JP2010121630A - Engine system - Google Patents

Engine system Download PDF

Info

Publication number
JP2010121630A
JP2010121630A JP2010019869A JP2010019869A JP2010121630A JP 2010121630 A JP2010121630 A JP 2010121630A JP 2010019869 A JP2010019869 A JP 2010019869A JP 2010019869 A JP2010019869 A JP 2010019869A JP 2010121630 A JP2010121630 A JP 2010121630A
Authority
JP
Japan
Prior art keywords
hydrogen
engine
supply device
medium
rich gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010019869A
Other languages
Japanese (ja)
Other versions
JP5035358B2 (en
Inventor
Atsushi Shimada
敦史 島田
Takao Ishikawa
敬郎 石川
Takeshi Itabashi
武之 板橋
Masaru Kanemoto
大 兼元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010019869A priority Critical patent/JP5035358B2/en
Publication of JP2010121630A publication Critical patent/JP2010121630A/en
Application granted granted Critical
Publication of JP5035358B2 publication Critical patent/JP5035358B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an engine system capable of efficiently producing hydrogen rich gas from a medium, in a system for driving an engine by using, as one fuel, hydrogen rich gas produced from the medium that chemically repeats the storage and release of hydrogen. <P>SOLUTION: The engine system uses the hydrogen rich gas as one fuel driving the engine, and includes a hydrogen supply device mounting the medium chemically repeating the storage and release of hydrogen to produce the hydrogen rich gas from the medium or storing it. The system also includes a detecting part for detecting the operating condition of the engine, and a medium supply control means for controlling the supply of the medium to be supplied to the hydrogen supply device depending on the detection result of the detecting part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水素の貯蔵と放出を化学的に繰り返す媒体を搭載した水素エンジンシステムに関するものである。   The present invention relates to a hydrogen engine system equipped with a medium that chemically repeats the storage and release of hydrogen.

従来の水素の貯蔵と放出を化学的に繰り返す媒体から生成された水素リッチガスを燃料の一つとして、エンジンを駆動するシステムとして、例えば、特許文献1に記載されているように、上記媒体から生成された水素リッチガスのほかに、上記媒体もエンジンに供給が可能であり、それら双方を独立にエンジンに供給可能な水素利用内燃機関が開示されている。   As a system for driving an engine using hydrogen rich gas generated from a medium that chemically repeats storage and release of conventional hydrogen as one of the fuels, for example, as described in Patent Document 1, it is generated from the above medium. In addition to the hydrogen-rich gas, a hydrogen-based internal combustion engine that can supply the medium to the engine and supply both of them independently to the engine is disclosed.

特開2005−147124号公報Japanese Patent Laying-Open No. 2005-147124

水素の貯蔵と放出を化学的に繰り返す媒体から生成された水素リッチガスを燃料の一つとし、水素リッチガス単独あるいは複数種の燃料によりエンジンを駆動するエンジンシステムでは、媒体から生成された水素リッチガスをバッファタンクに貯蔵しておき、バッファタンクに貯蔵されている水素リッチガスをエンジンへ供給することでエンジンを駆動する。安定したエンジン駆動のためには、水素リッチガスが不足しないようにバッファタンクの容量を大きくすればよい。しかしながら、エンジンシステムの小型,軽量化のためにはバッファタンクの小型化が望まれる。バッファタンクの小型化のためには、媒体から水素を必要なときに、効率よく生成することが重要である。媒体から生成される水素リッチガスの量は、触媒への媒体供給量と触媒材料の温度によって変化する。この触媒温度は、エンジンの運転状態,媒体から水素を生成する際の反応量や触媒の劣化状態等により変動するため、生成される水素リッチガスの量もそれに応じて変動することになる。これに伴い、必要量の水素リッチガスが生成されない状態が発生し、エンジンの要求出力に対して、リニアな応答が困難となる。従って、エンジンシステムを高効率に運転をするためには、エンジンの運転状態に応じて、触媒への媒体供給量と触媒材料の温度を考慮した制御を行うことが必要である。また、この問題は複数種類の燃料を切り分けて用いる場合でも同様であり、エンジンの要求される出力特性等に応じて燃料形態を選択することが望ましく、媒体から効率よく水素リッチガスを生成することが重要である。   In an engine system in which hydrogen rich gas generated from a medium that chemically stores and releases hydrogen is used as one of the fuels, and the engine is driven by hydrogen rich gas alone or multiple types of fuel, the hydrogen rich gas generated from the medium is buffered. The engine is driven by supplying the hydrogen-rich gas stored in the tank and stored in the buffer tank to the engine. In order to drive the engine stably, the capacity of the buffer tank may be increased so as not to run out of hydrogen-rich gas. However, it is desirable to reduce the size of the buffer tank in order to reduce the size and weight of the engine system. In order to reduce the size of the buffer tank, it is important to efficiently generate hydrogen from the medium when necessary. The amount of the hydrogen-rich gas generated from the medium varies depending on the medium supply amount to the catalyst and the temperature of the catalyst material. Since the catalyst temperature varies depending on the operating state of the engine, the reaction amount at the time of generating hydrogen from the medium, the deterioration state of the catalyst, and the like, the amount of the hydrogen-rich gas produced also varies accordingly. Along with this, a state in which a necessary amount of hydrogen-rich gas is not generated occurs, and it becomes difficult to linearly respond to the required output of the engine. Therefore, in order to operate the engine system with high efficiency, it is necessary to perform control in consideration of the amount of medium supplied to the catalyst and the temperature of the catalyst material in accordance with the operating state of the engine. This problem is the same even when a plurality of types of fuel are used separately. It is desirable to select the fuel form according to the required output characteristics of the engine, and it is possible to efficiently generate the hydrogen-rich gas from the medium. is important.

また、水素リッチガス及び媒体を燃料として用いる場合には、燃焼効率や排気性能を考慮した制御を行うことが必要である。   Moreover, when using hydrogen rich gas and a medium as a fuel, it is necessary to perform control in consideration of combustion efficiency and exhaust performance.

特許文献1に記載のシステムでは、この点について十分な検討がなされていなかった。   The system described in Patent Document 1 has not been sufficiently studied in this regard.

本発明では、水素の貯蔵と放出を化学的に繰り返す媒体生成された水素リッチガスを燃料の一つとしてエンジンを駆動するエンジンシステムにおいて、燃焼効率,排気性能に優れたエンジンシステムを提供することにある。   An object of the present invention is to provide an engine system that excels in combustion efficiency and exhaust performance in an engine system that drives an engine using hydrogen-rich gas produced as a medium that chemically repeats storage and release of hydrogen as one of the fuels. .

また、本発明の他の目的は、媒体から効率よく水素リッチガスを生成可能なエンジンシステムを提供することを目的とする。   Another object of the present invention is to provide an engine system that can efficiently generate a hydrogen-rich gas from a medium.

上記、課題を解決するための第一の手段として、水素の貯蔵と放出を化学的に繰り返す媒体を搭載し、前記媒体から水素リッチガスを生成または貯蔵を行う水素供給装置を備え、前記水素リッチガスを燃料の一つとして、エンジンを駆動するエンジンシステムにおいて、水素リッチガスを燃料としてエンジンに供給する水素リッチガス供給装置と、前記媒体を含む成分をシリンダ内に直接供給する媒体燃料供給装置と、前記水素リッチガスをエンジンに供給した後、ピストン圧縮期間に前記媒体を含む成分をシリンダ内に供給し、自己着火燃焼させる燃料供給時期制御手段とを有するエンジンシステムを特徴とする。   As a first means for solving the above-mentioned problems, a medium that chemically repeats storage and release of hydrogen is mounted, and a hydrogen supply device that generates or stores hydrogen-rich gas from the medium is provided. In an engine system that drives an engine as one of fuels, a hydrogen rich gas supply device that supplies hydrogen rich gas to the engine as a fuel, a medium fuel supply device that directly supplies a component containing the medium into a cylinder, and the hydrogen rich gas The engine system includes fuel supply timing control means for supplying a component containing the medium into the cylinder during the piston compression period and causing self-ignition combustion.

また、第二の手段として、エンジンの運転状態を検出する検出部と、前記検出部の検出結果に応じて、前記水素供給装置へ供給する前記媒体の供給量を制御する媒体供給量制御手段とを有することを特徴とする。ここで、エンジンの運転状態は、エンジン推定トルク及びエンジン回転数により判断することが可能である。   Further, as a second means, a detection unit that detects an operating state of the engine, and a medium supply amount control unit that controls a supply amount of the medium supplied to the hydrogen supply device according to a detection result of the detection unit. It is characterized by having. Here, the operating state of the engine can be determined from the estimated engine torque and the engine speed.

また、第三の手段として、水素供給装置内の触媒温度を推定する触媒温度推定手段と、前記触媒温度推定手段により推定された触媒温度に基づき、
前記水素供給装置へ供給する前記媒体の供給量を制御する媒体供給量制御手段、または 前記水素供給装置へ供給する熱供給量を制御する熱供給量制御手段、
の少なくともいずれか一つを有するエンジンシステムであることを特徴とする。
Further, as a third means, based on the catalyst temperature estimation means for estimating the catalyst temperature in the hydrogen supply device, and the catalyst temperature estimated by the catalyst temperature estimation means,
Medium supply amount control means for controlling the supply amount of the medium supplied to the hydrogen supply apparatus, or heat supply amount control means for controlling the heat supply amount supplied to the hydrogen supply apparatus,
It is an engine system which has at least any one of these.

第三の手段によれば、触媒温度に基づき、水素供給装置へ供給する媒体の供給量、または、水素供給装置へ供給する熱供給量のいずれかを制御することにより触媒温度を調整することが可能となる。これにより、エンジンが駆動されている状態において、触媒温度を水素リッチガス生成のために有効な温度範囲に制御することができるため、効率的に媒体から水素を生成することができる。   According to the third means, the catalyst temperature can be adjusted by controlling either the supply amount of the medium supplied to the hydrogen supply device or the heat supply amount supplied to the hydrogen supply device based on the catalyst temperature. It becomes possible. Thereby, in a state where the engine is driven, the catalyst temperature can be controlled within a temperature range effective for generating the hydrogen-rich gas, so that hydrogen can be efficiently generated from the medium.

また、第四の手段として、水素の貯蔵と放出を化学的に繰り返す媒体から水素リッチガスを生成する水素供給装置と、排ガスを浄化するための三元触媒とを備え、前記水素リッチガス及び前記媒体を燃料の一つとして、エンジンを駆動するエンジンシステムにおいて、
エンジンへ供給する前記媒体と前記水素リッチガスの供給量割合に応じて、
エンジンに備えた点火プラグによる点火時期を制御する点火時期制御手段と、
エンジンに供給する燃料の空気過剰率を制御する空気過剰率制御手段とを有し、
前記空気過剰率制御手段により、空気過剰率を0.95〜1.05または1.8〜5.0の範囲に制御することを特徴とする。
Further, as a fourth means, a hydrogen supply device that generates a hydrogen-rich gas from a medium that chemically repeats storage and release of hydrogen, and a three-way catalyst for purifying the exhaust gas, the hydrogen-rich gas and the medium are provided. As one of the fuel, in the engine system that drives the engine,
According to the supply amount ratio of the medium supplied to the engine and the hydrogen rich gas,
Ignition timing control means for controlling the ignition timing by a spark plug provided in the engine;
An excess air ratio control means for controlling an excess air ratio of fuel supplied to the engine,
The excess air ratio is controlled in the range of 0.95 to 1.05 or 1.8 to 5.0 by the excess air ratio control means.

また、第五の手段として、エンジンの排気管に前記水素供給装置とエンジンの排ガスを浄化するための浄化触媒とが備えられ、前記水素供給装置よりもエンジン側に前記浄化触媒が設置されている、もしくは、前記水素供給装置と前記浄化触媒が一体化されているエンジンシステムを特徴とする。   As a fifth means, the exhaust pipe of the engine is provided with the hydrogen supply device and a purification catalyst for purifying the exhaust gas of the engine, and the purification catalyst is installed closer to the engine than the hydrogen supply device. Alternatively, an engine system in which the hydrogen supply device and the purification catalyst are integrated is characterized.

本発明により、水素の貯蔵と放出を化学的に繰り返す媒体を搭載したエンジンシステムにおいて、燃焼効率,排気性能に優れたエンジンシステムを提供することができる。   According to the present invention, it is possible to provide an engine system that is excellent in combustion efficiency and exhaust performance in an engine system equipped with a medium that chemically repeats storage and release of hydrogen.

水素供給装置を排気管に装着したエンジンシステムの概略図。1 is a schematic view of an engine system in which a hydrogen supply device is mounted on an exhaust pipe. 水素供給装置の構成図。The block diagram of a hydrogen supply apparatus. エンジンの運転域と供給燃料の関係図。FIG. 3 is a relationship diagram of an engine operating range and a supplied fuel. 触媒温度と転化率の関係図。The relationship diagram of catalyst temperature and conversion rate. 水素供給装置へ水素化媒体供給量と転化率の関係図。The relationship diagram of the hydrogenation medium supply amount and conversion rate to a hydrogen supply apparatus. 水素供給装置の触媒温度変化に伴う制御フロー図。The control flow figure accompanying the catalyst temperature change of a hydrogen supply apparatus. 水素供給装置への熱供給量を制御する各手法。Each method to control the heat supply amount to the hydrogen supply device. 水素リッチガスの貯蔵量変化に伴う制御フロー図。The control flow figure accompanying the storage amount change of hydrogen rich gas. 水素供給装置内の触媒劣化を判定する図。The figure which determines the catalyst deterioration in a hydrogen supply apparatus. 燃料切替え時に行う空燃比,点火時期制御図。The air-fuel ratio and ignition timing control chart performed at the time of fuel switching. 水素リッチガス燃焼時の空気過剰率とNOx排出量の関係図。The relationship diagram of the excess air ratio and NOx emission amount at the time of hydrogen rich gas combustion. 三元触媒の浄化率と空気過剰率の関係図。The relationship diagram of the purification rate of a three-way catalyst and the excess air rate. エンジンが始動から三元触媒活性化するまでの触媒温度変化図。The catalyst temperature change figure from the start of the engine to the activation of the three-way catalyst. 水素供給装置を排気管に装着したエンジンシステムで圧縮着火燃焼タイプのシステム概略図。FIG. 2 is a schematic view of a compression ignition combustion type system in an engine system in which a hydrogen supply device is mounted on an exhaust pipe. 水素濃度と点火時期の関係図。The relationship diagram of hydrogen concentration and ignition timing.

以下、本発明の実施形態について図を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、水素の貯蔵と放出を化学的に繰り返す媒体を脱水素反応するための水素供給装置12をエンジンの排気管18に設置して、エンジン1から排出される排ガス熱の利用が可能なシステムである。水素供給装置12に供給される排ガス量は、排ガス量調整バルブ15を用いて調整可能となっている。また、水素供給装置12の上流側,下流側、および水素供給装置12内には、温度検出手段14,19,31がそれぞれ設置されている。水素供給装置12には、水素化媒体供給装置11により、水素化媒体を供給している。   FIG. 1 shows that a hydrogen supply device 12 for dehydrogenating a medium that chemically stores and releases hydrogen can be installed in the exhaust pipe 18 of the engine so that exhaust gas heat discharged from the engine 1 can be used. System. The amount of exhaust gas supplied to the hydrogen supply device 12 can be adjusted using the exhaust gas amount adjustment valve 15. Further, temperature detection means 14, 19, and 31 are installed on the upstream side and downstream side of the hydrogen supply device 12 and in the hydrogen supply device 12, respectively. A hydrogenation medium is supplied to the hydrogen supply device 12 by the hydrogenation medium supply device 11.

上記媒体とは、ガソリン,軽油,灯油,重油,デカリン,シクロヘキサン,メチルシクロヘキサン,ナフタレン,ベンゼン,トルエンなどの炭化水素系燃料およびその混合燃料や、過酸化水素,アンモニア,窒素,酸素など、水素を化学的に貯蔵・放出することが可能なものすべてのものを示す。中でも、水素を化学的に貯蔵している媒体は水素化媒体、水素を化学的に放出した後の媒体は脱水素化媒体と呼ぶことにする。水素化媒体および脱水素化媒体は、それぞれタンク10,28内に貯蔵されている。これらのタンクは、一体構造になっていてもよい。水素化媒体は、ポンプ24の圧力により配管32を通して媒体供給装置(インジェクタ)11から水素供給装置12に供給できる構成となっている。また、水素化媒体および脱水素化媒体は、ポンプ25の圧力により配管33を通して水素化媒体供給装置(インジェクタ)3からエンジン1に供給することが可能な構成になっている。また、エンジン1に供給する水素化媒体,脱水素化媒体は、切替バルブ9を用いて切替えが可能となっている。   The above media include hydrocarbon fuels such as gasoline, light oil, kerosene, heavy oil, decalin, cyclohexane, methylcyclohexane, naphthalene, benzene, toluene, and mixed fuels, hydrogen such as hydrogen peroxide, ammonia, nitrogen, and oxygen. Indicates anything that can be stored and released chemically. In particular, a medium in which hydrogen is chemically stored is referred to as a hydrogenation medium, and a medium after hydrogen is chemically released is referred to as a dehydrogenation medium. The hydrogenation medium and the dehydrogenation medium are stored in tanks 10 and 28, respectively. These tanks may have an integral structure. The hydrogenation medium can be supplied from the medium supply device (injector) 11 to the hydrogen supply device 12 through the pipe 32 by the pressure of the pump 24. The hydrogenation medium and the dehydrogenation medium can be supplied to the engine 1 from the hydrogenation medium supply device (injector) 3 through the pipe 33 by the pressure of the pump 25. The hydrogenation medium and dehydrogenation medium supplied to the engine 1 can be switched using the switching valve 9.

水素供給装置12で生成された水素リッチガスと脱水素化媒体の混合体は、配管35を通して分離装置8へ運ばれ、分離装置8により水素リッチガスと脱水素化燃料に分離される。その後、水素リッチガスは、吸引,圧縮装置7を通して水素リッチガス貯蔵装置26に貯蔵され、水素リッチガス供給装置(インジェクタ)2からエンジン1へ供給される。一方、脱水素化媒体は、脱水素化媒体用タンク28内に貯蔵される。また、分離装置8とエンジン1との間に配置された水素リッチガス貯蔵装置26内には、水素圧力センサー5と水素濃度センサー6が設置されている。また、水素リッチガス貯蔵装置26と水素リッチガス供給装置(インジェクタ)2との間には、水素リッチガス供給圧力を所望圧に制御するためのレギュレータ29が設けられている。また、吸引,圧縮装置7からの水素供給圧が過大とならないようにリリーフバルブ30の開閉により水素供給圧を調整することが可能である。エンジン1の吸気管27には、吸入空気量を調整するスロットルバルブ4が設置されており、排気管18には、浄化触媒13の上流,下流に酸素センサー17,34が設置されている。上記、酸素センサー17は、空燃比センサーでもよい。エンジン1の吸気バルブ22,排気バルブ20は、開閉タイミング,リフト量を可変制御できる構造のものでもよい。   The mixture of the hydrogen rich gas and the dehydrogenation medium generated by the hydrogen supply device 12 is conveyed to the separation device 8 through the pipe 35 and is separated into the hydrogen rich gas and the dehydrogenated fuel by the separation device 8. Thereafter, the hydrogen rich gas is stored in the hydrogen rich gas storage device 26 through the suction / compression device 7 and supplied from the hydrogen rich gas supply device (injector) 2 to the engine 1. On the other hand, the dehydrogenation medium is stored in the dehydrogenation medium tank 28. A hydrogen pressure sensor 5 and a hydrogen concentration sensor 6 are installed in a hydrogen rich gas storage device 26 disposed between the separation device 8 and the engine 1. A regulator 29 is provided between the hydrogen rich gas storage device 26 and the hydrogen rich gas supply device (injector) 2 to control the hydrogen rich gas supply pressure to a desired pressure. In addition, the hydrogen supply pressure can be adjusted by opening and closing the relief valve 30 so that the hydrogen supply pressure from the suction and compression device 7 does not become excessive. A throttle valve 4 for adjusting the amount of intake air is installed in the intake pipe 27 of the engine 1, and oxygen sensors 17 and 34 are installed in the exhaust pipe 18 upstream and downstream of the purification catalyst 13. The oxygen sensor 17 may be an air-fuel ratio sensor. The intake valve 22 and the exhaust valve 20 of the engine 1 may have a structure that can variably control the opening / closing timing and the lift amount.

本システムにおいて、温度検出手段14,19,31,媒体供給装置(インジェクタ)3,11,水素リッチガス供給装置(インジェクタ)2,水素圧力センサー5と水素濃度センサー6,スロットルバルブ4,O2センサー17,34、吸気バルブ22、排気バルブ20、点火プラグ21、及び、排ガス量調整バルブ15等は制御装置(ECU)23と電気的に接続され、制御装置23により制御される。 In this system, temperature detection means 14, 19, 31, medium supply devices (injectors) 3, 11, hydrogen rich gas supply devices (injectors) 2, hydrogen pressure sensor 5, hydrogen concentration sensor 6, throttle valve 4, O 2 sensor 17 , 34, the intake valve 22, the exhaust valve 20, the spark plug 21, the exhaust gas amount adjustment valve 15 and the like are electrically connected to a control device (ECU) 23 and controlled by the control device 23.

次に、図1で示した水素供給装置12の構成について図2を用いて説明する。水素供給装置12の構成は、図2に記載のように、流路突起39が設けられた純アルミニウム(熱伝導率:250W/mK)高熱伝導基板40の上に、Pt/アルミナ触媒からなる触媒層42が形成されている。この触媒層42の上に水素のみを選択的に透過する水素分離膜38が積層され、スペーサ37を介して水素流路36が積層された構造を基本構造とし、エンジン排気管に設置される。   Next, the configuration of the hydrogen supply device 12 shown in FIG. 1 will be described with reference to FIG. As shown in FIG. 2, the structure of the hydrogen supply device 12 is a catalyst made of Pt / alumina catalyst on pure aluminum (thermal conductivity: 250 W / mK) high thermal conductive substrate 40 provided with flow path protrusions 39. Layer 42 is formed. A structure in which a hydrogen separation membrane 38 that selectively permeates only hydrogen is laminated on the catalyst layer 42 and a hydrogen flow path 36 is laminated via a spacer 37 is a basic structure and is installed in an engine exhaust pipe.

水素供給装置12へ供給される媒体は、燃料流路41を通り、高熱伝導基板40の表面上に形成された触媒層42と接触しながら脱水素反応が進行し、水素リッチガスが生成する。生成された水素リッチガスは、水素分離膜38を透過し、スペーサ37を介して、水素流路36より水素供給装置12から排出される。また、水素分離膜38を透過しなかった水素リッチガスと脱水素化媒体は、燃料流路41を通って水素供給装置12より水素供給装置12の外に排出される。ここで排出された水素リッチガスと脱水素化媒体は、水素流路36より排出された水素リッチガスと合流し、混合され、図1の分離装置8に供給される。なお、水素流路36より排出される水素リッチガスと、燃料流路41より排出される水素リッチガスと脱水素化媒体とを混合せず、別個の配管により、水素リッチガスを水素リッチガス貯蔵装置26へ供給し、水素リッチガスと脱水素化媒体を分離装置8に供給する構成としてもよい。また、図2では、媒体からの脱水素化反応を低温で効率よく行うために水素分離膜38を設ける構成としたが、水素分離膜38がない構成とすることも可能である。また、図2に示した基本構造を積層して配置してもよい。   The medium supplied to the hydrogen supply device 12 passes through the fuel flow path 41, and the dehydrogenation reaction proceeds while contacting the catalyst layer 42 formed on the surface of the high thermal conductive substrate 40, thereby generating a hydrogen rich gas. The generated hydrogen rich gas passes through the hydrogen separation membrane 38 and is discharged from the hydrogen supply device 12 through the hydrogen flow path 36 via the spacer 37. The hydrogen rich gas and the dehydrogenation medium that have not permeated the hydrogen separation membrane 38 are discharged from the hydrogen supply device 12 to the outside of the hydrogen supply device 12 through the fuel flow path 41. The hydrogen-rich gas discharged here and the dehydrogenation medium merge with the hydrogen-rich gas discharged from the hydrogen flow path 36, mixed, and supplied to the separation device 8 of FIG. The hydrogen rich gas discharged from the hydrogen flow path 36, the hydrogen rich gas discharged from the fuel flow path 41, and the dehydrogenation medium are not mixed, and the hydrogen rich gas is supplied to the hydrogen rich gas storage device 26 through a separate pipe. Alternatively, the hydrogen rich gas and the dehydrogenation medium may be supplied to the separation device 8. In FIG. 2, the hydrogen separation membrane 38 is provided in order to efficiently perform the dehydrogenation reaction from the medium at a low temperature, but a configuration without the hydrogen separation membrane 38 is also possible. Further, the basic structure shown in FIG.

水素化媒体の水素供給装置12への供給量は、エンジンの運転状態によって決められたエンジンへの要求水素量に依存する。図3に基づき、エンジン運転状態における水素リッチガスと媒体の供給方法について説明する。領域1の低負荷運転領域においては、排ガス温度が比較的低いために、水素供給装置12に供給される排ガスからの熱量が小さくなる。そのため、水素リッチガスのみでエンジンを駆動するために必要な水素リッチガス量を水素供給装置12で生成することが困難となる。そのため、媒体と水素リッチガスの両方をエンジンに供給する。また、領域3の高負荷運転領域においては、水素リッチガスのみをエンジンに供給する場合、エンジン内の燃焼に伴う圧力上昇が急激になるという問題がある。そのため、この運転領域においても、水素リッチガスと媒体の両方をエンジン1に供給することが望ましい。このとき、EGR制御により、急激な圧力上昇を抑制してもよい。また、媒体をエンジンに供給する代わりに、モータによるトルクアシストを行ってもよい。領域1,領域3に対し、その中間領域となる領域2の中負荷運転領域では水素リッチガスのみでエンジンを駆動することが可能である。以上のように、エンジンの運転状態に応じて、水素リッチガスの供給量が決まり、それに伴い、水素供給装置12へ供給する水素化媒体の供給量が決まる。このように各運転域でエンジン1へ供給する燃料を制御することで、広い運転域でシステムが成立する。   The supply amount of the hydrogenation medium to the hydrogen supply device 12 depends on the required hydrogen amount to the engine determined by the operating state of the engine. Based on FIG. 3, a method for supplying the hydrogen-rich gas and the medium in the engine operating state will be described. In the low load operation region of region 1, the amount of heat from the exhaust gas supplied to the hydrogen supply device 12 is small because the exhaust gas temperature is relatively low. Therefore, it becomes difficult to generate the hydrogen rich gas amount necessary for driving the engine with only the hydrogen rich gas by the hydrogen supply device 12. Therefore, both the medium and the hydrogen rich gas are supplied to the engine. Further, in the high load operation region of region 3, when only hydrogen-rich gas is supplied to the engine, there is a problem that the pressure rise accompanying combustion in the engine becomes abrupt. Therefore, it is desirable to supply both the hydrogen-rich gas and the medium to the engine 1 also in this operation region. At this time, you may suppress a rapid pressure rise by EGR control. Further, torque assist by a motor may be performed instead of supplying the medium to the engine. It is possible to drive the engine only with the hydrogen rich gas in the middle load operation region of the region 2 that is an intermediate region of the regions 1 and 3. As described above, the supply amount of the hydrogen rich gas is determined according to the operating state of the engine, and accordingly, the supply amount of the hydrogenation medium supplied to the hydrogen supply device 12 is determined. In this way, by controlling the fuel supplied to the engine 1 in each operation region, the system is established in a wide operation region.

エンジンに供給する媒体は、脱水素化媒体が望ましい。この理由は、水素供給装置12により生成された脱水素化媒体と水素リッチガスの合計発熱量は、水素供給装置12に供給された水素化媒体の発熱量に比べて高いためである。例えば、水素化媒体であるシクロヘキサンから水素と脱水素化媒体であるベンゼンを生成する反応においては、5.6%発熱量が向上する。このことで、トータル効率が上昇し、CO2削減、ユーザにとっては燃費が良くなるという効果がある。 The medium supplied to the engine is preferably a dehydrogenation medium. This is because the total calorific value of the dehydrogenation medium and hydrogen rich gas generated by the hydrogen supply device 12 is higher than the calorific value of the hydrogenation medium supplied to the hydrogen supply device 12. For example, in the reaction of generating hydrogen and benzene as the dehydrogenation medium from cyclohexane as the hydrogenation medium, the calorific value is improved by 5.6%. This has the effect of increasing the total efficiency, reducing CO 2 and improving the fuel efficiency for the user.

上述のように、各運転領域に応じて、エンジン1へ供給する燃料が決定され、必要な水素リッチガスの量が決定される。この際、エンジン推定トルク及びエンジン回転数を検出することで必要な水素リッチガスの量を判定することが好ましい。ここで、エンジン推定トルクは、ストイキ運転(空気過剰率=1)の際は、スロットル開度または吸入空気量とエンジン回転数から推定する。リーン運転時は、スロットル開度または吸入空気量とエンジン回転数に加え、燃料供給量によって推定する。また、これらのほかに、エンジン筒内の燃焼圧力や、軸トルクを測定して、トルクを決定してもよい。なお、吸入空気量は、エアーフローセンサ等により測定される。EGR(Exhaust Gas Recirculation :排気再循環)を行うときは、EGRバルブ開度もトルク推定に考慮する。また、吸入空気量を吸気バルブの開期間、リフト量で制御する際は、それらを考慮して、トルクを推定してもよい。以下、エンジンの運転状態に応じた制御方法について説明する。   As described above, the fuel to be supplied to the engine 1 is determined according to each operation region, and the necessary amount of hydrogen-rich gas is determined. At this time, it is preferable to determine the amount of hydrogen-rich gas required by detecting the estimated engine torque and the engine speed. Here, the estimated engine torque is estimated from the throttle opening or intake air amount and the engine speed during stoichiometric operation (excess air ratio = 1). During lean operation, estimation is made based on the fuel supply amount in addition to the throttle opening or intake air amount and the engine speed. In addition, the torque may be determined by measuring the combustion pressure in the engine cylinder or the shaft torque. The intake air amount is measured by an air flow sensor or the like. When performing EGR (Exhaust Gas Recirculation), the EGR valve opening is also considered in the torque estimation. Further, when the intake air amount is controlled by the intake valve opening period and the lift amount, the torque may be estimated in consideration thereof. Hereinafter, a control method according to the operating state of the engine will be described.

エンジンの運転状態、つまりエンジン推定トルク及びエンジン回転数により、エンジンに必要な水素リッチガスの量が決まる。それに基づき、水素供給装置12へ供給する水素化媒体の量が決まる。これは、水素供給装置12から生成される水素リッチガスの量は、水素供給装置12へ供給する水素化媒体の供給量に依存することに起因する。水素化媒体の供給量は、水素化媒体供給装置11により、パルス制御でコントロールされる。このとき、パルス幅と、パルス周波数を制御することで、水素化媒体の供給量を制御する。水素供給装置12へ供給する水素化媒体の供給時期から水素リッチガスの生成時期までは、10ms以下の応答速度であるため、このような制御を用いると、水素リッチガス貯蔵装置26の小型化または、水素リッチガス貯蔵装置26を不要にすることが可能となり、システム全体として小型化が図れるという効果がある。   The amount of hydrogen-rich gas required for the engine is determined by the operating state of the engine, that is, the estimated engine torque and the engine speed. Based on this, the amount of hydrogenation medium supplied to the hydrogen supply device 12 is determined. This is because the amount of the hydrogen-rich gas generated from the hydrogen supply device 12 depends on the supply amount of the hydrogenation medium supplied to the hydrogen supply device 12. The supply amount of the hydrogenation medium is controlled by the hydrogenation medium supply device 11 by pulse control. At this time, the supply amount of the hydrogenation medium is controlled by controlling the pulse width and the pulse frequency. Since the response speed is 10 ms or less from the supply timing of the hydrogenation medium supplied to the hydrogen supply device 12 to the generation timing of the hydrogen rich gas, the use of such control makes it possible to reduce the size of the hydrogen rich gas storage device 26 or hydrogen The rich gas storage device 26 can be eliminated, and the entire system can be reduced in size.

次に、水素化媒体から水素を生成する際の特性の一つとして、図4のようなものがある。これは、水素化媒体から水素への転化率が、水素供給装置12内の触媒温度に大きく依存していることを示す図である。上記触媒温度が所定温度以上になると、転化率が100%近くになる。つまり、水素化媒体から水素を効率的に取り出すには、触媒の温度を所定温度以上にする必要がある。また、水素供給装置12内の触媒温度が高すぎると触媒劣化や材料の損傷,水素化媒体の炭化などの問題がある。つまり、水素化媒体から水素を生成する際の水素供給装置12内の触媒温度は、常に所定温度範囲内にあることが、水素を効率よく生成するためには重要となる。   Next, as one of the characteristics when generating hydrogen from the hydrogenation medium, there is one as shown in FIG. This is a diagram showing that the conversion rate from the hydrogenation medium to hydrogen greatly depends on the catalyst temperature in the hydrogen supply device 12. When the catalyst temperature is equal to or higher than a predetermined temperature, the conversion rate is close to 100%. That is, in order to efficiently extract hydrogen from the hydrogenation medium, the temperature of the catalyst needs to be higher than a predetermined temperature. If the catalyst temperature in the hydrogen supply device 12 is too high, there are problems such as catalyst deterioration, material damage, and carbonization of the hydrogenation medium. That is, in order to generate hydrogen efficiently, it is important that the catalyst temperature in the hydrogen supply device 12 when generating hydrogen from the hydrogenation medium is always within a predetermined temperature range.

水素供給装置12内の触媒温度は、水素供給装置12への熱供給量と、水素化媒体から水素を生成するための反応熱量に依存する。水素供給装置12への熱供給量に比例して、水素供給装置12内の触媒温度は上昇し、逆に水素化媒体から水素を生成する反応が吸熱反応の場合、反応熱量に応じて、上記触媒温度は低下する。例えば、水素化媒体にメチルシクロヘキサンを使用する場合、1molの水素を生成するために、常温,常圧下で、約70kJの吸熱量が必要となる。図5に、水素供給装置12への熱供給量が一定の場合の、水素供給装置12への水素化媒体供給量と水素化媒体から水素を生成する転化率の関係を示す。水素供給装置12への水素化媒体供給量が増加すると水素化媒体から水素への転化率は低下することが分かる。これは、水素供給装置12への媒体供給量の増加に伴い、水素生成時の反応熱量が増加し、触媒温度が低下することが主な原因である。つまり、触媒温度を所定の温度範囲にするためには、水素供給装置12への熱供給量と水素を生成するための反応量を決める水素供給装置12への水素化媒体供給量の制御が重要となる。   The catalyst temperature in the hydrogen supply device 12 depends on the amount of heat supplied to the hydrogen supply device 12 and the amount of reaction heat for generating hydrogen from the hydrogenation medium. In proportion to the amount of heat supplied to the hydrogen supply device 12, the catalyst temperature in the hydrogen supply device 12 rises. Conversely, when the reaction that generates hydrogen from the hydrogenation medium is an endothermic reaction, The catalyst temperature decreases. For example, when methylcyclohexane is used as the hydrogenation medium, an endotherm of about 70 kJ is required at room temperature and normal pressure in order to produce 1 mol of hydrogen. FIG. 5 shows the relationship between the supply amount of the hydrogenation medium to the hydrogen supply device 12 and the conversion rate for generating hydrogen from the hydrogenation medium when the heat supply amount to the hydrogen supply device 12 is constant. It can be seen that as the amount of hydrogenation medium supplied to the hydrogen supply device 12 increases, the conversion rate from the hydrogenation medium to hydrogen decreases. This is mainly because the amount of reaction heat at the time of hydrogen generation increases and the catalyst temperature decreases as the amount of medium supplied to the hydrogen supply device 12 increases. That is, in order to set the catalyst temperature within a predetermined temperature range, it is important to control the amount of heat supplied to the hydrogen supply device 12 and the amount of hydrogenation medium supplied to the hydrogen supply device 12 that determines the amount of reaction for generating hydrogen. It becomes.

次に、触媒温度の推定手法について説明する。図1に記載の温度検出手段31を用いて触媒温度を直接計測する方法、または、水素供給装置12内の触媒付近の温度を計測し予測する方法がある。また、温度検出手段14,19により計測された水素供給装置12の上流側,下流側におけるそれぞれのエンジン排ガス温度,エンジン運転条件(エンジン回転数,エンジントルク,吸入空気量,スロットル開度,燃料流量など)より算出された水素供給装置12内への熱伝達率と、水素供給装置12へ供給する水素化媒体供給量から触媒温度を推測する方法がある。水素供給装置12内の触媒温度推定手段について説明する。触媒温度は、以下の関数となっている。   Next, a method for estimating the catalyst temperature will be described. There are a method of directly measuring the catalyst temperature using the temperature detecting means 31 shown in FIG. 1 or a method of measuring and predicting the temperature in the vicinity of the catalyst in the hydrogen supply device 12. Further, the engine exhaust gas temperature, the engine operating conditions (engine speed, engine torque, intake air amount, throttle opening, fuel flow rate) on the upstream side and downstream side of the hydrogen supply device 12 measured by the temperature detection means 14 and 19. There is a method of estimating the catalyst temperature from the heat transfer coefficient into the hydrogen supply device 12 calculated from the above and the amount of hydrogenation medium supplied to the hydrogen supply device 12. The catalyst temperature estimation means in the hydrogen supply device 12 will be described. The catalyst temperature is a function of:

T=f(Q1,λ1,α,t,A,T1)
T:水素供給装置12内の触媒温度、Q1:水素リッチガス生成時の反応熱、λ1:水素供給装置12内における部材の熱伝導率、α:排ガスから水素供給装置12への熱伝達率、t:排ガス接触部から触媒表面までの厚み、A:排ガス接触面積、T1:排ガス温度
上記λ1,t,Aは、水素供給装置12の構造に依存する。Q1は、水素リッチガス生成時の反応熱であり、水素供給装置12へ供給する水素化媒体供給量に依存する。排ガス温度T1は、水素供給装置12内を通過する排ガスの平均温度であるため、温度検出手段14,19の平均値とする。計測されたT1と、エンジンの運転状態より推測された排ガス成分および排ガス流量から、レイノルズ数,プラントル数,排ガスの熱伝導率が算出され、αが決定する。つまり、エンジン運転状態,排ガス温度,水素供給装置12への水素化媒体供給量が決まれば、Tが推定可能となる。
T = f (Q1, λ1, α, t, A, T1)
T: catalyst temperature in the hydrogen supply device 12, Q1: heat of reaction when hydrogen rich gas is generated, λ1: thermal conductivity of members in the hydrogen supply device 12, α: heat transfer coefficient from the exhaust gas to the hydrogen supply device 12, t : Thickness from exhaust gas contact part to catalyst surface, A: Exhaust gas contact area, T1: Exhaust gas temperature The above λ1, t, A depend on the structure of the hydrogen supply device 12. Q1 is the reaction heat when the hydrogen rich gas is generated, and depends on the supply amount of the hydrogenation medium supplied to the hydrogen supply device 12. Since the exhaust gas temperature T1 is the average temperature of the exhaust gas passing through the hydrogen supply device 12, the exhaust gas temperature T1 is the average value of the temperature detection means 14, 19. The Reynolds number, Prandtl number, and thermal conductivity of the exhaust gas are calculated from the measured T1 and the exhaust gas component and the exhaust gas flow rate estimated from the operating state of the engine, and α is determined. That is, T can be estimated if the engine operating state, the exhaust gas temperature, and the supply amount of the hydrogenation medium to the hydrogen supply device 12 are determined.

上述の触媒温度の推定手法を用いて、水素供給装置12内の触媒温度を計測または推定し、それをもとに触媒温度を所定の温度範囲内に制御するシステムフロー図を図6に示す。S501にて、計測または推定された水素供給装置12内の触媒温度Tが所定範囲内であるか調べる。このとき、所定範囲外の場合、S502で触媒温度Tが所定範囲よりも高いか判定する。このS501,S502の処理は、例えば温度検出手段14,19,31等により検出された温度に基づき、制御装置23で触媒温度Tが決定され、所定の温度範囲内であるか否か判定される。ここで、媒体にメチルシクロヘキサン等の有機ハイドライドを用いた場合には、触媒温度は250〜400℃を所定の温度範囲とすることが好ましい。もし、S502で所定の温度範囲よりも高い場合、S503で水素供給装置12への水素化媒体供給量の増加が可能であるか判定する。この判定手段は、たとえば図1の水素リッチガス貯蔵装置26の貯蔵量によって判定する。水素リッチガス貯蔵装置26の貯蔵量は、水素圧力センサー5や水素濃度センサー6により検出することが可能であり、この検出結果により制御装置23で貯蔵量が判定される。S503で水素化媒体供給量の増加が可能であれば、S504にて、媒体供給装置11からの水素供給装置12への水素化媒体供給量を増加させる。これにより、水素生成時の吸熱反応量が増加することで、触媒温度が低減する。一方、S503で水素化媒体供給量の増加が不可と判定された場合は、S505にて水素供給装置12への熱供給量を低減させる。水素供給装置12へ供給する熱供給量を制御する方法としては、図7に示すように、たとえば、(1)排ガス量調整バルブ15を使ってエンジン1から水素供給装置12へ供給される排ガス流量を減少する方法、(2)エンジン1内の点火プラグ21による点火時期を早くする方法、(3)排気バルブ20の開時期を遅くする方法がある。(2),(3)の制御方法では、エンジンシステムとして新たに補器を設けることなく制御することができるため、システムを簡素化することが可能である。また、(2),(3)の制御方法に対し、(1)の制御方法では、例えば、配管を分岐させて水素供給装置に供給される排ガス流量を調整すれば良いため、エンジンに影響を与えず触媒温度を制御することができる。また、その他の制御方法として、(4)水素供給装置12に設置されたバーナ等の燃焼器を使って燃焼する水素リッチガスまたは媒体の燃焼量を減少する方法、または、(5)自動車に搭載されたインバータ等の熱源より発生した熱の水素供給装置12への供給量を低減する方法がある。その他、(6)水素供給装置12に設置されたヒータの供給電力を減少する方法も考えられる。(4)〜(6)の制御方法も(1)と同様にエンジンに影響を与えず触媒温度を制御することができる。これらの方法のいずれか一つ、あるいは複数を行うことで触媒温度を低下させることができる。   FIG. 6 shows a system flow diagram for measuring or estimating the catalyst temperature in the hydrogen supply device 12 using the above-described catalyst temperature estimation method and controlling the catalyst temperature within a predetermined temperature range based on the measured or estimated catalyst temperature. In S501, it is checked whether the measured or estimated catalyst temperature T in the hydrogen supply device 12 is within a predetermined range. At this time, if it is out of the predetermined range, it is determined in S502 whether the catalyst temperature T is higher than the predetermined range. In the processing of S501 and S502, for example, the catalyst temperature T is determined by the control device 23 based on the temperature detected by the temperature detection means 14, 19, 31, etc., and it is determined whether or not it is within a predetermined temperature range. . Here, when an organic hydride such as methylcyclohexane is used as the medium, the catalyst temperature is preferably in a predetermined temperature range of 250 to 400 ° C. If the temperature is higher than the predetermined temperature range in S502, it is determined in S503 whether or not the supply amount of the hydrogenation medium to the hydrogen supply device 12 can be increased. This determination means determines, for example, based on the storage amount of the hydrogen rich gas storage device 26 of FIG. The storage amount of the hydrogen rich gas storage device 26 can be detected by the hydrogen pressure sensor 5 or the hydrogen concentration sensor 6, and the storage amount is determined by the control device 23 based on the detection result. If the supply amount of the hydrogenation medium can be increased in S503, the supply amount of the hydrogenation medium from the medium supply device 11 to the hydrogen supply device 12 is increased in S504. Thereby, the endothermic reaction amount at the time of hydrogen generation increases, and thereby the catalyst temperature decreases. On the other hand, if it is determined in S503 that the supply amount of the hydrogenation medium cannot be increased, the heat supply amount to the hydrogen supply device 12 is reduced in S505. As a method of controlling the heat supply amount supplied to the hydrogen supply device 12, as shown in FIG. 7, for example, (1) the exhaust gas flow rate supplied from the engine 1 to the hydrogen supply device 12 using the exhaust gas amount adjustment valve 15 (2) a method of increasing the ignition timing by the spark plug 21 in the engine 1 and (3) a method of delaying the opening timing of the exhaust valve 20. In the control methods (2) and (3), since the engine system can be controlled without newly providing an auxiliary device, the system can be simplified. In contrast to the control methods of (2) and (3), the control method of (1) only has to adjust the exhaust gas flow rate supplied to the hydrogen supply device by branching the pipe, for example. The catalyst temperature can be controlled without giving. As other control methods, (4) a method of reducing the amount of combustion of a hydrogen rich gas or a medium burned using a burner or the like installed in the hydrogen supply device 12, or (5) installed in an automobile. There is a method for reducing the amount of heat generated from a heat source such as an inverter to the hydrogen supply device 12. In addition, (6) a method of reducing the power supplied to the heater installed in the hydrogen supply device 12 is also conceivable. The control methods (4) to (6) can control the catalyst temperature without affecting the engine as in (1). The catalyst temperature can be lowered by performing any one or more of these methods.

一方、S502で水素供給装置12の触媒温度が所定以下と判定された場合、S506で水素供給装置12への熱供給量の増加が可能かどうか判定する。熱供給量の増加が可能の場合には、上記と同様に、図7に示した方法により、熱供給量を増加させる。S506で熱供給量の増加が不可の場合、たとえば、ユーザからエンジンが高トルクを要求されている場合は、点火プラグ21により点火時期を遅くすることや、排気バルブ20の開時期を早くすることは難しい。また媒体や水素リッチガスの貯蔵量が少ないときは、バーナ等を用いた燃焼ガスによる熱供給の増加も困難である。また、バッテリー残量が少ないときは、ヒータによる加熱量を増加することが困難である。そういったときは、S508で水素供給装置12へ供給する水素化媒体供給量を低減し、水素発生時の吸熱量を低下させることで、触媒温度が上昇する。このとき、水素リッチガス貯蔵量が低下するため、S509でエンジンへ供給する水素リッチガス量に対する媒体量を増加させる。   On the other hand, if it is determined in S502 that the catalyst temperature of the hydrogen supply device 12 is equal to or lower than the predetermined value, it is determined in S506 whether or not the heat supply amount to the hydrogen supply device 12 can be increased. When the heat supply amount can be increased, the heat supply amount is increased by the method shown in FIG. 7 as described above. If it is impossible to increase the heat supply amount in S506, for example, if the engine requires a high torque, the ignition plug 21 is used to delay the ignition timing or the exhaust valve 20 is opened earlier. Is difficult. Further, when the storage amount of the medium or the hydrogen rich gas is small, it is difficult to increase the heat supply by the combustion gas using a burner or the like. Moreover, when the battery remaining amount is low, it is difficult to increase the heating amount by the heater. In such a case, the catalyst temperature rises by reducing the amount of hydrogenated medium supplied to the hydrogen supply device 12 in S508 and reducing the amount of heat absorbed when hydrogen is generated. At this time, since the hydrogen rich gas storage amount decreases, the medium amount with respect to the hydrogen rich gas amount supplied to the engine in S509 is increased.

またそれに伴いS510で記載のように点火時期も進角化する。これは、水素の燃焼速度が媒体の燃焼速度に比べ、早いことに起因する。また、燃焼を安定化させるために、スロットルバルブ4の開度を調整し、燃料と空気の割合を制御してもよい。また、このとき、燃料の噴射時期を制御してもよい。   Accordingly, the ignition timing is advanced as described in S510. This is due to the fact that the burning rate of hydrogen is faster than the burning rate of the medium. In order to stabilize combustion, the opening degree of the throttle valve 4 may be adjusted to control the ratio of fuel to air. At this time, the fuel injection timing may be controlled.

次に、水素リッチガスの貯蔵量に関係した制御内容について図8を用いて説明する。S701で、図1の水素リッチガス貯蔵装置26内の水素リッチガスの貯蔵量を水素圧力センサー5や水素濃度センサー6により検出して、その値から、制御装置23で所定貯蔵量であるかを判定する。このとき、例えば、エンジン1へ供給する水素リッチガスの圧力P1は、一定であることが望ましいので、水素リッチガス貯蔵装置26内の圧力P2をP1よりも高い圧力にする必要がある。また逆に水素リッチガス貯蔵装置26内の圧力が所定以上になると、貯蔵装置の破損,漏れあるいは、エンジン1へ供給する水素リッチガスの圧力P1の調整が困難になるという問題がある。S701で水素リッチガスの貯蔵量が所定範囲外の場合、S702で所定範囲以上であるか否かを判定する。所定範囲以上の場合は、水素供給装置12への水素化媒体供給量を低減し、水素リッチガス生成量を低減する。逆にS702で水素リッチガスが所定範囲以下の場合は、S704で水素供給装置12への水素化媒体供給量を増加する。S705でエンジンへ供給する水素リッチガスの供給量を低減し、S706でエンジンへ供給する媒体の供給量を増加させる。そのとき、エンジンの燃焼を制御するため点火プラグ21による点火時期を進角化制御する。ただし、このとき、水素供給装置12の触媒温度が所定以下の場合は、S704で水素供給装置12への水素化媒体供給量は増加させずに、S705にてエンジンへの水素リッチガスの供給を禁止する。   Next, the control content related to the storage amount of the hydrogen rich gas will be described with reference to FIG. In S701, the storage amount of the hydrogen rich gas in the hydrogen rich gas storage device 26 of FIG. 1 is detected by the hydrogen pressure sensor 5 or the hydrogen concentration sensor 6, and the control device 23 determines whether the storage amount is a predetermined storage amount from the value. . At this time, for example, it is desirable that the pressure P1 of the hydrogen-rich gas supplied to the engine 1 is constant, so that the pressure P2 in the hydrogen-rich gas storage device 26 needs to be higher than P1. Conversely, when the pressure in the hydrogen rich gas storage device 26 exceeds a predetermined level, there is a problem that the storage device is broken or leaked, or the adjustment of the pressure P1 of the hydrogen rich gas supplied to the engine 1 becomes difficult. If the storage amount of the hydrogen-rich gas is outside the predetermined range in S701, it is determined in S702 whether or not it is greater than or equal to the predetermined range. In the case of the predetermined range or more, the hydrogenation medium supply amount to the hydrogen supply device 12 is reduced, and the hydrogen rich gas production amount is reduced. Conversely, if the hydrogen rich gas is below the predetermined range in S702, the amount of hydrogenation medium supplied to the hydrogen supply device 12 is increased in S704. In step S705, the supply amount of the hydrogen-rich gas supplied to the engine is reduced, and in step S706, the supply amount of the medium supplied to the engine is increased. At that time, the ignition timing by the spark plug 21 is controlled to advance in order to control the combustion of the engine. However, at this time, if the catalyst temperature of the hydrogen supply device 12 is equal to or lower than the predetermined value, the supply of hydrogen-rich gas to the engine is prohibited in S705 without increasing the supply amount of the hydrogenation medium to the hydrogen supply device 12 in S704. To do.

次に、水素供給装置12内の触媒が劣化することを想定し、その劣化状態を推定する手段について説明する。水素供給装置12への熱供給量が一定のもと、(たとえばエンジン1の回転数、トルクが一定)、かつ、水素供給装置12への水素化媒体供給量が一定のもと、水素供給装置12の上流側の温度検出手段14および下流側の温度検出手段19により検出された排ガス温度の温度差を算出する。図9に示すように、上記条件のもとでは、水素供給装置12内の触媒が劣化すると、上記温度差が小さくなる。そのため、上記排ガス温度の温度差が所定値以下になると、水素供給装置12内の触媒劣化が起こっていると考えられる。これは、触媒が劣化すると、水素化媒体から水素を生成する反応転化率が低くなるため、反応時の吸熱量が低くなることが原因で、水素供給装置12の前後での排ガス温度差が小さくなる。このことで、劣化状態を判定できる。また、この上記劣化判定手段は、例えばユーザがエンジン1の運転を停止する意思を示したとき、すなわち、制御装置23でエンジン停止信号を受信した場合に、エンジン1をすぐに停止せず、エンジン1を一定回転数,一定トルクで所定時間運転し、温度検出手段14,19により、温度を検出し、判定する。劣化状態が所定以上になるとランプ等によりユーザに警告し、水素供給装置12の交換を促す必要がある。このことで、エンジン1から排出されるCO2排出量の増加を防ぐ効果がある。また、このように劣化状態が判定されると、劣化状態を考慮して、水素供給装置12へ供給する水素化媒体の供給量を増加する必要がある。これにより、ユーザの要求する車の運転性能を損なわずに運転することができる。 Next, assuming that the catalyst in the hydrogen supply device 12 is deteriorated, a means for estimating the deterioration state will be described. A hydrogen supply device with a constant heat supply amount to the hydrogen supply device 12 (for example, the rotational speed and torque of the engine 1 are constant) and a hydrogenation medium supply amount to the hydrogen supply device 12 is constant. The temperature difference between the exhaust gas temperatures detected by the upstream temperature detecting means 14 and the downstream temperature detecting means 19 is calculated. As shown in FIG. 9, under the above conditions, when the catalyst in the hydrogen supply device 12 deteriorates, the temperature difference becomes small. Therefore, when the temperature difference of the exhaust gas temperature becomes a predetermined value or less, it is considered that the catalyst in the hydrogen supply device 12 is deteriorated. This is because, when the catalyst is deteriorated, the reaction conversion rate for generating hydrogen from the hydrogenation medium is lowered, and therefore, the endothermic amount at the time of the reaction is lowered. Become. Thus, the deterioration state can be determined. The deterioration determining means does not stop the engine 1 immediately when the user indicates an intention to stop the operation of the engine 1, that is, when the control device 23 receives an engine stop signal. 1 is operated for a predetermined time at a constant rotational speed and a constant torque, and the temperature is detected by the temperature detection means 14 and 19 and determined. When the deterioration state exceeds a predetermined level, it is necessary to warn the user with a lamp or the like and prompt the user to replace the hydrogen supply device 12. This has the effect of preventing an increase in the amount of CO 2 emitted from the engine 1. Further, when the deterioration state is determined in this way, it is necessary to increase the supply amount of the hydrogenation medium supplied to the hydrogen supply device 12 in consideration of the deterioration state. Thereby, it is possible to drive without impairing the driving performance of the vehicle requested by the user.

以上のように、触媒の劣化状態を推定することで、触媒に劣化が発生しても劣化状態に応じた最適な水素供給制御を行うことができる。   As described above, by estimating the deterioration state of the catalyst, optimum hydrogen supply control according to the deterioration state can be performed even if the catalyst has deteriorated.

次に、エンジン1に供給する燃料の種類を切替える際の制御手法について説明する。図10に記載のように、エンジン1に供給する燃料の種類に応じて、点火時期、または空気過剰率を制御する必要がある。例えば、エンジンに供給する燃料を、モード1の水素リッチガスからモード2の水素リッチガスと媒体の混合燃料に切替える際、モード1あるいはモード2からモード3の媒体燃料に切替える際には、空気過剰率が低くなるように、スロットルバルブ4または、吸気バルブ22を制御する必要がある。このときEGR量をコントロールしてもよい。点火時期に関しては、MBT(Minimmum Spark Advance forBest Torque)になるように進角化する必要がある。その際、トルク変動がないように、供給する切替え前と切替え後のエンジン1へ供給する燃料のトータル発熱量は、大幅な変化がないように制御する必要がある。水素は、燃焼速度が速く(ガソリンの約8倍)、また、リーンバーンが可能であるため(水素の最大空気過剰率10.5,ガソリンの最大空気過剰率1.4)、エンジン1に供給する燃料中の水素リッチガスの割合が減少するに伴い、点火時期を進角化する、または、空気過剰率を小さくすることにより、高効率運転が可能となる。   Next, a control method for switching the type of fuel supplied to the engine 1 will be described. As shown in FIG. 10, it is necessary to control the ignition timing or the excess air ratio in accordance with the type of fuel supplied to the engine 1. For example, when the fuel supplied to the engine is switched from the hydrogen rich gas of mode 1 to the mixed fuel of the hydrogen rich gas and medium of mode 2 or from the mode 1 or mode 2 to the medium fuel of mode 3, the excess air ratio is increased. It is necessary to control the throttle valve 4 or the intake valve 22 so as to be low. At this time, the EGR amount may be controlled. Regarding the ignition timing, it is necessary to advance the angle so as to be MBT (Minimum Spark Advance for Best Torque). At this time, it is necessary to control the total calorific value of the fuel supplied to the engine 1 before and after the supply switching so that there is no significant change so that there is no torque fluctuation. Hydrogen burns faster (approximately 8 times that of gasoline), and because lean burn is possible (maximum excess air ratio of hydrogen is 10.5, maximum excess air ratio of gasoline is 1.4), it is supplied to engine 1. As the proportion of the hydrogen-rich gas in the fuel decreases, the ignition timing is advanced or the excess air ratio is reduced, so that high-efficiency operation is possible.

次に、排気性能を考慮して運転する方法について説明する。図10のモード1の水素リッチガスのみのときは、図11に示すように空気過剰率が1.8以下のときに、NOxが大量に排出される。そのため、モード1のときは、空気過剰率1.8以上とし、より好ましくは2以上で運転する。また、エンジンの効率を考慮すると空気過剰率の上限は5.0とすることが好ましい。また、モード2,3に関しては、媒体が供給されるため、NOxのほかに、未燃炭化水素やCOが排出される。未燃炭化水素やCOは、浄化触媒13に三元触媒を使用すると浄化されるが、その際、図12に示す浄化特性を考慮して運転する必要がある。つまり、モード2に関しては、水素リッチガスと媒体の両方を供給するので、リーンバーンが可能であるが、図11,図12の特性であるため、空気過剰率が1.2〜1.8の範囲で運転するとNOxが浄化されずに排出される。そのため、モード2で運転する場合は、空気過剰率を0.95〜1.05、好ましくは1.0、もしくは1.8〜5.0で運転するのが望ましい。モード3に関しては、空気過剰率を0.95〜1.05、好ましくは1.0として運転することが望ましい。   Next, a method for operating in consideration of exhaust performance will be described. When only the mode 1 hydrogen-rich gas in FIG. 10 is used, a large amount of NOx is discharged when the excess air ratio is 1.8 or less as shown in FIG. Therefore, in mode 1, the excess air ratio is set to 1.8 or more, more preferably 2 or more. In consideration of engine efficiency, the upper limit of the excess air ratio is preferably set to 5.0. In modes 2 and 3, since the medium is supplied, unburned hydrocarbons and CO are discharged in addition to NOx. Unburned hydrocarbons and CO are purified when a three-way catalyst is used as the purification catalyst 13, but at that time, it is necessary to operate in consideration of the purification characteristics shown in FIG. That is, regarding mode 2, since both the hydrogen-rich gas and the medium are supplied, lean burn is possible, but because of the characteristics of FIGS. 11 and 12, the excess air ratio is in the range of 1.2 to 1.8. NOx is discharged without being purified when operated at. Therefore, when operating in mode 2, it is desirable to operate at an excess air ratio of 0.95 to 1.05, preferably 1.0, or 1.8 to 5.0. Regarding mode 3, it is desirable to operate with an excess air ratio of 0.95 to 1.05, preferably 1.0.

空気過剰率の制御は、図11に示すように、スロットル開度を小さくしていくことにより、空気過剰率を低下させることができる。また、エンジンの吸気バルブに可変バルブを搭載している場合には、吸気バルブの開期間またはリフト量を小さくすることで、空気過剰率を低下させることができる。   As shown in FIG. 11, the excess air ratio can be controlled by decreasing the throttle opening to reduce the excess air ratio. Further, when a variable valve is mounted on the intake valve of the engine, the excess air ratio can be reduced by reducing the opening period or the lift amount of the intake valve.

以上のように、エンジン1へ供給する燃料成分に応じて、空気過剰率を制御することでエンジン1へ供給する燃料成分に依存せずに、高い排気性能が維持できる。   As described above, high exhaust performance can be maintained without depending on the fuel component supplied to the engine 1 by controlling the excess air ratio according to the fuel component supplied to the engine 1.

次に、三元触媒13と水素供給装置12の排気管18への取り付け位置について説明する。水素供給装置12は、水素化媒体から水素を生成する際、吸熱反応であるため、水素供給装置12の入口排ガス温度に比べ、出口排ガス温度は、低下する。一方、三元触媒13は、発熱反応のため、三元触媒入口温度にくらべ、出口温度は上昇する。これらの特徴を考えると、水素供給装置12,三元触媒13の双方の反応率を向上させるためには、三元触媒13は、水素供給装置12の上流側(エンジン側)に設置されることが望ましい。また、自動車への搭載性,双方の反応率をより向上させるために、水素供給装置12と三元触媒13が一体化構造であってもよい。水素供給装置12と三元触媒13の一体化構造としては、例えば図2に示す水素供給装置12の高熱伝導基板40の触媒層42とは反対側の面に、三元触媒を配置した構造とすることができる。また、三元触媒と排ガスとの接触面積を大きくするために、三元触媒/高熱伝導基材40/触媒層42/水素分離膜38/スペーサ37/水素流路36/スペーサ37/触媒層42/高熱伝導基材40/三元触媒の順で積層した構造とすることもできる。   Next, attachment positions of the three-way catalyst 13 and the hydrogen supply device 12 to the exhaust pipe 18 will be described. Since the hydrogen supply device 12 is an endothermic reaction when generating hydrogen from the hydrogenation medium, the outlet exhaust gas temperature is lower than the inlet exhaust gas temperature of the hydrogen supply device 12. On the other hand, because the three-way catalyst 13 is an exothermic reaction, the outlet temperature rises compared to the three-way catalyst inlet temperature. Considering these characteristics, in order to improve the reaction rate of both the hydrogen supply device 12 and the three-way catalyst 13, the three-way catalyst 13 must be installed on the upstream side (engine side) of the hydrogen supply device 12. Is desirable. Moreover, in order to improve the mounting property to a motor vehicle and the reaction rate of both, the hydrogen supply device 12 and the three-way catalyst 13 may have an integrated structure. As an integrated structure of the hydrogen supply device 12 and the three-way catalyst 13, for example, a structure in which a three-way catalyst is arranged on the surface opposite to the catalyst layer 42 of the high thermal conductivity substrate 40 of the hydrogen supply device 12 shown in FIG. can do. Further, in order to increase the contact area between the three-way catalyst and the exhaust gas, the three-way catalyst / the high thermal conductivity base material 40 / the catalyst layer 42 / the hydrogen separation membrane 38 / the spacer 37 / the hydrogen channel 36 / the spacer 37 / the catalyst layer 42 are used. It is also possible to have a structure in which / high heat conductive substrate 40 / three-way catalyst is laminated in this order.

以上のように、水素供給装置12と三元触媒13を配置することにより、水素供給の効率化,排ガスの浄化性能の向上を図ることが可能となる。   As described above, by arranging the hydrogen supply device 12 and the three-way catalyst 13, it is possible to improve the efficiency of hydrogen supply and improve the exhaust gas purification performance.

次に、始動時の運転方法について、浄化触媒13に三元触媒を使ったときを例に説明する。図13に示すように、始動時、三元触媒13が低温で、始動から時間がたつにつれて、三元触媒13の温度が上昇する。三元触媒は、300℃以上で活性化される。そのため、三元触媒13が活性化されるまでは、所定の時間を有する。活性化される前に、炭化水素系の媒体をエンジンに供給すると、三元触媒13は排ガスを浄化しないため、未燃炭化水素や一酸化炭素,NOxなどが排出される。そのため、三元触媒13が活性化温度に到達するまでは、エンジンに供給する炭化水素系の媒体をできるだけ少量にする必要がある。つまり、水素リッチガスを主成分としてエンジン燃焼させ、未燃排気ガスの排出量を低減することが必要となる。上記制御を行うためには、三元触媒13の触媒温度を推定する必要がある。この推定手段は、例えば、エンジン1の水温,エンジン1への吸入空気量,車速から、エンジン1が始動してから三元触媒13に供給される熱量を推定する。さらに、エンジン1が停止した時間からエンジン1の始動までの時間も考慮することで、三元触媒13の温度が推定できる。三元触媒13に温度検出装置を設置して、直接三元触媒の温度を検出してもよい。   Next, an operation method at the time of starting will be described by taking a case where a three-way catalyst is used as the purification catalyst 13 as an example. As shown in FIG. 13, at the time of starting, the temperature of the three-way catalyst 13 increases as the temperature of the three-way catalyst 13 is low and the time has elapsed from the start. The three-way catalyst is activated at 300 ° C. or higher. Therefore, it has a predetermined time until the three-way catalyst 13 is activated. If a hydrocarbon-based medium is supplied to the engine before being activated, the three-way catalyst 13 does not purify the exhaust gas, so unburned hydrocarbons, carbon monoxide, NOx, and the like are discharged. Therefore, until the three-way catalyst 13 reaches the activation temperature, it is necessary to make the amount of the hydrocarbon medium supplied to the engine as small as possible. That is, it is necessary to reduce the emission amount of unburned exhaust gas by burning the engine with hydrogen-rich gas as a main component. In order to perform the above control, it is necessary to estimate the catalyst temperature of the three-way catalyst 13. This estimation means estimates, for example, the amount of heat supplied to the three-way catalyst 13 from the start of the engine 1 from the water temperature of the engine 1, the amount of intake air to the engine 1, and the vehicle speed. Further, the temperature of the three-way catalyst 13 can be estimated by taking into account the time from when the engine 1 is stopped to when the engine 1 is started. A temperature detector may be installed on the three-way catalyst 13 to directly detect the temperature of the three-way catalyst.

また、この制御を行うためには、始動時に水素リッチガスをエンジン1に供給する必要があるため、水素リッチガス貯蔵装置26に、所定量の水素リッチガスを貯蔵する必要がある。一般的にエンジン始動時は、HC,COが多く排出される。とりわけ始動時には、燃料を必要以上に多く噴射しているため、始動直後は、HC,COが大量に排出される。水素リッチガスは、気体燃料であり、かつ希薄燃焼が可能であるため、始動時に水素リッチガスを使用すると、燃料が少量で始動し、かつHC,COを大幅に低減できる。このため、少なくてもエンジン1が始動するために必要な水素リッチガスを水素リッチガス貯蔵装置26に貯蔵することが重要である。望ましくは、三元触媒13が活性化されるまで、水素リッチガスのみでエンジンを運転するために必要な水素リッチガスを水素リッチガス貯蔵装置26に貯蔵する。ユーザがエンジン1を停止する意思を示した際、制御装置23でエンジン停止信号を受信した場合に、水素リッチガス貯蔵装置26内の水素リッチガス貯蔵量が所定量以上か水素圧力センサー5や水素濃度センサー6により検出し判定する。ここで、エンジン1の始動時に必要な水素リッチガスが水素リッチガス貯蔵装置26に貯蔵されていない場合は、エンジン1を停止せずに、水素供給装置12へ水素化媒体を供給して、水素リッチガスを生成する。このとき、エンジン1を停止して、エンジン廃熱以外から水素供給装置12へ熱供給を行い、水素リッチガスを生成してもよい。   Further, in order to perform this control, it is necessary to supply the hydrogen rich gas to the engine 1 at the time of start-up, and therefore it is necessary to store a predetermined amount of hydrogen rich gas in the hydrogen rich gas storage device 26. Generally, a large amount of HC and CO is discharged when the engine is started. In particular, since more fuel is injected than necessary at the start, a large amount of HC and CO is discharged immediately after the start. Since the hydrogen-rich gas is a gaseous fuel and can be lean-burned, if the hydrogen-rich gas is used at the time of startup, the fuel can be started with a small amount and HC and CO can be greatly reduced. For this reason, it is important to store at least the hydrogen-rich gas necessary for starting the engine 1 in the hydrogen-rich gas storage device 26. Desirably, the hydrogen-rich gas storage device 26 stores the hydrogen-rich gas necessary for operating the engine using only the hydrogen-rich gas until the three-way catalyst 13 is activated. When the user indicates an intention to stop the engine 1 and the control device 23 receives an engine stop signal, the hydrogen rich gas storage amount in the hydrogen rich gas storage device 26 is greater than a predetermined amount or a hydrogen pressure sensor 5 or a hydrogen concentration sensor. 6 to detect and judge. Here, when the hydrogen-rich gas necessary for starting the engine 1 is not stored in the hydrogen-rich gas storage device 26, the hydrogen-rich gas is supplied by supplying the hydrogenation medium to the hydrogen supply device 12 without stopping the engine 1. Generate. At this time, the engine 1 may be stopped, and heat may be supplied from other than engine waste heat to the hydrogen supply device 12 to generate hydrogen rich gas.

このような制御を行うことで、媒体のみをエンジンに供給するときに比べ、エンジン始動時の排気性能が向上することに加え、エンジン始動時の必要燃料量が減少するため、燃費も向上する。   By performing such control, compared to when only the medium is supplied to the engine, the exhaust performance at the time of starting the engine is improved, and the required fuel amount at the time of starting the engine is reduced, so that the fuel efficiency is also improved.

次に、水素供給装置12を使った高効率燃焼手法について説明する。図14にその構成図を示す。図1との構成図の違いは、媒体の供給装置3が、エンジン燃焼室に直接噴射できる構成となっている点である。他の構成については図1と同様の構成であり、同一符号で示してある。本システムでは、水素供給装置12より生成された水素リッチガスが、吸気管27に噴射されることを基本構成としている。また、水素供給装置12より生成された水素リッチガスはエンジン筒内に直接噴射する構成でもよい。本システムは、上記媒体を噴射するよりも早期に水素リッチガスをエンジンに供給し、かつ、ピストン圧縮期間に上記媒体を筒内に直接噴射し、上記媒体を自己着火燃焼させるシステムである。通常の自己圧縮着火燃焼においては、圧縮比が高く、高効率な燃焼が可能であるが、拡散燃焼のため、局所的に過濃な混合気が存在し、燃焼時にすすが生成される。また、燃焼温度が不均一であり、高温部からNOxが生成される。本システムにおいては、媒体を自己圧縮着火燃焼させる前に水素リッチガスをエンジン内に供給しているため、媒体の自己着火燃焼に伴い、水素が引火および自然発火し、媒体の燃焼効率を向上させる特徴がある。これにより、すすの排出低減が可能である。これは、上記媒体に比べ、水素は可燃範囲が広く、かつ燃焼速度が高いため、上記媒体の燃焼を促進させることに起因する。また、これに伴い、EGR限界も広がり、燃焼温度も低くなり、NOx排出量の低減も可能となる。上記のような燃焼方式を行うには、媒体にデカリンのような水素生成量が多くかつ自己着火性の高いものが望ましい。   Next, a highly efficient combustion method using the hydrogen supply device 12 will be described. FIG. 14 shows a configuration diagram thereof. The difference from the configuration diagram of FIG. 1 is that the medium supply device 3 can be directly injected into the engine combustion chamber. About another structure, it is the same structure as FIG. 1, and is shown with the same code | symbol. The basic configuration of this system is that the hydrogen-rich gas generated from the hydrogen supply device 12 is injected into the intake pipe 27. Further, the hydrogen rich gas generated from the hydrogen supply device 12 may be directly injected into the engine cylinder. This system supplies hydrogen-rich gas to the engine at an earlier stage than the injection of the medium, and directly injects the medium into the cylinder during the piston compression period to cause the medium to self-ignite and burn. In normal self-compression ignition combustion, the compression ratio is high and high-efficiency combustion is possible. However, because of diffusion combustion, locally rich mixture exists and soot is generated during combustion. Moreover, combustion temperature is non-uniform | heterogenous and NOx is produced | generated from a high temperature part. In this system, since hydrogen rich gas is supplied into the engine before the medium is self-compressed and ignited, hydrogen is ignited and spontaneously ignited along with the self-ignition and combustion of the medium, improving the combustion efficiency of the medium There is. As a result, soot discharge can be reduced. This is because hydrogen has a wider flammable range and higher combustion speed than the above medium, and therefore promotes combustion of the medium. Along with this, the EGR limit widens, the combustion temperature becomes lower, and the NOx emission amount can be reduced. In order to perform the combustion method as described above, it is desirable that the medium has a large amount of hydrogen generation such as decalin and has high self-ignitability.

次に、水素供給装置12から生成された水素リッチガス及び脱水素化媒体を分離装置8で分離した後の水素リッチガスの濃度が、運転状態に応じて変化する際に、その変化を考慮した運転方法について説明する。水素リッチガス貯蔵装置26内に水素濃度センサー6を設置して、エンジンに供給する水素濃度を検知する。このように水素濃度を検知および推定することで、点火時期等のエンジン制御も、必要に応じて、変更する必要がある。例えば図15に記載のように、水素濃度が高くなると、最適点火時期は、遅くする必要がある。これは、水素の燃焼速度が、ガソリン等の炭化水素燃料に比べ、7〜8倍であるため、水素濃度が高くなるに従い、最適点火時期は、遅くなるためである。したがって、水素濃度を検知および推定し、それに応じて、点火時期のタイミングを制御することにより、低排気,高効率な燃焼が可能となる。   Next, when the concentration of the hydrogen-rich gas generated after the hydrogen-rich gas and the dehydrogenation medium generated from the hydrogen supply device 12 are separated by the separation device 8 changes according to the operating state, the operation method taking into account the change Will be described. A hydrogen concentration sensor 6 is installed in the hydrogen rich gas storage device 26 to detect the hydrogen concentration supplied to the engine. By detecting and estimating the hydrogen concentration in this way, engine control such as ignition timing needs to be changed as necessary. For example, as shown in FIG. 15, when the hydrogen concentration increases, the optimal ignition timing needs to be delayed. This is because the combustion speed of hydrogen is 7 to 8 times that of hydrocarbon fuels such as gasoline, so that the optimal ignition timing is delayed as the hydrogen concentration increases. Therefore, by detecting and estimating the hydrogen concentration and controlling the timing of the ignition timing accordingly, low exhaust and highly efficient combustion can be performed.

1…エンジン、2…水素リッチガス供給装置、3…媒体供給装置、4…スロットルバルブ、5…水素圧力センサー、6…水素濃度センサー、7…吸引,圧縮装置、8…気液分離装置、9…切替バルブ、10,28…タンク、11…水素化媒体供給装置、12…水素供給装置、13…浄化触媒、14,19,31…温度検出手段、15…排ガス量調整バルブ、17,34…酸素センサー、18…排気管、20…排気バルブ、21…点火プラグ、
22…吸気バルブ、23…ECU、24,25…ポンプ、26…水素リッチガス貯蔵装置、27…吸気管、29…レギュレータ、30…リリーフバルブ。
DESCRIPTION OF SYMBOLS 1 ... Engine, 2 ... Hydrogen rich gas supply apparatus, 3 ... Medium supply apparatus, 4 ... Throttle valve, 5 ... Hydrogen pressure sensor, 6 ... Hydrogen concentration sensor, 7 ... Suction and compression apparatus, 8 ... Gas-liquid separation apparatus, 9 ... Switching valve, 10, 28 ... tank, 11 ... hydrogenation medium supply device, 12 ... hydrogen supply device, 13 ... purification catalyst, 14, 19, 31 ... temperature detection means, 15 ... exhaust gas amount adjustment valve, 17, 34 ... oxygen Sensor, 18 ... exhaust pipe, 20 ... exhaust valve, 21 ... spark plug,
DESCRIPTION OF SYMBOLS 22 ... Intake valve, 23 ... ECU, 24, 25 ... Pump, 26 ... Hydrogen rich gas storage device, 27 ... Intake pipe, 29 ... Regulator, 30 ... Relief valve

Claims (5)

水素の貯蔵と放出を化学的に繰り返す媒体を搭載し、前記媒体から水素リッチガスを生成または貯蔵を行う水素供給装置を備え、前記水素リッチガスを燃料の一つとして、エンジンを駆動するシステムにおいて、
前記水素リッチガスを燃料としてエンジンに供給する水素リッチガス供給装置と、前記媒体を含む成分をシリンダ内に直接供給する媒体燃料供給装置と、前記水素リッチガスをエンジンに供給した後、ピストン圧縮期間に前記媒体を含む成分をシリンダ内に供給し、自己着火燃焼させる燃料供給時期制御手段とを有することを特徴とするエンジンシステム。
In a system for driving an engine equipped with a hydrogen supply device that carries a medium that chemically repeats storage and release of hydrogen and generates or stores a hydrogen rich gas from the medium, and using the hydrogen rich gas as one of fuels,
A hydrogen rich gas supply device for supplying the hydrogen rich gas to the engine as a fuel, a medium fuel supply device for supplying a component containing the medium directly into a cylinder, and the medium during the piston compression period after supplying the hydrogen rich gas to the engine An engine system comprising: a fuel supply timing control means for supplying a component containing a gas into a cylinder and causing self-ignition combustion.
請求項1に記載のエンジンシステムにおいて、
エンジンの運転状態を検出する検出手段と、前記検出部の検出結果に応じて、前記水素供給装置へ供給する前記媒体の供給量を制御する媒体供給量制御手段を有することを特徴とするエンジンシステム。
The engine system according to claim 1, wherein
An engine system comprising: detection means for detecting an operating state of the engine; and medium supply amount control means for controlling a supply amount of the medium supplied to the hydrogen supply device according to a detection result of the detection unit. .
請求項1に記載のエンジンシステムにおいて、
前記水素供給装置内の触媒温度を推定する触媒温度推定手段と、前記触媒温度推定手段により推定された触媒温度に基づき、
前記水素供給装置へ供給する前記媒体の供給量を制御する媒体供給量制御手段、
前記水素供給装置へ供給する熱供給量を制御する熱供給量制御手段、
の少なくともいずれか一つを有することを特徴とするエンジンシステム。
The engine system according to claim 1, wherein
Based on the catalyst temperature estimating means for estimating the catalyst temperature in the hydrogen supply device, and the catalyst temperature estimated by the catalyst temperature estimating means,
Medium supply amount control means for controlling the supply amount of the medium supplied to the hydrogen supply device;
A heat supply amount control means for controlling a heat supply amount supplied to the hydrogen supply device;
An engine system comprising at least one of the following.
請求項1に記載のエンジンシステムにおいて、
前記水素供給装置がエンジンの排気管に設置され、前記水素供給装置の排ガス上流側に設置された温度検出装置と、前記水素供給装置の排ガス下流側に設置された温度検出装置と、
前記排ガス上流側及び下流側の温度検出装置により検出された温度の差により、前記水素供給装置内における触媒の劣化状態を判定する触媒劣化判断手段とを有することを特徴とするエンジンシステム。
The engine system according to claim 1, wherein
The hydrogen supply device is installed in an exhaust pipe of an engine, a temperature detection device installed on the exhaust gas upstream side of the hydrogen supply device, a temperature detection device installed on the exhaust gas downstream side of the hydrogen supply device, and
An engine system comprising: catalyst deterioration determination means for determining a deterioration state of the catalyst in the hydrogen supply device based on a temperature difference detected by the temperature detection device on the upstream side and the downstream side of the exhaust gas.
請求項1に記載のエンジンシステムにおいて、
エンジンの排気管に前記水素供給装置とエンジンの排ガスを浄化するための浄化触媒とが備えられ、前記水素供給装置よりもエンジン側に前記浄化触媒が設置されている、もしくは、前記水素供給装置と前記浄化触媒が一体化されていることを特徴とするエンジンシステム。
The engine system according to claim 1, wherein
The exhaust pipe of the engine is provided with the hydrogen supply device and a purification catalyst for purifying the exhaust gas of the engine, and the purification catalyst is installed closer to the engine than the hydrogen supply device, or the hydrogen supply device An engine system in which the purification catalyst is integrated.
JP2010019869A 2010-02-01 2010-02-01 Engine system Expired - Fee Related JP5035358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010019869A JP5035358B2 (en) 2010-02-01 2010-02-01 Engine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010019869A JP5035358B2 (en) 2010-02-01 2010-02-01 Engine system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006065025A Division JP4779721B2 (en) 2006-03-10 2006-03-10 Engine system

Publications (2)

Publication Number Publication Date
JP2010121630A true JP2010121630A (en) 2010-06-03
JP5035358B2 JP5035358B2 (en) 2012-09-26

Family

ID=42323151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010019869A Expired - Fee Related JP5035358B2 (en) 2010-02-01 2010-02-01 Engine system

Country Status (1)

Country Link
JP (1) JP5035358B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001558A1 (en) * 2011-06-27 2013-01-03 株式会社 日立製作所 Engine system
JP2016529436A (en) * 2013-07-22 2016-09-23 ハイトライブ コーポレーション ゲーエムベーハー Hydrogen-powered vehicle that does not need to be equipped with hydrogen
CN115387927A (en) * 2022-08-17 2022-11-25 中车大连机车车辆有限公司 Ammonia engine combustion chamber, fuel injection control method thereof and ammonia engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295636A (en) * 2000-04-13 2001-10-26 Mazda Motor Corp Deterioration diagnostic device for hydrocarbon- adsorbing material and exhaust emission control device for engine
JP2004190586A (en) * 2002-12-12 2004-07-08 Hitachi Ltd Compression ignition type internal combustion engine
JP2006046198A (en) * 2004-08-05 2006-02-16 Nissan Motor Co Ltd Exhaust gas purification system
JP2006291775A (en) * 2005-04-07 2006-10-26 Toyota Motor Corp Control device for internal combustion engine
JP2007198274A (en) * 2006-01-27 2007-08-09 Toyota Motor Corp Internal combustion engine utilizing hydrogen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295636A (en) * 2000-04-13 2001-10-26 Mazda Motor Corp Deterioration diagnostic device for hydrocarbon- adsorbing material and exhaust emission control device for engine
JP2004190586A (en) * 2002-12-12 2004-07-08 Hitachi Ltd Compression ignition type internal combustion engine
JP2006046198A (en) * 2004-08-05 2006-02-16 Nissan Motor Co Ltd Exhaust gas purification system
JP2006291775A (en) * 2005-04-07 2006-10-26 Toyota Motor Corp Control device for internal combustion engine
JP2007198274A (en) * 2006-01-27 2007-08-09 Toyota Motor Corp Internal combustion engine utilizing hydrogen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001558A1 (en) * 2011-06-27 2013-01-03 株式会社 日立製作所 Engine system
JPWO2013001558A1 (en) * 2011-06-27 2015-02-23 株式会社日立製作所 Engine system
JP2016529436A (en) * 2013-07-22 2016-09-23 ハイトライブ コーポレーション ゲーエムベーハー Hydrogen-powered vehicle that does not need to be equipped with hydrogen
US10260459B2 (en) 2013-07-22 2019-04-16 HyTRIB Corporation, GmbH Hydrogen motor vehicle without hydrogen on board
CN115387927A (en) * 2022-08-17 2022-11-25 中车大连机车车辆有限公司 Ammonia engine combustion chamber, fuel injection control method thereof and ammonia engine
CN115387927B (en) * 2022-08-17 2023-05-26 中车大连机车车辆有限公司 Ammonia engine combustion chamber, fuel injection control method thereof and ammonia engine

Also Published As

Publication number Publication date
JP5035358B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP4779721B2 (en) Engine system
JP6221760B2 (en) Internal combustion engine
JP5310945B2 (en) Ammonia combustion internal combustion engine
US8397680B2 (en) Engine system
US20140311135A1 (en) Internal combustion engine
CN103147884B (en) Engine system with reformer
JP5035358B2 (en) Engine system
JP2004190586A (en) Compression ignition type internal combustion engine
US10626768B2 (en) Exhaust purification system of internal combustion engine
JP2011185173A (en) Internal combustion engine
JP2007198274A (en) Internal combustion engine utilizing hydrogen
US10267192B2 (en) Exhaust purification system of internal combustion engine
KR101203161B1 (en) Control apparatus of engine using reformed gas and natural gas
US9162203B1 (en) Hydrogen generator
JP2016153613A (en) Fuel reforming control device
US20180128147A1 (en) Exhaust purification system of internal combustion engine
JP2014125979A (en) Control device of engine and control method
JP2018076798A (en) Exhaust emission control device for internal combustion engine
JP5331869B2 (en) Engine system with reformer
JP2009108755A (en) Exhaust emission control device of internal combustion engine
JP2009144555A (en) Control device for internal combustion engine
JP2009121387A (en) Fuel reforming device
JP2006207413A (en) Secondary air supply device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5035358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees