JP2002233739A - Porous hollow yarn composite membrane - Google Patents

Porous hollow yarn composite membrane

Info

Publication number
JP2002233739A
JP2002233739A JP2001033583A JP2001033583A JP2002233739A JP 2002233739 A JP2002233739 A JP 2002233739A JP 2001033583 A JP2001033583 A JP 2001033583A JP 2001033583 A JP2001033583 A JP 2001033583A JP 2002233739 A JP2002233739 A JP 2002233739A
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
water
ethylene
alcohol copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001033583A
Other languages
Japanese (ja)
Other versions
JP2002233739A5 (en
Inventor
Tetsuo Shimizu
哲生 清水
Katsuhiko Hamanaka
克彦 濱中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001033583A priority Critical patent/JP2002233739A/en
Publication of JP2002233739A publication Critical patent/JP2002233739A/en
Publication of JP2002233739A5 publication Critical patent/JP2002233739A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ethylene/vinyl alcohol copolymer coated polyvinylidene fluoride porous hollow yarn membrane having dense pores and high water permeability desirable for use in filtration such as clarification and being excellent in pressure withstanding properties and antifouling properties. SOLUTION: This membrane comprises hollow yarns each of which comprises a polyvinylidene fluoride resin, the inner and outer surfaces of each of which and the surfaces of the pores of which are coated with an ethylene/vinyl alcohol copolymer, and which has a mean pore diameter of 0.05-1 μm and a porosity of 40-90%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、除濁等の濾過用途
に好適な緻密な細孔と高い透水性能を持ち、更に耐圧性
と耐汚染性にも優れるエチレン−ビニルアルコール共重
合体被覆ポリフッ化ビニリデン多孔性中空糸膜に関す
る。
TECHNICAL FIELD The present invention relates to an ethylene-vinyl alcohol copolymer-coated polyolefin having fine pores and high water permeability, which are suitable for filtration applications such as turbidity, and also has excellent pressure resistance and stain resistance. It relates to a vinylidene fluoride porous hollow fiber membrane.

【0002】[0002]

【従来の技術】精密濾過膜等の多孔性膜を用いた除菌や
除微粒子等の除濁操作は、従来より医薬食品産業(製品
の精製)や半導体産業(洗浄用の水や薬液の精製)等の
多方面にて実用化されてきたが、特に近年は河川水等を
除濁して飲料水や工業用水を製造する上水分野や、下水
(下水二次処理水)の除濁浄化等の下水分野への応用が
盛んになってきている。こうした分野で膜が広く使われ
るためには、有機物等による汚染(目詰まり)を起こさ
せないような処置が必要である。
2. Description of the Related Art Sterilization and turbidity removal of fine particles using a porous membrane such as a microfiltration membrane have conventionally been carried out in the pharmaceutical food industry (purification of products) and the semiconductor industry (purification of water and chemicals for washing. ), Etc., but in recent years, especially in recent years, the water supply field, which manufactures drinking water and industrial water by turbidizing river water, and the turbidity purification of sewage (secondary sewage water). Application to the sewage field is becoming active. In order for membranes to be widely used in such fields, measures must be taken to prevent contamination (clogging) by organic substances and the like.

【0003】膜素材としては一般に親水性を有する高分
子が好ましいと言われている。しかしながら親水性高分
子膜素材による精密濾過膜は、機械的な強度、特に耐圧
性に劣るという欠点を抱えている。
It is generally said that a hydrophilic polymer is preferable as a film material. However, a microfiltration membrane made of a hydrophilic polymer membrane material has a drawback of poor mechanical strength, particularly pressure resistance.

【0004】[0004]

【発明が解決しようとする課題】本発明は、除濁等の濾
過用途に好適な緻密な細孔と高い透水性能を持ち、更に
耐圧性と耐汚染性にも優れる多孔性中空糸膜を提供する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a porous hollow fiber membrane having fine pores and high water permeability, which is suitable for filtration applications such as turbidity, and which is excellent in pressure resistance and stain resistance. The purpose is to do.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を重ねた結果、中空糸内外表
面及び該微細孔表面をエチレン−ビニルアルコール共重
合体により被覆した耐圧性に優れるポリフッ化ビニリデ
ン多孔性中空糸複合膜が上記課題を解決できることを見
出し、本発明をなすに至った。すなわち、本発明は、ポ
リフッ化ビニリデン樹脂より成り、その中空糸内外表面
及び該微細孔表面がエチレン−ビニルアルコール共重合
体により被覆されている、平均孔径0.05μm以上1
μm以下、空孔率40%以上90%以下の多孔性中空糸
複合膜である。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the inner and outer surfaces of the hollow fiber and the surface of the micropores are coated with an ethylene-vinyl alcohol copolymer. The present inventors have found that a polyvinylidene fluoride porous hollow fiber composite membrane having excellent properties can solve the above problems, and have accomplished the present invention. That is, the present invention comprises a polyvinylidene fluoride resin, and the inner and outer surfaces of the hollow fiber and the surface of the fine pores are coated with an ethylene-vinyl alcohol copolymer.
It is a porous hollow fiber composite membrane having a porosity of 40 μm or less and a porosity of 90% or less.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に述べる。ポ
リフッ化ビニリデンは高強度で耐熱性が高いほか、骨格
が疎水性のために耐水性が高く本発明の素材として適し
ている。本発明に用いるポリフッ化ビニリデンは、フッ
化ビニリデンホモポリマー及びフッ化ビニリデン共重合
体等が挙げられ、或いは混合物も含む。重量平均分子量
が100000以上1000000未満であることが好
ましい。必要に応じて少量の酸化防止剤、紫外線吸収剤
等の安定剤、或いは少量の無機充填剤等を含んでいても
よい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. Polyvinylidene fluoride has high strength and high heat resistance, and has a high water resistance due to its hydrophobic skeleton, and is suitable as the material of the present invention. Examples of the polyvinylidene fluoride used in the present invention include a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer, and also include a mixture. It is preferable that the weight average molecular weight is 100000 or more and less than 1,000,000. If necessary, a small amount of a stabilizer such as an antioxidant or an ultraviolet absorber, or a small amount of an inorganic filler may be contained.

【0007】本発明に用いるポリフッ化ビニリデン多孔
性中空糸膜は特に限定はしないが、例えば特開平3−2
15535号公報に開示されているような、ポリフッ化
ビニリデン樹脂、有機液状体、疎水性シリカを混合した
後、溶融成形し、次いでかかる成形物より有機液状体及
び疎水性シリカを抽出して得られる多孔性中空糸膜を用
いることが好ましい。ポリフッ化ビニリデン多孔性中空
糸膜は素材由来の高強度であり耐圧性も高い。また疎水
性シリカの抽出には苛性ソーダのようなアルカリ水溶液
が用いられるが、このアルカリ処理はポリフッ化ビニリ
デン多孔性中空糸膜の表面の濡れ性を向上させるため、
エチレン−ビニルアルコール共重合体の被覆が効率良く
行われる。
[0007] The polyvinylidene fluoride porous hollow fiber membrane used in the present invention is not particularly limited.
No. 15535, obtained by mixing a polyvinylidene fluoride resin, an organic liquid, and hydrophobic silica, followed by melt molding, and then extracting the organic liquid and hydrophobic silica from the molded product. It is preferable to use a porous hollow fiber membrane. The polyvinylidene fluoride porous hollow fiber membrane has high strength derived from the material and high pressure resistance. In addition, an alkaline aqueous solution such as caustic soda is used for the extraction of hydrophobic silica, but this alkali treatment improves the wettability of the surface of the polyvinylidene fluoride porous hollow fiber membrane,
Coating of the ethylene-vinyl alcohol copolymer is performed efficiently.

【0008】エチレン−ビニルアルコール共重合体は、
耐汚染性、耐熱性に優れ、また水不溶性の素材であるた
め、被覆用素材として好適である。エチレン−ビニルア
ルコール共重合体は、例えばエチレンと酢酸ビニルとを
共重合させた後、酢酸ビニル由来の側鎖の酢酸エステル
部分を鹸化(加水分解)し、側鎖を水酸基に転化させる
ことにより合成される結晶性の熱可塑性樹脂である。本
発明に用いるエチレン−ビニルアルコール共重合体中の
エチレン含量は、被覆効率の観点から20モル%以上が
好ましく、耐汚染性の観点から60モル%以下が好まし
い。鹸化度は高いほど好ましく、機械的強度の観点から
80モル%以上が好ましい。特に好ましいのは鹸化度9
9モル%以上の、実質的に完全鹸化されたものである。
なお、エチレン−ビニルアルコール共重合体樹脂中に
は、必要に応じて酸化防止剤、滑剤等の添加物が、本発
明の目的を損なわない範囲で添加されてもよい。
[0008] The ethylene-vinyl alcohol copolymer is
Since it is a material having excellent stain resistance and heat resistance and being insoluble in water, it is suitable as a coating material. The ethylene-vinyl alcohol copolymer is synthesized, for example, by copolymerizing ethylene and vinyl acetate, then saponifying (hydrolyzing) an acetic ester portion of a side chain derived from vinyl acetate, and converting the side chain to a hydroxyl group. Crystalline thermoplastic resin. The ethylene content in the ethylene-vinyl alcohol copolymer used in the present invention is preferably 20 mol% or more from the viewpoint of coating efficiency, and is preferably 60 mol% or less from the viewpoint of stain resistance. The higher the degree of saponification, the better, and preferably 80 mol% or more from the viewpoint of mechanical strength. Particularly preferred is a degree of saponification of 9
9 mol% or more, substantially completely saponified.
In addition, additives such as an antioxidant and a lubricant may be added to the ethylene-vinyl alcohol copolymer resin as needed, as long as the object of the present invention is not impaired.

【0009】エチレン−ビニルアルコール共重合体を本
発明に用いるポリフッ化ビニリデン多孔性中空糸膜に被
覆するには、エチレン−ビニルアルコール共重合体を、
ポリフッ化ビニリデンは溶かさないがエチレン−ビニル
アルコール共重合体を溶かす溶剤、例えば水とイソプロ
ピルアルコールの混合溶液に溶かし、該エチレン−ビニ
ルアルコール共重合体溶液にポリフッ化ビニリデン多孔
性中空糸膜を数分間浸漬した後、乾燥すればエチレン−
ビニルアルコール共重合体被覆ポリフッ化ビニリデン多
孔性中空糸膜をつくることができる。
In order to coat the ethylene-vinyl alcohol copolymer on the polyvinylidene fluoride porous hollow fiber membrane used in the present invention, the ethylene-vinyl alcohol copolymer is
Polyvinylidene fluoride is not dissolved, but it is dissolved in a solvent for dissolving the ethylene-vinyl alcohol copolymer, for example, a mixed solution of water and isopropyl alcohol, and the polyvinylidene fluoride porous hollow fiber membrane is added to the ethylene-vinyl alcohol copolymer solution for several minutes. After immersion, if dried, ethylene-
A polyvinyl alcohol copolymer-coated polyvinylidene fluoride porous hollow fiber membrane can be produced.

【0010】本発明のエチレン−ビニルアルコール共重
合体被覆ポリフッ化ビニリデン多孔性中空糸膜の被覆量
は、有機物等に対する耐汚染性の効果の観点から0.1
wt%以上が好ましく、透水量の観点から10wt%以
下が好ましい。被覆量はより好ましくは0.5wt%〜
7wt%、さらに好ましくは1wt%〜5wt%であ
る。
[0010] The coating amount of the polyvinylidene fluoride porous hollow fiber membrane coated with the ethylene-vinyl alcohol copolymer of the present invention is 0.1 from the viewpoint of the stain resistance to organic substances and the like.
wt% or more is preferable, and 10 wt% or less is preferable from the viewpoint of water permeability. The coating amount is more preferably 0.5 wt% or more.
7 wt%, more preferably 1 wt% to 5 wt%.

【0011】本発明のエチレン−ビニルアルコール共重
合体被覆ポリフッ化ビニリデン多孔性中空糸膜の平均孔
径は、0.05μm以上1μm以下である。平均孔径
は、ASTM:F316−86に記載されている平均孔
径(mean flow pore size)の測定
方法(別称:ハーフドライ法)により測定できる。本発
明におけるハーフドライ法測定は、約10cm長の中空
糸膜に対し、使用液体にエタノールを用い、25℃、昇
圧速度0.001MPa/秒での測定を標準測定条件と
した。平均孔径は、下記の式より求めることができる。 平均孔径[μm]=2860×(使用液体の表面張力
[mN/m])/(ハーフドライ空気圧力[Pa]) エタノールの25℃における表面張力は21.97mN
/mであるので(日本化学会編、化学便覧基礎編改訂3
版、11−82項、丸善、1984年参考)、本発明に
おける標準測定条件の場合は、下記式にて平均孔径を求
めることができる。 平均孔径[μm]=62834/(ハーフドライ空気圧
力[Pa])
The average pore size of the polyvinylidene fluoride porous hollow fiber membrane coated with the ethylene-vinyl alcohol copolymer of the present invention is 0.05 μm or more and 1 μm or less. The average pore diameter can be measured by a method for measuring the average pore diameter (mean flow pore size) described in ASTM: F316-86 (also known as a half dry method). In the measurement by the half dry method in the present invention, measurement was performed on a hollow fiber membrane having a length of about 10 cm using ethanol as a liquid to be used at 25 ° C. and a pressure increase rate of 0.001 MPa / sec as a standard measurement condition. The average pore diameter can be determined by the following equation. Average pore diameter [μm] = 2860 × (surface tension of liquid used [mN / m]) / (half-dry air pressure [Pa]) The surface tension of ethanol at 25 ° C. is 21.97 mN.
/ M (The Chemical Society of Japan, Basic Handbook of Chemical Handbook, Revised 3)
Plate, paragraphs 11-82, Maruzen, 1984), and in the case of standard measurement conditions in the present invention, the average pore size can be determined by the following formula. Average pore size [μm] = 62834 / (half dry air pressure [Pa])

【0012】一般に平均孔径と透水抵抗は反比例の関係
にある。平均孔径が小さいほど透水抵抗が大きくなり、
膜の透水性能は低下する。平均孔径は透水性能の観点か
ら0.05μm以上が好ましく、濁質物質等の阻止性能
の観点から0.6μm以下が好ましい。さらに好ましく
は0.1μm以上0.4μm以下である。本発明のエチ
レン−ビニルアルコール共重合体被覆ポリフッ化ビニリ
デン多孔性中空糸膜の空孔率は、透過性能の観点から4
0%以上であり、強度の観点から90%以下である。好
ましくは50%〜80%、さらに好ましくは55%〜7
5%である。空孔率は、膜の表面のみでなく、膜全体と
しての空孔性を表す指標である。
Generally, the average pore diameter and the water permeability have an inversely proportional relationship. The smaller the average pore size, the greater the permeation resistance,
The permeability of the membrane is reduced. The average pore diameter is preferably 0.05 μm or more from the viewpoint of water permeability, and is preferably 0.6 μm or less from the viewpoint of blocking performance of turbid substances and the like. More preferably, it is 0.1 μm or more and 0.4 μm or less. The porosity of the polyvinylidene fluoride porous hollow fiber membrane coated with the ethylene-vinyl alcohol copolymer of the present invention is 4 from the viewpoint of permeability.
0% or more, and 90% or less from the viewpoint of strength. Preferably 50% to 80%, more preferably 55% to 7%
5%. The porosity is an index indicating the porosity of not only the surface of the film but also the entire film.

【0013】本発明のエチレン−ビニルアルコール共重
合体被覆ポリフッ化ビニリデン多孔性中空糸膜の内径
は、中空糸管内を流れる液の抵抗(圧力損失)の観点か
ら0.3mm以上が好ましく、単位体積当たりの充填膜
面積の観点から3mm以下が好ましい。より好ましくは
0.5mm以上1.5mm以下である。また、本発明の
エチレン−ビニルアルコール共重合体被覆ポリフッ化ビ
ニリデン多孔性中空糸膜の膜厚は、膜強度の観点から
0.05mm以上が好ましく、透水抵抗の観点から1m
m以下が好ましい。
The internal diameter of the polyvinylidene fluoride porous hollow fiber membrane coated with the ethylene-vinyl alcohol copolymer of the present invention is preferably 0.3 mm or more from the viewpoint of the resistance (pressure loss) of the liquid flowing through the hollow fiber tube, and the unit volume is It is preferably 3 mm or less from the viewpoint of the packed film area per unit. More preferably, it is 0.5 mm or more and 1.5 mm or less. Further, the thickness of the ethylene-vinyl alcohol copolymer-coated polyvinylidene fluoride porous hollow fiber membrane of the present invention is preferably 0.05 mm or more from the viewpoint of membrane strength, and 1 m from the viewpoint of water resistance.
m or less is preferable.

【0014】以下に本発明の実施例を示すが、本発明は
これに限定されるものではない。なお、本実施例に示す
膜の諸特性値は、以下の方法により測定した。 1)平均孔径:ASTM:F316−86に準拠し、本
文中に記載した本発明の標準測定条件にて測定した。 2)空孔率:膜の表面のみでなく、膜全体としての空孔
性を表す指標である。空孔率は下記式より決定した。 空孔率[%]=100{(湿潤膜質量[g])−(乾燥
膜質量[g])}/{(水の密度[g/cm3])(湿潤時
の膜体積[cm3])} ここで湿潤膜とは、孔内は水が満たされているが中空部
内は水が入っていない状体の膜を指し、具体的には10
〜20cm長のサンプル膜をエタノール中に浸漬して孔
内をエタノールで満たした後に水浸漬を5回繰り返して
孔内を十分に水で置換し、しかる後に中空糸の一端を手
で持って10回ほど良く振り、さらに他端に手を持ちか
えて10回ほど振って中空部内の水を除去し、さらに膜
の外表面についた水を拭き取ることで得た。乾燥膜は、
上記湿潤膜の質量測定後にオーブン中で60℃で恒温に
なるまで乾燥させて得た。湿潤時の膜体積は、 湿潤時の膜体積[cm3]=π{(外径[cm]/2)2
−(内径[cm]/2)2}(膜長[cm]) より求めた。膜1本では質量が少なすぎて質量測定の誤
差が大きくなるため、複数本の膜を用いて質量測定を行
った。
Examples of the present invention will be described below, but the present invention is not limited to these examples. In addition, various characteristic values of the film shown in this example were measured by the following methods. 1) Average pore size: Measured according to ASTM: F316-86 under the standard measurement conditions of the present invention described in the text. 2) Porosity: This is an index indicating the porosity of not only the surface of the film but also the entire film. The porosity was determined by the following equation. Porosity [%] = 100 {(wet membrane mass [g])-(dry membrane mass [g])} / {(water density [g / cm 3 ]) (wet membrane volume [cm 3 ] Here, the term “wet membrane” refers to a membrane in which pores are filled with water but hollows are not filled with water.
A sample membrane having a length of about 20 cm is immersed in ethanol to fill the inside of the hole with ethanol, and then repeatedly immersed in water five times to sufficiently replace the inside of the hole with water, and then holding one end of the hollow fiber by hand. The film was obtained by shaking the film about twice, holding the hand at the other end, and shaking the film about 10 times to remove water in the hollow portion, and wiping off water on the outer surface of the membrane. The dried membrane is
After the mass measurement of the wet film, the film was dried in an oven at 60 ° C. until the temperature became constant. The membrane volume at the time of moistening is the membrane volume at the time of moistening [cm 3 ] = π {(outer diameter [cm] / 2) 2
− (Inner diameter [cm] / 2) 2 } (film length [cm]). Since the mass of one film was too small and the error of the mass measurement was large, the mass measurement was performed using a plurality of films.

【0015】3)純水透水率:エタノール浸漬したのち
数回純水浸漬を繰り返した約10cm長の湿潤中空糸膜
の一端を封止し、他端の中空部内へ注射針を入れ、25
℃の環境下にて注射針から0.1MPaの圧力にて25
℃の純水を中空部内へ注入し、外面から透過してくる純
水の透過水量を測定し、以下の式より純水透水率を決定
した。 純水透水率[L/m2/hr]=透過水量[L]/(π×膜内
径[m]×膜有効長[m]× 測定時間[hr]) ここに膜有効長とは、注射針が挿入されている部分を除
いた、正味の膜長を指す。
3) Pure water permeability: One end of a wet hollow fiber membrane having a length of about 10 cm, which was repeatedly immersed in pure water several times after immersion in ethanol, was sealed, and an injection needle was inserted into the hollow portion at the other end.
25 ° C at a pressure of 0.1 MPa from the injection needle in an environment of
C. Pure water was injected into the hollow part, the amount of pure water permeating from the outer surface was measured, and the pure water permeability was determined by the following equation. Pure water permeability [L / m 2 / hr] = Permeated water amount [L] / (π × membrane inner diameter [m] × membrane effective length [m] × measurement time [hr]) Here, the effective membrane length means injection Refers to the net membrane length excluding the part where the needle is inserted.

【0016】4)破断強度、破断伸度および引っ張り弾
性率:引っ張り試験機(島津製作所製:オートグラフA
G−A型)を用い、中空糸をチャック間距離50mm、
引っ張り速度200mm/分にて引っ張り、破断時の荷
重と変位から、以下の式により破断強度および破断伸度
を決定した。 破断強度[Pa]=破断時荷重[N]/膜断面積[m2] ここで、膜断面積[m2]=π{(外径[m]/2)2−(内
径[m]/2)2}である。 破断伸度[%]=100×破断時変位[mm]/50[mm] 引っ張り弾性率[Pa]: 上記引っ張り試験の際の0.
1%変位荷重と5%変位荷重から100%変位時の荷重
を求め断面積で除して求めた。破断強度、破断伸度およ
び引っ張り弾性率を測定する際は、膜をエタノール浸漬
したのち数回純水浸漬を繰り返し水に置換した湿潤膜を
用いた。
4) Breaking strength, breaking elongation and tensile modulus: tensile tester (manufactured by Shimadzu Corporation: Autograph A)
GA type), the hollow fiber is inserted into the chuck at a distance of 50 mm,
Pulling was performed at a pulling speed of 200 mm / min, and the breaking strength and breaking elongation were determined from the load and displacement at the time of breaking according to the following equations. Breaking strength [Pa] = Load at break [N] / Film cross-sectional area [m 2 ] Here, film cross-sectional area [m 2 ] = π {(outer diameter [m] / 2) 2 − (inner diameter [m] / 2) 2 }. Elongation at break [%] = 100 x Displacement at break [mm] / 50 [mm] Tensile modulus [Pa]: 0.
The load at 100% displacement was obtained from the 1% displacement load and the 5% displacement load and divided by the cross-sectional area. When measuring the breaking strength, the breaking elongation and the tensile modulus, a wet film was used in which the film was immersed in ethanol and then repeatedly immersed in pure water several times and replaced with water.

【0017】5)圧縮弾性率:圧縮測定機(島津製作所
製:AGS−H/EZTest)で5mm幅の圧縮用治
具を用い中空糸膜の長さ5mm分について圧縮変位と荷
重を測る。圧縮速度1mm/min。初期中空糸膜直径
に対して0.1%変位時と5%変位時の荷重から100
%変位時の荷重を求め、初期中空糸直径と中空糸膜長
0.5cmで得られる投影断面積で規格化し圧縮弾性率
とした。膜は、エタノール浸漬したのち数回純水浸漬を
繰り返し水に置換した湿潤膜を用いた。 6)被覆量:エチレン−ビニルアルコール共重合体の被
覆量は以下の式により決定した。 被覆量(wt%)=100{(エチレン−ビニルアルコ
ール共重合体被覆ポリフッ化ビニリデン乾燥膜質量
[g])−(ポリフッ化ビニリデン乾燥膜質量
[g])}/(エチレン−ビニルアルコール共重合体被
覆ポリフッ化ビニリデン乾燥膜質量[g]) 乾燥膜は、オーブン中で60℃で恒温になるまで乾燥さ
せて得た。
5) Compression elastic modulus: A compression measuring instrument (AGS-H / EZTest, manufactured by Shimadzu Corporation) is used to measure the compression displacement and load for a length of 5 mm of the hollow fiber membrane using a compression jig having a width of 5 mm. Compression speed 1 mm / min. From the load at the time of 0.1% displacement and 5% displacement to the initial hollow fiber membrane diameter, 100
The load at the time of% displacement was determined, and the compression elastic modulus was normalized by the initial hollow fiber diameter and the projected sectional area obtained with the hollow fiber membrane length of 0.5 cm. As the film, a wet film was used which was repeatedly immersed in pure water several times after immersion in ethanol and replaced with water. 6) Coating amount: The coating amount of the ethylene-vinyl alcohol copolymer was determined by the following formula. Coating amount (wt%) = 100 {(weight of ethylene-vinyl alcohol copolymer-coated polyvinylidene fluoride dry film [g])-(weight of polyvinylidene fluoride dry film [g])} / (ethylene-vinyl alcohol copolymer) Mass of coated polyvinylidene fluoride dry film [g]) The dry film was obtained by drying in an oven at 60 ° C until the temperature became constant.

【0018】7)懸濁水濾過時の透水性能保持率:目詰
まり(膜汚染)による透水性能劣化に対する耐性(耐汚
染性)を判断するための指標として測定した。湿潤中空
糸膜を、膜有効長11cmにて外圧方式にて濾過を行っ
た(図1)。まず初めに純水の濾過を行って透過水を2
分間採取し、初期純水透水量とした。次いで、懸濁水で
ある下水二次処理水を、初期純水透水量を測定したとき
と同じ濾過圧力にて30分間濾過を行い、濾過28分目か
ら30分目までの2分間透過水を採取し、懸濁水濾過時
透水量とした。懸濁水濾過時の透水性能保持率を、下記
の式で定義した。操作は全て25℃、膜面線速0.1m
/秒、濾過圧力0.05MPaにて行った。 懸濁水濾過時の透水性能保持率[%]=100(懸濁水
濾過時透水量[g])/(初期純水透水量[g]) なお、 濾過圧力={(入圧)+(出圧)}/2 膜外表面積[m2]=π×(糸外径[m])×(膜有効
長[m]) 膜面線速[m/s]=4(循環水量[m3])/{π
(チューブ径[m])2−π(膜外径[m])2
7) Permeability retention rate during suspension water filtration: Measured as an index for judging the resistance to water permeability degradation (contamination resistance) due to clogging (membrane contamination). The wet hollow fiber membrane was filtered by an external pressure method at an effective membrane length of 11 cm (FIG. 1). First, pure water is filtered to reduce permeated water to 2
Minutes were collected for an initial amount of pure water permeation. Next, the sewage secondary treatment water as the suspension water is filtered for 30 minutes at the same filtration pressure as when the initial pure water permeability was measured, and the permeated water was collected for 2 minutes from the 28th to the 30th minute of the filtration. Then, the amount of water permeated at the time of filtration of the suspension was determined. The retention rate of water permeability during filtration of suspension water was defined by the following equation. All operations are at 25 ° C and linear velocity of film surface is 0.1m
/ Sec, at a filtration pressure of 0.05 MPa. Permeability retention rate [%] = 100 (water permeability [g] during suspension water filtration) / (initial pure water permeability [g]) Filtration pressure = な お (input pressure) + (output pressure) )} / 2 Membrane outer surface area [m 2 ] = π × (yarn outer diameter [m]) × (membrane effective length [m]) Membrane surface linear velocity [m / s] = 4 (circulating water amount [m 3 ]) / {Π
(Tube diameter [m]) 2 -π (membrane outer diameter [m]) 2

【0019】本発明を実施例に基づいて説明する。The present invention will be described based on examples.

【0020】[0020]

【実施例1】Mw値(粉体が完全に濡れるメタノールの
容量%)が50%、平均一次粒径0.016μm、比表
面積110m2/gの疎水性シリカ(日本アエロジル
製:アエロジルR−972(商品名))23wt%、フ
タル酸ジオクチル30.8wt%、フタル酸ジブチル
6.2wt%をヘンシェルミキサーで混合し、これに重
量平均分子量242000のポリフッ化ビニリデン(呉
羽化学工業製:クレハKFポリマー#1000(商品
名))40wt%を添加し再度ヘンシェルミキサーで混
合した。該混合物を30mmφ二軸押し出し機で混合
し、ペレットにした。
Example 1 Hydrophobic silica (Aerosil R-972 manufactured by Nippon Aerosil Co., Ltd.) having an Mw value (volume% of methanol in which the powder is completely wetted) of 50%, an average primary particle size of 0.016 μm, and a specific surface area of 110 m 2 / g (Trade name)) 23 wt%, 30.8 wt% of dioctyl phthalate, 6.2 wt% of dibutyl phthalate were mixed with a Henschel mixer, and the mixture was mixed with polyvinylidene fluoride having a weight average molecular weight of 242,000 (Kureha KF polymer # manufactured by Kureha Chemical Industry Co., Ltd.) 1000 (trade name)) and mixed again with a Henschel mixer. The mixture was mixed with a 30 mmφ twin screw extruder to form pellets.

【0021】このペレットを30mmφ二軸押し出し機
に中空糸状紡口を取り付けた中空糸製造装置にて空中を
経て40℃の水槽中に20m/minの紡速で溶融押し
出しして中空糸状に成形し、カセで巻き取った。ついで
巻き取った膜を30℃の塩化メチレン中に1時間浸漬を
3回繰り返してフタル酸ジオクチル、フタル酸ジブチル
を抽出した後、乾燥させた。ついで50%エタノール水
溶液に30分間浸漬し、更に水中に移して30分間浸漬
して、中空糸を水で濡らした。更に40℃の5%苛性ソ
ーダ水溶液中への1時間浸漬を2回行い疎水性シリカを
抽出した後、60℃の熱水で12hr水洗し、乾燥する
ことで、ポリフッ化ビニリデン多孔性中空糸膜を得た。
The pellets were melted and extruded into a 40 mm water bath at a spinning speed of 20 m / min through the air at a spinning speed of 20 m / min by a hollow fiber manufacturing apparatus equipped with a 30 mmφ biaxial extruder equipped with a hollow fiber spinneret to form a hollow fiber. , Wound with a scallop. Then, the wound film was repeatedly immersed in methylene chloride at 30 ° C. for 1 hour three times to extract dioctyl phthalate and dibutyl phthalate, and then dried. Then, the hollow fiber was immersed in a 50% ethanol aqueous solution for 30 minutes, transferred to water and immersed for 30 minutes to wet the hollow fiber with water. Further, after immersing twice in a 5% aqueous solution of caustic soda at 40 ° C. for 2 hours to extract hydrophobic silica, the polymer was washed with hot water at 60 ° C. for 12 hours and dried to form a porous hollow fiber membrane of polyvinylidene fluoride. Obtained.

【0022】エチレン−ビニルアルコール共重合体(日
本合成化学工業製:ソアノールET3803、エチレン
含量38モル%)を水とイソプロピルアルコールの50
wt%ずつの混合溶液100質量部に対し3質量部加熱
混合し溶かした。68℃の該エチレン−ビニルアルコー
ル共重合体溶液中に上記のポリフッ化ビニリデン多孔性
中空糸膜を5分間完全に浸漬し、溶液中から取り出した
中空糸膜を30分間室温で風乾、ついで60℃で1時間
乾燥することで、エチレン−ビニルアルコール共重合体
被覆ポリフッ化ビニリデン多孔性中空糸膜を得た。
An ethylene-vinyl alcohol copolymer (manufactured by Nippon Synthetic Chemical Industry: Soarnol ET3803, ethylene content: 38 mol%) was prepared by adding 50 parts of water and isopropyl alcohol.
3 parts by mass of 100 parts by mass of the mixed solution of each wt% were heated and dissolved. The polyvinylidene fluoride porous hollow fiber membrane was completely immersed in the ethylene-vinyl alcohol copolymer solution at 68 ° C for 5 minutes, and the hollow fiber membrane taken out of the solution was air-dried for 30 minutes at room temperature, and then dried at 60 ° C. For 1 hour to obtain an ethylene-vinyl alcohol copolymer-coated polyvinylidene fluoride porous hollow fiber membrane.

【0023】得られたエチレン−ビニルアルコール共重
合体被覆ポリフッ化ビニリデン多孔性中空糸膜の性能
は、外径1.27mm、内径0.68mm、膜厚0.3
0mmで、空孔率61%、ハーフドライ法による平均孔
径は0.19μmであった。純水透水量は1500L/
2/hrであった。引っ張り破断強度は8.2MP
a、破断伸度は240%、引っ張り弾性率は74.0M
Paであった。圧縮弾性率は8.3MPaであった。被
覆量は2.6wt%であった。懸濁水濾過時の透水性能
保持率は25%であった。膜断面写真からは均質な連通
孔からなる三次元の網目状構造を有し、内部に10μm
以上のマクロボイドは認められなかった。
The performance of the obtained ethylene-vinyl alcohol copolymer-coated polyvinylidene fluoride porous hollow fiber membrane was 1.27 mm in outer diameter, 0.68 mm in inner diameter, and 0.3 mm in film thickness.
The diameter was 0 mm, the porosity was 61%, and the average pore diameter by the half dry method was 0.19 μm. Pure water permeability is 1500L /
m 2 / hr. Tensile breaking strength is 8.2MP
a, elongation at break is 240%, tensile modulus is 74.0M
Pa. The compression modulus was 8.3 MPa. The coating amount was 2.6% by weight. The retention rate of water permeability during filtration of the suspension was 25%. According to the cross-sectional photograph of the membrane, it has a three-dimensional network structure consisting of homogeneous communication holes, and 10 μm inside.
The above macro voids were not recognized.

【0024】[0024]

【比較例1】実施例1においてエチレン−ビニルアルコ
ール共重合体を被覆しなかったこと以外は同様にしてポ
リフッ化ビニリデン多孔性中空糸膜を得た。得られたポ
リフッ化ビニリデン多孔性中空糸膜の性能は、外径1.
27mm、内径0.68mm、膜厚0.30mmで、空
孔率63%、ハーフドライ法による平均孔径は0.21
μmであった。純水透水量は2200L/m2/hrで
あった。引っ張り破断強度は8.0MPa、破断伸度は
240%、引っ張り弾性率は73.0MPaであった。
圧縮弾性率は8.4MPaであった。被覆量は0wt%
であった。懸濁水濾過時の透水性能保持率は14%であ
った。
Comparative Example 1 A polyvinylidene fluoride porous hollow fiber membrane was obtained in the same manner as in Example 1, except that the ethylene-vinyl alcohol copolymer was not coated. The performance of the obtained polyvinylidene fluoride porous hollow fiber membrane was as follows.
27 mm, inner diameter 0.68 mm, film thickness 0.30 mm, porosity 63%, average hole diameter by half dry method is 0.21
μm. The pure water permeability was 2,200 L / m 2 / hr. The tensile strength at break was 8.0 MPa, the elongation at break was 240%, and the tensile modulus was 73.0 MPa.
The compression modulus was 8.4 MPa. 0 wt% coating amount
Met. The permeability retention rate during suspension water filtration was 14%.

【0025】[0025]

【比較例2】2軸混練押し出し機(東芝機械製TEM−
35B−10/1V)中の上流側にホッパーからエチレ
ン−ビニルアルコール共重合体(日本合成化学工業製:
ソアノールET3803、エチレン含量38モル%)1
8.5質量部と微粉シリカ(日本シリカ工業製:NIP
SIL−LP)15.1質量部との混合粉体を供給し、
ホッパーからの供給口の少し下流側にプランジャーポン
プにてグリセリン66.4質量部を供給した。
[Comparative Example 2] Twin-screw kneading extruder (TEM-
35B-10 / 1V), an ethylene-vinyl alcohol copolymer (manufactured by Nippon Synthetic Chemical Industry:
Soarnol ET3803, ethylene content 38 mol%) 1
8.5 parts by mass and finely divided silica (NIPPON SILICA INDUSTRY: NIP
(SIL-LP) 15.1 parts by mass of a mixed powder,
66.4 parts by mass of glycerin was supplied by a plunger pump slightly downstream of the supply port from the hopper.

【0026】2軸混練押し出し機中でこれら3者を加熱
混練して溶融混合させ(165℃)、押し出し機先端の
ヘッド(165℃)内の押し出し口に装着した中空糸成
形用紡口の押し出し面にある外径1.58mm、内径
0.83mmの溶融物押し出し用円環穴から上記溶融混
合物を押し出し、そして溶融物押し出し用円環穴の内側
にある直径0.6mmの中空部形成流体吐出用の円形穴
から中空部形成流体としてグリセリンを吐出させ、中空
糸状押し出し物の中空部内に注入した。
The three components are heated and kneaded in a twin-screw kneading extruder to be melt-mixed (165 ° C.), and extrude a hollow fiber forming spout attached to an extruding port in a head (165 ° C.) at the tip of the extruder. The above-mentioned molten mixture is extruded from an annular hole for extruding a melt having an outer diameter of 1.58 mm and an inner diameter of 0.83 mm on the surface, and a hollow part forming fluid having a diameter of 0.6 mm inside the annular hole for extruding the melt is ejected. Glycerin was discharged as a hollow part forming fluid from the circular hole for injection and injected into the hollow part of the hollow fiber extrudate.

【0027】紡口から空気中に押し出した中空糸状押し
出し物を、1.5cmの空中走行距離を経て水浴中(3
0℃)へ導き、水浴中を約2m通過させた後張力をかけ
ることなく24m/分の速度で巻き取った。得られた中
空糸状物を20wt%NaOH水溶液中に80℃にて2
時間浸漬することで膜中のグリセリンおよびシリカを抽
出除去し、水洗後25℃にて半日乾燥させ、エチレン−
ビニルアルコール共重合体多孔性中空糸膜を得た。
The extruded hollow fiber extruded into the air from the spinneret was placed in a water bath (3 cm) through an air traveling distance of 1.5 cm.
0 ° C.), passed through a water bath for about 2 m, and wound at a speed of 24 m / min without applying tension. The obtained hollow fiber is placed in a 20 wt% NaOH aqueous solution at 80 ° C. for 2 hours.
Glycerin and silica in the membrane were extracted and removed by immersion for an hour, washed with water, dried at 25 ° C. for half a day,
A vinyl alcohol copolymer porous hollow fiber membrane was obtained.

【0028】得られたエチレン−ビニルアルコール共重
合体多孔性中空糸膜の性能は、外径1.21mm、内径
0.67mm、膜厚0.27mmで、ハーフドライ法に
よる平均孔径は0.25μmであった。純水透水量は2
700L/m2/hrであった。引っ張り破断強度は
1.7MPa、破断伸度は125%、引っ張り弾性率は
11.2MPaであった。圧縮弾性率は0.2MPaで
あった。懸濁水濾過時の透水性能保持率は、30%であ
った。
The performance of the obtained ethylene-vinyl alcohol copolymer porous hollow fiber membrane was 1.21 mm in outer diameter, 0.67 mm in inner diameter, and 0.27 mm in film thickness, and the average pore diameter by a half dry method was 0.25 μm. Met. Pure water permeability is 2
It was 700 L / m 2 / hr. The tensile strength at break was 1.7 MPa, the elongation at break was 125%, and the tensile modulus was 11.2 MPa. The compression modulus was 0.2 MPa. The retention rate of water permeability during filtration of the suspension was 30%.

【0029】[0029]

【発明の効果】本発明により、除濁等の濾過用途に好適
な緻密な細孔と高い透水性能を持ち、更に耐圧性と耐汚
染性にも優れる多孔性中空糸膜の提供が可能となった。
According to the present invention, it is possible to provide a porous hollow fiber membrane having fine pores suitable for filtration such as turbidity, high water permeability, and excellent pressure resistance and contamination resistance. Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】中空糸膜を外圧にて濾過するための装置概略図
である。
FIG. 1 is a schematic diagram of an apparatus for filtering a hollow fiber membrane at an external pressure.

【符号の説明】[Explanation of symbols]

1 ・・・ 原水 2 ・・・ チューブポンプ 3 ・・・ 圧力計(入圧) 4 ・・・ コネクタ 5 ・・・ 中空糸膜 6 ・・・ チューブ(内径3mm) 7 ・・・ エポキシ樹脂 8 ・・・ 注射針 9 ・・・ 透過水 10・・・ シリコンキャップ 11・・・ 圧力計(出圧) 12・・・ バルブ 13・・・ シリコンチューブ 14・・・ 供給水 15・・・ 循環水 DESCRIPTION OF SYMBOLS 1 ... Raw water 2 ... Tube pump 3 ... Pressure gauge (input pressure) 4 ... Connector 5 ... Hollow fiber membrane 6 ... Tube (inner diameter 3mm) 7 ... Epoxy resin 8・ ・ Injection needle 9 ・ ・ ・ Permeated water 10 ・ ・ ・ Silicon cap 11 ・ ・ ・ Pressure gauge (output pressure) 12 ・ ・ ・ Valve 13 ・ ・ ・ Silicon tube 14 ・ ・ ・ Supply water 15 ・ ・ ・ Circulating water

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/44 C02F 1/44 K // B01D 61/14 B01D 61/14 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/44 C02F 1/44 K // B01D 61/14 B01D 61/14

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリフッ化ビニリデン樹脂より成り、そ
の中空糸内外表面及び該微細孔表面がエチレン−ビニル
アルコール共重合体により被覆されている、平均孔径
0.05μm以上1μm以下、空孔率40%以上90%以
下の多孔性中空糸複合膜。
1. An average pore diameter of 0.05 μm or more and 1 μm or less, and a porosity of 40%, comprising a polyvinylidene fluoride resin, wherein the inner and outer surfaces of the hollow fiber and the surface of the fine pores are covered with an ethylene-vinyl alcohol copolymer. 90 to 90% or less of a porous hollow fiber composite membrane.
JP2001033583A 2001-02-09 2001-02-09 Porous hollow yarn composite membrane Pending JP2002233739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001033583A JP2002233739A (en) 2001-02-09 2001-02-09 Porous hollow yarn composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001033583A JP2002233739A (en) 2001-02-09 2001-02-09 Porous hollow yarn composite membrane

Publications (2)

Publication Number Publication Date
JP2002233739A true JP2002233739A (en) 2002-08-20
JP2002233739A5 JP2002233739A5 (en) 2008-02-14

Family

ID=18897313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001033583A Pending JP2002233739A (en) 2001-02-09 2001-02-09 Porous hollow yarn composite membrane

Country Status (1)

Country Link
JP (1) JP2002233739A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092257A1 (en) 2003-04-16 2004-10-28 Kureha Corporation Porous film of vinylidene fluoride resin and method for producing same
WO2007043553A1 (en) 2005-10-13 2007-04-19 Asahi Kasei Chemicals Corporation Porous multilayered hollow-fiber membrane and process for producing the same
KR100850167B1 (en) 2006-04-27 2008-08-04 웅진케미칼 주식회사 PVDF membrane with high porosity and permeation and method for manufacturing the same
CN100417434C (en) * 2006-05-19 2008-09-10 广州美能材料科技有限公司 Process for preparing composite hollow fiber membrane
JP2008253922A (en) * 2007-04-05 2008-10-23 Asahi Kasei Chemicals Corp Method for filtering suspension water
US20090176052A1 (en) * 2004-08-13 2009-07-09 Mcmaster University Composite material comprising a non-crosslinked gel polymer
JP2011011211A (en) * 2001-03-06 2011-01-20 Asahi Kasei Chemicals Corp Method for producing hollow fiber membrane
US7883767B2 (en) 2004-09-30 2011-02-08 Mcmaster University Composite material comprising layered hydrophilic coatings
WO2011093241A1 (en) * 2010-01-28 2011-08-04 東レ株式会社 Method for producing chemicals by continuous fermentation
WO2015008668A1 (en) 2013-07-18 2015-01-22 株式会社クラレ Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893734A (en) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd Production of porous membrane of hydrophilic polyvinylidene fluoride resin
JPS62267340A (en) * 1986-05-01 1987-11-20 ポ−ル・コ−ポレ−ション Polyvinylidene difluoride structure and its production
JPH09117643A (en) * 1995-08-18 1997-05-06 Mitsubishi Rayon Co Ltd Hollow fiber membrane module
WO1999010090A1 (en) * 1997-08-25 1999-03-04 Korea Research Institute Of Chemical Technology Polyion complex separation membrane with a double structure
WO1999020378A1 (en) * 1997-10-20 1999-04-29 Korea Research Institute Of Chemical Technology A manufacturing method of composite membrane having hydrophilic coating layer on hydrophobic support membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893734A (en) * 1981-11-30 1983-06-03 Asahi Chem Ind Co Ltd Production of porous membrane of hydrophilic polyvinylidene fluoride resin
JPS62267340A (en) * 1986-05-01 1987-11-20 ポ−ル・コ−ポレ−ション Polyvinylidene difluoride structure and its production
JPH09117643A (en) * 1995-08-18 1997-05-06 Mitsubishi Rayon Co Ltd Hollow fiber membrane module
WO1999010090A1 (en) * 1997-08-25 1999-03-04 Korea Research Institute Of Chemical Technology Polyion complex separation membrane with a double structure
WO1999020378A1 (en) * 1997-10-20 1999-04-29 Korea Research Institute Of Chemical Technology A manufacturing method of composite membrane having hydrophilic coating layer on hydrophobic support membrane

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011211A (en) * 2001-03-06 2011-01-20 Asahi Kasei Chemicals Corp Method for producing hollow fiber membrane
WO2004092257A1 (en) 2003-04-16 2004-10-28 Kureha Corporation Porous film of vinylidene fluoride resin and method for producing same
US20090176052A1 (en) * 2004-08-13 2009-07-09 Mcmaster University Composite material comprising a non-crosslinked gel polymer
US7883767B2 (en) 2004-09-30 2011-02-08 Mcmaster University Composite material comprising layered hydrophilic coatings
JP2010227932A (en) * 2005-10-13 2010-10-14 Asahi Kasei Chemicals Corp Porous multilayered hollow-fiber membrane and process for producing the same
JPWO2007043553A1 (en) * 2005-10-13 2009-04-16 旭化成ケミカルズ株式会社 Porous multilayer hollow fiber membrane and method for producing the same
KR100966718B1 (en) * 2005-10-13 2010-06-29 아사히 가세이 케미칼즈 가부시키가이샤 Porous multilayered hollow-fiber membrane and process for producing the same
JP4563457B2 (en) * 2005-10-13 2010-10-13 旭化成ケミカルズ株式会社 Porous multilayer hollow fiber membrane and method for producing the same
US8137800B2 (en) 2005-10-13 2012-03-20 Asahi Kasei Chemicals Corporation Porous multilayered hollow-fiber membrane and process for producing the same
WO2007043553A1 (en) 2005-10-13 2007-04-19 Asahi Kasei Chemicals Corporation Porous multilayered hollow-fiber membrane and process for producing the same
EP2260931A3 (en) * 2005-10-13 2012-03-21 Asahi Kasei Chemicals Corporation Porous multilayered hollow-fiber membrane and process for producing the same
KR100850167B1 (en) 2006-04-27 2008-08-04 웅진케미칼 주식회사 PVDF membrane with high porosity and permeation and method for manufacturing the same
CN100417434C (en) * 2006-05-19 2008-09-10 广州美能材料科技有限公司 Process for preparing composite hollow fiber membrane
JP2008253922A (en) * 2007-04-05 2008-10-23 Asahi Kasei Chemicals Corp Method for filtering suspension water
WO2011093241A1 (en) * 2010-01-28 2011-08-04 東レ株式会社 Method for producing chemicals by continuous fermentation
WO2015008668A1 (en) 2013-07-18 2015-01-22 株式会社クラレ Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
KR20160033169A (en) 2013-07-18 2016-03-25 가부시키가이샤 구라레 Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
US10406487B2 (en) 2013-07-18 2019-09-10 Kuraray Co., Ltd. Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5371058B2 (en) Hollow fiber membrane
CN100500272C (en) Halar membranes
KR101930147B1 (en) Hollow fiber membrane, and method for producing hollow fiber membrane
US20040191894A1 (en) Membrane polymer compositions
US10406487B2 (en) Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
JP5546992B2 (en) Method for producing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filtration device using porous hollow fiber membrane, and water treatment method using porous hollow fiber membrane
JP2014240071A (en) Modified porous hollow fiber membrane, manufacturing method of modified porous hollow fiber membrane, module using modified porous hollow fiber membrane, filtration device and water treatment method
JP4869272B2 (en) Porous multilayer hollow fiber membrane
JP5050499B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
JP2015073916A (en) Porous hollow fiber membrane, and manufacturing method of the same
KR20190045361A (en) Porous hollow fiber membranes and methods for producing porous hollow fiber membranes
JP2002233739A (en) Porous hollow yarn composite membrane
JP6226795B2 (en) Method for producing hollow fiber membrane
JP6419917B2 (en) Method for producing hollow fiber membrane
JP5778489B2 (en) Method for producing hydrophilic porous membrane, hydrophilizing agent, hydrophilic porous membrane, and method for hydrophilizing porous membrane
JP4666530B2 (en) Method for producing hollow fiber membrane
JP2006281202A (en) Hollow fiber membrane, dipped type membrane module using it, separating apparatus, and production method of hollow fiber membrane
JPWO2014148470A1 (en) Porous hollow fiber membrane and method for producing porous hollow fiber membrane
JP3979751B2 (en) Method for filtering oxidant-containing water
JPH0445830A (en) Production of conjugate hollow-fiber membrane
JP2002136851A (en) Ethylene-vinyl alcohol copolymer porous hollow fiber membrane and manufacturing method thereof
JP7351822B2 (en) Hollow fiber membrane and method for manufacturing hollow fiber membrane
JP2005152900A (en) Production method of vinylidene fluoride resin porous film
JP2008253922A (en) Method for filtering suspension water
JP4312519B2 (en) Method for producing porous membrane

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101217

A02 Decision of refusal

Effective date: 20110426

Free format text: JAPANESE INTERMEDIATE CODE: A02