JP2006046198A - Exhaust gas purification system - Google Patents

Exhaust gas purification system Download PDF

Info

Publication number
JP2006046198A
JP2006046198A JP2004228846A JP2004228846A JP2006046198A JP 2006046198 A JP2006046198 A JP 2006046198A JP 2004228846 A JP2004228846 A JP 2004228846A JP 2004228846 A JP2004228846 A JP 2004228846A JP 2006046198 A JP2006046198 A JP 2006046198A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
gas purification
hydrogen
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004228846A
Other languages
Japanese (ja)
Inventor
Shinko Takatani
真弘 高谷
Hitoshi Onodera
仁 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004228846A priority Critical patent/JP2006046198A/en
Publication of JP2006046198A publication Critical patent/JP2006046198A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas purification system capable of suppressing or preventing the degree of NOx conversion from lowering in a catalyst for exhaust gas purification. <P>SOLUTION: A hydrogen catalyst and a catalyst having at least NOx trapping function for exhaust gas purification are arranged in this order from the upstream side in the exhaust gas flow direction in an exhaust gas duct of an internal combustion engine. The hydrogen catalyst and the catalyst for exhaust gas purification are provided with a degree-of-deterioration determing means for determining the degree of a deterioration in the catalysts respectively. The exhaust gas purification system is provided with a restoration processing means for restoring the function provided on the catalyst in the internal combustion engine and/or in the exhaust gas duct upstream of the hydrogen catalyst. When the degree-of-deterioration determing means of the catalyst for exhaust gas purification determines the catalyst for the exhaust gas purificatin deteriorates, and degree-of-deterioration determing mean of the hydrogen catalyst determines the hydrogen catalyst deteriorates, the restoration processing means carries out the restoration processing of the hydrogen catalyst. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、排気ガス浄化システムに係り、更に詳細には、排気ガス流路の上流側に水素触媒を備え、下流側に少なくともNOxトラップ機能を有する排気ガス浄化用触媒を備え、更にこれらの性能回復機能を有する排気ガス浄化システムに関する。   The present invention relates to an exhaust gas purification system. More specifically, the present invention includes a hydrogen catalyst upstream of an exhaust gas flow path, and an exhaust gas purification catalyst having at least a NOx trap function on the downstream side. The present invention relates to an exhaust gas purification system having a recovery function.

近年、燃費向上の社会的要請から内燃機関としてリーンバーンガソリンエンジンやディーゼルエンジンが用いられている。
このような内燃機関の排気ガス浄化システムとして、内燃機関の排気ガス流路の上流側に水素触媒を備え、下流側にNOx吸着触媒を備えるものが提案されている(例えば、特許文献1参照。)。
In recent years, lean burn gasoline engines and diesel engines have been used as internal combustion engines due to social demands for improving fuel consumption.
As such an exhaust gas purification system for an internal combustion engine, a system having a hydrogen catalyst on the upstream side of the exhaust gas flow path of the internal combustion engine and a NOx adsorption catalyst on the downstream side has been proposed (for example, see Patent Document 1). ).

NOx吸着触媒単独では、排気ガスの空燃比がリーン域のときに排気ガス中のNOxをトラップし、トラップしたNOxを排気ガスの空燃比がストイキないしリッチ域のときに脱離浄化する。
しかし、NOx機能(吸着・脱離浄化機能)を発揮するには触媒の活性化(例えば触媒温度が300℃以上)が条件となるが、上流側に水素触媒を備えると、排気ガス中の還元性ガスにおける水素濃度を高めること、特にH/CO比を高めることができ、これにより触媒が十分に活性化していない、例えば200〜250℃付近においてもNOxトラップ触媒の脱離浄化性能を発揮させることができるなどNOx転化率をより向上させることが可能となる。
特開平11−169670号公報
The NOx adsorption catalyst alone traps NOx in the exhaust gas when the air-fuel ratio of the exhaust gas is in the lean region, and desorbs and purifies the trapped NOx when the air-fuel ratio of the exhaust gas is in the stoichiometric or rich region.
However, to activate the NOx function (adsorption / desorption purification function), activation of the catalyst (for example, the catalyst temperature is 300 ° C. or higher) is a condition. However, if a hydrogen catalyst is provided upstream, reduction in the exhaust gas is possible. The concentration of hydrogen in the reactive gas can be increased, especially the H 2 / CO ratio can be increased. As a result, the catalyst is not fully activated. Thus, the NOx conversion rate can be further improved.
JP-A-11-169670

しかしながら、このような内燃機関の排気ガス浄化システムは、長時間使用するとCO被毒により水素触媒の性能低下(劣化)により、水素触媒通過後のH/CO比が小さくなり、NOx吸着触媒におけるNOx転化率が低下(劣化)し始めるという技術知見を得た。
ここで「CO被毒」とは、例えば白金のような貴金属がCOを吸着し、貴金属がCOにより表面を覆われて触媒活性が失われるという一般的なものだけでなく、水素触媒中の酸素吸蔵材(例えばセリウム酸化物)と酸化されたCOとが比較的安定な炭酸塩を形成するようにして水素触媒で進行すると推測されているCOシフト反応の活性点(酸素吸蔵材)が覆われて触媒活性が失われるというものも含む。
However, when the exhaust gas purification system of such an internal combustion engine is used for a long time, the H 2 / CO ratio after passing through the hydrogen catalyst becomes small due to the deterioration (degradation) of the hydrogen catalyst due to CO poisoning. The technical knowledge that the NOx conversion rate starts to decrease (deteriorate) was obtained.
Here, “CO poisoning” means not only a general thing in which a noble metal such as platinum adsorbs CO and the surface of the noble metal is covered with CO and the catalytic activity is lost, but also oxygen in the hydrogen catalyst. The active point (oxygen storage material) of the CO shift reaction, which is presumed to proceed with a hydrogen catalyst so that the storage material (eg cerium oxide) and oxidized CO 2 form a relatively stable carbonate, is covered. And the catalyst activity is lost.

本発明は、このような技術知見に鑑みてなされたものであり、その目的とするところは、排気ガス浄化用触媒におけるNOx転化率の低下を抑制ないし防止し得る排気ガス浄化システムを提供することにある。   The present invention has been made in view of such technical knowledge, and an object of the present invention is to provide an exhaust gas purification system capable of suppressing or preventing a decrease in the NOx conversion rate in an exhaust gas purification catalyst. It is in.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、水素触媒の劣化を抑制ないし防止することなどにより、上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by suppressing or preventing deterioration of the hydrogen catalyst, and the present invention has been completed.

即ち、本発明の排気ガス浄化システムは、内燃機関の排気ガス流路に、排気ガスの流れ方向に対して上流側から排気ガス中の少なくともCOを低減しHを生成する及び/又はCOを低減しHを透過する機能を有する水素触媒と、少なくともNOxトラップ機能を有する排気ガス浄化用触媒をこの順に配設し、上記水素触媒及び排気ガス浄化用触媒は、該触媒の劣化度合いを判断する劣化度合い判断手段をそれぞれ備え、更に上記内燃機関に及び/又は水素触媒より上流側の排気ガス流路に、少なくとも該水素触媒の有する機能を回復させる回復処理手段を備える。
そして、備える排気ガス浄化用触媒の劣化度合い判断手段が、該排気ガス浄化用触媒が劣化していると判断し、且つ上記水素触媒の劣化度合い判断手段が、該水素触媒が劣化していると判断したときに、上記回復処理手段が水素触媒の回復処理を実行する。
That is, the exhaust gas purification system of the present invention generates at least CO in the exhaust gas from the upstream side in the exhaust gas flow direction of the internal combustion engine to generate H 2 and / or CO in the exhaust gas flow direction. A hydrogen catalyst having a function of reducing and transmitting H 2 and an exhaust gas purification catalyst having at least a NOx trap function are arranged in this order, and the hydrogen catalyst and the exhaust gas purification catalyst determine the degree of deterioration of the catalyst. And a recovery processing means for recovering at least the function of the hydrogen catalyst in the internal combustion engine and / or in the exhaust gas flow path upstream of the hydrogen catalyst.
The deterioration degree judging means for the exhaust gas purification catalyst provided determines that the exhaust gas purification catalyst is deteriorated, and the deterioration degree judgment means for the hydrogen catalyst is deteriorated. When the determination is made, the recovery processing means executes a recovery process for the hydrogen catalyst.

本発明によれば、水素触媒の劣化を抑制ないし防止することなどとしたため、排気ガス浄化用触媒におけるNOx転化率の低下を抑制ないし防止し得る排気ガス浄化システムを提供することができる。   According to the present invention, since the deterioration of the hydrogen catalyst is suppressed or prevented, it is possible to provide an exhaust gas purification system that can suppress or prevent a decrease in the NOx conversion rate in the exhaust gas purification catalyst.

以下、本発明の排気ガス浄化システムを図面に基いて説明する。
図1は、本発明の排気ガス浄化システムの一実施形態を示す模式的説明図である。同図に示すように、排気ガス浄化システム1は、内燃機関の1種であるリーンバーンガソリンエンジン40の排気ガス流路に水素触媒10と排気ガス浄化用触媒20を備える。
また、水素触媒10はその入口近傍に排気ガス空燃比を検出する検出器(A/Fセンサ)30aを備え、出口近傍にA/Fセンサ30aを備える。一方、排気ガス浄化用触媒20はその入口近傍に排気ガスのNOx濃度、排気ガス空燃比及び排気ガス温度を検出する検出器(NOxセンサ、A/Fセンサ及び温度センサを組み合わせたセンサ(以下、3種センサと表記する。))30bを備え、出口近傍に3種センサ30bを備える。
A/Fセンサ30aと3種センサ30bは図示しないコントロールユニット(C/U)50の一部である車載自己診断装置(On−Board Diagnosis:OBD)52とそれぞれ接続されている。本例の場合、2つのA/Fセンサ30aとOBD52が協働して、水素触媒劣化度合い判断手段Aとして機能し、2つの3種センサ30bとOBD52が協働して、排気ガス浄化用触媒劣化度合い判断手段Bとして機能する。更に、本例の場合、回復処理手段60はエンジン40が兼ねる。
Hereinafter, an exhaust gas purification system of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic explanatory view showing an embodiment of the exhaust gas purification system of the present invention. As shown in FIG. 1, the exhaust gas purification system 1 includes a hydrogen catalyst 10 and an exhaust gas purification catalyst 20 in an exhaust gas flow path of a lean burn gasoline engine 40 which is a kind of internal combustion engine.
Further, the hydrogen catalyst 10 includes a detector (A / F sensor) 30a that detects an exhaust gas air-fuel ratio in the vicinity of the inlet, and an A / F sensor 30a in the vicinity of the outlet. On the other hand, the exhaust gas purification catalyst 20 has a detector (a sensor (hereinafter referred to as a combination of a NOx sensor, an A / F sensor, and a temperature sensor) that detects the NOx concentration of exhaust gas, the exhaust gas air-fuel ratio, and the exhaust gas temperature in the vicinity of the inlet. 3) Sensor 30b is provided, and the type 3 sensor 30b is provided in the vicinity of the outlet.
The A / F sensor 30a and the three-type sensor 30b are connected to an on-board diagnosis (OBD) 52 which is a part of a control unit (C / U) 50 (not shown). In this example, the two A / F sensors 30a and the OBD 52 cooperate to function as the hydrogen catalyst deterioration degree determination means A, and the two three-type sensors 30b and the OBD 52 cooperate to form an exhaust gas purification catalyst. It functions as the deterioration degree judgment means B. Further, in the case of this example, the recovery processing means 60 also serves as the engine 40.

本発明において、排気ガス浄化用触媒20の入口及び出口近傍に配設される検出器30bは、上述したような排気ガスの少なくとも1つ状態を入口側と出口側で検出できれば、特に限定されるものではなく、NOxセンサ、A/Fセンサ又は温度センサの少なくとも1つで足りるが、3つのセンサを組み合わせて用いると劣化判断をより適切にすることができる。一方、水素触媒の入口及び出口近傍に配設される検出器30aは、例えば排気ガス空燃比やOストレージ量などの排気ガスの少なくとも1つの状態を入口側と出口側で検出できれば、特に限定されるものではなく、A/FセンサやOセンサなどを用いることができ、上述したように組み合わせて用いてもよい。なお、水素触媒10の出口側の検出器30aと排気ガス浄化用触媒20の入口側の検出器30bは取り付け位置を適宜調整することなどにより、兼用させることも可能となる。 In the present invention, the detector 30b disposed in the vicinity of the inlet and the outlet of the exhaust gas purification catalyst 20 is particularly limited as long as it can detect at least one state of the exhaust gas as described above on the inlet side and the outlet side. However, at least one of a NOx sensor, an A / F sensor, or a temperature sensor is sufficient. However, when three sensors are used in combination, deterioration judgment can be made more appropriate. On the other hand, the detector 30a disposed in the vicinity of the inlet and outlet of the hydrogen catalyst is particularly limited as long as it can detect at least one state of the exhaust gas such as the exhaust gas air-fuel ratio and the O 2 storage amount on the inlet side and the outlet side. Instead, an A / F sensor, an O 2 sensor, or the like can be used, and may be used in combination as described above. Note that the detector 30a on the outlet side of the hydrogen catalyst 10 and the detector 30b on the inlet side of the exhaust gas purification catalyst 20 can also be used together by appropriately adjusting the mounting position.

エンジン40から排出される排気ガスは排気ガス流路を矢印の方向に流れ、水素触媒10と排気ガス浄化触媒20を通って浄化される。
その際に、水素触媒10はエンジン40の詳しくは後述するNOx脱離浄化制御(リッチスパイク制御)により発生した排気ガス中のHCやH、COなどの還元性ガスのうち、少なくともCOを低減しHを生成する機能及びCOを低減しHを透過する機能の一方又は双方を有し、水素触媒10を通過前より通過後の排気ガスのH/CO比を高めるものであり、例えば、HCとCOからHを生成する触媒、より具体的にはPt、Pd又はRh及びこれらの任意の混合物に係る貴金属を含有する貴金属触媒や、CO・HC選択酸化触媒、より具体的にはジルコニウム酸化物を含有する触媒、好ましくはRhを更に併用した触媒、更には、Hの消費を抑制する触媒、より具体的には固体酸性ジルコニウム酸化物を含有する触媒、好ましくはPtを併用した触媒を用いることができる。
Exhaust gas discharged from the engine 40 flows through the exhaust gas passage in the direction of the arrow, and is purified through the hydrogen catalyst 10 and the exhaust gas purification catalyst 20.
At that time, the hydrogen catalyst 10 reduces at least CO among reducing gases such as HC, H 2 , and CO in exhaust gas generated by NOx desorption purification control (rich spike control), which will be described in detail later on the engine 40. One or both of the function of generating H 2 and the function of reducing CO and permeating H 2 , and increasing the H 2 / CO ratio of the exhaust gas after passing through the hydrogen catalyst 10 before passing through, For example, a catalyst that generates H 2 from HC and CO, more specifically, a noble metal catalyst containing a noble metal related to Pt, Pd or Rh and any mixture thereof, a CO / HC selective oxidation catalyst, and more specifically, catalyst containing zirconium oxide, the catalyst preferably further combined in the catalyst Rh, further, suppresses the consumption of H 2 catalyst, which more specifically contains solid acidic zirconium oxide, Mashiku can be used a catalyst in combination of Pt.

排気ガス浄化用触媒20は排気ガスのうち少なくともNOxをトラップする機能を有し、上述したようなH/CO比が高められた還元性ガスなどが到達し、排気ガス浄化触媒20の周りの雰囲気がストイキないしリッチ域となると、トラップしていたNOxをより効率良く脱離浄化するものであり、例えば、Pt、Pd又はRh及びこれらの任意の混合物とアルカリ土類金属の一例であるバリウムとセリアを含む触媒を用いることができる。また、排気ガス浄化用触媒はHCトラップ機能を更に有していてもよい。例えば、Pt−Pd−Rhを含む触媒で担体にアルミナとβゼオライトとを用い、βゼオライトと貴金属担持アルミナとを積層した触媒を用いることができる。 The exhaust gas purification catalyst 20 has a function of trapping at least NOx in the exhaust gas, and reaches the reducing gas having an increased H 2 / CO ratio as described above, and the surroundings of the exhaust gas purification catalyst 20 When the atmosphere becomes a stoichiometric or rich region, the trapped NOx is more efficiently desorbed and purified. For example, Pt, Pd or Rh and any mixture thereof and barium, which is an example of an alkaline earth metal, A catalyst containing ceria can be used. Further, the exhaust gas purification catalyst may further have an HC trap function. For example, a catalyst containing Pt—Pd—Rh using alumina and β zeolite as a carrier and laminating β zeolite and noble metal-supported alumina can be used.

ここで、NOx脱離浄化制御について説明する。
図2は、排気ガス浄化用触媒20のNOxトラップ量推定を含むNOx脱離浄化制御のフローチャートである。
S1では、運転条件(エンジン回転数、負荷、空燃比等)より、エンジン40からの単位時間当たりのNOx排出量を(DNOx)を算出(予測)する。
S2では、次式(1)のように、単位時間当たりのNOx排出量(DNOx)に所定のトラップ率(KT)を乗じた値を積算することで、NOxトラップ量(TNOx)を算出・更新する。
TNOx=TNOx’+DNOx×KT…(1)
このNOxトラップ量(TNOx)は、エンジン停止後もC/U50に内蔵の記憶内容を保持できるメモリに記憶する。なお、式(1)中のTNOx’はメモリに記憶されたNOxトラップ量の初期値(リセットされている場合にはゼロである。)である。また、トラップ率(KT)は触媒種、更には内燃機関種や搭載される車種などによって、適宜設定されるものである。
NOxトラップ量の推定は、これに限定されるものではなく、走行距離を積算したり、リーン雰囲気に置かれた時間を積算したりして得られた積算値に基いて行ってもよい。
Here, the NOx desorption purification control will be described.
FIG. 2 is a flowchart of NOx desorption purification control including NOx trap amount estimation of the exhaust gas purification catalyst 20.
In S1, the NOx emission amount per unit time from the engine 40 (DNOx) is calculated (predicted) from the operating conditions (engine speed, load, air-fuel ratio, etc.).
In S2, the NOx trap amount (TNOx) is calculated and updated by integrating a value obtained by multiplying the NOx emission amount (DNOx) per unit time by a predetermined trap rate (KT) as shown in the following equation (1). To do.
TNOx = TNOx ′ + DNOx × KT (1)
This NOx trap amount (TNOx) is stored in a memory that can hold the stored content in the C / U 50 even after the engine is stopped. Note that TNOx ′ in equation (1) is the initial value of the NOx trap amount stored in the memory (it is zero when reset). Further, the trap rate (KT) is appropriately set depending on the catalyst type, the internal combustion engine type, the mounted vehicle type, and the like.
The estimation of the NOx trap amount is not limited to this, and may be performed based on an integrated value obtained by integrating the travel distance or integrating the time spent in a lean atmosphere.

S3では、NOxトラップ量(TNOx)が所定値以上となって、脱離浄化時期となったか否かを判定する。判定の結果、脱離浄化時期でない場合は、S1へ戻る。脱離浄化時期となった場合は、S4へ進む。
S4では、脱離浄化可能な運転条件(例えば、暖機後で比較的高回転・高負荷条件)か否かを判定する。判定の結果、脱離浄化可能な運転条件でない場合は、S1へ戻る。脱離浄化可能な運転条件の場合は、S5へ進む。
In S3, it is determined whether the NOx trap amount (TNOx) is equal to or greater than a predetermined value and the desorption purification time has come. As a result of the determination, if it is not the desorption purification time, the process returns to S1. If it is time to desorb and purify, the process proceeds to S4.
In S4, it is determined whether or not the operating conditions allow desorption purification (for example, relatively high rotation and high load conditions after warm-up). As a result of the determination, if the operation condition is not desorbable, the process returns to S1. If the operating condition allows desorption and purification, the process proceeds to S5.

S5では、排気ガス浄化触媒20のNOx脱離浄化制御として、例えば吸入空気量を減少させることなどにより、排気ガスの空燃比をストイキないしリッチ域にする(リッチスパイク制御)。これにより、排気ガス浄化用触媒20にトラップされていたNOxが脱離浄化される。例えば、ディーゼルエンジンの場合にはリッチスパイク制御の際に、更に燃料噴射時期の遅角(又はポスト噴射の実行)により、排気ガス温度を上昇させてもよい。   In S5, as the NOx desorption purification control of the exhaust gas purification catalyst 20, the air-fuel ratio of the exhaust gas is set to a stoichiometric or rich region (rich spike control), for example, by reducing the intake air amount. As a result, the NOx trapped in the exhaust gas purification catalyst 20 is desorbed and purified. For example, in the case of a diesel engine, the exhaust gas temperature may be further increased by retarding the fuel injection timing (or performing post injection) during rich spike control.

S6では、NOxの脱離浄化に必要な所定時間が経過したか否かを判定する。経過していない場合には、S5へ戻って、NOx脱離浄化制御を続行する。経過した場合は、S7へ進む。
S7では、NOxの脱離浄化が完了したので、S2での積算値であるNOxトラップ量(TNOx)をリセットしてS1へ戻る。
In S6, it is determined whether or not a predetermined time required for NOx desorption purification has elapsed. If not, the process returns to S5 and the NOx desorption purification control is continued. If it has elapsed, the process proceeds to S7.
In S7, NOx desorption purification is completed, so the NOx trap amount (TNOX), which is the integrated value in S2, is reset, and the process returns to S1.

以上のようなNOx脱離浄化制御(リッチスパイク制御)により排気ガス浄化用触媒20から通常運転時にトラップしたNOxを脱離浄化させるわけであるが、排気ガス浄化用触媒20が劣化するのは好ましくないため、通常運転時(走行中)のリッチスパイク制御中に、図3のフローチャートに従って、排気ガス浄化用触媒と水素触媒の劣化診断を行い、水素触媒の回復処理を実行する。   Although NOx trapped during normal operation is desorbed and purified from the exhaust gas purification catalyst 20 by the above NOx desorption purification control (rich spike control), it is preferable that the exhaust gas purification catalyst 20 deteriorates. Therefore, during the rich spike control during normal operation (running), the exhaust gas purifying catalyst and the hydrogen catalyst are diagnosed for deterioration according to the flowchart of FIG. 3, and the recovery process of the hydrogen catalyst is executed.

図3は、回復処理制御のフローチャートである。
S11では、排気ガス浄化用触媒の劣化診断を行う。詳しくは後述するが、排気ガス浄化用触媒20の入口側3種センサ30bのそれぞれの出力に基づいて入口側のNOx濃度N1、空燃比AF1及び排気ガス温度T1をそれぞれ検出し、排気ガス浄化用触媒20の出口側3種センサ30bのそれぞれの出力に基づいて出口側のNOx濃度N2、空燃比AF2及び排気ガス温度T2をそれぞれ検出し、得られたデータ差に基いて行う。
各センサの少なくとも1つ又は全部のデータ差が所定値に達したときは、排気ガス浄化用触媒20が劣化していると判断する。
更に、水素触媒の劣化診断を行う。詳しくは後述するが、水素触媒10の入口側A/Fセンサ30aの出力に基づいて入口側の空燃比AF11を検出し、水素触媒10の出口側A/Fセンサ30aの出力に基づいて出口側の空燃比AF12を検出し、得られたデータ差に基いて行う。
A/Fセンサのデータ差が所定値に達したときに、水素触媒10が劣化していると判断する。双方が劣化していると判断したときはS12に進む。
FIG. 3 is a flowchart of recovery processing control.
In S11, deterioration diagnosis of the exhaust gas purification catalyst is performed. As will be described in detail later, the NOx concentration N1, the air-fuel ratio AF1, and the exhaust gas temperature T1 on the inlet side are detected based on the respective outputs of the inlet side three-type sensor 30b of the exhaust gas purification catalyst 20, and the exhaust gas purification catalyst is used. The NOx concentration N2, the air-fuel ratio AF2, and the exhaust gas temperature T2 on the outlet side are detected based on the outputs of the three types of the outlet side three-type sensors 30b of the catalyst 20, and the detection is performed based on the obtained data difference.
When the data difference of at least one or all of the sensors reaches a predetermined value, it is determined that the exhaust gas purification catalyst 20 has deteriorated.
Furthermore, the deterioration diagnosis of the hydrogen catalyst is performed. As will be described in detail later, the air-fuel ratio AF11 on the inlet side is detected based on the output of the inlet side A / F sensor 30a of the hydrogen catalyst 10, and the outlet side is detected based on the output of the outlet side A / F sensor 30a of the hydrogen catalyst 10. The air-fuel ratio AF12 is detected, and based on the obtained data difference.
When the data difference of the A / F sensor reaches a predetermined value, it is determined that the hydrogen catalyst 10 has deteriorated. When it is determined that both have deteriorated, the process proceeds to S12.

S12では、回復処理手段60を兼ねるエンジン70を制御して、回復処理を実行する。水素触媒回復処理は代表的には180秒間、温度680℃、A/Fが20以下の排気ガスをエンジン70から排出することにより行えばよく、少なくとも水素触媒10のCO被毒を解除できれば、これに限定されるものではない。
また、水素触媒10のCO被毒が解除されると、水素触媒10の上述したような機能が回復し、排気ガス浄化用触媒20の機能も回復する。
なお、S11で排気ガス浄化用触媒20のみが劣化していると判断したときは、リッチスパイク制御の間隔を一時的に制御してもよい。また、回復処理を実行した際には、NOx浄化制御20のNOxトラップ量の積算値はリセットされる。
In S12, the engine 70 also serving as the recovery processing means 60 is controlled to execute the recovery process. The hydrogen catalyst recovery treatment is typically performed by discharging exhaust gas having a temperature of 680 ° C. and an A / F of 20 or less from the engine 70 for 180 seconds, and at least if the CO poisoning of the hydrogen catalyst 10 can be eliminated. It is not limited to.
Further, when the CO poisoning of the hydrogen catalyst 10 is released, the above-described function of the hydrogen catalyst 10 is restored, and the function of the exhaust gas purification catalyst 20 is also restored.
When it is determined in S11 that only the exhaust gas purification catalyst 20 has deteriorated, the interval of the rich spike control may be temporarily controlled. When the recovery process is executed, the integrated value of the NOx trap amount of the NOx purification control 20 is reset.

本発明において、回復処理手段は、リーンバーンガソリンエンジンやディゼルエンジンなどの内燃機関を利用することが可能であり、またERG装置を適宜利用することもできる。回復処理は、得られたデータ差に基いて、C/U50がエンジン40への吸入空気量制御、ERG装置制御、燃料噴射量制御及び燃料噴射時期制御などを行って実行する。   In the present invention, the recovery processing means can use an internal combustion engine such as a lean burn gasoline engine or a diesel engine, and can appropriately use an ERG device. The recovery processing is executed by the C / U 50 performing intake air amount control, ERG device control, fuel injection amount control, fuel injection timing control, and the like to the engine 40 based on the obtained data difference.

ここで、劣化診断について説明する。
図4は、劣化診断を説明するモデル図である。即ち、同図(a)〜(c)は排気ガス浄化用触媒20におけるNOx濃度、空燃比及び排気ガス温度の傾向を示すものであり、同図(d)は水素触媒10における空燃比の傾向を示すものである。
同図(a)に示すように、排気ガス浄化触媒20が正常であれば、NOxが浄化されるので、リッチスパイク中の排気ガス浄化用触媒20の入口側NOx濃度N1に比べ、出口側NOx濃度N2が十分に低減される結果、(N1−N2)が大きくなる。これに対し、排気ガス浄化用触媒20が劣化すると、NOxが浄化されなくなるので、入口側NOx濃度N1に対し、出口側NOx濃度N2がやや低下する程度となり、(N1−N2)が小さくなる。従って、(N1−N2)が所定値以下であるときは、排気ガス浄化用触媒20の劣化と判断する。ここでの所定値は用いる内燃機関種類や触媒種、更には搭載される車種などによって適宜設定されるものではあるが、例えばNOx転化率に換算して、各種排気ガス浄化用触媒の最大NOx転化率に対して測定されるNOx転化率の低下率が10〜20%を超えた時などに劣化と判断するように設定してもよい。なお、最大NOx転化率は予めOBDにメモリ記憶させておくものとし、更には、使用環境をメモリ記憶させ対応する最大NOx転化率に適宜設定してもよい。
Here, the deterioration diagnosis will be described.
FIG. 4 is a model diagram for explaining deterioration diagnosis. That is, FIGS. 4A to 4C show the NOx concentration, the air-fuel ratio, and the exhaust gas temperature in the exhaust gas purification catalyst 20, and FIG. Is shown.
As shown in FIG. 5A, if the exhaust gas purification catalyst 20 is normal, NOx is purified, so that the outlet side NOx concentration is higher than the inlet side NOx concentration N1 of the exhaust gas purification catalyst 20 during the rich spike. As a result of sufficiently reducing the concentration N2, (N1-N2) increases. On the other hand, when the exhaust gas purification catalyst 20 is deteriorated, NOx is not purified, so that the outlet side NOx concentration N2 is slightly reduced with respect to the inlet side NOx concentration N1, and (N1-N2) is reduced. Therefore, when (N1-N2) is less than or equal to the predetermined value, it is determined that the exhaust gas purification catalyst 20 has deteriorated. The predetermined value here is appropriately set depending on the type of internal combustion engine used, the type of catalyst, and the type of vehicle to be used. For example, the maximum NOx conversion of various exhaust gas purification catalysts in terms of NOx conversion rate You may set so that it may judge that it falls when the fall rate of the NOx conversion rate measured with respect to a rate exceeds 10 to 20%. Note that the maximum NOx conversion rate is stored in advance in the OBD in memory, and further, the usage environment may be stored in the memory and set to the corresponding maximum NOx conversion rate as appropriate.

同図(b)に示すように、リッチスパイク中の排気ガス浄化用触媒20の入口側空燃比AF1は、還元材として供給されるHCやCO、Hによりリッチ側(小)であり、排気ガス浄化用触媒20が正常であれば、NOx脱離浄化の際に還元材が消費され、出口側空燃比AF2はリーン側(大)となり、(AF2−AF1)が大きくなる。これに対し、排気ガス浄化用触媒20が劣化すると、還元材が消費されなくなるので、入口側空燃比AF1に対し出口側空燃比AF2はほとんど変化せず、(AF2−AF1)が小さくなる。従って、(AF2−AF1)が所定値以下であるときは、排気ガス浄化触媒の劣化と判断する。ここでの所定値は用いる内燃機関種類や触媒種、更には搭載される車種などによって適宜設定されるものではあるが、例えば各種排気ガス浄化用触媒の最大(AF2−AF1)に対して測定される(AF2−AF1)の変化率が20%を超えたときなどに劣化と判断するように設定してもよい。なお、最大(AF2−AF1)は予めOBDにメモリ記憶させておくものとし、更には、使用環境をメモリ記憶させ対応する最大(AF2−AF1)に適宜設定してもよい。 As shown in FIG. (B), the inlet-side air-fuel ratio AF1 of the exhaust gas purifying catalyst 20 in the rich spike, HC and CO are supplied as a reducing material, with H 2 a rich side (small), the exhaust If the gas purification catalyst 20 is normal, the reducing material is consumed during the NOx desorption purification, the outlet side air-fuel ratio AF2 becomes lean (large), and (AF2-AF1) becomes large. On the other hand, when the exhaust gas purification catalyst 20 deteriorates, the reducing material is not consumed, so that the outlet side air-fuel ratio AF2 hardly changes with respect to the inlet side air-fuel ratio AF1, and (AF2-AF1) becomes small. Therefore, when (AF2-AF1) is less than or equal to the predetermined value, it is determined that the exhaust gas purification catalyst has deteriorated. The predetermined value here is set as appropriate depending on the type of internal combustion engine used, the type of catalyst, the type of vehicle mounted, and the like. For example, the predetermined value is measured with respect to the maximum (AF2-AF1) of various exhaust gas purification catalysts. (AF2-AF1) may be set to be judged to be deteriorated when the rate of change exceeds 20%. Note that the maximum (AF2-AF1) is stored in advance in the OBD in memory, and further, the use environment may be stored in the memory and set appropriately to the corresponding maximum (AF2-AF1).

同図(c)に示すように、排気ガス浄化用触媒20が正常であれば、反応熱により排気ガス温度が上昇するので、入口側排気ガス温度T1に比べ、出口側排気ガス温度T2が上昇する結果、(T2−T1)が大きくなる。これに対し、排気ガス浄化用触媒20が劣化すると、反応が起こらなくなるので、入口側排気ガス温度T1に対し出口側排気ガス温度T2がやや上昇する程度か逆に低下することになり、(T2−T1)は小さくなる。従って、(T2−T1)が所定値以下であるときは、排気ガス浄化触媒の劣化と判断する。ここでの所定値は用いる内燃機関種類や触媒種、更には搭載される車種などによって適宜設定されるものではあるが、例えば各種排気ガス浄化用触媒の最大(T2−T1)に対して測定される(T2−T1)の上昇率が30%以下となったときなどに劣化と判断するように設定してもよい。もちろん(T2−T1)がマイナスとなる場合に劣化と判断するのは言うまでもない。なお、最大(T2−T1)は予めOBDにメモリ記憶させておくものとし、更には、使用環境をメモリ記憶させ対応する最大(T2−T1)に適宜設定してもよい。   As shown in FIG. 5C, if the exhaust gas purification catalyst 20 is normal, the exhaust gas temperature rises due to reaction heat, so the outlet side exhaust gas temperature T2 rises compared to the inlet side exhaust gas temperature T1. As a result, (T2-T1) increases. On the other hand, when the exhaust gas purification catalyst 20 deteriorates, the reaction does not occur, and therefore, the outlet side exhaust gas temperature T2 slightly increases or decreases with respect to the inlet side exhaust gas temperature T1 (T2 -T1) becomes smaller. Therefore, when (T2-T1) is less than or equal to the predetermined value, it is determined that the exhaust gas purification catalyst has deteriorated. The predetermined value here is set as appropriate depending on the type of internal combustion engine used, the type of catalyst, the type of vehicle mounted, and the like. (T2-T1) may be set to be judged to be deteriorated when the rate of increase becomes 30% or less. Of course, it is needless to say that the deterioration is determined when (T2−T1) is negative. Note that the maximum (T2-T1) is stored in advance in the OBD in memory, and further, the usage environment may be stored in the memory and set to the corresponding maximum (T2-T1) as appropriate.

同図(d)に示すように、水素触媒10が正常であれば、リッチスパイク中の水素触媒10の入口側空燃比AF11は、還元材として供給されるHCやCO、Hによりリッチ側(小)であり、水素触媒10が正常であれば、排気ガスが通過する際に還元材のうちHCやCOが特に消費され、出口側空燃比AF12はリーン側(大)となり、(AF12−AF11)が大きくなる。これに対し、水素触媒10が劣化すると、還元材が消費されなくなるので、入口側空燃比AF11に対し出口側空燃比AF12はほとんど変化せず、(AF12−AF11)が小さくなる。従って、(AF12−AF11)が所定値以下であるときは、水素触媒の劣化と判断する。ここでの所定値は用いる内燃機関種類や触媒種、更には搭載される車種などによって適宜設定されるものではあるが、例えば各種水素触媒の最大(AF12−AF1)に対して測定される(AF12−AF11)の変化率が20%を超えたときなどに劣化と判断するように設定してもよい。なお、最大(AF12−AF11)は予めOBDにメモリ記憶させておくものとし、更には、使用環境をメモリ記憶させ対応する最大(AF12−AF11)に適宜設定してもよい。 As shown in FIG. 4D, when the hydrogen catalyst 10 is normal, the inlet-side air-fuel ratio AF11 of the hydrogen catalyst 10 during the rich spike is rich (by the HC, CO, and H 2 supplied as the reducing material ( If the hydrogen catalyst 10 is normal and the exhaust gas passes, especially the HC and CO of the reducing material are consumed when the exhaust gas passes, and the outlet side air-fuel ratio AF12 becomes lean (large), and (AF12-AF11). ) Becomes larger. On the other hand, when the hydrogen catalyst 10 deteriorates, the reducing material is not consumed, so the outlet side air-fuel ratio AF12 hardly changes with respect to the inlet side air-fuel ratio AF11, and (AF12-AF11) becomes small. Therefore, when (AF12-AF11) is less than or equal to the predetermined value, it is determined that the hydrogen catalyst has deteriorated. The predetermined value here is set as appropriate depending on the type of internal combustion engine used, the type of catalyst, the type of vehicle mounted, and the like. For example, the predetermined value is measured with respect to the maximum (AF12-AF1) of various hydrogen catalysts (AF12). -AF11) may be set so as to be judged to be deteriorated when the rate of change exceeds 20%. Note that the maximum (AF12-AF11) is stored in advance in the OBD in memory, and further, the use environment may be stored in the memory and the corresponding maximum (AF12-AF11) may be set as appropriate.

また、内燃機関がディーゼルエンジンの場合には、通常ディーゼルパティキュレートフィルタ(DPF)が排気ガス浄化用触媒の下流側に配設されており、DPFはススなどのパティキュレートマター(PM)を一時的に捕集し、PMがあまり溜まらないうちに、エンジンの制御によって燃焼させて再生処理する。DPF再生処理は代表的には180秒間、温度700℃、A/Fが20以下の排気ガスをエンジンから排出することにより行えばよい。このように水素触媒の回復処理とDPFの再生処理はほぼ同じような処理方法なので、同期させて実行することにより、燃費や排気ガス浄化性能をより向上させることができる。
DPF再生処理や水素触媒回復処理を実行した際には、DPFの再生処理の捕集量をリセットでき、上述したようにNOxトラップ量もリセットされる。
なお、DPFとしては、上述したようにPMを捕集できればよいが、具体的には燃焼効率を高めたDPFに触媒を担持させた触媒付きDPFなどを使用することが望ましい。
When the internal combustion engine is a diesel engine, a diesel particulate filter (DPF) is usually disposed on the downstream side of the exhaust gas purifying catalyst, and the DPF temporarily stores particulate matter (PM) such as soot. Before PM accumulates much, it is burned by engine control and regenerated. The DPF regeneration process is typically performed by discharging exhaust gas having a temperature of 700 ° C. and an A / F of 20 or less from the engine for 180 seconds. Thus, since the recovery process of the hydrogen catalyst and the regeneration process of the DPF are almost the same processing method, the fuel consumption and the exhaust gas purification performance can be further improved by executing them in synchronization.
When the DPF regeneration process or the hydrogen catalyst recovery process is executed, the trapping amount of the DPF regeneration process can be reset, and the NOx trap amount is also reset as described above.
The DPF may be any PM as long as PM can be collected as described above. Specifically, it is desirable to use a DPF with a catalyst in which a catalyst is supported on a DPF with improved combustion efficiency.

本発明の排気ガス浄化システムの一実施形態を示すシステム図である。1 is a system diagram showing an embodiment of an exhaust gas purification system of the present invention. 排気ガス浄化用触媒のNOx脱離浄化制御のフローチャートである。It is a flowchart of NOx desorption purification control of the exhaust gas purification catalyst. 回復処理制御のフローチャートである。It is a flowchart of recovery process control. 劣化診断の説明図である。It is explanatory drawing of a deterioration diagnosis.

符号の説明Explanation of symbols

1 排気ガス浄化システム
10 水素触媒
20 排気ガス浄化用触媒
30a,30b 検出器
40 エンジン
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification system 10 Hydrogen catalyst 20 Exhaust gas purification catalyst 30a, 30b Detector 40 Engine

Claims (4)

内燃機関の排気ガス流路に、排気ガスの流れ方向に対して上流側から排気ガス中の少なくともCOを低減しHを生成する及び/又はCOを低減しHを透過する機能を有する水素触媒と、少なくともNOxトラップ機能を有する排気ガス浄化用触媒をこの順に配設し、
上記水素触媒及び排ガス浄化用触媒は、該触媒の劣化度合いを判断する劣化度合い判断手段をそれぞれ備え、
上記内燃機関に及び/又は水素触媒より上流側の排気ガス流路に、少なくとも該水素触媒の有する機能を回復させる回復処理手段を備える排気ガス浄化システムであって、
上記排気ガス浄化用触媒の劣化度合い判断手段が、該排気ガス浄化用触媒が劣化していると判断し、且つ上記水素触媒の劣化度合い判断手段が、該水素触媒が劣化していると判断したときに、上記回復処理手段が水素触媒の回復処理を実行することを特徴とする排気ガス浄化システム。
Hydrogen having a function of reducing at least CO in the exhaust gas from the upstream side with respect to the flow direction of the exhaust gas to generate H 2 and / or reducing CO and transmitting H 2 to the exhaust gas flow path of the internal combustion engine A catalyst and an exhaust gas purifying catalyst having at least a NOx trap function are arranged in this order,
The hydrogen catalyst and the exhaust gas purifying catalyst are each provided with a deterioration degree judging means for judging the degree of deterioration of the catalyst,
An exhaust gas purification system comprising recovery processing means for recovering at least the function of the hydrogen catalyst in the internal combustion engine and / or the exhaust gas flow path upstream of the hydrogen catalyst,
The exhaust gas purification catalyst deterioration degree determining means determines that the exhaust gas purification catalyst is deteriorated, and the hydrogen catalyst deterioration degree determination means determines that the hydrogen catalyst is deteriorated. The exhaust gas purification system characterized in that the recovery processing means executes a recovery process of the hydrogen catalyst.
請求項1に記載の排気ガス浄化システムが、上記排気ガス浄化用触媒の下流側にディーゼルパティキュレートフィルタを備え、
上記ディーゼルパティキュレートフィルタの再生処理と上記水素触媒の回復処理を同期させて実行することを特徴とする排気ガス浄化システム。
The exhaust gas purification system according to claim 1, further comprising a diesel particulate filter on the downstream side of the exhaust gas purification catalyst,
An exhaust gas purification system, wherein the regeneration process of the diesel particulate filter and the recovery process of the hydrogen catalyst are executed in synchronization.
上記排気ガス浄化用触媒の劣化度合い判断手段が、該排気ガス浄化用触媒の入口側と出口側のNOx濃度をそれぞれ検出する検出器、該排気ガス浄化用触媒の入口側と出口側の排気ガス空燃比をそれぞれ検出する検出器、及び該排気ガス浄化用触媒の入口側と出口側の排気ガス温度をそれぞれ検出する検出器から成る群より選ばれた少なくとも1種の検出器を有し、入口側と出口側の各検出器が得るデータ差に基いて劣化度合いを判断するものであることを特徴とする請求項1又は2に記載の排気ガス浄化システム。   The exhaust gas purifying catalyst deterioration degree judging means detects a NOx concentration on the inlet side and the outlet side of the exhaust gas purifying catalyst, and the exhaust gas on the inlet side and outlet side of the exhaust gas purifying catalyst. A detector for detecting the air-fuel ratio, and at least one detector selected from the group consisting of detectors for detecting the exhaust gas temperatures on the inlet side and the outlet side of the exhaust gas purifying catalyst. The exhaust gas purification system according to claim 1 or 2, wherein the degree of deterioration is determined based on a data difference obtained by each of the detectors on the side and the outlet side. 上記水素触媒の劣化度合い判断手段が、該水素触媒の入口側と出口側の排気ガス空燃比をそれぞれ検出する検出器及び/又はF−R Oセンサを有し、入口側と出口側の各検出器が得るデータ差に基いて劣化度合いを判断するものであることを特徴とする請求項1〜3のいずれか1つの項に記載の排気ガス浄化システム。 The hydrogen catalyst deterioration degree judging means has a detector and / or an F-R O 2 sensor for detecting the exhaust gas air-fuel ratio on the inlet side and the outlet side of the hydrogen catalyst, respectively. The exhaust gas purification system according to any one of claims 1 to 3, wherein the degree of deterioration is determined based on a data difference obtained by the detector.
JP2004228846A 2004-08-05 2004-08-05 Exhaust gas purification system Pending JP2006046198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004228846A JP2006046198A (en) 2004-08-05 2004-08-05 Exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004228846A JP2006046198A (en) 2004-08-05 2004-08-05 Exhaust gas purification system

Publications (1)

Publication Number Publication Date
JP2006046198A true JP2006046198A (en) 2006-02-16

Family

ID=36025072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004228846A Pending JP2006046198A (en) 2004-08-05 2004-08-05 Exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP2006046198A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121630A (en) * 2010-02-01 2010-06-03 Hitachi Ltd Engine system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121630A (en) * 2010-02-01 2010-06-03 Hitachi Ltd Engine system

Similar Documents

Publication Publication Date Title
JP5037283B2 (en) Exhaust gas purification device for internal combustion engine
JP3852461B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4304428B2 (en) Exhaust gas purification system for internal combustion engine
JP2007332881A (en) Exhaust emission control device and exhaust emission control method using this device
JP2001355485A (en) Exhaust emission control device having nitrogen oxides storage and reduction type catalyst
JP4192905B2 (en) Exhaust gas purification device for internal combustion engine
US8336293B2 (en) Exhaust gas purification system of an internal combustion engine
JP2007255342A (en) METHOD OF CONTROLLING NOx EMISSION CONTROL SYSTEM AND NOx EMISSION CONTROL SYSTEM
JP5880739B2 (en) Abnormality detection device for internal combustion engine
JP2004251177A (en) METHOD FOR REGENERATING NOx CATALYST OF NOx PURIFYING SYSTEM AND NOx PURIFYING SYSTEM
JP2007100572A (en) Exhaust emission control device of internal combustion engine
JP3925357B2 (en) Control method of exhaust gas purification system
JP4935929B2 (en) Exhaust gas purification device for internal combustion engine
JP2009264320A (en) Exhaust emission control device for internal combustion engine
JP5177441B2 (en) Exhaust gas purification device for internal combustion engine
JP4093302B2 (en) NOx purification system catalyst deterioration judgment method and NOx purification system
JP2016205351A (en) Exhaust emission control system of internal combustion engine
JP4442373B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2845071B2 (en) Exhaust gas purification device for internal combustion engine
JP2006046198A (en) Exhaust gas purification system
US11193408B2 (en) Reactivation control apparatus and method
JP2007113497A (en) Exhaust emission control device of internal combustion engine
JP2010005552A (en) Exhaust gas purifying apparatus of internal combustion engine
JP2004251188A (en) Exhaust emission control system for internal combustion engine
JP2003293746A (en) Exhaust emission control device for internal combustion engine