JP2009045796A - Laminate for flexible printed wiring board and its manufacturing method - Google Patents

Laminate for flexible printed wiring board and its manufacturing method Download PDF

Info

Publication number
JP2009045796A
JP2009045796A JP2007213079A JP2007213079A JP2009045796A JP 2009045796 A JP2009045796 A JP 2009045796A JP 2007213079 A JP2007213079 A JP 2007213079A JP 2007213079 A JP2007213079 A JP 2007213079A JP 2009045796 A JP2009045796 A JP 2009045796A
Authority
JP
Japan
Prior art keywords
polyimide film
printed wiring
flexible printed
wiring board
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007213079A
Other languages
Japanese (ja)
Inventor
Hidetoshi Yamabe
秀敏 山辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007213079A priority Critical patent/JP2009045796A/en
Publication of JP2009045796A publication Critical patent/JP2009045796A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate for a flexible printed wiring board which is excellent in adherence property and close contact property of a conductor forming a circuit with a polyimide film, is excellent in reliability without impairing characteristics such as dielectric characteristic, humidity resistance, and heat resistance or the like of a polyimide film, and enables fine pattern machining of the flexible printed wiring board, and its manufacturing method. <P>SOLUTION: The laminate for the flexible printed wiring board is the laminate containing the polyimide film used for the flexible printed wiring board, where an electron beam processing is performed on at least one side surface of the polyimide film, a nitrogen-containing group vinyl compound is graft-polymerized on the surface processed with the electron beam, and a nonelectrolytic plating layer is formed on the surface of the graft-polymerization processed polyimide film through a catalyst containing a noble metal compound. The electron-beam processing is previously performed on the polyimide film surface so as to be activated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子機器分野等で広く使用されるフレキシブルプリント配線板用の積層体とその製造方法に関するものである。   The present invention relates to a laminate for a flexible printed wiring board widely used in the field of electronic equipment and the like, and a method for manufacturing the same.

近年、電子機器の小型化や高機能化の要請が強まり、実装配線材料の微細化に対応したフレキシブルプリント配線板用材料の高性能化への要求が高まっている。そのため、ファインパターン加工を可能とするフレキシブルプリント配線板用の積層体の開発が望まれている。フレキシブルプリント配線板のファインピッチな微細加工を可能とするには、フレキシブルプリント配線板を形成する導体自体の薄膜化とその表面の平坦性向上が要求される。一方、絶縁体である絶縁性樹脂と接する導体表面の形態が平坦化してくると、導体と絶縁性樹脂との界面での接着力が低下するおそれがあるという新たな技術課題が生じる。 ところで、無電解めっき技術は、めっき液組成やめっき条件を変化させることで化学的、機械的、電気的特性にユニークで優れた皮膜が得られることから、表面処理分野の基幹技術に成長している。特に、プラスチックやセラミックスなどの不導体への無電解めっきは素材の表面形状によらず、また、電気めっきの電流分布の問題等もなく、均一且つ平滑な皮膜が形成でき、高精度な膜厚制御が可能であるため、電気・電子機器産業、半導体産業において、重要かつ不可欠な表面処理技術として急速に需要が拡大してきた。   In recent years, there has been an increasing demand for downsizing and higher functionality of electronic devices, and there has been an increasing demand for higher performance of materials for flexible printed wiring boards corresponding to miniaturization of mounting wiring materials. Therefore, development of a laminate for a flexible printed wiring board that enables fine pattern processing is desired. In order to enable fine processing of the fine pitch of the flexible printed wiring board, it is required to reduce the thickness of the conductor itself forming the flexible printed wiring board and improve the flatness of the surface. On the other hand, when the shape of the conductor surface in contact with the insulating resin, which is an insulator, becomes flat, a new technical problem arises that the adhesive force at the interface between the conductor and the insulating resin may be reduced. By the way, electroless plating technology has grown to become a core technology in the surface treatment field because it can produce unique and excellent coatings with chemical, mechanical and electrical characteristics by changing the plating solution composition and plating conditions. Yes. In particular, electroless plating on non-conductors such as plastics and ceramics can form a uniform and smooth film regardless of the surface shape of the material, and there is no problem with the current distribution of electroplating. Because it is controllable, demand has rapidly expanded as an important and indispensable surface treatment technology in the electrical / electronic equipment industry and the semiconductor industry.

このような無電解めっきを用いたプリント配線板の製造に関する技術として、無電解銅めっきを例にすると、例えば以下のようなものを示すことができる。
すなわち、サブトラクティブ法の場合には、各層間の銅回路を電気的に接続させるために、スルーホールと呼ばれる導通穴に電気銅めっき皮膜を20〜30μm程度成膜する。その際、下地に導電性を付与する必要があることから、予め無電解銅めっき皮膜を1μm程度成膜させる。
また、フルアディティブ法の場合には、フレキシブルプリント配線板の配線部分を形成するために絶縁体の表面に直接無電解銅めっきにより回路を形成する。そのため、無電解銅めっきの皮膜の物性や密着性は、フレキシブルプリント配線板の品質に大きな影響を与える。この方法は、使用材料が少なく、穴あけ、印刷、そして写真的手法による触媒形成後、無電解銅めっきによる配線が可能であることから、最も経済的な方法である。
更に、ビルドアップ法の場合には、従来のサブトラクティブ法で作製したプリント配線板上に絶縁性樹脂と銅回路を1層ずつ形成していく方法であり、各層間の銅回路は、ブラインドビアホール(BVH)と呼ばれる導通穴に銅めっきを成膜することによって電気的に接続される。
As a technique relating to the production of a printed wiring board using such electroless plating, for example, the following can be shown by taking electroless copper plating as an example.
That is, in the case of the subtractive method, an electrolytic copper plating film is formed in a thickness of about 20 to 30 μm in a conduction hole called a through hole in order to electrically connect the copper circuits between the layers. In that case, since it is necessary to give electroconductivity to a foundation | substrate, about 1 micrometer is formed in advance of an electroless copper plating film.
In the case of the full additive method, a circuit is formed directly on the surface of the insulator by electroless copper plating in order to form a wiring portion of the flexible printed wiring board. Therefore, the physical properties and adhesion of the electroless copper plating film greatly affect the quality of the flexible printed wiring board. This method is the most economical method because less material is used and wiring by electroless copper plating is possible after drilling, printing, and catalyst formation by photographic techniques.
Furthermore, in the case of the build-up method, an insulating resin and a copper circuit are formed one layer at a time on a printed wiring board manufactured by a conventional subtractive method. Electrical connection is established by forming a copper plating in a conduction hole called (BVH).

これらいずれのプリント配線板の製造においても、無電解めっき皮膜を絶縁体である高分子フィルムの表面に均一、かつ密着性良く付着させることが重要な課題となっている。そのため、特にポリイミドのように表面活性が乏しい場合には、導体あるいは接着剤との間の接合力を確保するために、アルカリ性薬液を用いてポリイミドフィルムの表面をエッチングしてフィルムの表面に微細な凹凸を形成し、アンカー効果によって導体等との密着性及び接着性を改善することが行われている。
しかしながら、このアルカリ性薬液による処理は、一般に、処理時間が長いことから処理効率が悪く、それに伴いフィルムに対する薬液の改質作用が強すぎてしまうといった不具合が生じる。また、フィルム片面のみを優先的に改質することができないために、改質処理を必要としない面までも処理されることとなり、引張強さ、伸度、弾性係数、耐屈曲性等の優れたポリイミドフィルムの機械特性が低下してしまうといった欠点もある。
In the production of any of these printed wiring boards, it is an important issue to adhere the electroless plating film uniformly and with good adhesion to the surface of the polymer film as an insulator. Therefore, especially when the surface activity is poor, such as polyimide, in order to secure the bonding force between the conductor or the adhesive, the surface of the polyimide film is etched with an alkaline chemical solution so that the surface of the film is fine. Forming irregularities and improving adhesion and adhesion to conductors and the like by an anchor effect is performed.
However, the treatment with the alkaline chemical solution generally has a long treatment time, resulting in poor treatment efficiency, and accompanying this, the problem that the modifying action of the chemical solution on the film becomes too strong. In addition, since it is not possible to preferentially modify only one side of the film, even surfaces that do not require modification are treated, and excellent tensile strength, elongation, elastic modulus, flex resistance, etc. Another disadvantage is that the mechanical properties of the polyimide film deteriorate.

また、ポリイミドフィルムのような非導電性基板上に金属皮膜を形成するためには、エッチングにより樹脂表面を荒らし、貴金属化合物を用いて触媒活性機能を付与して、この触媒作用によって無電解めっき皮膜を形成する方法も報告されている。この際、触媒活性機能を付与する方法としては、それぞれ2価のPdとSnとを含んだコロイド液や塩酸酸性のSnCl溶液とPdCl溶液の2液法が広く用いられているが、これらの方法では、毒性の高いSn(II)を使用することや、Sn化合物がポリイミドフィルムに残存してポリイミドフィルムの電気特性や機械特性等に悪影響を及ぼすおそれがあることなどから、残存するSn化合物の除去処理が必要である。また、この方法では、樹脂との密着性を確保するために、エッチングによって樹脂の表面を粗面化する必要があることから、高周波電気信号を伝達する電気回路の形成を目的とするフレキシブルプリント用配線板には不向きである。 In addition, in order to form a metal film on a non-conductive substrate such as a polyimide film, the resin surface is roughened by etching, a catalytic activity function is imparted using a noble metal compound, and the electroless plating film is formed by this catalytic action. A method of forming the same has also been reported. At this time, as a method for imparting a catalytic activity function, a colloidal solution containing divalent Pd and Sn and a two-component method of hydrochloric acid-based SnCl 2 solution and PdCl 2 solution are widely used. In this method, since the highly toxic Sn (II) is used or the Sn compound remains in the polyimide film, there is a risk of adversely affecting the electrical properties and mechanical properties of the polyimide film. Removal processing is necessary. Also, in this method, since it is necessary to roughen the surface of the resin by etching in order to ensure adhesion with the resin, it is suitable for the formation of an electric circuit that transmits a high-frequency electric signal. Not suitable for wiring boards.

更には、ポリイミドフィルム製膜中に形成される表面脆弱層(WBL:Weak Boundary Layer)を除去すると共に、このフィルムの表面に親水性の官能基を形成させて表面自由エネルギーを高めて導体層との密着力を向上させることを目的とし、ポリイミドフィルムの表面に対してコロナ放電処理、プラズマ処理、紫外線照射、電子線照射処理等の表面改質処理を行うことは知られている。
しかしながら、これらの処理方法をそれぞれ単独で行ったとしても、処理効果はポリイミドフィルムの表面特性によって大きく異なり、また、これらは経時変化が大きいことから品質管理制御が難しい。更には、微細パターン回路を形成する導体層との接着力が十分に得られず、表面改質処理を行った面内でのバラツキ等の問題も生じてしまう。
Furthermore, the surface brittle layer (WBL: Weak Boundary Layer) formed during polyimide film formation is removed, and a hydrophilic functional group is formed on the surface of the film to increase the surface free energy and It is known to perform surface modification treatment such as corona discharge treatment, plasma treatment, ultraviolet ray irradiation, electron beam irradiation treatment on the surface of the polyimide film for the purpose of improving the adhesion strength of the polyimide film.
However, even if each of these treatment methods is carried out independently, the treatment effect varies greatly depending on the surface characteristics of the polyimide film, and since these change greatly with time, quality control is difficult to control. Furthermore, sufficient adhesive strength with the conductor layer forming the fine pattern circuit cannot be obtained, and problems such as variations in the surface subjected to the surface modification treatment also occur.

このような状況の下、ポリイミドフィルムの表面に研磨剤を含むスラリーを圧縮空気によって吹付けて物理的に荒らすことで、接着剤の種類を選ばずにポリイミドフィルムと接着剤との接着強度を確保することを提案している(例えば、特許文献1参照。)。
しかしながら、ポリイミドフィルムの表面を荒らすと、無電解めっきに必要な触媒層の均一な付与が保証できなくなり、形成する無電解めっき皮膜の均一性を確保することは困難であり、ファインパターン形成と高周波の対応に問題がある。
Under such circumstances, the slurry containing abrasive on the surface of the polyimide film is physically blown by compressed air to ensure the adhesive strength between the polyimide film and the adhesive regardless of the type of adhesive. (For example, refer to Patent Document 1).
However, if the surface of the polyimide film is roughened, the uniform application of the catalyst layer necessary for electroless plating cannot be guaranteed, and it is difficult to ensure the uniformity of the electroless plating film to be formed. There is a problem with the response.

更に、ポリイミドフィルムをアルカリ金属塩を含有する溶液で前処理した後、無電解めっきの触媒となる貴金属類と錯形成が可能な官能基を有するシランカップリング剤の溶液で処理する方法が提案されている(例えば、特許文献2参照。)。
しかしながら、アルカリ改質のポリイミドフィルム特性へのダメージが大きく、フィルム表面が粗すぎてしまい、ファインパターン形成と高周波の対応に問題があり、一方、アルカリ金属塩による前処理がない場合には、被めっき材の素材に密着性よくかつ均一なめっき膜を得ることが困難である。
特開2003−306554号公報 特開2002−226972号公報
Furthermore, a method is proposed in which a polyimide film is pretreated with a solution containing an alkali metal salt and then treated with a solution of a silane coupling agent having a functional group capable of complexing with a noble metal as a catalyst for electroless plating. (For example, refer to Patent Document 2).
However, the damage to the properties of the alkali-modified polyimide film is large, the film surface is too rough, and there is a problem with the correspondence between fine pattern formation and high frequency. On the other hand, if there is no pretreatment with an alkali metal salt, It is difficult to obtain a uniform plating film with good adhesion to the material of the plating material.
JP 2003-306554 A JP 2002-226972 A

本発明の目的は、回路を形成する導体とポリイミドフィルムとの接着性及び密着性に優れると共に、ポリイミドフィルムが備える誘電特性、耐湿性、耐熱性等の特性を損なうことなく信頼性に優れた積層体であって、フレキシブルプリント配線板のファインパターン加工が可能となるフレキシブルプリント配線板用積層体を提供することにある。
また、本発明の別の目的は、このようなフレキシブルプリント配線板を低コストで、かつ、簡便に作製することができるフレキシブルプリント配線板用積層体の製造方法を提供することにある。
The object of the present invention is excellent in adhesion and adhesion between a conductor forming a circuit and a polyimide film, and excellent in reliability without impairing characteristics such as dielectric properties, moisture resistance and heat resistance of the polyimide film. An object of the present invention is to provide a laminate for a flexible printed wiring board that enables fine pattern processing of the flexible printed wiring board.
Another object of the present invention is to provide a method for producing a laminate for a flexible printed wiring board, which can easily produce such a flexible printed wiring board at low cost.

本発明者は、フレキシブルプリント配線板のファインパターン加工が可能であって、回路を形成する導体と絶縁体であるポリイミドフィルムとの界面における信頼性に優れ、また、ポリイミドフィルムの優れた機械的特性や電気的特性等を損なうことのないフレキシブルプリント配線板用の積層体について鋭意検討した結果、ポリイミドフィルムの表面を電子線処理すると共に表面にグラフト重合可能な貴金属化合物を含む触媒を介して無電解めっき層を設けることによって、ポリイミドフィルム上に均一、かつ、平滑な無電解めっき層を形成することができ、この無電解めっき層がポリイミドフィルムに対して優れた密着性及び接着性を有することを見出し、本発明を完成した。   The present inventor is capable of fine pattern processing of a flexible printed wiring board, and has excellent reliability at the interface between a conductor forming a circuit and a polyimide film as an insulator, and excellent mechanical properties of the polyimide film As a result of diligent research on a laminate for flexible printed wiring boards that does not impair the electrical properties and electrical characteristics, etc., the surface of the polyimide film is treated with an electron beam and electroless via a catalyst containing a noble metal compound that can be graft-polymerized on the surface. By providing a plating layer, a uniform and smooth electroless plating layer can be formed on the polyimide film, and the electroless plating layer has excellent adhesion and adhesion to the polyimide film. The headline and the present invention were completed.

すなわち、本発明は、フレキシブルプリント配線板に用いられるポリイミドフィルムを含んだ積層体であって、前記ポリイミドフィルムの少なくとも一方の面には電子線処理が施され、該電子線処理された面には含窒素基ビニル化合物がグラフト重合されると共に、該グラフト重合処理されたポリイミドフィルムの表面には貴金属化合物を含んだ触媒を介して無電解めっき層が形成されているフレキシブルプリント配線板用積層体である。
また、本発明のフレキシブルプリント配線板用積層体では、前記無電解めっき層の表面に更に電気めっき層が形成しても良いし、更に、前記無電解めっき層として無電解銅めっき層又は無電解ニッケルめっき層を、電解めっき層として電気銅めっき層を利用することができる。
That is, the present invention is a laminate including a polyimide film used for a flexible printed wiring board, wherein at least one surface of the polyimide film is subjected to electron beam treatment, and the electron beam treated surface is A laminate for a flexible printed wiring board in which a nitrogen-containing vinyl compound is graft polymerized and an electroless plating layer is formed on the surface of the graft polymerized polyimide film via a catalyst containing a noble metal compound. is there.
In the laminate for a flexible printed wiring board of the present invention, an electroplating layer may be further formed on the surface of the electroless plating layer, and an electroless copper plating layer or an electroless layer may be used as the electroless plating layer. An electrolytic copper plating layer can be used as the nickel plating layer and the electrolytic plating layer.

また、もう一つの本発明は、フレキシブルプリント配線板に用いられるポリイミドフィルムを含んだ積層体の製造方法であって、前記ポリイミドフィルムの少なくとも一方の面を電子線照射する工程と、該電子線照射された面に含窒素基ビニル化合物がグラフト重合される工程と、該グラフト重合処理されたポリイミドフィルムの表面に貴金属化合物を含んだ触媒を付着させる工程と、該触媒を介して無電解めっき層を形成する工程、とを含むフレキシブルプリント配線板用積層体の製造方法である。
本発明のフレキシブルプリント配線板用積層体の製造方法では、前記無電解めっき層を形成する工程後に、更に該無電解めっき層の表面に電気めっき層を形成する工程を利用しても良いし、または、前記無電解めっき層の形成方法として無電解銅めっき又は無電解ニッケルめっきを、電解めっき層の形成方法として電気銅めっきを利用することもできる。
Another aspect of the present invention is a method for producing a laminate including a polyimide film used for a flexible printed wiring board, the step of irradiating at least one surface of the polyimide film with an electron beam, and the electron beam irradiation. A step in which a nitrogen-containing vinyl compound is graft-polymerized on the formed surface, a step in which a catalyst containing a noble metal compound is attached to the surface of the graft-polymerized polyimide film, and an electroless plating layer through the catalyst. Forming the laminate for a flexible printed wiring board.
In the method for producing a laminate for a flexible printed wiring board of the present invention, after the step of forming the electroless plating layer, a step of forming an electroplating layer on the surface of the electroless plating layer may be used. Alternatively, electroless copper plating or electroless nickel plating can be used as the method for forming the electroless plating layer, and electrolytic copper plating can be used as the method for forming the electroplating layer.

本発明における積層体は、平滑なポリイミドフィルム上に無電解めっき層が優れた密着性及び接着力を具備していることから、ポリイミドフィルムと強固な接着力を有するファインピッチ配線が可能であると共に、高周波用の電気回路製作に好適なフレキシブルプリント配線板用積層体が得られる。
また、本発明における積層体の製造方法によれば、上記のような積層体を低コストで、簡便に得ることができ、特にフルアディティブ法のフレキシブルプリント配線板の製造方法への適用に好適である。
The laminate in the present invention is capable of fine pitch wiring having a strong adhesive force with the polyimide film because the electroless plating layer has excellent adhesion and adhesive force on a smooth polyimide film. As a result, a laminate for a flexible printed wiring board suitable for manufacturing an electric circuit for high frequency can be obtained.
Further, according to the method for producing a laminate in the present invention, the laminate as described above can be easily obtained at low cost, and is particularly suitable for application to a method for producing a flexible printed wiring board by a full additive method. is there.

本発明におけるポリイミドフィルムは、従来公知の方法で製造されたものを使用することができる。すなわち、テトラカルボン酸二無水物と芳香族ジアミンとの反応から得られるポリアミド酸をフィルムとし、得られたポリアミド酸フィルムを熱的もしくは化学的にイミド化することにより得られたものを使用することができる。
テトラカルボン酸二無水物としては、例えば無水ピロメリット酸、3,3’,4,4’- ビフェニルテトラカルボン酸二無水物、3,3’,4,4’- ジフェニルスルフォンテトラカルボン酸二無水4,4’-オキシジフタル酸物、無水物等を挙げることができる。芳香族ジアミンとしては、例えば、4,4’-ジアミノジフェニルエーテル、2’-メトキシ4,4’-ジアミノベンズアニリド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチル-4,4’- ジアミノビフェニル、3,3’- ジヒドロキシ-4,4’- ジアミノビフェニル、4,4’ジアミノベンズアニリド等を挙げることができる。また、これらのテトラカルボン酸二無水物や芳香族ジアミンについては、それぞれ、1種のみを使用してもよく2種以上を併用して使用することもできる。
The polyimide film in this invention can use what was manufactured by the conventionally well-known method. That is, use a polyamic acid obtained from the reaction of tetracarboxylic dianhydride and an aromatic diamine as a film, and use the one obtained by imidizing the obtained polyamic acid film thermally or chemically. Can do.
Examples of tetracarboxylic dianhydrides include pyromellitic anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride Examples include 4,4′-oxydiphthalic acid anhydride and anhydride. Examples of the aromatic diamine include 4,4′-diaminodiphenyl ether, 2′-methoxy 4,4′-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4- Aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4 ' -Diaminobiphenyl, 4,4 'diaminobenzanilide and the like. Moreover, about these tetracarboxylic dianhydride and aromatic diamine, only 1 type may be used, respectively, and 2 or more types can also be used together.

本発明で使用するポリイミドフィルムの少なくとも一方の面は、無電解めっきを施すのに先立って電子線処理をしておく必要がある。電子線処理は、ポリイミドフィルムに接着活性官能基であるラジカルを均一に、かつ効果的に形成させることができる表面活性化処理として作用する。
電子線処理の具体的な条件は、加速電圧150kV以下、また不活性ガスはヘリウム、ネオン、アルゴン、二酸化炭素、アンモニア、窒素等から選ばれた1種または2種以上の混合ガスを使用するのがよい。
At least one surface of the polyimide film used in the present invention needs to be subjected to electron beam treatment prior to electroless plating. The electron beam treatment acts as a surface activation treatment that can uniformly and effectively form radicals that are adhesive active functional groups on the polyimide film.
Specific conditions for the electron beam treatment include an acceleration voltage of 150 kV or less, and the inert gas is a gas mixture of one or more selected from helium, neon, argon, carbon dioxide, ammonia, nitrogen and the like. Is good.

また、本発明においては、電子線処理された面に、含窒素基ビニル化合物をグラフト重合させる必要がある。このグラフト重合によりポリイミドフィルムの表面に更に均一な化学特性を付与することができ、後の工程において形成する無電解めっき層とポリイミドフィルムとの密着性を向上させることができる。
ここで、本発明で使用する含窒素基ビニル化合物としては、例えば、4-ビニルピリジン(4VP),2-ビニルピリジン(2-VP),1-ビニルイミダゾール(1-VIDz),NN-(ジメチルアミノ)エチルメタクリレート(DMAEMA),2-(トリメチルアンモニウム)エチルメタクリレート塩化物(TMMAC)等を挙げることができる。
そして、グラフト重合されたアミノやピリジン等の含窒素基により、無電解めっきの触媒となるPdイオン等の金属イオンを捕捉して、優れた密着性を付与せしめることができる。
本発明において、電子線処理されたポリイミドフィルムの表面へグラフト重合するためには、含窒素基ビニル化合物の溶液中に電子線処理されたポリイミドフィルムを浸漬することによって行うことができる。更に、浸漬処理を行う場合には、加熱を行うことにより効率的にグラフト重合することができる。
In the present invention, it is necessary to graft polymerize a nitrogen-containing vinyl compound on the surface treated with the electron beam. By this graft polymerization, more uniform chemical properties can be imparted to the surface of the polyimide film, and the adhesion between the electroless plating layer and the polyimide film to be formed in a later step can be improved.
Here, as the nitrogen-containing group vinyl compound used in the present invention, for example, 4-vinylpyridine (4VP), 2-vinylpyridine (2-VP), 1-vinylimidazole (1-VIDz), NN- (dimethyl) Amino) ethyl methacrylate (DMAEMA), 2- (trimethylammonium) ethyl methacrylate chloride (TMMAC) and the like can be mentioned.
And, by nitrogen-containing groups such as amino and pyridine that are graft-polymerized, metal ions such as Pd ions that serve as a catalyst for electroless plating can be captured to give excellent adhesion.
In the present invention, graft polymerization to the surface of the electron beam-treated polyimide film can be performed by immersing the electron beam-treated polyimide film in a solution of a nitrogen-containing vinyl compound. Furthermore, when performing the immersion treatment, the graft polymerization can be efficiently performed by heating.

また、本発明において、グラフト重合処理されたポリイミドフィルムの表面には、貴金属化合物を含んだ触媒を介して無電解めっき層を形成する。
本発明における無電解めっきに適した貴金属化合物を含んだ触媒としては、好ましくは塩化パラジウム、臭化パラジウム、パラジウム硫酸塩(PdSO)、Pd(OCOCH等のPdを含むものであるのがよい。そして、このような触媒を上述したグラフト重合処理を施したポリイミドフィルムの表面に付着させるために、好ましくは上記触媒をパラジウムの塩化物水溶液等のような水溶液の状態として、この水溶液中に上記ポリイミドフィルムを浸漬し、グラフト重合処理によりポリイミドフィルムの表面に結合されたアミノ基等の含窒素化合物でPd2+を捕捉し、次いで、ホルムアルデヒド、次亜リン酸ナトリウム、水素化ホウ素ナトリウム(NaBH)またはジメチルアミンボラン(Dimethyl Amine Borane )等の還元剤でこのPd2+をPdに還元して無電解めっきの触媒とするのがよい。
その後、得られたポリイミドフィルムについては水洗する。このようにすることにより、毒性の高いSn(II)等を用いることなく、ポリイミドフィルムの表面に無電解めっきに活性な触媒が付着された触媒層をポリイミドフィルム上に均一、かつフィルムに対して密着性よく形成することができる。
In the present invention, an electroless plating layer is formed on the surface of the graft-polymerized polyimide film via a catalyst containing a noble metal compound.
The catalyst containing a noble metal compound suitable for electroless plating in the present invention preferably contains Pd such as palladium chloride, palladium bromide, palladium sulfate (PdSO 4 ) and Pd (OCOCH 3 ) 2. . In order to attach such a catalyst to the surface of the polyimide film subjected to the graft polymerization treatment described above, preferably the catalyst is in the form of an aqueous solution such as an aqueous solution of palladium chloride. The film is immersed, and Pd 2+ is captured by a nitrogen-containing compound such as an amino group bonded to the surface of the polyimide film by a graft polymerization process, and then formaldehyde, sodium hypophosphite, sodium borohydride (NaBH 4 ) or It is preferable to reduce this Pd 2+ to Pd with a reducing agent such as dimethylamine borane and use it as a catalyst for electroless plating.
Thereafter, the obtained polyimide film is washed with water. By doing so, a catalyst layer in which an active catalyst for electroless plating is adhered to the surface of the polyimide film without using highly toxic Sn (II) or the like is uniform on the polyimide film and on the film. It can be formed with good adhesion.

本発明においては、上記のようにポリイミドフィルムの表面に触媒を付着させてPd2+を捕捉して無電解めっきに活性な表面を得た後、この触媒を介して無電解めっき層を形成する。この無電解めっき層については、一般に用いられる無電解銅めっき又は無電解ニッケルから形成されためっき層を利用することができ、この無電解めっき層の形成の条件については、一般的な条件を用いることができる。また、この無電解めっき層の膜厚については10〜500nm程度でよい。
このようにすることにより、本発明では、ポリイミドフィルム上に表面を荒らすことなく、直接無電解めっき層を形成することができる。このため、ファインパターンの形成と高周波数対応が可能となる。
In the present invention, as described above, a catalyst is attached to the surface of the polyimide film to capture Pd 2+ to obtain an active surface for electroless plating, and then an electroless plating layer is formed through this catalyst. For this electroless plating layer, a commonly used electroless copper plating or a plating layer formed from electroless nickel can be used, and general conditions are used for the conditions for forming this electroless plating layer. be able to. The film thickness of the electroless plating layer may be about 10 to 500 nm.
By doing in this way, in this invention, an electroless-plating layer can be directly formed on a polyimide film, without roughening the surface. For this reason, formation of a fine pattern and high frequency response are possible.

また、本発明における積層体は、更に前記無電解めっき層の表面に電気めっき層を形成することもできる。この電気めっき層については、公知の電気銅めっき等により形成することができる。この際、一般的な電気めっき皮膜を形成するための条件を用いることができるが、表面の平滑性を保ちしかも電気抵抗の低い皮膜が得られる観点から、PEG―Cl―SPSを添加した浴を用いて形成した電気銅めっき層が好ましい。この電気めっき層については、フレキシブルプリント配線板の導体として必要な膜厚まで任意にめっきアップすることができることから、本発明における積層体によれば、ポリイミドフィルムと強固な接着力を有するファインピッチ配線及び高周波数対応が可能なフレキシブルプリント配線板を得ることができる。
[実施例]
Moreover, the laminated body in this invention can also form an electroplating layer on the surface of the said electroless-plating layer further. About this electroplating layer, it can form by well-known electrocopper plating. At this time, general conditions for forming an electroplating film can be used. From the viewpoint of obtaining a film having low surface resistance while maintaining smoothness of the surface, a bath to which PEG-Cl-SPS is added is used. An electrolytic copper plating layer formed by using is preferable. About this electroplating layer, since it can be arbitrarily plated up to a film thickness required as a conductor of a flexible printed wiring board, according to the laminate in the present invention, a fine pitch wiring having a strong adhesive force with a polyimide film In addition, a flexible printed wiring board capable of handling high frequencies can be obtained.
[Example]

以下に、本発明を実施例に基づいて詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited thereto.

ポリイミドフィルム(東レデュポン(株)製商品名:カプトン150EN:厚さ38μm)を窒素不活性ガス雰囲気下で、加速電圧150kVで電子線を10kGy照射した(電子線処理工程)。次いで、電子線処理後のポリイミドフィルムを4ビニルピロリドン溶液中に10分間浸漬し、グラフト重合を行った(グラフト重合処理工程)。次に、メタノールに浸漬し、超音波洗浄により余剰の4ビニルピロリドンを除去した。上記処理済みのサンプルフィルムを治具に固定したまま、攪拌しながら、PdClを0.02g、38%HClを0.2ml含有する触媒化水溶液200mlに常温で30秒間浸し、純水洗浄処理を経て、フィルム表面に触媒を吸着させた(触媒付着工程)。引き続き、pH値を9.0に調整した70℃のNi−B無電解めっき浴に1分間浸漬し、約40nmのNi−Bめっき皮膜を形成した(無電解めっき層形成工程)。この時点で、ポリイミドフィルムの処理面に連続的で均一なNi金属光沢を持つめっき皮膜が形成されていることが目視で確認できた。 A polyimide film (trade name: Kapton 150EN: thickness 38 μm, manufactured by Toray DuPont Co., Ltd.) was irradiated with an electron beam of 10 kGy at an acceleration voltage of 150 kV in an atmosphere of nitrogen inert gas (electron beam processing step). Next, the polyimide film after the electron beam treatment was immersed in a 4-vinylpyrrolidone solution for 10 minutes to perform graft polymerization (graft polymerization treatment step). Next, it was immersed in methanol, and excess 4-vinylpyrrolidone was removed by ultrasonic cleaning. While maintaining the above-mentioned treated sample film on a jig, it is immersed in 200 ml of a catalyzed aqueous solution containing 0.02 g of PdCl 2 and 0.2 ml of 38% HCl for 30 seconds at room temperature to perform a pure water washing treatment. After that, the catalyst was adsorbed on the film surface (catalyst attaching step). Then, it immersed for 1 minute in the 70 degreeC Ni-B electroless-plating bath which adjusted pH value to 9.0, and formed about 40 nm Ni-B plating film (electroless-plating layer formation process). At this point, it was confirmed visually that a plating film having a continuous and uniform Ni metallic luster was formed on the treated surface of the polyimide film.

ここで、無電解めっき皮膜とポリイミドフィルムとの密着性の評価として、セロハンテープ剥離法(密着力試験)を行った。Ni金属光沢を持つめっき皮膜にセロハンテープを貼り付け、引き剥がしたテープ側に金属色の転写があるかどうか目視確認を行ったが、金属色の転写は観察されなかった。更に、引き剥がしテープのXPS元素分析を行ったが、この測定からも金属層(Ni−Bめっき皮膜)の剥離は認めなれなかった。
次いで、室温下で、電気銅めっき浴の中に上記の無電解めっき皮膜が形成されたポリイミドフィルムをセットし、電流密度を2A/dmに制御して、約18分間電気銅めっきを行うことでポリイミドフィルムに約8μmの厚みを有する平滑な銅めっき皮膜を形成し(電気めっき層形成工程)、積層体を作製した。
Here, as an evaluation of the adhesion between the electroless plating film and the polyimide film, a cellophane tape peeling method (adhesion test) was performed. Cellophane tape was affixed to the plating film having Ni metallic luster, and it was visually confirmed whether or not there was a metallic color transfer on the peeled tape side, but no metallic color transfer was observed. Furthermore, the XPS elemental analysis of the peeling tape was performed, but no peeling of the metal layer (Ni-B plating film) was observed from this measurement.
Next, set the polyimide film on which the above electroless plating film is formed in an electrolytic copper plating bath at room temperature, and perform electrolytic copper plating for about 18 minutes while controlling the current density to 2 A / dm 2. A smooth copper plating film having a thickness of about 8 μm was formed on the polyimide film (electroplating layer forming step) to produce a laminate.

上記で得た積層体を用いて0.1mm幅の回路パターンを加工した。そして、ピール強度測定を行ったところ、ポリイミドフィルムと銅めっき皮膜との間の接着力は0.65kN/m以上の値を示した。   A circuit pattern having a width of 0.1 mm was processed using the laminate obtained above. And when the peel strength measurement was performed, the adhesive force between a polyimide film and a copper plating film showed the value of 0.65 kN / m or more.

実施例1と同様のポリイミドフィルムを窒素不活性ガス雰囲気下で、加速電圧150kVで電子線を100kGy照射した(電子線処理工程)。次いで、電子線処理後のポリイミドフィルムを4ビニルピロリドン溶液中に10分間浸漬し、グラフト重合を行った(グラフト重合処理工程)。次に、メタノールに浸漬し、超音波洗浄により余剰の4ビニルピロリドンを除去した。上記処理済みのサンプルフィルムを治具に固定したまま、攪拌しながら、PdClを0.02g、38%HClを0.2ml含有する触媒化水溶液200mlに常温で30秒間浸し、純水洗浄処理を経て、フィルム表面に触媒を吸着させた(触媒付着工程)。引き続き、pH値を9.0に調整した70℃のNi−B無電解めっき浴に1分間浸漬し、約40nmのNi−Bめっき皮膜を形成した(無電解めっき層形成工程)。この時点で、ポリイミドフィルムの処理面に連続的で均一なNi金属光沢を持つめっき皮膜が形成されていることが目視で確認できた。 The same polyimide film as in Example 1 was irradiated with 100 kGy of electron beam at an acceleration voltage of 150 kV in an atmosphere of nitrogen inert gas (electron beam processing step). Next, the polyimide film after the electron beam treatment was immersed in a 4-vinylpyrrolidone solution for 10 minutes to perform graft polymerization (graft polymerization treatment step). Next, it was immersed in methanol, and excess 4-vinylpyrrolidone was removed by ultrasonic cleaning. While maintaining the above-mentioned treated sample film on a jig, it is immersed in 200 ml of a catalyzed aqueous solution containing 0.02 g of PdCl 2 and 0.2 ml of 38% HCl for 30 seconds at room temperature to perform a pure water washing treatment. After that, the catalyst was adsorbed on the film surface (catalyst attaching step). Then, it immersed for 1 minute in the 70 degreeC Ni-B electroless-plating bath which adjusted pH value to 9.0, and formed about 40 nm Ni-B plating film (electroless-plating layer formation process). At this point, it was confirmed visually that a plating film having a continuous and uniform Ni metallic luster was formed on the treated surface of the polyimide film.

ここで、無電解めっき皮膜とポリイミドフィルムとの密着性の評価として、セロハンテープ剥離法(密着力試験)を行った。Ni金属光沢を持つめっき皮膜にセロハンテープを貼り付け、引き剥がしたテープ側に金属色の転写があるかどうか目視確認を行ったが、金属色の転写は観察されなかった。更に、引き剥がしテープのXPS元素分析を行ったが、この測定からも金属層(Ni−Bめっき皮膜)の剥離は認めなれなかった。
次いで、室温下で、電気銅めっき浴の中に上記の無電解めっき皮膜が形成されたポリイミドフィルムをセットし、電流密度を2A/dmに制御して、約18分間電気銅めっきを行うことでポリイミドフィルムに約8μmの厚みを有する平滑な銅めっき皮膜を形成し(電気めっき層形成工程)、積層体を作製した。
Here, as an evaluation of the adhesion between the electroless plating film and the polyimide film, a cellophane tape peeling method (adhesion test) was performed. Cellophane tape was affixed to the plating film having Ni metallic luster, and it was visually confirmed whether or not there was a metallic color transfer on the peeled tape side, but no metallic color transfer was observed. Furthermore, the XPS elemental analysis of the peeling tape was performed, but no peeling of the metal layer (Ni-B plating film) was observed from this measurement.
Next, set the polyimide film on which the above electroless plating film is formed in an electrolytic copper plating bath at room temperature, and perform electrolytic copper plating for about 18 minutes while controlling the current density to 2 A / dm 2. A smooth copper plating film having a thickness of about 8 μm was formed on the polyimide film (electroplating layer forming step) to produce a laminate.

上記で得た積層体を用いて0.1mm幅の回路パターンを加工した。そして、ピール強度測定を行ったところ、ポリイミドフィルムと銅めっき皮膜との間の接着力は0.65kN/m以上の値を示した。   A circuit pattern having a width of 0.1 mm was processed using the laminate obtained above. And when the peel strength measurement was performed, the adhesive force between a polyimide film and a copper plating film showed the value of 0.65 kN / m or more.

実施例1と同様のポリイミドフィルムを窒素不活性ガス雰囲気下で、加速電圧150kVで電子線を500kGy照射した(電子線処理工程)。次いで、電子線処理後のポリイミドフィルムを4ビニルピロリドン溶液中に10分間浸漬し、グラフト重合を行った(グラフト重合処理工程)。次に、メタノールに浸漬し、超音波洗浄により余剰の4ビニルピロリドンを除去した。上記処理済みのサンプルフィルムを治具に固定したまま、攪拌しながら、PdClを0.02g、38%HClを0.2ml含有する触媒化水溶液200mlに常温で30秒間浸し、純水洗浄処理を経て、フィルム表面に触媒を吸着させた(触媒付着工程)。引き続き、pH値を9.0に調整した70℃のNi−B無電解めっき浴に1分間浸漬し、約40nmのNi−Bめっき皮膜を形成した(無電解めっき層形成工程)。この時点で、ポリイミドフィルムの処理面に連続的で均一なNi金属光沢を持つめっき皮膜が形成されていることが目視で確認できた。 The same polyimide film as in Example 1 was irradiated with an electron beam of 500 kGy at an acceleration voltage of 150 kV in an atmosphere of nitrogen inert gas (electron beam processing step). Next, the polyimide film after the electron beam treatment was immersed in a 4-vinylpyrrolidone solution for 10 minutes to perform graft polymerization (graft polymerization treatment step). Next, it was immersed in methanol, and excess 4-vinylpyrrolidone was removed by ultrasonic cleaning. While maintaining the above-mentioned treated sample film on a jig, it is immersed in 200 ml of a catalyzed aqueous solution containing 0.02 g of PdCl 2 and 0.2 ml of 38% HCl for 30 seconds at room temperature to perform a pure water washing treatment. Then, the catalyst was made to adsorb | suck to the film surface (catalyst adhesion process). Then, it immersed for 1 minute in the 70 degreeC Ni-B electroless-plating bath which adjusted pH value to 9.0, and formed about 40 nm Ni-B plating film (electroless-plating layer formation process). At this point, it was confirmed visually that a plating film having a continuous and uniform Ni metallic luster was formed on the treated surface of the polyimide film.

ここで、無電解めっき皮膜とポリイミドフィルムとの密着性の評価として、セロハンテープ剥離法(密着力試験)を行った。Ni金属光沢を持つめっき皮膜にセロハンテープを貼り付け、引き剥がしたテープ側に金属色の転写があるかどうか目視確認を行ったが、金属色の転写は観察されなかった。更に、引き剥がしテープのXPS元素分析を行ったが、この測定からも金属層(Ni−Bめっき皮膜)の剥離は認めなれなかった。
次いで、室温下で、電気銅めっき浴の中に上記の無電解めっき皮膜が形成されたポリイミドフィルムをセットし、電流密度を2A/dmに制御して、約18分間電気銅めっきを行うことでポリイミドフィルムに約8μmの厚みを有する平滑な銅めっき皮膜を形成し(電気めっき層形成工程)、積層体を作製した。
Here, as an evaluation of the adhesion between the electroless plating film and the polyimide film, a cellophane tape peeling method (adhesion test) was performed. Cellophane tape was affixed to the plating film having Ni metallic luster, and it was visually confirmed whether or not there was a metallic color transfer on the peeled tape side, but no metallic color transfer was observed. Furthermore, the XPS elemental analysis of the peeling tape was performed, but no peeling of the metal layer (Ni-B plating film) was observed from this measurement.
Next, set the polyimide film on which the above electroless plating film is formed in an electrolytic copper plating bath at room temperature, and perform electrolytic copper plating for about 18 minutes while controlling the current density to 2 A / dm 2. A smooth copper plating film having a thickness of about 8 μm was formed on the polyimide film (electroplating layer forming step) to produce a laminate.

上記で得た積層体を用いて0.1mm幅の回路パターンを加工した。そして、ピール強度測定を行ったところ、ポリイミドフィルムと銅めっき皮膜との間の接着力は0.65kN/m以上の値を示した。
(比較例1)
A circuit pattern having a width of 0.1 mm was processed using the laminate obtained above. And when the peel strength measurement was performed, the adhesive force between a polyimide film and a copper plating film showed the value of 0.65 kN / m or more.
(Comparative Example 1)

実施例1と同様のポリイミドフィルムを用い、電子線表面活性化処理(電子線処理)を行わず、4ビニルピロリドン溶液中に10分間浸漬し、グラフト重合を行った(グラフト重合処理工程)。次に、メタノールに浸漬し、超音波洗浄により余剰の4ビニルピロリドンを除去した。メタノールにより表面洗浄をした後、実施例と同じ条件下で、PdCl化合物による表面触媒化処理(触媒付着工程)を行い、その後、実施例と同様に無電解Ni−Bめっきを実施した(無電解めっき層形成工程)。ポリイミドフィルムの表面にNiの析出が認められない或いは不連続な析出状態が観測され、触媒付着工程において触媒がほぼ付着していない或いは均一的に付着していないことが判明した。金属色が確認できるところにセロハンテープを貼り付け、剥がしてみるとテープ側にNiの転写が目視で確認でき、無電解Ni−Bめっき皮膜とポリイミドフィルムとの間に十分な密着性がないことが確認された。
(比較例2)
The same polyimide film as in Example 1 was used, and the electron beam surface activation treatment (electron beam treatment) was not performed, and the polymer was immersed in a 4-vinylpyrrolidone solution for 10 minutes to perform graft polymerization (graft polymerization treatment step). Next, it was immersed in methanol, and excess 4-vinylpyrrolidone was removed by ultrasonic cleaning. After washing the surface with methanol, surface catalyzing treatment (catalyst attaching step) with a PdCl 2 compound was performed under the same conditions as in the example, and then electroless Ni-B plating was performed in the same manner as in the example (no matter Electrolytic plating layer forming step). Ni precipitation was not observed on the surface of the polyimide film or a discontinuous precipitation state was observed, and it was found that the catalyst was not substantially adhered or uniformly adhered in the catalyst adhesion step. When cellophane tape is applied where metal color can be confirmed and peeled off, Ni transfer can be visually confirmed on the tape side, and there is not sufficient adhesion between the electroless Ni-B plating film and the polyimide film. Was confirmed.
(Comparative Example 2)

実施例1と同様のポリイミドフィルムを窒素不活性ガス雰囲気下で、加速電圧150kVで電子線を1kGy照射した(電子線処理工程)。次いで、電子線処理後のポリイミドフィルムを4ビニルピロリドン溶液中に10分間浸漬し、グラフト重合を行った(グラフト重合処理工程)。次に、メタノールに浸漬し、超音波洗浄により余剰の4ビニルピロリドンを除去した。上記処理済みのサンプルフィルムを治具に固定したまま、攪拌しながら、PdClを0.02g、38%HClを0.2ml含有する触媒化水溶液200mlに常温で30秒間浸し、純水洗浄処理を経て、フィルム表面に触媒を吸着させた(触媒付着工程)。引き続き、pH値を9.0に調整した70℃のNi−B無電解めっき浴に1分間浸漬し、約40nmのNi−Bめっき皮膜を形成した(無電解めっき層形成工程)。ポリイミドフィルムの表面にNiは不連続な析出状態が観測され、触媒付着工程において触媒がほぼ付着していない或いは均一付着していないことが判明した。金属色が確認できるところにセロハンテープを貼り付け、剥がしてみるとテープ側にNiの転写が目視で確認でき、無電解Ni−Bめっき皮膜とポリイミドフィルムとの間に十分な密着性がないことが確認された。
(比較例3)
The same polyimide film as in Example 1 was irradiated with 1 kGy of electron beam at an acceleration voltage of 150 kV in an atmosphere of nitrogen inert gas (electron beam processing step). Next, the polyimide film after the electron beam treatment was immersed in a 4-vinylpyrrolidone solution for 10 minutes to perform graft polymerization (graft polymerization treatment step). Next, it was immersed in methanol, and excess 4-vinylpyrrolidone was removed by ultrasonic cleaning. While maintaining the above-mentioned treated sample film on a jig, it is immersed in 200 ml of a catalyzed aqueous solution containing 0.02 g of PdCl 2 and 0.2 ml of 38% HCl for 30 seconds at room temperature to perform a pure water washing treatment. Then, the catalyst was made to adsorb | suck to the film surface (catalyst adhesion process). Then, it immersed for 1 minute in the 70 degreeC Ni-B electroless-plating bath which adjusted pH value to 9.0, and formed about 40 nm Ni-B plating film (electroless-plating layer formation process). A discontinuous precipitation state of Ni was observed on the surface of the polyimide film, and it was found that the catalyst was hardly attached or not uniformly attached in the catalyst attaching step. When cellophane tape is applied where metal color can be confirmed and peeled off, Ni transfer can be visually confirmed on the tape side, and there is not sufficient adhesion between the electroless Ni-B plating film and the polyimide film. Was confirmed.
(Comparative Example 3)

実施例1と同様のポリイミドフィルムを窒素不活性ガス雰囲気下で、加速電圧150kVで電子線を20kGy照射した(電子線処理工程)。次いで、電子線処理後のポリイミドフィルムを4ビニルピロリドン溶液中に10分間浸漬し、グラフト重合を行った(グラフト重合処理工程)。次に、メタノールに浸漬し、超音波洗浄により余剰の4ビニルピロリドンを除去した。上記処理済みのサンプルフィルムを治具に固定したまま、攪拌しながら、PdClを0.02g、38%HClを0.2ml含有する触媒化水溶液200mlに常温で30秒間浸し、純水洗浄処理を経て、フィルム表面に触媒を吸着させた(触媒付着工程)。引き続き、pH値を9.0に調整した70℃のNi−B無電解めっき浴に1分間浸漬し、約40nmのNi−Bめっき皮膜を形成した(無電解めっき層形成工程)。この時点で、ポリイミドフィルムの処理面に連続的で均一なNi金属光沢を持つめっき皮膜が形成されていることが目視で確認できた。
次いで、室温下で、電気銅めっき浴の中に上記の無電解めっき皮膜が形成されたポリイミドフィルムをセットし、電流密度を2A/dmに制御して、約18分間電気銅めっきを行うことでポリイミドフィルムに約8μmの厚みを有する平滑な銅めっき皮膜を形成し(電気めっき層形成工程)、積層体を作製した。
The same polyimide film as in Example 1 was irradiated with an electron beam of 20 kGy at an acceleration voltage of 150 kV in an atmosphere of nitrogen inert gas (electron beam processing step). Next, the polyimide film after the electron beam treatment was immersed in a 4-vinylpyrrolidone solution for 10 minutes to perform graft polymerization (graft polymerization treatment step). Next, it was immersed in methanol, and excess 4-vinylpyrrolidone was removed by ultrasonic cleaning. While maintaining the above-mentioned treated sample film on a jig, it is immersed in 200 ml of a catalyzed aqueous solution containing 0.02 g of PdCl 2 and 0.2 ml of 38% HCl for 30 seconds at room temperature to perform a pure water washing treatment. After that, the catalyst was adsorbed on the film surface (catalyst attaching step). Then, it immersed for 1 minute in the 70 degreeC Ni-B electroless-plating bath which adjusted pH value to 9.0, and formed about 40 nm Ni-B plating film (electroless-plating layer formation process). At this point, it was confirmed visually that a plating film having a continuous and uniform Ni metallic luster was formed on the treated surface of the polyimide film.
Next, set the polyimide film on which the above electroless plating film is formed in an electrolytic copper plating bath at room temperature, and perform electrolytic copper plating for about 18 minutes while controlling the current density to 2 A / dm 2. A smooth copper plating film having a thickness of about 8 μm was formed on the polyimide film (electroplating layer forming step) to produce a laminate.

上記で得た積層体を用いて0.1mm幅の回路パターンを加工した。そして、ピール強度測定を行ったところ、ポリイミドフィルムと銅めっき皮膜との間の接着力は0.30kN/mの値を示した。   A circuit pattern having a width of 0.1 mm was processed using the laminate obtained above. And when the peel strength measurement was performed, the adhesive force between a polyimide film and a copper plating film showed the value of 0.30 kN / m.

Claims (6)

フレキシブルプリント配線板に用いられるポリイミドフィルムを含んだ積層体であって、前記ポリイミドフィルムの少なくとも一方の面には電子線処理が施され、該電子線処理された面には含窒素基ビニル化合物がグラフト重合されると共に、該グラフト重合処理されたポリイミドフィルムの表面には貴金属化合物を含んだ触媒を介して無電解めっき層が形成されることを特徴とするフレキシブルプリント配線板用積層体。   A laminate including a polyimide film used for a flexible printed wiring board, wherein at least one surface of the polyimide film is subjected to electron beam treatment, and a nitrogen-containing vinyl compound is present on the surface subjected to the electron beam treatment. A laminate for a flexible printed wiring board, characterized in that an electroless plating layer is formed on the surface of the graft-polymerized polyimide film through a catalyst containing a noble metal compound. 前記無電解めっき層の表面には更に電気めっき層が形成されていることを特徴とするフレキシブルプリント配線板用積層体。   An electroplated layer is further formed on the surface of the electroless plated layer, and the laminate for a flexible printed wiring board. 前記無電解めっき層が無電解銅めっき層又は無電解ニッケルめっき層であり、前記電気めっき層が電気銅めっき層であることを特徴とする請求項1又は2に記載のフレキシブルプリント配線板用積層体。   The laminate for a flexible printed wiring board according to claim 1 or 2, wherein the electroless plating layer is an electroless copper plating layer or an electroless nickel plating layer, and the electroplating layer is an electrolytic copper plating layer. body. フレキシブルプリント配線板に用いられるポリイミドフィルムを含んだ積層体の製造方法であって、前記ポリイミドフィルムの少なくとも一方の面を電子線照射する工程と、該電子線照射された面に含窒素基ビニル化合物がグラフト重合される工程と、該グラフト重合処理されたポリイミドフィルムの表面に貴金属化合物を含んだ触媒を付着させる工程と、該触媒を介して無電解めっき層を形成する工程、とを含むことを特徴とするフレキシブルプリント配線板用積層体の製造方法。   A method for producing a laminate including a polyimide film used for a flexible printed wiring board, the step of irradiating at least one surface of the polyimide film with an electron beam, and a nitrogen-containing vinyl compound on the surface irradiated with the electron beam Including a step of graft polymerization, a step of attaching a catalyst containing a noble metal compound to the surface of the graft-polymerized polyimide film, and a step of forming an electroless plating layer via the catalyst. A method for producing a laminate for a flexible printed wiring board, which is characterized. 前記無電解めっき層を形成する工程後に、更に該無電解めっき層の表面に電気めっき層を形成する工程を含むことを特徴とする請求項4に記載のフレキシブルプリント配線板用積層体の製造方法。   The method for producing a laminate for a flexible printed wiring board according to claim 4, further comprising a step of forming an electroplating layer on the surface of the electroless plating layer after the step of forming the electroless plating layer. . 前記無電解めっき工程が無電解銅めっき又は無電解ニッケルめっきであり、前記電気めっき工程が電気銅めっきであることを特徴とする請求項4又は5に記載のフレキシブルプリント配線板用積層体の製造方法。   The said electroless-plating process is electroless copper plating or electroless nickel plating, and the said electroplating process is electrolytic copper plating, The manufacture of the laminated body for flexible printed wiring boards of Claim 4 or 5 characterized by the above-mentioned. Method.
JP2007213079A 2007-08-17 2007-08-17 Laminate for flexible printed wiring board and its manufacturing method Pending JP2009045796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007213079A JP2009045796A (en) 2007-08-17 2007-08-17 Laminate for flexible printed wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007213079A JP2009045796A (en) 2007-08-17 2007-08-17 Laminate for flexible printed wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009045796A true JP2009045796A (en) 2009-03-05

Family

ID=40498492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007213079A Pending JP2009045796A (en) 2007-08-17 2007-08-17 Laminate for flexible printed wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009045796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462828B (en) * 2012-06-19 2014-12-01 Taimide Technology Inc Polyimide film, flexible printed circuit board using the same, and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462828B (en) * 2012-06-19 2014-12-01 Taimide Technology Inc Polyimide film, flexible printed circuit board using the same, and manufacture thereof

Similar Documents

Publication Publication Date Title
US6212769B1 (en) Process for manufacturing a printed wiring board
JP2005347424A (en) Multi-layer printed wiring board and manufacturing method thereof
JP4647954B2 (en) Method for producing laminate for flexible printed wiring board
JPH07268682A (en) Method for electroplating surface of electric nonconductor
CN100424226C (en) Method for electroless metalisation of polymer substrate
JP2006104504A (en) Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same
JP2005116745A (en) Conductor coating polyimide film and manufacturing method thereof
KR100747627B1 (en) Method for producing 2 layered conductive metal plated polyimide substrate
KR100656246B1 (en) Manufacturing method of flexible copper clad laminate using surface modification of polyimide film and its product thereby
JP2004307980A (en) Method for manufacturing metal coated liquid crystal polyester substrate
JP5291008B2 (en) Method for manufacturing circuit wiring board
JP2009045796A (en) Laminate for flexible printed wiring board and its manufacturing method
KR100798870B1 (en) Conductive metal plated polyimide substrate including coupling agent and method for producing the same
JP5129111B2 (en) LAMINATE MANUFACTURING METHOD AND CIRCUIT WIRING BOARD MANUFACTURING METHOD
JP4632580B2 (en) Method for forming conductive film on resin substrate
JP2007077439A (en) Method for metallizing surface of polyimide resin material
JP5036004B2 (en) Method for manufacturing circuit wiring board
JP2007262481A (en) Surface metallizing method of polyimide resin material
JP2004273744A (en) Thermoplastic resin material and manufacturing method of printed circuit board
KR20210053937A (en) Laminate
JP2009076740A (en) Method of manufacturing metal thin film on polyimide resin surface and metal thin film formed by same method, and manufacturing method of polyimide wiring board and polyimide wiring board manufactured by same method
JP2008258293A (en) Forming method of patterned conductor layer, manufacturing method of circuit board and circuit board
JP4734875B2 (en) Insulator for additive plating, substrate with additive plating metal film
JPH07122850A (en) Manufacture of low dielectric constant printed-circuit board
JP2008075146A (en) METHOD FOR PRODUCING Ni THIN FILM