JP2006054357A - Laminate for flexible printed-wiring board, and its manufacturing method - Google Patents

Laminate for flexible printed-wiring board, and its manufacturing method Download PDF

Info

Publication number
JP2006054357A
JP2006054357A JP2004235833A JP2004235833A JP2006054357A JP 2006054357 A JP2006054357 A JP 2006054357A JP 2004235833 A JP2004235833 A JP 2004235833A JP 2004235833 A JP2004235833 A JP 2004235833A JP 2006054357 A JP2006054357 A JP 2006054357A
Authority
JP
Japan
Prior art keywords
polyimide film
laminate
wiring board
flexible printed
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004235833A
Other languages
Japanese (ja)
Other versions
JP4647954B2 (en
Inventor
Keifu Chin
勁風 陳
Makoto Yamazaki
真 山崎
Naoya Kuwazaki
尚哉 鍬崎
Tetsuya Aisaka
哲彌 逢坂
Itsuaki Matsuda
五明 松田
Masahiro Yoshino
正洋 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Waseda University
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Nippon Steel Chemical Co Ltd filed Critical Waseda University
Priority to JP2004235833A priority Critical patent/JP4647954B2/en
Publication of JP2006054357A publication Critical patent/JP2006054357A/en
Application granted granted Critical
Publication of JP4647954B2 publication Critical patent/JP4647954B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate enabling the fine pattern working of a flexible printed-wiring board in the laminate, having superior adhesive properties and adhesion between a conductor and a polyimide film, while having a superior reliability without damaging characteristics, such as the dielectric characteristics of the polyimide film, and to provide a manufacturing method for the laminate. <P>SOLUTION: In the laminate for the flexible printed-wiring board, at least one surface of the polyimide film is treated with a plasma, while being subjected to silane-coupling treated, an electroless plating layer is formed on the surface via a catalyst, containing a precious metallic compound and an electroplating layer, is further formed. The manufacturing method for the laminate for the flexible printed-wiring board contains a process, in which at least one surface of the polyimide film is treated with the plasma, the process in which the surface is silane-coupling treated and the process in which the catalyst comprising the precious metal compound is attached. The manufacturing method further contains the process, in which the electroless plating layer is formed through the catalyst and the process in which the electroplating layer is formed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子機器分野等で広く使用されるフレキシブルプリント配線板用の積層体とその製造方法に関する。   The present invention relates to a laminate for a flexible printed wiring board widely used in the field of electronic equipment and the like, and a method for manufacturing the same.

近時、電子機器の小型化や高機能化の要請が強まり、実装配線材料の微細化に対応したフレキシブルプリント配線板用材料の高性能化への要求が高まっている。そのため、ファインパターン加工を可能とするフレキシブルプリント配線板用の積層体の開発が望まれている。フレキシブルプリント配線板のファインピッチの微細加工を可能とするには、フレキシブルプリント配線板を形成する導体自体の薄膜化とその表面の平坦性向上が要求される。一方、絶縁体である絶縁性樹脂と接する導体表面の形態が平坦化してくると、導体と絶縁性樹脂との界面での接着力が低下するおそれがあるという新たな技術課題が生じる。   Recently, there is an increasing demand for downsizing and high functionality of electronic devices, and there is an increasing demand for higher performance of flexible printed wiring board materials corresponding to miniaturization of mounting wiring materials. Therefore, development of a laminate for a flexible printed wiring board that enables fine pattern processing is desired. In order to enable fine processing of the fine pitch of the flexible printed wiring board, it is required to reduce the thickness of the conductor itself forming the flexible printed wiring board and improve the flatness of the surface. On the other hand, when the shape of the conductor surface in contact with the insulating resin, which is an insulator, becomes flat, a new technical problem arises that the adhesive force at the interface between the conductor and the insulating resin may be reduced.

ところで、無電解めっき技術は、めっき液組成やめっき条件を変化させることで化学的、機械的、電気的特性にユニークで優れた皮膜が得られることから、表面処理分野の基幹技術に成長している。特に、プラスチックやセラミックスなどの不導体への無電解めっきは素材の表面形状によらず、また、電気めっきの電流分布の問題等もなく、均一且つ平滑な皮膜が形成でき、高精度な膜厚制御が可能であるため、電気・電子機器産業、半導体産業において、重要かつ不可欠な表面処理技術として急速に需要が拡大してきた(例えば非特許文献1参照)。   By the way, electroless plating technology has grown to become a core technology in the surface treatment field because it can produce unique and excellent coatings with chemical, mechanical and electrical characteristics by changing the plating solution composition and plating conditions. Yes. In particular, electroless plating on non-conductors such as plastics and ceramics can form a uniform and smooth film regardless of the surface shape of the material, and there is no problem with the current distribution of electroplating. Since control is possible, demand has rapidly expanded as an important and indispensable surface treatment technology in the electrical / electronic equipment industry and the semiconductor industry (see, for example, Non-Patent Document 1).

このような無電解めっきを用いたプリント配線板の製造に関する技術として、無電解銅めっきを例にすると、例えば以下のようなものを示すことができる。すなわち、サブトラクティブ法の場合には、各層間の銅回路を電気的に接続させるために、スルーホールと呼ばれる導通穴に電気銅めっき皮膜を20〜30μm程度成膜する。その際、下地に導電性を付与する必要があることから、予め無電解銅めっき皮膜を1μm程度成膜させる。また、フルアディティブ法の場合には、フレキシブルプリント配線板の配線部分を形成するために絶縁体の表面に直接無電解銅めっきにより回路を形成する。そのため、無電解銅めっきの皮膜の物性や密着性は、フレキシブルプリント配線板の品質に大きな影響を与える。この方法は、使用材料が少なく、穴あけ、印刷、そして写真的手法による触媒形成後、無電解銅めっきによる配線が可能であることから、最も経済的な方法である。更に、ビルドアップ法の場合には、従来のサブトラクティブ法で作製したプリント配線板上に絶縁性樹脂と銅回路を1層ずつ形成していく方法であり(例えば非特許文献2及び3参照)、各層間の銅回路は、ブラインドビアホール(BVH)と呼ばれる導通穴に銅めっきを成膜することによって電気的に接続される。   As a technique relating to the production of a printed wiring board using such electroless plating, for example, the following can be shown by taking electroless copper plating as an example. That is, in the case of the subtractive method, an electrolytic copper plating film is formed in a thickness of about 20 to 30 μm in a conduction hole called a through hole in order to electrically connect the copper circuits between the layers. In that case, since it is necessary to give electroconductivity to a foundation | substrate, about 1 micrometer is formed in advance of an electroless copper plating film. In the case of the full additive method, a circuit is formed directly on the surface of the insulator by electroless copper plating in order to form a wiring portion of the flexible printed wiring board. Therefore, the physical properties and adhesion of the electroless copper plating film greatly affect the quality of the flexible printed wiring board. This method is the most economical method because less material is used and wiring by electroless copper plating is possible after drilling, printing, and catalyst formation by photographic techniques. Further, in the case of the build-up method, an insulating resin and a copper circuit are formed one layer at a time on a printed wiring board produced by a conventional subtractive method (see, for example, Non-Patent Documents 2 and 3). The copper circuits between the layers are electrically connected by forming a copper plating in conductive holes called blind via holes (BVH).

これらいずれのプリント配線板の製造においても、無電解めっき皮膜を絶縁体である高分子フィルムの表面に均一、かつ、密着性良く付着させることが重要な課題となっている。そのため、特にポリイミドのように表面活性が乏しい場合には、導体あるいは接着剤との間の接合力を確保するために、アルカリ性薬液を用いてポリイミドフィルムの表面をエッチングしてフィルムの表面に微細な凹凸を形成し、アンカー効果によって導体等との密着性及び接着性を改善することが行われている。
しかしながら、このアルカリ性薬液による処理は、一般に、処理時間が長いことから処理効率が悪く、それに伴いフィルムに対する薬液の改質作用が強すぎてしまうといった不具合が生じる。また、フィルム片面のみを優先的に改質することができないために、改質処理を必要としない面までも処理されることとなり、引張強さ、伸度、弾性係数、耐屈曲性等の優れたポリイミドフィルムの機械特性が低下してしまうといった欠点もある。
In the production of any of these printed wiring boards, it is an important issue to adhere the electroless plating film uniformly and with good adhesion to the surface of the polymer film as an insulator. Therefore, especially when the surface activity is poor, such as polyimide, in order to secure the bonding force between the conductor or the adhesive, the surface of the polyimide film is etched with an alkaline chemical solution so that the surface of the film is fine. Forming irregularities and improving adhesion and adhesion to conductors and the like by an anchor effect is performed.
However, the treatment with the alkaline chemical solution generally has a long treatment time, resulting in poor treatment efficiency, and accompanying this, the problem that the modifying action of the chemical solution on the film becomes too strong. In addition, since it is not possible to preferentially modify only one side of the film, even surfaces that do not require modification are treated, and excellent tensile strength, elongation, elastic modulus, flex resistance, etc. Another disadvantage is that the mechanical properties of the polyimide film deteriorate.

また、ポリイミドフィルムのような非導電性基板上に金属皮膜を形成するためには、エッチングにより樹脂表面を荒らし、貴金属化合物を用いて触媒活性機能を付与して、この触媒作用によって無電解めっき皮膜を形成する方法も報告されている。この際、触媒活性機能を付与する方法としては、それぞれ2価のPdとSnとを含んだコロイド液や塩酸酸性のSnCl2溶液とPdCl2溶液の2液法が広く用いられているが、これらの方法では、毒性の高いSn(II)を使用することや、Sn化合物がポリイミドフィルムに残存してポリイミドフィルムの電気特性や機械特性等に悪影響を及ぼすおそれがあることなどから、残存するSn化合物の除去処理が必要である。また、この方法では、樹脂との密着性を確保するために、エッチングによって樹脂の表面を粗面化する必要があることから、高周波電気信号を伝達する電気回路の形成を目的とするフレキシブルプリント用配線板には不向きである。 In addition, in order to form a metal film on a non-conductive substrate such as a polyimide film, the resin surface is roughened by etching, a catalytic activity function is imparted using a noble metal compound, and the electroless plating film is formed by this catalytic action. A method of forming the same has also been reported. At this time, as a method for imparting a catalytic activity function, a colloidal solution containing divalent Pd and Sn and a two-component method of acidic hydrochloric acid SnCl 2 solution and PdCl 2 solution are widely used. In this method, the use of highly toxic Sn (II) or the remaining Sn compound in the polyimide film may adversely affect the electrical properties and mechanical properties of the polyimide film. Removal processing is necessary. Also, in this method, since it is necessary to roughen the surface of the resin by etching in order to ensure adhesion with the resin, it is suitable for the formation of an electric circuit that transmits a high-frequency electric signal. Not suitable for wiring boards.

更には、ポリイミドフィルム製膜中に形成される表面脆弱層(WBL/Weak Boundary Layer)を除去すると共に、このフィルムの表面に親水性の官能基を形成させて表面自由エネルギーを高めて導体層との密着力を向上させることを目的とし、ポリイミドフィルムの表面に対してコロナ放電処理、プラズマ処理、紫外線照射、電子線照射処理等の表面改質処理を行うことは知られている。
しかしながら、これらの処理方法をそれぞれ単独で行ったとしても、処理効果はポリイミドフィルムの表面特性によって大きく異なり、また、これらは経時変化が大きいことから品質管理制御が難しい。更には、微細パターン回路を形成する導体層との接着力が十分に得られず、表面改質処理を行った面内でのバラツキ等の問題も生じてしまう。
Furthermore, the surface brittle layer (WBL / Weak Boundary Layer) formed during polyimide film formation is removed, and a hydrophilic functional group is formed on the surface of the film to increase the surface free energy and It is known to perform surface modification treatment such as corona discharge treatment, plasma treatment, ultraviolet ray irradiation, electron beam irradiation treatment on the surface of the polyimide film for the purpose of improving the adhesion strength of the polyimide film.
However, even if each of these treatment methods is carried out independently, the treatment effect varies greatly depending on the surface characteristics of the polyimide film, and since these change greatly with time, quality control is difficult to control. Furthermore, sufficient adhesive strength with the conductor layer forming the fine pattern circuit cannot be obtained, and problems such as variations in the surface subjected to the surface modification treatment also occur.

ところで、末端にアミノ基などのPd2+捕捉機能を持つシランカップリング剤で、ガラスやシリコン基板を処理し、次に還元剤を含む溶液に入れてPd2+をPdに還元し、このPdを触媒として無電解Ni−P、NiRe−P、Ni−Bめっきを行う方法については報告されている(非特許文献4〜6参照)。しかしながら、これらはいずれも表面がシリコンの酸化物であるガラスやシリコン基板を対象としたものであり、表面活性が乏しく、平滑なポリイミドフィルム等へ密着性の良いカップリング処理を行うことは困難であり、ポリイミド等の樹脂に対しこれらの方法を適用したものはない。 By the way, a glass or silicon substrate is treated with a silane coupling agent having a Pd 2+ capturing function such as an amino group at the terminal, and then placed in a solution containing a reducing agent to reduce Pd 2+ to Pd. As a method, electroless Ni—P, NiRe—P, and Ni—B plating methods have been reported (see Non-Patent Documents 4 to 6). However, these are intended for glass or silicon substrates whose surfaces are silicon oxide, and have poor surface activity, making it difficult to perform a good adhesion treatment to a smooth polyimide film or the like. Yes, none of these methods are applied to resins such as polyimide.

このような状況の下、特開2002−64252号公報(特許文献1)では、無電解めっき触媒を含有するポリイミドフィルムを用い、表面粗化工程を含まずに、無電解めっきより得られた導体層が平滑な表面を有し、ポリイミドフィルムとの高密着性を持ち、高周波数回路に適していると共に、均一な狭ピッチ配線パターンやビルドアップ配線板の製造に適したポリイミドフィルムの作製について提案している。
しかしながら、この方法では、触媒である貴金属化合物を予めポリイミドフィルムに付与する必要があり、フィルムの作製段階から特別に取り扱わなければならず、使用できるポリイミドフィルムの選択性が狭められてしまう。また、ポリイミドフィルムの表面における触媒分布の不均一性によって、導体層とポリイミドフィルムとの密着性低下のおそれがあり、更には、ポリイミドフィルムの内部に残存している貴金属触媒が電気特性等に影響を及ぼすおそれもある。
Under such circumstances, Japanese Patent Laid-Open No. 2002-64252 (Patent Document 1) uses a polyimide film containing an electroless plating catalyst and does not include a surface roughening step, and is a conductor obtained by electroless plating. Proposal for production of polyimide film with smooth surface, high adhesion to polyimide film, suitable for high frequency circuit, and suitable for manufacturing uniform narrow pitch wiring pattern and build-up wiring board is doing.
However, in this method, it is necessary to preliminarily apply a noble metal compound as a catalyst to the polyimide film, which must be handled specially from the film production stage, and the selectivity of the usable polyimide film is narrowed. In addition, the non-uniformity of catalyst distribution on the surface of the polyimide film may cause a decrease in the adhesion between the conductor layer and the polyimide film. Furthermore, the noble metal catalyst remaining inside the polyimide film affects the electrical properties and the like. There is also a risk of affecting.

また、特開2003−306554号公報(特許文献2)では、ポリイミドフィルムの表面に研磨剤を含むスラリーを圧縮空気によって吹付けて物理的に荒らすことで、接着剤の種類を選ばずにポリイミドフィルムと接着剤との接着強度を確保することを提案している。
しかしながら、ポリイミドフィルムの表面を荒らすと、無電解めっきに必要な触媒層の均一な付与が保証できなくなり、形成する無電解めっき皮膜の均一性を確保することは困難であり、ファインパターン形成と高周波の対応に問題がある。
Moreover, in Unexamined-Japanese-Patent No. 2003-306554 (patent document 2), the polyimide film is chosen regardless of the kind of adhesive agent by spraying the slurry containing an abrasive | polishing agent on the surface of a polyimide film with compressed air, and physically roughening. It is proposed to secure the adhesive strength between the adhesive and the adhesive.
However, if the surface of the polyimide film is roughened, the uniform application of the catalyst layer necessary for electroless plating cannot be guaranteed, and it is difficult to ensure the uniformity of the electroless plating film to be formed. There is a problem with the response.

更に、特開2002−226972号公報(特許文献3)では、ポリイミドフィルムをアルカリ金属塩を含有する溶液で前処理した後、無電解めっきの触媒となる貴金属類と錯形成が可能な官能基を有するシランカップリング剤の溶液で処理する方法が提案されている。
しかしながら、アルカリ改質のポリイミドフィルム特性へのダメージが大きく、フィルム表面が粗すぎてしまい、ファインパターン形成と高周波の対応に問題があり、一方、アルカリ金属塩による前処理がない場合には、被めっき材の素材に密着性よくかつ均一なめっき膜を得ることが困難である。
特開2002-64252号公報 特開2003-306554号公報 特開2002-226972号公報 中岸 豊, 表面技術, 48, 380 (1997) 塚田 裕, 回路実装学会誌, 13, 65 (1998) 浅井 元雄, 回路実装学会誌, 13, 70 (1998) T. Hamaya., Y. Kumagai, N. Koshizaki, T. Kanbe, Chem. Lett, 1461 (1989) T. Osaka, N. Nakano, T. Kurokawa, K. Ueno, Electrochemical and Solid-State Letters, 5(1) C7 (2002) T. Osaka, N. Takeno, T. Kurokawa, T. Kaneko, K. Ueno, Journal of Electrochemical Society, 149 (11) C573 (2002)
Furthermore, in Japanese Patent Application Laid-Open No. 2002-226972 (Patent Document 3), after pretreating a polyimide film with a solution containing an alkali metal salt, a functional group capable of complexing with a noble metal serving as a catalyst for electroless plating is provided. A method of treating with a solution of a silane coupling agent is proposed.
However, the damage to the properties of the alkali-modified polyimide film is large, the film surface is too rough, and there is a problem with the correspondence between fine pattern formation and high frequency. It is difficult to obtain a uniform plating film with good adhesion to the material of the plating material.
JP 2002-64252 A JP 2003-306554 A JP 2002-226972 A Nakagishi Yutaka, Surface Technology, 48, 380 (1997) Yutaka Tsukada, Journal of Japan Institute of Circuit Packaging, 13, 65 (1998) Mosaio Asai, Journal of Japan Institute of Circuit Packaging, 13, 70 (1998) T. Hamaya., Y. Kumagai, N. Koshizaki, T. Kanbe, Chem. Lett, 1461 (1989) T. Osaka, N. Nakano, T. Kurokawa, K. Ueno, Electrochemical and Solid-State Letters, 5 (1) C7 (2002) T. Osaka, N. Takeno, T. Kurokawa, T. Kaneko, K. Ueno, Journal of Electrochemical Society, 149 (11) C573 (2002)

そこで、本発明者らは、フレキシブルプリント配線板のファインパターン加工が可能であって、回路を形成する導体と絶縁体であるポリイミドフィルムとの界面における信頼性に優れ、また、ポリイミドフィルムの優れた機械的特性や電気的特性等を損なうことのないフレキシブルプリント配線板用の積層体について鋭意検討した結果、ポリイミドフィルムの表面をプラズマ処理すると共にシランカップリング処理を行い、この表面に貴金属化合物を含む触媒を介して無電解めっき層を設けることによって、ポリイミドフィルム上に均一、かつ、平滑な無電解めっき層を形成することができ、この無電解めっき層がポリイミドフィルムに対して優れた密着性及び接着性を有することを見出し、本発明を完成した。   Therefore, the present inventors are capable of fine pattern processing of flexible printed wiring boards, and are excellent in reliability at the interface between the conductor forming the circuit and the polyimide film that is an insulator, and excellent in the polyimide film. As a result of intensive studies on a laminate for flexible printed wiring boards that does not impair mechanical properties, electrical properties, etc., the surface of the polyimide film is subjected to plasma treatment and silane coupling treatment, and this surface contains a noble metal compound. By providing an electroless plating layer via a catalyst, a uniform and smooth electroless plating layer can be formed on the polyimide film, and the electroless plating layer has excellent adhesion to the polyimide film and It discovered that it had adhesiveness, and completed this invention.

したがって、本発明の目的は、回路を形成する導体とポリイミドフィルムとの接着性及び密着性に優れると共に、ポリイミドフィルムが備える誘電特性、耐湿性、耐熱性等の特性を損なうことなく信頼性に優れた積層体であって、フレキシブルプリント配線板のファインパターン加工が可能となるフレキシブルプリント配線板用積層体を提供することにある。   Therefore, the object of the present invention is excellent in adhesion and adhesion between the conductor forming the circuit and the polyimide film, and excellent in reliability without impairing characteristics such as dielectric properties, moisture resistance and heat resistance of the polyimide film. Another object of the present invention is to provide a laminated body for a flexible printed wiring board, which is capable of fine pattern processing of the flexible printed wiring board.

また、本発明の別の目的は、このようなフレキシブルプリント配線板を低コストで、かつ、簡便に作製することができるフレキシブルプリント配線板用積層体の製造方法を提供することにある。   Another object of the present invention is to provide a method for producing a laminate for a flexible printed wiring board, which can easily produce such a flexible printed wiring board at low cost.

すなわち、本発明は、フレキシブルプリント配線板に用いられるポリイミドフィルムを含んだ積層体であって、上記ポリイミドフィルムの少なくとも一方の面がプラズマ処理されていると共に、このプラズマ処理された面がシランカップリング処理されており、このシランカップリング処理された面には貴金属化合物を含んだ触媒を介して無電解めっき層が形成され、この無電解めっき層の表面には電気めっき層が形成されていることを特徴とするフレキシブルプリント配線板用積層体である。   That is, the present invention is a laminate including a polyimide film used for a flexible printed wiring board, and at least one surface of the polyimide film is plasma-treated, and the plasma-treated surface is a silane coupling. An electroless plating layer is formed on the surface treated with the silane coupling via a catalyst containing a noble metal compound, and an electroplating layer is formed on the surface of the electroless plating layer. It is the laminated body for flexible printed wiring boards characterized by these.

また、本発明は、フレキシブルプリント配線板に用いられるポリイミドフィルムを含んだ積層体の製造方法であって、上記ポリイミドフィルムの少なくとも一方の面をプラズマ処理する工程と、このプラズマ処理された面をシランカップリング処理する工程と、このシランカップリング処理した面に貴金属化合物を含んだ触媒を付着させる工程と、この触媒を介して無電解めっき層を形成する工程と、この無電解めっき層の表面に電気めっき層を形成する工程とを含むことを特徴とするフレキシブルプリント配線板用積層体の製造方法である。   The present invention also relates to a method for producing a laminate including a polyimide film used for a flexible printed circuit board, the step of plasma-treating at least one surface of the polyimide film, and the surface subjected to the plasma treatment being treated with silane. A step of coupling treatment, a step of attaching a catalyst containing a noble metal compound to the surface subjected to the silane coupling treatment, a step of forming an electroless plating layer via the catalyst, and a surface of the electroless plating layer. And a step of forming an electroplating layer. A method for producing a laminate for a flexible printed wiring board, comprising:

本発明におけるポリイミドフィルムについては、従来公知の方法で製造されたものを使用することができる。すなわち、テトラカルボン酸二無水物と芳香族ジアミンとの反応から得られるポリアミド酸をフィルムとし、得られたポリアミド酸フィルムを熱的もしくは化学的にイミド化することにより得られたものを使用することができる。テトラカルボン酸二無水物としては、例えば無水ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルフォンテトラカルボン酸二無水4,4’-オキシジフタル酸物、無水物等を挙げることができる。芳香族ジアミンとしては、例えば、4,4’-ジアミノジフェニルエーテル、2’-メトキシ4,4’-ジアミノベンズアニリド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、4,4’ジアミノベンズアニリド等を挙げることができる。また、これらのテトラカルボン酸二無水物や芳香族ジアミンについては、それぞれ、1種のみを使用してもよく2種以上を併用して使用することもできる。   About the polyimide film in this invention, what was manufactured by the conventionally well-known method can be used. That is, use a polyamic acid obtained from the reaction of tetracarboxylic dianhydride and an aromatic diamine as a film, and use the one obtained by imidizing the obtained polyamic acid film thermally or chemically. Can do. Examples of tetracarboxylic dianhydrides include pyromellitic anhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-diphenylsulfone tetracarboxylic dianhydride Examples include 4,4′-oxydiphthalic acid anhydride and anhydride. Examples of the aromatic diamine include 4,4′-diaminodiphenyl ether, 2′-methoxy 4,4′-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4- Aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4 ' -Diaminobiphenyl, 4,4′diaminobenzanilide and the like can be mentioned. Moreover, about these tetracarboxylic dianhydride and aromatic diamine, only 1 type may be used, respectively, and 2 or more types can also be used together.

また、本発明においては、上記ポリイミドフィルムについて、好ましくは次のような物性値を有するものを使用するのがよい。すなわち、膜厚が10〜100μm、プラズマ処理する面の表面平均粗さ(Rz)が50〜200nm、吸湿率が1.0wt%(23℃/50%RH)以下、及び寸法安定率が30ppm(23℃、0〜70%RH)以下であるのがよい。ポリイミドフィルムの膜厚が10μmより小さいと微細回路を作製する時フィルムの絶縁性などの信頼性が懸念され、反対に100μmより厚くなるとフィルム加工過程における溶剤の揮発状況やイミド化により発生した水分の脱離の制御が難しく、フィルムの寸法変化率、吸湿率などの変化が微細回路加工時に悪影響を及ぼすことが懸念される。プラズマ処理する面の表面平均粗さ(Rz)が50nmより小さいとシランカップリング剤を介して、貴金属化合物を含んだ触媒を捕捉できる機能団の表面濃度が不足し、ポリイミドフィルムと貴金属化合物を含んだ触媒との間に十分な付着力が得られないおそれがある。一方、200nmより大きくなると、後の工程においてポリイミドフィルムの表面に無電解めっきに必要な触媒を付着させる際に均一な触媒の付着が保証できなくなり、この触媒の上に析出して形成される無電解めっき層がポリイミドフィルムに対して十分な密着性を得ることができなくなるおそれがある。また、フレキシブルプリント配線板のファインパターン加工が困難となるばかりか、フレキシブルプリント配線板として要求される高周波特性に対応できなくなるおそれがある。また、吸湿率(23℃/50%RH)が1.0wt%を超えるとめっき処理時、フィルムをめっき液に浸漬する際、吸水によるフィルムの寸法安定性の低下などの不具合を発生することが懸念され、寸法安定率が30ppm(23℃、0〜70%RH)を超えるとめっき処理を行う時のフィルムの変形度合が増し、微細回路加工の対応に支障を生じる。   In the present invention, the polyimide film preferably has the following physical property values. That is, the film thickness is 10 to 100 μm, the surface average roughness (Rz) of the surface to be plasma-treated is 50 to 200 nm, the moisture absorption is 1.0 wt% (23 ° C./50% RH) or less, and the dimensional stability is 30 ppm (23 C., 0 to 70% RH) or less. If the film thickness of the polyimide film is less than 10μm, there is a concern about the reliability of the film insulation, etc. when producing a fine circuit, and conversely, if the film thickness is greater than 100μm, the volatilization of the solvent in the film processing process and the moisture generated by imidization Control of desorption is difficult, and there is a concern that changes in the dimensional change rate, moisture absorption rate, etc. of the film may adversely affect fine circuit processing. If the surface roughness (Rz) of the surface to be plasma-treated is less than 50 nm, the surface concentration of the functional group capable of capturing the catalyst containing the noble metal compound via the silane coupling agent is insufficient, and the polyimide film and the noble metal compound are contained. However, there is a possibility that sufficient adhesion cannot be obtained with the catalyst. On the other hand, when the thickness exceeds 200 nm, uniform adhesion of the catalyst cannot be guaranteed when a catalyst necessary for electroless plating is deposited on the surface of the polyimide film in a later step, and the deposit formed on the catalyst is not formed. There is a possibility that the electrolytic plating layer cannot obtain sufficient adhesion to the polyimide film. In addition, fine pattern processing of the flexible printed wiring board becomes difficult, and there is a possibility that the high frequency characteristics required for the flexible printed wiring board cannot be met. Also, if the moisture absorption rate (23 ° C / 50% RH) exceeds 1.0 wt%, there is a concern that problems such as reduction in the dimensional stability of the film due to water absorption may occur when the film is immersed in the plating solution during plating. If the dimensional stability ratio exceeds 30 ppm (23 ° C., 0 to 70% RH), the degree of deformation of the film during the plating process increases, which hinders the handling of fine circuit processing.

本発明においては、ポリイミドフィルムの少なくとも一方の面がプラズマ処理されている必要がある。このプラズマ処理については、ポリイミドフィルムを真空あるいは大気プラズマ処理することによって、ポリイミドフィルムの脆弱層形成や表面汚染のおそれを可及的に低減させた上で、ポリイミドフィルムの表面に接着活性官能基を均一に、かつ、効果的に形成させることができる表面活性化処理として作用する。
プラズマ処理の具体的な条件については、好ましくは以下のようにして行うのがよい。すなわち、無機ガスの雰囲気下、プラズマ処理を行う装置の内圧を0.11〜1.1×105Paに保持した状態で、電極間に0.1〜10kVの直流あるいは交流を印加してグロー放電させることにより無機ガスの低温プラズマを発生させ、ポリイミドフィルムの表面をプラズマ処理するのがよい。このようなプラズマ処理の処理時間については、1〜100秒程度であるのがよく、また、上記無機ガスについては、ヘリウム、ネオン、アルゴン等の不活性ガス、又は、酸素、水素、一酸化炭素、二酸化炭素、アンモニア、窒素、空気等から選ばれた1種または2種以上の混合ガスを使用するのがよい。
In the present invention, at least one surface of the polyimide film needs to be plasma-treated. For this plasma treatment, the polyimide film is subjected to vacuum or atmospheric plasma treatment to reduce the possibility of polyimide layer brittle layer formation and surface contamination as much as possible. It acts as a surface activation treatment that can be formed uniformly and effectively.
The specific conditions for the plasma treatment are preferably carried out as follows. In other words, in an inorganic gas atmosphere, with the internal pressure of the apparatus for performing the plasma treatment being maintained at 0.11 to 1.1 × 10 5 Pa, a 0.1 to 10 kV direct current or alternating current is applied between the electrodes to cause glow discharge. It is preferable to generate a low-temperature plasma and plasma-treat the surface of the polyimide film. The plasma treatment time is preferably about 1 to 100 seconds, and the inorganic gas is an inert gas such as helium, neon, or argon, or oxygen, hydrogen, carbon monoxide. It is preferable to use one or more mixed gases selected from carbon dioxide, ammonia, nitrogen, air and the like.

本発明においては、上記プラズマ処理によって、好ましくはプラズマ処理後のポリイミドフィルムの表面が、純水との接触角50度以下となるようにするのがよい。プラズマ処理後のポリイミドフィルムの接触角が50度より大きくなるとシランカップリング剤とポリイミドフィルムの密着性が低下する。また、上記プラズマ処理によって、プラズマ処理後のポリイミドフィルムの表面粗さ(Rz)が50〜250nmとなるのが好ましい。プラズマ処理後のポリイミドフィルムの表面粗さ(Rz)が50nmより小さいとポリイミドフィルムと貴金属化合物を含んだ触媒との間の密着力が不十分であり、一方、250nmより大きくなると貴金属化合物を含んだ触媒がフィルム上に均一に付着されないおそれがある。   In the present invention, the surface of the polyimide film after the plasma treatment is preferably adjusted to a contact angle of 50 degrees or less with pure water by the plasma treatment. When the contact angle of the polyimide film after the plasma treatment is larger than 50 degrees, the adhesion between the silane coupling agent and the polyimide film is lowered. Moreover, it is preferable that the surface roughness (Rz) of the polyimide film after the plasma treatment is 50 to 250 nm by the plasma treatment. If the surface roughness (Rz) of the polyimide film after plasma treatment is less than 50 nm, the adhesion between the polyimide film and the catalyst containing the noble metal compound is insufficient, while if it exceeds 250 nm, the noble metal compound is contained. There is a possibility that the catalyst is not uniformly deposited on the film.

また、本発明においては、プラズマ処理された面がシランカップリング処理されている必要がある。プラズマ処理したポリイミドフィルムの表面について、接着活性官能基を含むシラン類化合物を用いてシランカップリング処理することによって、前記のプラズマ処理による表面活性化処理を行ったポリイミドフィルムの表面に更に均一な化学特性を付与することができ、後の工程において形成する無電解めっき層とポリイミドフィルムとの密着性を向上させることができる。   In the present invention, the plasma-treated surface needs to be subjected to silane coupling treatment. The surface of the polyimide film subjected to the plasma treatment is subjected to a surface activation treatment by the above-mentioned plasma treatment by performing a silane coupling treatment using a silane compound containing an adhesive active functional group on the surface of the polyimide film subjected to the plasma treatment. A characteristic can be provided and the adhesiveness of the electroless-plating layer and polyimide film which are formed in a later process can be improved.

本発明におけるシランカップリング処理には、以下に示すシランカップリング剤を用いて行うことができる。これらのシランカップリング剤は、一方の末端にアルコキシシランを、その他の末端に、窒素を含むアミンやピリジンなどの基を有するものである。具体的なシラン類化合物としてはγ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、アミノプロピルメチルジエトキシシラン、N−(フェニルメチル)−γ−アミノプロピルトリメトキシシラン、N−メチル−γ−アミノプロピルトリメトキシシラン、N, N, N,−トリブチル−γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−ω(アミノヘキシル)−γ−アミノプロピルトリメトキシシラン、N{N’−β(アミノエチル)}−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン等のアミノ基を含有するシランカップリング剤、エチレンジアミン、トリメチレンジアミン、1,4−ジアミノブタン、イソフォロンジアミン等のアミノ基を含有する化合物、ジエチレントリアミンとダイマー酸との反応物等を挙げることができる。   The silane coupling treatment in the present invention can be performed using the following silane coupling agent. These silane coupling agents have an alkoxysilane at one end and a group such as amine or pyridine containing nitrogen at the other end. Specific silane compounds include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, aminopropylmethyldiethoxysilane, N- (phenylmethyl) -γ-aminopropyltrimethoxysilane, N-methyl- γ-aminopropyltrimethoxysilane, N, N, N, -tributyl-γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β (aminoethyl) -γ -Aminopropylmethyldimethoxysilane, N-β (aminoethyl) -γ-aminopropyltriethoxysilane, N-ω (aminohexyl) -γ-aminopropyltrimethoxysilane, N {N'-β (aminoethyl)} -Β (aminoethyl) -γ-aminopropyltrimethoxysilane and other amino group-containing silane coupling agents, ethylene Examples thereof include compounds containing amino groups such as amine, trimethylenediamine, 1,4-diaminobutane and isophoronediamine, and a reaction product of diethylenetriamine and dimer acid.

上記化合物は、アルコキシシランによりポリイミドフィルムとの間に強固な接着力を確保し、アミノやピリジン等の含窒素基により、無電解めっきの触媒となるPdイオン等の金属イオンを捕捉して、優れた密着性を付与せしめることができる。   The above compound ensures excellent adhesion between the polyimide film and the alkoxysilane, and captures metal ions such as Pd ions that serve as a catalyst for electroless plating by nitrogen-containing groups such as amino and pyridine. Adhesion can be imparted.

本発明において、プラズマ処理されたポリイミドフィルムの表面をシランカップリング処理するためには、上記のシランカップリング剤の溶液中にプラズマ処理されたポリイミドフィルムを浸漬することによって行うことができる。シランカップリング剤を溶解する溶剤としては、エタノール等のアルコール類、エーテル類、ベンゼン、トルエン等の芳香族炭化水素等の有機系溶剤が利用可能である。ここで、これらの溶剤中に水が存在すると、アルコキシシランが加水分解によって不安定化するおそれがあるため、シランカップリング処理によってポリイミドフィルムの表面に結合力の高い単分子層を形成するためには、水の混入が少ない炭化水素系の化合物が好ましい。更に、浸漬処理を行う場合には、加熱を行うことにより効率的にカップリングを行うことができ、また、溶剤についてもできるだけ沸点の高いもの、たとえばトルエンが好ましい。   In the present invention, the surface of the plasma-treated polyimide film can be subjected to silane coupling by immersing the plasma-treated polyimide film in the solution of the above silane coupling agent. As the solvent for dissolving the silane coupling agent, organic solvents such as alcohols such as ethanol, ethers, aromatic hydrocarbons such as benzene and toluene can be used. Here, when water is present in these solvents, alkoxysilane may be destabilized by hydrolysis. Therefore, in order to form a monolayer having a high binding force on the surface of the polyimide film by silane coupling treatment. Is preferably a hydrocarbon-based compound with little water contamination. Further, when the immersion treatment is performed, the coupling can be efficiently performed by heating, and the solvent having a boiling point as high as possible, for example, toluene is preferable.

シランカップリング処理の具体的な条件について、プラズマ処理を行って表面を親水化したポリイミドフィルムを所定のシランカップリング処理液に浸漬する。カップリング処理液は、上記溶剤に0.1〜2wt%程度のシランカップリング剤を溶かした溶液である。浸漬時間及び溶液温度等については、使用するカップリング剤の種類やその濃度によって異なるため、適宜、探索実験によって最適条件を見出すことが望ましい。また、シランカップリング処理に先駆けて行うプラズマ処理による効果をより一層発揮させるためには、プラズマ処理をした後、直ちにシランカップリング処理を行うことが好ましい。また、所定の時間カップリング処理を行った後には、メタノールやトルエン等を用いて洗浄し、過剰のカップリング剤を取り除くのが好ましい。   With respect to specific conditions for the silane coupling treatment, a polyimide film having a surface hydrophilized by plasma treatment is immersed in a predetermined silane coupling treatment liquid. The coupling treatment liquid is a solution obtained by dissolving about 0.1 to 2 wt% of a silane coupling agent in the above solvent. Since the immersion time, the solution temperature, and the like vary depending on the type of coupling agent used and its concentration, it is desirable to find optimum conditions by a search experiment as appropriate. In order to further exert the effect of the plasma treatment performed prior to the silane coupling treatment, it is preferable to perform the silane coupling treatment immediately after the plasma treatment. Further, after performing the coupling treatment for a predetermined time, it is preferable to remove excess coupling agent by washing with methanol or toluene.

また、本発明において、シランカップリング処理されたポリイミドフィルムの表面には貴金属化合物を含んだ触媒を介して無電解めっき層が形成される。上述したように、ポリイミドフィルムの表面をプラズマ処理することによって表面改質処理をして、更にシランカップリング処理することにより、ポリイミドフィルムの表面にアミノ基等の含有窒素基を並べる。その上で、無電解めっきに対し活性な触媒が付着された触媒層を形成して無電解めっき層を形成する。   In the present invention, an electroless plating layer is formed on the surface of the silane coupling-treated polyimide film via a catalyst containing a noble metal compound. As described above, the surface of the polyimide film is subjected to a surface modification treatment, and further a silane coupling treatment is performed to arrange nitrogen groups such as amino groups on the surface of the polyimide film. Then, a catalyst layer to which an active catalyst for electroless plating is attached is formed to form an electroless plating layer.

本発明における貴金属化合物を含んだ無電解めっきに使用される触媒としては、好ましくは塩化パラジウム、臭化パラジウム、パラジウム硫酸塩(PdSO4)、Pd(OCOCH3)2等のPdを含むものであるのがよい。そして、このような触媒を上述した所定のプラズマ処理及びシランカップリング処理を施したポリイミドフィルムの表面に付着させるために、好ましくは上記触媒についてはパラジウムの塩化物水溶液等のような水溶液の状態として、この水溶液中に上記ポリイミドフィルムを浸漬し、プラズマ処理及びシランカップリング処理によりポリイミドフィルムの表面に並べられたアミノ基等の含窒素化合物でPd2+を捕捉し、次いで、ホルムアルデヒド、次亜リン酸ナトリウム、水素化ホウ素ナトリウム(NaBH4)またはジメチルアミンボラン(Dimethyl Amine Borane)等の還元剤でこのPd2+をPdに還元して無電解めっきの触媒とするのがよい。その後、得られたポリイミドフィルムについては水洗するのが好ましい。このようにすることにより、毒性の高いSn(II)等を用いることなく、ポリイミドフィルムの表面に無電解めっきに活性な触媒が付着された触媒層をポリイミドフィルム上に均一、かつ、フィルムに対して密着性よく形成することができる。 The catalyst used for electroless plating containing a noble metal compound in the present invention is preferably one containing Pd such as palladium chloride, palladium bromide, palladium sulfate (PdSO 4 ), Pd (OCOCH 3 ) 2 and the like. Good. In order to adhere such a catalyst to the surface of the polyimide film subjected to the above-described predetermined plasma treatment and silane coupling treatment, the catalyst is preferably in an aqueous solution state such as a palladium chloride aqueous solution. The polyimide film is immersed in this aqueous solution, and Pd 2+ is captured by nitrogen-containing compounds such as amino groups arranged on the surface of the polyimide film by plasma treatment and silane coupling treatment. This Pd 2+ may be reduced to Pd with a reducing agent such as sodium acid, sodium borohydride (NaBH 4 ), or dimethylamine borane (Dimethyl Amine Borane) to form a catalyst for electroless plating. Thereafter, the obtained polyimide film is preferably washed with water. By doing so, a catalyst layer in which an active catalyst for electroless plating is adhered to the surface of the polyimide film without using highly toxic Sn (II) or the like is uniform on the polyimide film and against the film. And can be formed with good adhesion.

本発明においては、上記のようにポリイミドフィルムの表面に触媒を付着させてPd2+を捕捉して無電解めっきに活性な表面を得た後、この触媒を介して無電解めっき層を形成する。この無電解めっき層については、一般に用いられる無電解銅めっき又は無電解Niから形成されためっき層とすることができ、この無電解めっき層の形成の条件については、一般的な条件を用いることができる。また、この無電解めっき層の膜厚については10〜500nmであるのがよい。
このようにすることにより、本発明では、所定のプラズマ処理及びシランカップリング処理を施したポリイミドフィルム上に表面を荒らすことなく、直接無電解めっき層を形成することができる。このため、ファインパターンの形成と高周波数対応が可能となる。
In the present invention, as described above, a catalyst is attached to the surface of the polyimide film to capture Pd 2+ to obtain an active surface for electroless plating, and then an electroless plating layer is formed through this catalyst. . About this electroless plating layer, it can be set as the plating layer formed from the electroless copper plating or electroless Ni generally used, About the conditions of formation of this electroless plating layer, use general conditions Can do. The film thickness of the electroless plating layer is preferably 10 to 500 nm.
By doing in this way, in this invention, an electroless-plating layer can be directly formed, without roughening the surface on the polyimide film which performed the predetermined plasma process and the silane coupling process. For this reason, formation of a fine pattern and high frequency response are possible.

また、本発明における積層体は、無電解めっき層の表面には電気めっき層が形成される。この電気めっき層については、公知の電気銅めっき等により形成することができる。この際、一般的な電気めっき皮膜を形成するための条件を用いることができるが、表面の平滑性を保ちしかも電気抵抗の低い皮膜が得られる観点から、実施例における表2に示すようなPEG―Cl―SPSを添加した浴を用いて形成した電気銅めっき層が好ましい。この電気めっき層については、フレキシブルプリント配線板の導体として必要な膜厚まで任意にめっきアップすることができることから、本発明における積層体によれば、ポリイミドフィルムと強固な接着力を有するファインピッチ配線及び高周波数対応が可能なフレキシブルプリント配線板を得ることができる。   In the laminate of the present invention, an electroplating layer is formed on the surface of the electroless plating layer. About this electroplating layer, it can form by well-known electrocopper plating. At this time, general conditions for forming an electroplating film can be used. From the viewpoint of obtaining a film having low surface resistance while maintaining smoothness of the surface, PEG as shown in Table 2 in Examples is used. An electrolytic copper plating layer formed using a bath containing —Cl—SPS is preferred. About this electroplating layer, since it can be arbitrarily plated up to a film thickness required as a conductor of a flexible printed wiring board, according to the laminate in the present invention, a fine pitch wiring having a strong adhesive force with a polyimide film In addition, a flexible printed wiring board capable of handling high frequencies can be obtained.

本発明においては、機械的特性及び電気的特性等に優れたポリイミドフィルムの少なくとも一方の面をプラズマ処理することにより表面活性化処理を行い、更にこのプラズマ処理された面をシランカップリング処理することで、ポリイミドフィルムの表面に無電解めっき層との密着力に寄与できる機能団を持つ単分子膜を形成させることができる。そして、このシランカップリング処理されたポリイミドフィルムの表面には無電解めっきに必要な貴金属化合物を含んだ触媒を均一に吸着させることができ、この触媒を介して密着性に優れた無電解めっき層が均一に形成することができ、電解めっきにより必要な厚みまで導体層を任意にめっきアップすることができる。このようにして得られた積層体は、ポリイミドフィルムに対して無電解めっき層及び電気めっき層が優れた接着力と優れた密着性を具備する。特に、表面活性化処理の効果が得られやすく、寸法安定性が優れたポリイミドフィルムを選定することで、上記のような効果はより一層向上する。なお、本発明における積層体は、用途に応じて、ポリイミドフィルムの片面のみに所定の処理を施して無電解めっき層及び電気めっき層を形成しても、ポリイミドフィルムの両面に所定の処理を施して無電解めっき層及び電気めっき層を形成してもよい。   In the present invention, a surface activation treatment is performed by plasma-treating at least one surface of a polyimide film having excellent mechanical properties and electrical properties, and the plasma-treated surface is further subjected to silane coupling treatment. Thus, a monomolecular film having a functional group capable of contributing to adhesion with the electroless plating layer can be formed on the surface of the polyimide film. The surface of the polyimide film subjected to the silane coupling treatment can uniformly adsorb a catalyst containing a noble metal compound necessary for electroless plating, and the electroless plating layer having excellent adhesion through this catalyst. Can be formed uniformly, and the conductor layer can be arbitrarily plated up to the required thickness by electrolytic plating. Thus, the obtained laminated body has the adhesive force and the outstanding adhesiveness which the electroless-plating layer and the electroplating layer were excellent with respect to the polyimide film. In particular, by selecting a polyimide film that is easy to obtain the effect of the surface activation treatment and has excellent dimensional stability, the above effects are further improved. In addition, even if the laminated body in this invention performs a predetermined process only on the single side | surface of a polyimide film and forms an electroless-plating layer and an electroplating layer according to a use, it performs a predetermined process on both surfaces of a polyimide film. An electroless plating layer and an electroplating layer may be formed.

本発明における積層体は、特別な接着層を必要とせず、また、ポリイミドフィルムの表面を特に粗面化処理する必要もないことから、ポリイミドフィルムの誘電特性、耐湿性、耐熱性等の特性を維持したまま、プラズマ処理による表面活性化処理とシランカップリング処理との併用効果で、従来直接無電解めっき層の形成が困難であった平坦なポリイミドフィルムの表面に、ポリイミドフィルムと密着性が良く、均一、かつ、平滑な表面を有する無電解めっき層が形成できる。そして、この無電解めっき層の表面には電気めっき層を形成することにより必要な膜厚まで導体をめっきアップすることができることから、配線に必要な厚みのめっき皮膜を任意に得ることができる。そして、このような積層体は、平滑なポリイミドフィルム上に無電解めっき層と電気めっき層とが優れた密着性及び接着力を具備していることから、ポリイミドフィルムと強固な接着力を有するファインピッチ配線が可能であると共に、高周波用の電気回路製作に好適である。
また、本発明における積層体の製造方法によれば、上記のような積層体を低コストで、簡便に得ることができ、フレキシブルプリント配線板の各種製造方法への適用が可能である。
Since the laminate in the present invention does not require a special adhesive layer, and it is not necessary to particularly roughen the surface of the polyimide film, the polyimide film has properties such as dielectric properties, moisture resistance, and heat resistance. While maintaining the surface, the surface activation treatment by plasma treatment and the combined effect of silane coupling treatment have good adhesion to the polyimide film on the surface of the flat polyimide film, which has been difficult to form a direct electroless plating layer. An electroless plating layer having a uniform and smooth surface can be formed. And since a conductor can be plated up to a required film thickness by forming an electroplating layer on the surface of this electroless plating layer, the plating film of the thickness required for wiring can be obtained arbitrarily. Such a laminate is a fine film having a strong adhesive force with the polyimide film because the electroless plating layer and the electroplating layer have excellent adhesion and adhesive force on a smooth polyimide film. Pitch wiring is possible and it is suitable for manufacturing an electric circuit for high frequency.
Moreover, according to the manufacturing method of the laminated body in this invention, the above laminated bodies can be obtained simply at low cost and can be applied to various manufacturing methods of flexible printed wiring boards.

以下に、本発明を実施例に基づいて詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited thereto.

ポリイミドフィルムの片面に銅箔が積層された銅張積層板(新日鐵化学(株)製商品名:エスパネックスMシリーズ)を用い、表面の銅箔を全面エッチング除去することにより、厚さ40μm、エッチング除去前に銅箔が積層されていなかった側のポリイミドフィルムの表面粗さRzが150±50nm、吸湿率が0.82wt%(23℃/50%)および寸法安定率が10ppm(23℃、0〜70%RH)の特性を有する5mm×5mmのポリイミドフィルムを得た。このポリイミドフィルムをアルゴン等の不活性ガス雰囲気下で、印加電圧5kV、周波数10kHzで250Wの電力を入力し、上記ポリイミドフィルムの片面(低粗さ面)にプラズマ表面活性化処理(プラズマ処理)を25秒実施した(プラズマ処理工程)。この際、接触角度(純水)測定によりポリイミドフィルムの接触角が、処理前の85±5°から処理後の35±5°に変わったことを確認した。次いで、プラズマ処理後のポリイミドフィルムをテフロン(登録商標)製治具に貼り付け、3−アミノプロピルトリメトキシシランの1wt%トルエン溶液中に10分間浸漬し、シランカップリング処理を行った(シランカップリング処理工程)。次に、メタノールに浸漬し、超音波洗浄により余剰のシランカップリング分子を除去した。上記処理済みのサンプルフィルムを治具に固定したまま、攪拌しながら、PdClを0.02g、38%HClを0.2ml含有する触媒化水溶液200mlに常温で30秒間浸し、純水洗浄処理を経て、フィルム表面に触媒を吸着させた(触媒付着工程)。引き続き、pH値を9.0に調整した表1に示した70℃のNi−B無電解めっき浴に1分間浸漬し、約40nmのNi−Bめっき皮膜を形成した(無電解めっき層形成工程)。この時点で、ポリイミドフィルムの処理面に連続的で均一なNi金属光沢を持つめっき皮膜が形成されていることが目視で確認できた。 Using a copper-clad laminate (trade name: Espanex M Series, manufactured by Nippon Steel Chemical Co., Ltd.) with a copper foil laminated on one side of a polyimide film, the thickness of the surface copper foil is removed by etching, resulting in a thickness of 40 μm. The surface roughness Rz of the polyimide film on which the copper foil was not laminated before etching removal was 150 ± 50 nm, the moisture absorption was 0.82 wt% (23 ° C / 50%), and the dimensional stability was 10 ppm (23 ° C, A polyimide film of 5 mm × 5 mm having the characteristics of 0 to 70% RH was obtained. This polyimide film is supplied with an electric power of 250 W at an applied voltage of 5 kV and a frequency of 10 kHz in an inert gas atmosphere such as argon, and plasma surface activation treatment (plasma treatment) is performed on one surface (low roughness surface) of the polyimide film. Conducted for 25 seconds (plasma treatment step). At this time, it was confirmed by contact angle (pure water) measurement that the contact angle of the polyimide film was changed from 85 ± 5 ° before treatment to 35 ± 5 ° after treatment. Next, the plasma-treated polyimide film was attached to a Teflon (registered trademark) jig and immersed in a 1 wt% toluene solution of 3-aminopropyltrimethoxysilane for 10 minutes to perform silane coupling treatment (silane cup) Ring processing step). Next, it was immersed in methanol, and excess silane coupling molecules were removed by ultrasonic cleaning. While maintaining the above-mentioned treated sample film on a jig, it is immersed in 200 ml of a catalyzed aqueous solution containing 0.02 g of PdCl 2 and 0.2 ml of 38% HCl for 30 seconds at room temperature to perform a pure water washing treatment. After that, the catalyst was adsorbed on the film surface (catalyst attaching step). Subsequently, it was immersed for 1 minute in a 70 ° C. Ni—B electroless plating bath shown in Table 1 having a pH value adjusted to 9.0 to form a Ni—B plating film of about 40 nm (electroless plating layer forming step) ). At this point, it was confirmed visually that a plating film having a continuous and uniform Ni metallic luster was formed on the treated surface of the polyimide film.

Figure 2006054357
Figure 2006054357

ここで、無電解めっき皮膜とポリイミドフィルムとの密着性の評価として、セロハンテープ剥離法(密着力試験)を行った。Ni金属光沢を持つめっき皮膜にセロハンテープを貼り付け、引き剥がしたテープ側に金属色の転写があるかどうか目視確認を行ったが、金属色の転写は観察されなかった。更に、引き剥がしテープのXPS元素分析を行ったが、この測定からも金属層(Ni−Bめっき皮膜)の剥離は認めなれなかった。
次いで、室温下で、表2に示した組成の電気銅めっき浴の中に上記の無電解めっき皮膜が形成されたポリイミドフィルムをセットし、電流密度を2A/dmに制御して、約18分間電気銅めっきを行うことでポリイミドフィルムに約8μmの厚みを有する平滑な銅めっき皮膜を形成し(電気めっき層形成工程)、積層体を作製した。
上記で得た積層体を用いて0.1mm幅の回路パターンを加工した。そして、ピール強度測定を行ったところ、ポリイミドフィルムと銅めっき皮膜との間の接着力は0.65kN/m以上の値を示した。
Here, as an evaluation of the adhesion between the electroless plating film and the polyimide film, a cellophane tape peeling method (adhesion test) was performed. Cellophane tape was affixed to the plating film having Ni metallic luster, and it was visually confirmed whether or not there was a metallic color transfer on the peeled tape side, but no metallic color transfer was observed. Furthermore, the XPS elemental analysis of the peeling tape was performed, but no peeling of the metal layer (Ni-B plating film) was observed from this measurement.
Next, at room temperature, the polyimide film on which the above electroless plating film was formed was set in an electrolytic copper plating bath having the composition shown in Table 2, and the current density was controlled at 2 A / dm 2 to obtain about 18 By performing electrolytic copper plating for a minute, a smooth copper plating film having a thickness of about 8 μm was formed on the polyimide film (electroplating layer forming step) to prepare a laminate.
A circuit pattern having a width of 0.1 mm was processed using the laminate obtained above. And when the peel strength measurement was performed, the adhesive force between a polyimide film and a copper plating film showed the value of 0.65 kN / m or more.

Figure 2006054357
Figure 2006054357

上記においては、ポリイミドフィルムの厚み測定にはデジマチックインジケータ ID-C, Mitutoyo製を用い、表面粗さ測定にはテンコール測定器 KLA Tencor P-15 テンコール株式会社製を用い、接触角度測定には全自動接触角計 CA-W 協和界面科学株式会社製を用いた。また、吸湿率の測定には、4cm×20cmのポリイミドフィルム(各3枚)を、120℃で2時間乾燥した後、23℃/50%RHの恒温恒湿室で24時間以上静置し、その前後の重量変化から次式(1)を用いて求めた。
吸湿率(%)=[(吸湿後重量−乾燥後重量)/乾燥後重量]×100 …(1)
In the above, Digimatic Indicator ID-C, made by Mitutoyo, is used for polyimide film thickness measurement, Tencor measuring instrument KLA Tencor P-15, made by Tencor Co., Ltd. is used for surface roughness measurement, and all contact angle measurements are used. An automatic contact angle meter CA-W manufactured by Kyowa Interface Science Co., Ltd. was used. For measuring the moisture absorption rate, a polyimide film of 4 cm × 20 cm (each 3 sheets) was dried at 120 ° C. for 2 hours, and then allowed to stand in a constant temperature and humidity chamber of 23 ° C./50% RH for 24 hours or more. It calculated | required using following Formula (1) from the weight change before and behind that.
Moisture absorption rate (%) = [(weight after moisture absorption−weight after drying) / weight after drying] × 100 (1)

また、寸法安定率の測定については湿度膨張係数(CHE)の測定を用いて以下のようにして行った。上記エスパネックスMシリーズを35cm×35cmのポリイミド/銅箔積層試験片として用意し、この銅箔上にエッチングレジスト層を設け、これを一辺が30cmの正方形の四辺に10cm間隔で直径1mmの点が12箇所配置されるパターンに形成した。エッチングレジスト開孔部の銅箔露出部分をエッチングし、12箇所の銅箔残存点を有するCHE測定用ポリイミドフィルムを得た。このフィルムを120℃で2時間乾燥した後、23℃/(0-70%RH)の恒温恒湿機で各湿度において24時間以上静置して、二次元測長機により測定した湿度変更前後の銅箔点間の寸法変化から求めた。   The measurement of the dimensional stability factor was performed as follows using the measurement of the coefficient of humidity expansion (CHE). The Espanex M series is prepared as a 35 cm x 35 cm polyimide / copper foil laminate test piece, and an etching resist layer is provided on the copper foil, and the points of 1 mm in diameter are arranged at intervals of 10 cm on four sides of a square of 30 cm on one side. It formed in the pattern arrange | positioned 12 places. The exposed portion of the copper foil in the opening portion of the etching resist was etched to obtain a polyimide film for CHE measurement having 12 copper foil remaining points. This film was dried at 120 ° C. for 2 hours, then allowed to stand at 23 ° C./(0-70%RH) constant temperature / humidity for 24 hours or more before and after the humidity change measured by a two-dimensional measuring machine. It calculated | required from the dimensional change between copper foil points.

実施例1と同様にしてポリイミドフィルムを得た。次いで、このポリイミドフィルムの片面に実施例1と同じ条件下でプラズマ表面活性化処理(プラズマ処理)を行い(プラズマ処理工程)、実施例1と同様に接触角度測定を行いポリイミドフィルムの処理前の接触角(純水)が85±5°から処理後の35±5°に変わったことを確認した。次いで、プラズマ処理後のポリイミドフィルムをテフロン(登録商標)製治具に貼り付け、3−アミノプロピルトリメトキシシランの1wt%トルエン溶液中に10分間浸漬してシランカップリング処理を行った(シランカップリング処理工程)。次に、メタノールに浸漬し、超音波洗浄により余剰のシランカップリング分子を除去した。上記処理済みのサンプルフィルムを治具に固定したまま、攪拌しながら、PdClを0.02g、38% HClを0.2ml含有する触媒化水溶液200mlに室温で30秒間浸し、純水洗浄処理を経て、フィルム表面に触媒を吸着させた(触媒付着工程)。次に、ジメチルアミノボラン(DMAB)を0.05M含みテトラメチルアンモニウムハイドロオキサイド(TMAH)でpHを9に調整し、70℃とした溶液に30秒間浸漬し(活性化工程)、引き続き、pH値を12.5に調整した表3に示した70℃の無電解銅めっき浴に60秒間浸漬し、触媒付着工程で付着させた触媒を介して約50nmの無電解めっき皮膜を形成させた(無電解めっき層形成工程)。その際、ポリイミドフィルムの処理面に連続的に均一な銅金属光沢を有しためっき皮膜が形成されていることが目視で確認できた。 A polyimide film was obtained in the same manner as Example 1. Next, plasma surface activation treatment (plasma treatment) was performed on one side of the polyimide film under the same conditions as in Example 1 (plasma treatment step), and the contact angle was measured in the same manner as in Example 1 before the polyimide film was treated. It was confirmed that the contact angle (pure water) was changed from 85 ± 5 ° to 35 ± 5 ° after the treatment. Next, the plasma-treated polyimide film was attached to a Teflon (registered trademark) jig and immersed in a 1 wt% toluene solution of 3-aminopropyltrimethoxysilane for 10 minutes to perform silane coupling treatment (silane cup). Ring processing step). Next, it was immersed in methanol, and excess silane coupling molecules were removed by ultrasonic cleaning. While maintaining the above-mentioned treated sample film on a jig, it is immersed in 200 ml of a catalyzed aqueous solution containing 0.02 g of PdCl 2 and 0.2 ml of 38% HCl at room temperature for 30 seconds to perform a pure water washing treatment. Then, the catalyst was made to adsorb | suck to the film surface (catalyst adhesion process). Next, 0.05M dimethylaminoborane (DMAB) was added to adjust the pH to 9 with tetramethylammonium hydroxide (TMAH) and immersed in a solution at 70 ° C. for 30 seconds (activation step). Was immersed in an electroless copper plating bath at 70 ° C. shown in Table 3 adjusted to 12.5 for 60 seconds, and an electroless plating film having a thickness of about 50 nm was formed through the catalyst deposited in the catalyst deposition step. Electrolytic plating layer forming step). At that time, it was visually confirmed that a plating film having a uniform copper metal luster was formed on the treated surface of the polyimide film.

Figure 2006054357
Figure 2006054357

ここで、実施例1と同様な方法で無電解めっき皮膜とポリイミドフィルムとの密着性の評価(密着力試験)を行ったところ、引き剥がしたテープ側には金属色の転写は観察されなかった。また、実施例1と同様に、引き剥がしテープのXPS元素分析を行ったが、この測定からも金属層(銅めっき皮膜)の剥離は認めなれなかった。
次いで、室温下で、上記表2に組成を示した電気銅めっき浴に、上記の無電解めっき皮膜が形成されたポリイミドフィルムをセットし、電流密度を2A/dmに制御した上、約18分間電気銅めっきを行うことでポリイミドフィルムに約8μmの厚みを有する平滑な銅めっき皮膜を形成し(電気めっき層形成工程)、積層体を作製した。
上記で得た積層体を用いて0.1mm幅の回路パターンを加工し、実施例1と同様の方法でピール強度を測定した結果、ポリイミドフィルムと銅めっき皮膜との間の接着力は0.65kN/m以上の値を示した。
Here, when the evaluation of the adhesion between the electroless plating film and the polyimide film (adhesion test) was performed in the same manner as in Example 1, no metallic color transfer was observed on the peeled tape side. . Moreover, the XPS elemental analysis of the peeling tape was conducted in the same manner as in Example 1, but no peeling of the metal layer (copper plating film) was observed from this measurement.
Next, at room temperature, the polyimide film on which the electroless plating film is formed is set in the electrolytic copper plating bath whose composition is shown in Table 2 above, and the current density is controlled to 2 A / dm 2 and about 18 By performing electrolytic copper plating for a minute, a smooth copper plating film having a thickness of about 8 μm was formed on the polyimide film (electroplating layer forming step) to prepare a laminate.
A 0.1 mm wide circuit pattern was processed using the laminate obtained above, and the peel strength was measured in the same manner as in Example 1. As a result, the adhesive force between the polyimide film and the copper plating film was 0.00. A value of 65 kN / m or more was shown.

[比較例1]
実施例1と同様のポリイミドフィルムを用い、プラズマ表面活性化処理(プラズマ処理)を行わず、メタノールにより表面洗浄をした後、実施例1と同じ条件下で、同様なシランカップリング処理(シランカップリング処理工程)及びPdCl化合物による表面触媒化処理(触媒付着工程)を行い、その後、実施例1と同様に無電解Ni−Bめっきを実施した(無電解めっき層形成工程)。ポリイミドフィルムの表面にNiの析出が認められない或いは不連続な析出状態が観測され、触媒付着工程において触媒がほぼ付着していない或いは均一的に付着していないことが判明した。金属色が確認できるところにセロハンテープを貼り付け、剥がしてみるとテープ側にNiの転写が目視で確認でき、無電解Ni−Bめっき皮膜とポリイミドフィルムとの間に十分な密着性がないことが確認された。
[Comparative Example 1]
Using the same polyimide film as in Example 1, without performing plasma surface activation treatment (plasma treatment), after washing the surface with methanol, the same silane coupling treatment (silane cup) under the same conditions as in Example 1 Ring treatment step) and surface catalyst treatment (catalyst adhesion step) with PdCl 2 compound were performed, and then electroless Ni—B plating was performed in the same manner as in Example 1 (electroless plating layer forming step). Ni precipitation was not observed on the surface of the polyimide film or a discontinuous precipitation state was observed, and it was found that the catalyst was not substantially adhered or uniformly adhered in the catalyst adhesion step. When cellophane tape is applied where metal color can be confirmed and peeled off, Ni transfer can be visually confirmed on the tape side, and there is not sufficient adhesion between the electroless Ni-B plating film and the polyimide film. Was confirmed.

[比較例2]
実施例1と同様のポリイミドフィルムを用い、実施例1と同じ条件下でプラズマ表面活性化処理を行い(プラズマ処理工程)、次いで、シランカップリング処理をせずに、実施例1と同様の方法により直接PdCl化合物による表面触媒化処理(触媒付着工程)を行い、その後、無電解Ni−Bめっきを実施した(無電解めっき層形成工程)。ポリイミドフィルムの表面にNiの析出が認められない或いは不連続な析出状態が観測され、触媒付着工程において触媒がほぼ付着していない或いは均一付着していないことが判明した。金属色が確認できるところにセロハンテープを貼り付け、剥がしてみるとテープ側にNiの転写が目視で確認でき、無電解Ni−Bめっき皮膜とポリイミドフィルムとの間に十分な密着性がないことが確認された。
[Comparative Example 2]
Using the same polyimide film as in Example 1, plasma surface activation treatment was performed under the same conditions as in Example 1 (plasma treatment step), and then the same method as in Example 1 without silane coupling treatment Then, a surface catalyzing treatment (catalyst attaching step) with a PdCl 2 compound was directly performed, and then electroless Ni—B plating was performed (electroless plating layer forming step). Ni precipitation was not observed on the surface of the polyimide film or a discontinuous precipitation state was observed, and it was found that the catalyst was not substantially adhered or uniformly adhered in the catalyst adhesion step. When cellophane tape is applied where metal color can be confirmed and peeled off, Ni transfer can be visually confirmed on the tape side, and there is not sufficient adhesion between the electroless Ni-B plating film and the polyimide film. Was confirmed.

[比較例3]
実施例1と同様のポリイミドフィルムを用い、プラズマ表面活性化処理(プラズマ処理工程)及びシランカップリング処理(シランカップリング処理工程)について、実施例1と同様に行った。次いで、PdCl化合物による表面触媒化を行わず、その後、実施例1と同様に、無電解Ni−Bめっきを実施した(無電解めっき層形成工程)。得られたポリイミドフィルムの表面を目視で確認すると、ポリイミドフィルムの表面にはNiは全く析出していなかった。
[Comparative Example 3]
The same polyimide film as in Example 1 was used, and plasma surface activation treatment (plasma treatment step) and silane coupling treatment (silane coupling treatment step) were performed in the same manner as in Example 1. Next, surface catalysis with a PdCl 2 compound was not performed, and thereafter, electroless Ni—B plating was performed in the same manner as in Example 1 (electroless plating layer forming step). When the surface of the obtained polyimide film was visually confirmed, Ni was not deposited at all on the surface of the polyimide film.

[比較例4]
プラズマ表面活性化処理において、プラズマ処理工程後のプラズマ処理した面のポリイミドフィルムの接触角度(純水)が60±5°となるようにした以外は、実施例1と同様にして無電解めっき皮膜を形成した。得られたNi−B無電解めっき皮膜は明らかに不均一、かつ、不連続であり、セロハンテープにより密着力試験を行ったところ、金属の剥離が目視にて観察でき、無電解Ni−Bとポリイミドフィルムとの間に十分な密着性がないことが確認された。
[Comparative Example 4]
In the plasma surface activation treatment, the electroless plating film is the same as in Example 1 except that the contact angle (pure water) of the polyimide film on the plasma-treated surface after the plasma treatment step is 60 ± 5 °. Formed. The obtained Ni-B electroless plating film was clearly non-uniform and discontinuous, and when an adhesion test was conducted with a cellophane tape, metal peeling could be observed visually, and electroless Ni-B and It was confirmed that there was not sufficient adhesion with the polyimide film.

[比較例5]
実施例1と同様のポリイミドフィルムを用い、銅箔と接触していた面エッチング除去前に銅箔が積層されていた側のポリイミドフィルムの面(表面平均粗さRz=0.65μm)に対し、実施例1と同様に無電解めっき皮膜を形成させた。この際、プラズマ表面活性化処理を行った場合とプラズマ表面活性化処理を行わなかった場合の両方について、実施例1と同様の条件でシランカップリング処理を行い、次いで、上記の通り、Ni−B無電解めっき皮膜を形成させたところ、ポリイミドフィルムの表面の一部に金属色の付着が確認された。
そこで、無電解めっき皮膜とポリイミドフィルムとの密着性の評価として、セロハンテープを用いて密着力試験を行ったところ、プラズマ表面活性化処理を行った場合と行わなかった場合のいずれにおいても、上記でポリイミドフィルムの表面の一部に付着された金属色部分の剥離が観察された。ポリイミドフィルムの表面の凹凸が大きいため、触媒がポリイミドフィルムの表面に均一に付着することが困難であり、この触媒上に析出した無電解めっき皮膜の密着性が十分ではないことが推測される。
[Comparative Example 5]
Using the same polyimide film as in Example 1, the surface of the polyimide film on which the copper foil was laminated before the surface etching removal that had been in contact with the copper foil (surface average roughness Rz = 0.65 μm) was carried out. An electroless plating film was formed in the same manner as in Example 1. At this time, silane coupling treatment was performed under the same conditions as in Example 1 for both the case where the plasma surface activation treatment was performed and the case where the plasma surface activation treatment was not performed. When the B electroless plating film was formed, adhesion of a metal color was confirmed on a part of the surface of the polyimide film.
Therefore, as an evaluation of the adhesion between the electroless plating film and the polyimide film, an adhesive force test was performed using a cellophane tape. In both cases where the plasma surface activation treatment was performed and not performed, The peeling of the metal color portion adhered to a part of the surface of the polyimide film was observed. Since the unevenness of the surface of the polyimide film is large, it is difficult for the catalyst to uniformly adhere to the surface of the polyimide film, and it is assumed that the adhesion of the electroless plating film deposited on this catalyst is not sufficient.

本発明における積層体は、平滑なポリイミドフィルム上に無電解めっき層と電気めっき層とが優れた密着性及び接着力を具備していることから、ポリイミドフィルムと強固な接着力を有するファインピッチ配線が可能であると共に、高周波用の電気回路製作に好適なフレキシブルプリント配線板用積層体である。
また、本発明における積層体の製造方法によれば、上記のような積層体を低コストで、簡便に得ることができ、フルアディティブ法のフレキシブルプリント配線板の製造方法への適用に好適である。
The laminate in the present invention is a fine pitch wiring having a strong adhesive force with a polyimide film because the electroless plated layer and the electroplated layer have excellent adhesion and adhesive force on a smooth polyimide film. It is a laminate for a flexible printed wiring board that is suitable for high-frequency electric circuit fabrication.
Moreover, according to the manufacturing method of the laminated body in this invention, the above laminated bodies can be obtained easily at low cost, and it is suitable for the application to the manufacturing method of the flexible printed wiring board of a full additive method. .

Claims (8)

フレキシブルプリント配線板に用いられるポリイミドフィルムを含んだ積層体であって、上記ポリイミドフィルムの少なくとも一方の面がプラズマ処理されていると共に、このプラズマ処理された面がシランカップリング処理されており、このシランカップリング処理された面には貴金属化合物を含んだ触媒を介して無電解めっき層が形成され、この無電解めっき層の表面には電気めっき層が形成されていることを特徴とするフレキシブルプリント配線板用積層体。   A laminate including a polyimide film used for a flexible printed wiring board, wherein at least one surface of the polyimide film is subjected to plasma treatment, and the plasma-treated surface is subjected to silane coupling treatment. An electroless plating layer is formed on a surface subjected to a silane coupling treatment via a catalyst containing a noble metal compound, and an electroplating layer is formed on the surface of the electroless plating layer. Laminate for wiring board. プラズマ処理後のポリイミドフィルムの表面が、純水との接触角50度以下である請求項1に記載のフレキシブルプリント配線板用積層体。   The laminate for a flexible printed wiring board according to claim 1, wherein the surface of the polyimide film after the plasma treatment has a contact angle of 50 degrees or less with pure water. ポリイミドフィルムが、膜厚10〜100μm、プラズマ処理する面の表面平均粗さ(Rz)が50〜200nm、吸湿率が1.0wt%(23℃/50%RH)以下、及び寸法安定率が30ppm(23℃、0〜70%RH)以下である請求項1又は2に記載のフレキシブルプリント配線板用積層体。   The polyimide film has a film thickness of 10 to 100 μm, the surface average roughness (Rz) of the surface to be plasma-treated is 50 to 200 nm, the moisture absorption is 1.0 wt% (23 ° C / 50% RH) or less, and the dimensional stability is 30 ppm ( The laminate for a flexible printed wiring board according to claim 1 or 2, which is 23 ° C or less and 0 to 70% RH) or less. 無電解めっき層が無電解銅めっき層又は無電解Niめっき層であり、電気めっき層が電気銅めっき層である請求項1〜3のいずれかに記載のフレキシブルプリント配線板用積層体。   The laminate for a flexible printed wiring board according to any one of claims 1 to 3, wherein the electroless plating layer is an electroless copper plating layer or an electroless Ni plating layer, and the electroplating layer is an electrolytic copper plating layer. フレキシブルプリント配線板に用いられるポリイミドフィルムを含んだ積層体の製造方法であって、上記ポリイミドフィルムの少なくとも一方の面をプラズマ処理する工程と、このプラズマ処理された面をシランカップリング処理する工程と、このシランカップリング処理した面に貴金属化合物を含んだ触媒を付着させる工程と、この触媒を介して無電解めっき層を形成する工程と、この無電解めっき層の表面に電気めっき層を形成する工程とを含むことを特徴とするフレキシブルプリント配線板用積層体の製造方法。   A method of manufacturing a laminate including a polyimide film used for a flexible printed wiring board, the step of plasma-treating at least one surface of the polyimide film, and the step of silane coupling treatment of the plasma-treated surface; A step of attaching a catalyst containing a noble metal compound to the surface subjected to the silane coupling treatment, a step of forming an electroless plating layer via the catalyst, and an electroplating layer on the surface of the electroless plating layer And a process for producing a laminate for a flexible printed wiring board. プラズマ処理後のポリイミドフィルムの表面が、純水との接触角50度以下である請求項5に記載のフレキシブルプリント配線板用積層体の製造方法。   The method for producing a laminate for a flexible printed wiring board according to claim 5, wherein the surface of the polyimide film after the plasma treatment has a contact angle with pure water of 50 degrees or less. ポリイミドフィルムが、膜厚10〜100μm、プラズマ処理する面の表面平均粗さ(Rz)が50〜200nm、吸水率が1.0wt%(23℃/50%RH)以下、及び寸法安定率が30ppm(23℃、0〜70%RH)以下である請求項5又は6に記載のフレキシブルプリント配線板用積層体の製造方法。   The polyimide film has a film thickness of 10 to 100 μm, the surface average roughness (Rz) of the surface to be plasma-treated is 50 to 200 nm, the water absorption is 1.0 wt% (23 ° C / 50% RH) or less, and the dimensional stability is 30 ppm ( The method for producing a laminate for a flexible printed wiring board according to claim 5 or 6, wherein the temperature is 23 ° C or less and 0 to 70% RH) or less. 無電解めっき層が無電解銅めっき層又は無電解Niめっき層であり、電気めっき層が電気銅めっき層である請求項5〜7のいずれかに記載のフレキシブルプリント配線板用積層体の製造方法。   The method for producing a laminate for a flexible printed wiring board according to any one of claims 5 to 7, wherein the electroless plating layer is an electroless copper plating layer or an electroless Ni plating layer, and the electroplating layer is an electrolytic copper plating layer. .
JP2004235833A 2004-08-13 2004-08-13 Method for producing laminate for flexible printed wiring board Expired - Fee Related JP4647954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004235833A JP4647954B2 (en) 2004-08-13 2004-08-13 Method for producing laminate for flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235833A JP4647954B2 (en) 2004-08-13 2004-08-13 Method for producing laminate for flexible printed wiring board

Publications (2)

Publication Number Publication Date
JP2006054357A true JP2006054357A (en) 2006-02-23
JP4647954B2 JP4647954B2 (en) 2011-03-09

Family

ID=36031625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235833A Expired - Fee Related JP4647954B2 (en) 2004-08-13 2004-08-13 Method for producing laminate for flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP4647954B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150221A (en) * 2005-10-27 2007-06-14 Fujitsu Ltd Multilayer circuit board and method for manufacturing the same
JP2008041720A (en) * 2006-08-01 2008-02-21 Fujitsu Ltd Circuit board, and its manufacturing method
JP2008202109A (en) * 2007-02-21 2008-09-04 National Institute Of Advanced Industrial & Technology Plating film-polyimide stacked body, and method for producing the same
WO2008111234A1 (en) * 2007-03-12 2008-09-18 Kazufumi Ogawa Shaped plastic member with a metal film, a manufacturing method thereof and articles made therefrom
JP2008294063A (en) * 2007-05-22 2008-12-04 Fujitsu Ltd Circuit board and manufacturing method thereof
JP2010080527A (en) * 2008-09-24 2010-04-08 Fujitsu Ltd Wiring-substrate manufacturing method
JP2011134514A (en) * 2009-12-23 2011-07-07 Mitsubishi Shindoh Co Ltd Collector for lithium ion battery and manufacturing method thereof
JP2017183538A (en) * 2016-03-30 2017-10-05 セイコーインスツル株式会社 Electronic circuit board and electronic device
WO2019142790A1 (en) * 2018-01-18 2019-07-25 Agc株式会社 Long laminate, method for producing same, and printed wiring board
JP2020037265A (en) * 2018-09-03 2020-03-12 東洋紡株式会社 Polyimide film laminate and production method of polyimide film laminate
KR20200130361A (en) 2018-03-09 2020-11-18 가부시키가이샤 아리사와 세이사쿠쇼 Laminate and its manufacturing method
WO2023080182A1 (en) * 2021-11-05 2023-05-11 日東電工株式会社 Layered body and method for producing layered body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221581B1 (en) 2011-10-20 2013-01-14 한국기계연구원 Fabrication method of flexible transparent electrode substrate with graphene, and the flexible transparent electrode substrate substrate thereby

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04186891A (en) * 1990-11-21 1992-07-03 Sumitomo Metal Mining Co Ltd Manufacture of copper polyimide substrate
JPH05110247A (en) * 1991-10-18 1993-04-30 Shin Etsu Chem Co Ltd Manufacture of board for flexible printed wiring
JPH08316612A (en) * 1995-05-15 1996-11-29 Ibiden Co Ltd Printed circuit board and manufacturing method
JPH1129852A (en) * 1997-07-14 1999-02-02 Tomoegawa Paper Co Ltd Production of composite film of polyimide film-metal film
JP2000261128A (en) * 1999-03-08 2000-09-22 Canon Inc Pattern substrate and its manufacture
JP2002004067A (en) * 2000-06-27 2002-01-09 Univ Shizuoka Polyimide film directly joined with thin copper film and method for manufacturing the same
JP2002270623A (en) * 2001-03-09 2002-09-20 Sekisui Chem Co Ltd Electronic component manufacturing method
WO2003004262A1 (en) * 2001-07-06 2003-01-16 Kaneka Corporation Laminate and its producing method
JP2003109989A (en) * 2001-09-28 2003-04-11 Du Pont Toray Co Ltd Polyimide film for flexible printed board
JP2004162098A (en) * 2002-11-11 2004-06-10 Sumitomo Heavy Ind Ltd Resin-metal laminate structure and its production method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04186891A (en) * 1990-11-21 1992-07-03 Sumitomo Metal Mining Co Ltd Manufacture of copper polyimide substrate
JPH05110247A (en) * 1991-10-18 1993-04-30 Shin Etsu Chem Co Ltd Manufacture of board for flexible printed wiring
JPH08316612A (en) * 1995-05-15 1996-11-29 Ibiden Co Ltd Printed circuit board and manufacturing method
JPH1129852A (en) * 1997-07-14 1999-02-02 Tomoegawa Paper Co Ltd Production of composite film of polyimide film-metal film
JP2000261128A (en) * 1999-03-08 2000-09-22 Canon Inc Pattern substrate and its manufacture
JP2002004067A (en) * 2000-06-27 2002-01-09 Univ Shizuoka Polyimide film directly joined with thin copper film and method for manufacturing the same
JP2002270623A (en) * 2001-03-09 2002-09-20 Sekisui Chem Co Ltd Electronic component manufacturing method
WO2003004262A1 (en) * 2001-07-06 2003-01-16 Kaneka Corporation Laminate and its producing method
JP2003109989A (en) * 2001-09-28 2003-04-11 Du Pont Toray Co Ltd Polyimide film for flexible printed board
JP2004162098A (en) * 2002-11-11 2004-06-10 Sumitomo Heavy Ind Ltd Resin-metal laminate structure and its production method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150221A (en) * 2005-10-27 2007-06-14 Fujitsu Ltd Multilayer circuit board and method for manufacturing the same
JP2008041720A (en) * 2006-08-01 2008-02-21 Fujitsu Ltd Circuit board, and its manufacturing method
JP4735464B2 (en) * 2006-08-01 2011-07-27 富士通株式会社 Circuit board and manufacturing method thereof
JP2008202109A (en) * 2007-02-21 2008-09-04 National Institute Of Advanced Industrial & Technology Plating film-polyimide stacked body, and method for producing the same
WO2008111234A1 (en) * 2007-03-12 2008-09-18 Kazufumi Ogawa Shaped plastic member with a metal film, a manufacturing method thereof and articles made therefrom
JP2008294063A (en) * 2007-05-22 2008-12-04 Fujitsu Ltd Circuit board and manufacturing method thereof
JP2010080527A (en) * 2008-09-24 2010-04-08 Fujitsu Ltd Wiring-substrate manufacturing method
JP2011134514A (en) * 2009-12-23 2011-07-07 Mitsubishi Shindoh Co Ltd Collector for lithium ion battery and manufacturing method thereof
JP2017183538A (en) * 2016-03-30 2017-10-05 セイコーインスツル株式会社 Electronic circuit board and electronic device
WO2019142790A1 (en) * 2018-01-18 2019-07-25 Agc株式会社 Long laminate, method for producing same, and printed wiring board
JPWO2019142790A1 (en) * 2018-01-18 2021-01-28 Agc株式会社 Long laminate, its manufacturing method and printed wiring board
JP7234944B2 (en) 2018-01-18 2023-03-08 Agc株式会社 LONG LAMINATED BOARD, METHOD FOR MANUFACTURING THE SAME, AND PRINTED WIRING BOARD
US11632859B2 (en) 2018-01-18 2023-04-18 AGC Inc. Long laminate, method for its production and printed wiring board
KR20200130361A (en) 2018-03-09 2020-11-18 가부시키가이샤 아리사와 세이사쿠쇼 Laminate and its manufacturing method
US11317507B2 (en) 2018-03-09 2022-04-26 Arisawa Mfg. Co., Ltd. Laminate and method for manufacturing the same
JP2020037265A (en) * 2018-09-03 2020-03-12 東洋紡株式会社 Polyimide film laminate and production method of polyimide film laminate
JP7400273B2 (en) 2018-09-03 2023-12-19 東洋紡株式会社 Polyimide film laminate and method for producing polyimide film laminate
WO2023080182A1 (en) * 2021-11-05 2023-05-11 日東電工株式会社 Layered body and method for producing layered body

Also Published As

Publication number Publication date
JP4647954B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
TWI252871B (en) Laminate and process for preparing same
JP4647954B2 (en) Method for producing laminate for flexible printed wiring board
TWI450918B (en) Surface treatment method of polyimide resin and method for producing metal foil laminated body
KR102032624B1 (en) Preparation method of polyamide glue free flexible printed circuit board
JPWO2003097725A1 (en) POLYIMIDE FILM, PROCESS FOR PRODUCING THE SAME, AND POLYIMIDE / METAL LAMINATE USING POLYIMIDE FILM
KR20060103955A (en) Polyimide-metal laminated body and polyimide circuit board
JPH07268682A (en) Method for electroplating surface of electric nonconductor
JP2005116745A (en) Conductor coating polyimide film and manufacturing method thereof
CN100424226C (en) Method for electroless metalisation of polymer substrate
JP2008063560A (en) Method for surface modification of polyimide resin layer and manufacturing process for metal-clad laminate
JP2006104504A (en) Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same
JP5291008B2 (en) Method for manufacturing circuit wiring board
KR100747627B1 (en) Method for producing 2 layered conductive metal plated polyimide substrate
KR100656246B1 (en) Manufacturing method of flexible copper clad laminate using surface modification of polyimide film and its product thereby
JP5129111B2 (en) LAMINATE MANUFACTURING METHOD AND CIRCUIT WIRING BOARD MANUFACTURING METHOD
KR100798870B1 (en) Conductive metal plated polyimide substrate including coupling agent and method for producing the same
JP5036004B2 (en) Method for manufacturing circuit wiring board
JP2007077439A (en) Method for metallizing surface of polyimide resin material
WO2020050338A1 (en) Multilayer body
JP5115981B2 (en) Method for manufacturing circuit wiring board
TWI282759B (en) Electro-conductive metal plated polyimide substrate
JP2009045796A (en) Laminate for flexible printed wiring board and its manufacturing method
JP2008258293A (en) Forming method of patterned conductor layer, manufacturing method of circuit board and circuit board
JP2007262481A (en) Surface metallizing method of polyimide resin material
JP2004087548A (en) Method for manufacturing printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees