押出し、紡口下面のこの円環穴の内側にある0.6mmφの穴よりフタル酸ジ(2−エチルヘキシル)を吐出させ、紡口から押出されたこの中空状物を5mm空気中を走行させた後、40℃の水浴中に導いて冷却固化させ、20m/minの速度でかせに巻き取った。次いで、エチルアルコール中への浸漬を繰り返すことにより、中空糸状成形物よりフタル酸ジ(2−エチルヘキシル)を抽出除去した。得られた、本発明による親水性多孔中空糸膜は、外径1.2mm、内径0.8mm、純水透水速度7800L/m/h、破断強度2.3MPa、破断伸度190%、接触角70°であった。ポリスチレン粒子の阻止率は粒子径300nmが80%、粒子径500nmが99%であった。タンパク質水溶液濾過テスト結果を行ったところ、初期値を100としたときの透過液量は、濾過300分時点で60であった。なお、接触角の値は、水中保存3ヶ月後で70°であり、作製直後からほとんど変化していなかった。
[Example 2]
20 parts by mass of high-density polyethylene (product name: SH800) manufactured by Asahi Kasei Chemicals as a thermoplastic resin, 78 parts by mass of di (2-ethylhexyl) phthalate (manufactured by Wako Pure Chemical Industries, Wako Grade 1) as an organic liquid, surfactant Sorbitan lauric acid monoester (manufactured by Wako Pure Chemical Industries, Ltd., for chemical use) (HLB value 8.6) 2 parts by weight (10% by mass relative to thermoplastic resin), and then a small twin screw extruder (manufactured by Imoto Seisakusho) , Trade name: circulation kneading extrusion reactor), melt kneading at 230 ° C., and extrusion from a hollow fiber forming nozzle. The melt-kneaded material is extruded from an annular hole having an outer diameter of 1.6 mm and an inner diameter of 0.8 mm on the bottom surface of the spinneret, and di (2-ethylhexyl) phthalate from a 0.6 mmφ hole inside the annular hole on the bottom surface of the nozzle. The hollow product extruded from the spinneret was allowed to travel in the air at 5 mm, and then cooled and solidified in a 40 ° C. water bath, and skeined up at a speed of 20 m / min. Next, by repeating immersion in ethyl alcohol, di (2-ethylhexyl) phthalate was extracted and removed from the hollow fiber shaped product. The obtained hydrophilic porous hollow fiber membrane according to the present invention has an outer diameter of 1.2 mm, an inner diameter of 0.8 mm, a pure water permeability of 7800 L / m 2 / h, a breaking strength of 2.3 MPa, a breaking elongation of 190%, and a contact The angle was 70 °. The blocking rate of polystyrene particles was 80% for a particle size of 300 nm and 99% for a particle size of 500 nm. When the protein aqueous solution filtration test result was conducted, the permeate amount when the initial value was 100 was 60 at the time of filtration for 300 minutes. The value of the contact angle was 70 ° after 3 months storage in water, and hardly changed immediately after production.

[実施例3]
熱可塑性樹脂として高密度ポリエチレン(旭化成ケミカルズ製、商品名:SH800)18質量部、有機液体としてフタル酸ジブチル(和光純薬工業製、和光1級)53質量部、界面活性剤としてノニルフェノールのエチレンオキサイド3モル付加物(ミヨシ油脂製、商品名:ペレテックス1218)(HLB値7.5)2質量部(熱可塑性樹脂に対して11質量%)、無機微粉としてシリカ微粉(日本アエロジル製、商品名:R972、平均1次粒子径約16nm)27質量部を計量後、2軸押出機(東芝機械製、商品名:TEM37)にて230℃にて溶融混練を行い、中空糸成形用紡口から押出した。紡口下面の外径1.6mm、内径0.8mmの円環状穴から溶融混練物を押出し、紡口下面のこの円環穴の内側にある0.6mmφの穴より空気を吐出させ、紡口から押出されたこの中空状物を450mm空気中を走行させた後、25℃の水浴中に導いて冷却固化させ、10m/minの速度でかせに巻き取った。次いで、エチルアルコール中への浸漬を繰り返すことにより、中空糸状成形物よりフタル酸ジブチルを抽出除去した。さらに、5質量%NaOH水溶液に40℃にて2時間浸漬した後水洗することにより、無機微粉を抽出除去した。得られた、本発明による親水性多孔中空糸膜は、外径1.2mm、内径0.8mm、純水透水速度7000L/m/h、破断強度3.5MPa、破断伸度300%、接触角70°であった。
[Example 3]
18 parts by mass of high-density polyethylene (product name: SH800) manufactured by Asahi Kasei Chemicals as the thermoplastic resin, 53 parts by mass of dibutyl phthalate (manufactured by Wako Pure Chemical Industries, Wako Grade 1) as the organic liquid, and ethylene oxide of nonylphenol as the surfactant 3 mol adduct (made by Miyoshi Oil & Fats, trade name: Pelletex 1218) (HLB value 7.5) 2 parts by mass (11% by mass with respect to thermoplastic resin), silica fine powder (manufactured by Nippon Aerosil, trade name: inorganic fine powder) R972, average primary particle size of about 16 nm) Weighed 27 parts by mass, melt kneaded at 230 ° C. with a twin screw extruder (Toshiba Machine, trade name: TEM37), and extruded from a hollow fiber forming nozzle did. The melt-kneaded product is extruded from an annular hole having an outer diameter of 1.6 mm and an inner diameter of 0.8 mm on the bottom surface of the spinning nozzle, and air is discharged from a 0.6 mmφ hole inside the annular hole on the bottom surface of the spinning nozzle. The hollow product extruded from was run in the air at 450 mm, and then led to a 25 ° C. water bath to be cooled and solidified, and wound up skeinly at a speed of 10 m / min. Next, by repeating immersion in ethyl alcohol, dibutyl phthalate was extracted and removed from the hollow fiber shaped product. Furthermore, the inorganic fine powder was extracted and removed by immersing in a 5% by mass NaOH aqueous solution at 40 ° C. for 2 hours and then washing with water. The obtained hydrophilic porous hollow fiber membrane according to the present invention has an outer diameter of 1.2 mm, an inner diameter of 0.8 mm, a pure water permeation rate of 7000 L / m 2 / h, a breaking strength of 3.5 MPa, a breaking elongation of 300%, and a contact The angle was 70 °.

本発明により得られる親水性多孔膜は、耐汚染性に優れるため、濾過膜としての利用に好適である。   Since the hydrophilic porous membrane obtained by the present invention is excellent in contamination resistance, it is suitable for use as a filtration membrane.

実施例1および比較例1の多孔膜のポリスチレン粒子阻止率曲線を示すグラフである。2 is a graph showing polystyrene particle rejection rate curves of porous films of Example 1 and Comparative Example 1. FIG. 実施例1および比較例1の多孔膜のタンパク質水溶液濾過テスト結果を示すグラフである。It is a graph which shows the protein aqueous solution filtration test result of the porous film of Example 1 and Comparative Example 1.

Claims (3)

ポリオレフィン、オレフィンとハロゲン化オレフィンとの共重合体、ハロゲン化ポリオレフィン、またはこれらの混合物より成る熱可塑性樹脂と有機液体との混合物を溶融混練した後冷却固化することで溶融成形を行い、得られた成形物より有機液体を抽出除去して多孔膜を得る方法において、上記混合物にHLB値が2以上14以下の非イオン性界面活性剤を、熱可塑性樹脂量の2質量%以上50質量%以下加えて溶融混練を行うことを特徴とする親水性多孔膜の製造方法。   Obtained by melt molding by melting and kneading a mixture of a polyolefin resin, a copolymer of an olefin and a halogenated olefin, a halogenated polyolefin, or a mixture of a thermoplastic resin composed of a mixture thereof and an organic liquid, followed by cooling and solidification. In the method for obtaining a porous film by extracting and removing an organic liquid from a molded product, a nonionic surfactant having an HLB value of 2 or more and 14 or less is added to the mixture by 2 to 50% by mass of the thermoplastic resin amount. Then, a method for producing a hydrophilic porous membrane, wherein melt kneading is performed. さらに無機微粉を、混合物全体量に対し0.5質量%以上50質量%以下加えて溶融混練し、有機液体に加えて無機微粉をも抽出除去することを特徴とする請求項1に記載の親水性多孔膜の製造方法。   Further, the inorganic fine powder is added in an amount of 0.5% by mass to 50% by mass with respect to the total amount of the mixture and melt-kneaded, and the inorganic fine powder is extracted and removed in addition to the organic liquid. For producing porous porous membrane. 請求項1または2に記載の製造方法により作製された、非イオン性界面活性剤を含有する、ポリオレフィン、オレフィンとハロゲン化オレフィンとの共重合体、ハロゲン化ポリオレフィン、またはこれらの混合物より成る親水性多孔膜。   A hydrophilic property comprising a polyolefin, a copolymer of an olefin and a halogenated olefin, a halogenated polyolefin, or a mixture thereof, which contains the nonionic surfactant, produced by the production method according to claim 1 or 2. Porous membrane.
JP2004280198A 2004-09-27 2004-09-27 Hydrophilic porous membrane Pending JP2006088114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004280198A JP2006088114A (en) 2004-09-27 2004-09-27 Hydrophilic porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004280198A JP2006088114A (en) 2004-09-27 2004-09-27 Hydrophilic porous membrane

Publications (1)

Publication Number Publication Date
JP2006088114A true JP2006088114A (en) 2006-04-06

Family

ID=36229589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004280198A Pending JP2006088114A (en) 2004-09-27 2004-09-27 Hydrophilic porous membrane

Country Status (1)

Country Link
JP (1) JP2006088114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093503A (en) * 2006-10-06 2008-04-24 Asahi Kasei Chemicals Corp Manufacturing method of porous hollow fiber membrane
JP2013173139A (en) * 2013-04-09 2013-09-05 Asahi Kasei Chemicals Corp Manufacturing method of porous hollow fiber membrane
JPWO2013147187A1 (en) * 2012-03-30 2015-12-14 三菱レイヨン株式会社 Composite hollow fiber membrane and hollow fiber membrane module

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074667A (en) * 1973-11-02 1975-06-19
JPS61133105A (en) * 1984-12-03 1986-06-20 Asahi Medical Kk Process for improving permeability of porous membrane
JPS6465142A (en) * 1987-05-28 1989-03-10 Asahi Chemical Ind Polyolefin sinter and its production
JPH01133105A (en) * 1987-11-18 1989-05-25 Hitachi Ltd Method for controlling plant
JPH02237624A (en) * 1989-03-10 1990-09-20 Nok Corp Heat treatment of hollow fiber membrane
JPH04118033A (en) * 1990-05-15 1992-04-20 Material Eng Tech Lab Inc Hydrophilic membrane and its production
JPH10134793A (en) * 1996-11-01 1998-05-22 Asahi Chem Ind Co Ltd Porous membrane
JP2001087633A (en) * 1999-09-21 2001-04-03 Asahi Kasei Corp Method for preparing hollow fibrous porous film by melt spinning
WO2001053213A1 (en) * 2000-01-18 2001-07-26 Asahi Kasei Kabushiki Kaisha Method for purifying suspended water by membrane filtration
JP2001269556A (en) * 2000-01-20 2001-10-02 Asahi Kasei Corp Polyethylene hollow fiber-like porous membrane
WO2003068374A1 (en) * 2002-02-12 2003-08-21 Us Filter Wastewater Group, Inc. Halar membranes
JP2004041835A (en) * 2002-07-09 2004-02-12 Kuraray Co Ltd Hollow fiber membrane and its manufacturing method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074667A (en) * 1973-11-02 1975-06-19
JPS61133105A (en) * 1984-12-03 1986-06-20 Asahi Medical Kk Process for improving permeability of porous membrane
JPS6465142A (en) * 1987-05-28 1989-03-10 Asahi Chemical Ind Polyolefin sinter and its production
JPH01133105A (en) * 1987-11-18 1989-05-25 Hitachi Ltd Method for controlling plant
JPH02237624A (en) * 1989-03-10 1990-09-20 Nok Corp Heat treatment of hollow fiber membrane
JPH04118033A (en) * 1990-05-15 1992-04-20 Material Eng Tech Lab Inc Hydrophilic membrane and its production
JPH10134793A (en) * 1996-11-01 1998-05-22 Asahi Chem Ind Co Ltd Porous membrane
JP2001087633A (en) * 1999-09-21 2001-04-03 Asahi Kasei Corp Method for preparing hollow fibrous porous film by melt spinning
WO2001053213A1 (en) * 2000-01-18 2001-07-26 Asahi Kasei Kabushiki Kaisha Method for purifying suspended water by membrane filtration
JP2001269556A (en) * 2000-01-20 2001-10-02 Asahi Kasei Corp Polyethylene hollow fiber-like porous membrane
WO2003068374A1 (en) * 2002-02-12 2003-08-21 Us Filter Wastewater Group, Inc. Halar membranes
JP2004041835A (en) * 2002-07-09 2004-02-12 Kuraray Co Ltd Hollow fiber membrane and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093503A (en) * 2006-10-06 2008-04-24 Asahi Kasei Chemicals Corp Manufacturing method of porous hollow fiber membrane
JPWO2013147187A1 (en) * 2012-03-30 2015-12-14 三菱レイヨン株式会社 Composite hollow fiber membrane and hollow fiber membrane module
JP2013173139A (en) * 2013-04-09 2013-09-05 Asahi Kasei Chemicals Corp Manufacturing method of porous hollow fiber membrane

Similar Documents

Publication Publication Date Title
US5022990A (en) Polyvinylidene fluoride porous membrane and a method for producing the same
JP5893093B2 (en) Amorphous porous hollow fiber membrane, method for producing a shaped porous hollow fiber membrane, module using the shaped porous hollow fiber membrane, filtration device, and water treatment method
AU736329B2 (en) Porous polyvinylidene fluoride resin membrane and process for preparing the same
JP5717987B2 (en) Porous multilayer hollow fiber membrane
JP5619020B2 (en) Hydrophobic membrane made of polyvinylidene fluoride which is stable to ozone
JP5603781B2 (en) Vinylidene fluoride resin porous membrane and method for producing the same
JP5546992B2 (en) Method for producing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filtration device using porous hollow fiber membrane, and water treatment method using porous hollow fiber membrane
JP5576866B2 (en) Method for producing vinylidene fluoride resin porous membrane
JPH03215535A (en) Porous polyvinylidene fluoride film and production thereof
CA2733826A1 (en) Methods of forming poly(ethylene chlorotrifluoroethylene) membranes
KR20120043054A (en) Porous vinylidene fluoride resin membrane and process for producing same
WO2018088232A1 (en) Porous hollow fiber membrane and method for manufacturing porous hollow fiber membrane
JP2015073916A (en) Porous hollow fiber membrane, and manufacturing method of the same
JP2013173139A (en) Manufacturing method of porous hollow fiber membrane
WO2015104871A1 (en) Porous hollow fiber membrane, method for producing same, and water purification method
JP2006088114A (en) Hydrophilic porous membrane
JP2002233739A (en) Porous hollow yarn composite membrane
JP2012040462A (en) Method for manufacturing modified porous hollow-fiber membrane, modified porous hollow-fiber membrane, module using modified porous hollow-fiber membrane, filtering device using modified porous hollow-fiber membrane, and filtering method using modified porous hollow-fiber membrane
WO2011027878A1 (en) Porous vinylidene fluoride resin membrane and process for producing same
JP2008093503A (en) Manufacturing method of porous hollow fiber membrane
JP2001157827A (en) Polyethylene hollow-fiber porous membrane
JP4312519B2 (en) Method for producing porous membrane
JP4810847B2 (en) Method for producing polyethylene-based hollow fiber porous membrane
JP2001087636A (en) Method for production of hollow fiber porous membrane made of polyethylene
JP4623780B2 (en) Melt casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070920

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100122

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100415

A131 Notification of reasons for refusal

Effective date: 20101026

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20101217

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20101220

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20110802

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124