JP2006036869A - Prepreg, laminate and printed wiring board - Google Patents

Prepreg, laminate and printed wiring board Download PDF

Info

Publication number
JP2006036869A
JP2006036869A JP2004216751A JP2004216751A JP2006036869A JP 2006036869 A JP2006036869 A JP 2006036869A JP 2004216751 A JP2004216751 A JP 2004216751A JP 2004216751 A JP2004216751 A JP 2004216751A JP 2006036869 A JP2006036869 A JP 2006036869A
Authority
JP
Japan
Prior art keywords
prepreg
epoxy resin
laminate
inorganic filler
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2004216751A
Other languages
Japanese (ja)
Inventor
Masashi Hattori
将志 服部
Minoru Yonekura
稔 米倉
Masayuki Noda
雅之 野田
Keiji Fukushima
敬二 福島
Yoshitaka Takezawa
由高 竹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004216751A priority Critical patent/JP2006036869A/en
Publication of JP2006036869A publication Critical patent/JP2006036869A/en
Abandoned legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg comprised of an epoxy resin composition having an inorganic filler highly charged without worsening the moldability and workability, to provide a laminate and to provide a printed-wiring board. <P>SOLUTION: The prepreg is prepared by forming a coated film of the inorganic filler on a sheet-like fiber substrate in advance and impregnating the epoxy resin composition containing an epoxy resin and a curing agent to the sheet-like fiber substrate to make a prepreg in a semi-cured state. Finally, the laminate is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高熱伝導の積層板ないしはプリント配線板、これらを構成するために使用するプリプレグに関する。   The present invention relates to a laminated board or printed wiring board having high thermal conductivity, and a prepreg used for constituting them.

近年、各種電気・電子機器製品の小型軽量化に伴い、これらに組込むプリント配線板のための積層板も様々な特性を求められている。特に、パソコンなどの高密度実装機器、自動車のエンジンルーム等に用いようとすると、実装部品、あるいは周囲部品の発熱によって積層板が高温状態にさらされるため、樹脂の劣化と実装部品の機能低下を引き起こす心配がある。   In recent years, with the reduction in size and weight of various electrical and electronic equipment products, laminated boards for printed wiring boards incorporated therein are also required to have various characteristics. In particular, when used in high-density mounting equipment such as personal computers and engine rooms of automobiles, the laminated board is exposed to a high temperature due to heat generated by the mounting parts or surrounding parts, which causes deterioration of the resin and deterioration of the functions of the mounting parts. There is a worry to cause.

一方、高度に電子化された車の制御システムでは、電子制御機器の信頼性が自動車全体の信頼性に及ぼす影響は重大である。一般に電子デバイスやユニットの耐久性や動作特性は、使用環境の影響を受ける。自動車の場合、主な熱源は、エンジンの発熱、オートマチックトランスミッションおよびブレーキ系の摩擦に伴う発熱である。特に、高温気象下での登坂走行時や渋滞運転時のエンジンルーム内は熱的に厳しい条件になる。エンジンルームに直接プリント配線板を搭載するような場合には、その高温条件に耐えるとともに、いかにその熱を放出するかが大きな課題となる。   On the other hand, in a highly electronic vehicle control system, the influence of the reliability of electronic control devices on the reliability of the entire vehicle is significant. In general, durability and operating characteristics of electronic devices and units are affected by the usage environment. In the case of automobiles, the main heat source is the heat generated by engine heat, friction of the automatic transmission and brake system. In particular, the conditions in the engine room during climbing in high temperature weather or in a traffic jam are severely harsh conditions. When a printed wiring board is mounted directly in the engine room, it is a big problem how to withstand the high temperature conditions and how to release the heat.

また、実装部品そのものの性能も向上の一途をたどっており、発熱量も急速に増大している。そのような状況に対応するため、積層板の放熱性を向上させる技術への要求はますます高まってきている。   In addition, the performance of the mounted component itself is steadily improving, and the amount of heat generation is rapidly increasing. In order to cope with such a situation, there is an increasing demand for a technology for improving the heat dissipation of the laminate.

上記課題の解決手段として、次のような積層板をプリント配線板に採用する提案がある。
(1)無機充填材を添加した樹脂組成物で金属板を絶縁被覆した金属ベース積層板(特許文献1)。
(2)金属板にエポキシ樹脂からなる絶縁接着シートを貼り付けた金属ベース積層板(特許文献2)。
(3)窒化アルミニウムを漉き込んだシート状繊維基材にエポキシ樹脂ワニスを含浸し加熱乾燥して得たプリプレグの層を加熱加圧成形した積層板(特許文献3)。
上記の各積層板は、熱伝導性のよい金属板や無機セラミックスを用いて放熱性を高めたものである。従って、従来の積層板、すなわち、シート状繊維基材に熱硬化性樹脂ワニスを含浸し加熱乾燥して得たプリプレグの層を加熱加圧成形した積層板に比べて加工性が劣り、また、金属板を用いる場合には、絶縁性に対する配慮も別途しなければならないという問題がある。
As a means for solving the above problems, there is a proposal of adopting the following laminated board as a printed wiring board.
(1) A metal-based laminate (Patent Document 1) in which a metal plate is insulated and coated with a resin composition to which an inorganic filler is added.
(2) A metal base laminate (Patent Document 2) in which an insulating adhesive sheet made of an epoxy resin is attached to a metal plate.
(3) A laminated plate obtained by heating and press-molding a prepreg layer obtained by impregnating an epoxy resin varnish into a sheet-like fiber base material in which aluminum nitride is introduced and heating and drying (Patent Document 3).
Each of the above-mentioned laminated plates is one in which heat dissipation is improved by using a metal plate or inorganic ceramic having good thermal conductivity. Therefore, the processability is inferior compared to a conventional laminate, that is, a laminate obtained by heat-pressing a layer of a prepreg obtained by impregnating a sheet-like fiber base material with a thermosetting resin varnish and drying by heating, In the case of using a metal plate, there is a problem that consideration must be given separately to insulation.

一方、従来の積層板の高熱伝導化は、樹脂中にアルミナやシリカのような無機フィラを添加する手法が一般的である。しかし、樹脂中に無機フィラを添加するためには、通常、樹脂ワニスに無機フィラを混合することになり、そうすると、樹脂ワニスの粘度は著しく増大するため、シート状繊維基材への樹脂ワニスの含浸作業性・プリプレグの成形性が悪化する。従って、無機フィラを多量に添加することができないのが現状である。   On the other hand, in order to increase the thermal conductivity of conventional laminates, a general method is to add an inorganic filler such as alumina or silica to the resin. However, in order to add an inorganic filler to the resin, the inorganic filler is usually mixed with the resin varnish. Then, since the viscosity of the resin varnish increases remarkably, the resin varnish is applied to the sheet-like fiber substrate. Impregnation workability and moldability of prepreg deteriorate. Therefore, the present condition is that a large amount of inorganic filler cannot be added.

特開平06−216484号公報Japanese Patent Laid-Open No. 06-216484 特開平08−167775号公報Japanese Patent Laid-Open No. 08-167775 特開2000−015746号公報JP 2000-015746 A

本発明が解決しようとする課題は、無機フィラを高充填することにより高熱伝導性を付与した積層板ないしはプリント配線板を提供することであり、そのためのプリプレグを提供することである。   The problem to be solved by the present invention is to provide a laminated board or printed wiring board having high thermal conductivity by being highly filled with an inorganic filler, and to provide a prepreg for that purpose.

上記課題を達成するための、本発明の要旨は以下のとおりである。
本発明に係る電気絶縁用プリプレグは、電気絶縁性無機フィラの皮膜を表面に形成したシート状の繊維基材に、エポキシ樹脂を保持したことを特徴とする。電気絶縁性無機フィラは、好ましくは、1W/m・K以上の熱伝導率をもつ電気絶縁性無機材料からなるものである。
The gist of the present invention for achieving the above-mentioned problems is as follows.
The prepreg for electrical insulation according to the present invention is characterized in that an epoxy resin is held on a sheet-like fiber base material on which a film of an electrically insulating inorganic filler is formed. The electrically insulating inorganic filler is preferably made of an electrically insulating inorganic material having a thermal conductivity of 1 W / m · K or more.

本発明に係る積層板は、上記プリプレグを、一体に積層成形するプリプレグ層の全層ないしは一部の層として加熱加圧成形してなるものである。また、本発明に係るプリント配線板は、上記プリプレグの層を加熱加圧成形してなる絶縁層を備えたものである。   The laminate according to the present invention is obtained by heat-pressing the prepreg as a whole layer or a part of the prepreg layer integrally laminated. The printed wiring board according to the present invention includes an insulating layer formed by heating and pressing the prepreg layer.

本発明に係るプリプレグは、シート状繊維基材に予め無機フィラの皮膜を形成してあるので、無機フィラを多量に充填したエポキシ樹脂組成物をシート状繊維基材に保持させなくても、結果として、無機フィラを高充填したプリプレグとすることができる。このようなプリプレグを加熱加圧成形した硬化物は熱伝導率が高く、高熱伝導性の積層板ないしはプリント配線板の実現に寄与する。   In the prepreg according to the present invention, since the inorganic filler film is formed on the sheet-like fiber base material in advance, even if the epoxy resin composition filled with a large amount of the inorganic filler is not held on the sheet-like fiber base material, the result is obtained. As a prepreg highly filled with inorganic filler. A cured product obtained by heating and pressing such a prepreg has high thermal conductivity, and contributes to the realization of a highly heat-conductive laminate or printed wiring board.

また、シート状繊維基材に無機フィラの皮膜を形成してあるので、絶縁層の機械的強度が良好で、優れた熱特性を有する。高温雰囲気下での使用が予想される自動車機器用のプリント配線板、パソコン等の高密度実装プリント配線板に好適である。   Moreover, since the inorganic filler film is formed on the sheet-like fiber base material, the mechanical strength of the insulating layer is good, and the thermal characteristics are excellent. It is suitable for printed wiring boards for automobile equipment expected to be used in a high temperature atmosphere, and high-density mounting printed wiring boards such as personal computers.

本発明においては、無機フィラを高充填する目的で、予めシート状繊維基材の表面に無機フィラの皮膜を形成させることが重要である。無機フィラは、窒化ホウ素、窒化アルミニウム、アルミナ、シリカ、酸化マグネシウム、水酸化アルミニウム等の電気絶縁性無機材料であればよいが、好ましくは、1W/m・K以上の熱伝導率をもつ材料である。皮膜を形成する方法は、例えば、無機フィラをシート状繊維基材へ溶射する手段等である。溶射により皮膜を形成する場合、無機フィラの粒径は、好ましくは、1μm以上である。粒径が小さいと、無機フィラを高温で溶融し、シート状繊維基材に溶射する際、均一な皮膜の形成をしにくくなる。   In the present invention, it is important to form an inorganic filler film on the surface of the sheet-like fiber substrate in advance for the purpose of highly filling the inorganic filler. The inorganic filler may be an electrically insulating inorganic material such as boron nitride, aluminum nitride, alumina, silica, magnesium oxide, and aluminum hydroxide, but is preferably a material having a thermal conductivity of 1 W / m · K or more. is there. The method for forming the film is, for example, means for thermally spraying the inorganic filler onto the sheet-like fiber base material. When a film is formed by thermal spraying, the particle size of the inorganic filler is preferably 1 μm or more. When the particle size is small, it is difficult to form a uniform film when the inorganic filler is melted at a high temperature and sprayed onto the sheet-like fiber substrate.

本発明においてエポキシ樹脂は、ビフェニル含有エポキシ樹脂が好ましい。ビフェニル含有エポキシ樹脂としては、ビフェニル骨格あるいはビフェニル誘導体の骨格を持ち、1分子中に2個以上のエポキシ基を持つエポキシ樹脂モノマ全般を用いることができる。特に好ましくは、下記化学構造式(化1)のビフェニル含有エポキシ樹脂モノマである。この樹脂を用いると、積層板の放熱効果が更に高まるためである。   In the present invention, the epoxy resin is preferably a biphenyl-containing epoxy resin. As the biphenyl-containing epoxy resin, any epoxy resin monomer having a biphenyl skeleton or a biphenyl derivative skeleton and having two or more epoxy groups in one molecule can be used. Particularly preferred is a biphenyl-containing epoxy resin monomer having the following chemical structural formula (Formula 1). This is because when this resin is used, the heat dissipation effect of the laminate is further increased.

Figure 2006036869
Figure 2006036869

使用する硬化剤は、エポキシ樹脂モノマの硬化反応を進行させるために従来用いられている硬化剤を使用することができる。好ましくは、よりガラス転移温度や物理的強度の高いエポキシ樹脂硬化物を得るために、剛直な構造を有し、架橋密度を高める反応点を多く持つものがよい。例えば、アミン化合物やその誘導体、酸無水物、イミダゾールやその誘導体などである。アミン系硬化剤としては、4,4'−ジアミノジフェニルスルホン、1,5−ジアミノナフタレン、4,4'−ジアミノジフェニルメタン等の化合物およびその誘導体がある。これらの硬化剤は2種類以上を併用してもよい。   As the curing agent to be used, a curing agent conventionally used for advancing the curing reaction of the epoxy resin monomer can be used. Preferably, in order to obtain an epoxy resin cured product having a higher glass transition temperature and higher physical strength, it is preferable to have a rigid structure and a large number of reaction points that increase the crosslinking density. For example, amine compounds and derivatives thereof, acid anhydrides, imidazoles and derivatives thereof, and the like. Examples of the amine curing agent include compounds such as 4,4′-diaminodiphenylsulfone, 1,5-diaminonaphthalene, 4,4′-diaminodiphenylmethane, and derivatives thereof. Two or more kinds of these curing agents may be used in combination.

また、硬化促進剤は、エポキシ樹脂モノマと硬化剤との重縮合反応を進行させるために従来用いられている硬化促進剤を使用することができる。例えば、トリフェニルホスフィン、イミダゾールやその誘導体、三級アミン化合物やその誘導体などが挙げられる。   Moreover, the hardening accelerator conventionally used in order to advance the polycondensation reaction of an epoxy resin monomer and a hardening | curing agent can be used for a hardening accelerator. Examples thereof include triphenylphosphine, imidazole and derivatives thereof, tertiary amine compounds and derivatives thereof.

エポキシ樹脂モノマと硬化剤および硬化促進剤を配合したエポキシ樹脂組成物には、必要に応じて難燃剤や希釈剤、可塑剤、カップリング剤等を含むことができる。また、このエポキシ樹脂組成物を、無機フィラの皮膜を形成させたシート状繊維基材に含浸し乾燥してプリプレグを製造する際、必要に応じて溶剤を使用することができる。これら溶剤の使用が硬化物の性質に影響を与えることはない。   The epoxy resin composition containing the epoxy resin monomer, the curing agent, and the curing accelerator may contain a flame retardant, a diluent, a plasticizer, a coupling agent, and the like as necessary. Moreover, a solvent can be used as needed when impregnating this epoxy resin composition in the sheet-like fiber base material in which the membrane | film | coat of the inorganic filler was formed, and drying and manufacturing a prepreg. Use of these solvents does not affect the properties of the cured product.

さらに、上記エポキシ樹脂組成物には、金属酸化物又は水酸化物あるいは無機セラミックス、その他の充填材を含むことができる。例えば、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、アルミナ、酸化マグネシウム、シリカ、水酸化アルミニウム等の無機粉末充填材、ガラス繊維、パルプ繊維、合成繊維、セラミックス繊維等の繊維質充填材、着色剤等を添加することができる。好ましくは、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、アルミナ、酸化マグネシウムから選ばれる。充填材の形状は、粉末(塊状、球状)、短繊維、長繊維等いずれであってもよい。   Furthermore, the epoxy resin composition may contain a metal oxide, hydroxide, inorganic ceramic, or other filler. For example, inorganic powder fillers such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, alumina, magnesium oxide, silica, aluminum hydroxide, glass fiber, pulp fiber, synthetic fiber, ceramics Fibrous fillers such as fibers, colorants and the like can be added. Preferably, it is selected from boron nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, alumina, and magnesium oxide. The shape of the filler may be any of powder (bulk shape, spherical shape), short fiber, long fiber and the like.

本発明に係るプリプレグは、上記のエポキシ樹脂組成物を、無機フィラの皮膜を形成したシート状繊維基材(ガラス繊維や有機繊維で構成された織布や不織布)に含浸し加熱乾燥して、エポキシ樹脂を半硬化状態としたものである。そして、積層板は、前記プリプレグを、プリプレグ層の全層ないしは一部の層として加熱加圧成形してなるものであり、必要に応じて前記加熱加圧成形により片面あるいは両面に銅箔等の金属箔を一体に貼り合せる。さらに、プリント配線板は、前記のプリプレグ層を加熱加圧成形してなる絶縁層を備えたものであり、片面プリント配線板、両面プリント配線板、さらには、内層と表面層にプリント配線を有する多層プリント配線板である。   The prepreg according to the present invention is obtained by impregnating the above epoxy resin composition into a sheet-like fiber base material (woven fabric or nonwoven fabric composed of glass fibers or organic fibers) on which an inorganic filler film is formed, and drying by heating. An epoxy resin is in a semi-cured state. The laminate is formed by heating and pressing the prepreg as a whole layer or a part of the prepreg layer, and copper foil or the like on one side or both sides by the heating and pressing as necessary. Bond metal foils together. Furthermore, the printed wiring board is provided with an insulating layer formed by heating and press-molding the prepreg layer, and has a single-sided printed wiring board, a double-sided printed wiring board, and further, a printed wiring on the inner layer and the surface layer. It is a multilayer printed wiring board.

以下、本発明に係る実施例を示し、本発明について詳細に説明する。尚、以下の実施例および比較例において、「部」とは「質量部」を意味する。また、本発明は、その要旨を逸脱しない限り、本実施例に限定されるものではない。   Examples of the present invention will be described below, and the present invention will be described in detail. In the following examples and comparative examples, “part” means “part by mass”. Moreover, this invention is not limited to a present Example, unless it deviates from the summary.

実施例1〜3
予め、厚さ0.2mmのガラス繊維織布に平均粒径4μmの窒化ホウ素(熱伝導率:60W/m・K,電気化学工業製)を溶射し、ガラス繊維織布表面に窒化ホウ素の皮膜を形成した。この際、皮膜の厚さは、5μm(実施例1)、8μm(実施例2)、10μm(実施例3)の3種類とした。
エポキシ樹脂成分としてビフェニル含有エポキシ樹脂(ジャパンエポキシレジン製「YL6121H」,エポキシ当量175)100部をメチルエチルケトン(和光純薬製)100部に100℃で加熱して溶解し、室温に戻した。
次に、硬化剤として1,5−ジアミノナフタレン(和光純薬製「1,5−DAN」,アミン当量40)21部をメチルエチルケトン(和光純薬製)100部に100℃で加熱して溶解し、室温に戻した。
これらの樹脂溶液と硬化剤溶液を混合し、撹拌して均一なエポキシ樹脂ワニスにした。尚、「YL6121H」は、化学構造式(式1)において、R=−CH,n=0.1であるエポキシ樹脂モノマとR=−H,n=0.1であるエポキシ樹脂モノマを等モルで含有するエポキシ樹脂モノマである。
上記エポキシ樹脂ワニスを、窒化ホウ素の皮膜厚さの異なる各ガラス繊維織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグ4枚を重ね、温度175℃、圧力4MPaの条件で90分間加熱加圧形成して一体化し、厚さ0.8mmの積層板を得た。
Examples 1-3
In advance, boron nitride with a mean particle size of 4 μm (thermal conductivity: 60 W / m · K, manufactured by Denki Kagaku Kogyo) is sprayed onto a glass fiber woven fabric with a thickness of 0.2 mm, and a boron nitride film is coated on the surface of the glass fiber woven fabric. Formed. At this time, the thickness of the film was set to three types: 5 μm (Example 1), 8 μm (Example 2), and 10 μm (Example 3).
As an epoxy resin component, 100 parts of biphenyl-containing epoxy resin (“YL6121H” manufactured by Japan Epoxy Resin, epoxy equivalent of 175) was dissolved in 100 parts of methyl ethyl ketone (manufactured by Wako Pure Chemical Industries) at 100 ° C. and returned to room temperature.
Next, 21 parts of 1,5-diaminonaphthalene (“1,5-DAN” manufactured by Wako Pure Chemical Industries, Ltd., amine equivalent 40) as a curing agent is dissolved in 100 parts of methyl ethyl ketone (manufactured by Wako Pure Chemical Industries) at 100 ° C. , Returned to room temperature.
These resin solution and curing agent solution were mixed and stirred to obtain a uniform epoxy resin varnish. “YL6121H” is an epoxy resin monomer having R = —CH 3 , n = 0.1 and an epoxy resin monomer having R = —H, n = 0.1 in the chemical structural formula (formula 1), etc. It is an epoxy resin monomer contained in moles.
The epoxy resin varnish was impregnated into each glass fiber woven fabric having a different boron nitride film thickness and dried by heating to obtain a prepreg. The four prepregs were stacked and formed by heating and pressurizing for 90 minutes under conditions of a temperature of 175 ° C. and a pressure of 4 MPa to obtain a laminate having a thickness of 0.8 mm.

実施例1〜3について、プリプレグの作製可否と積層板のガラス転移温度、貯蔵弾性率および熱伝導率の測定結果を、エポキシ樹脂組成物の配合組成と共に表1にまとめて示す。
ガラス転移温度と貯蔵弾性率は、上記の積層板から、5mm×30mmの板状試料を切り出し、動的粘弾性を測定して求めた。これらの測定は、動的粘弾性測定装置(DMA)を使用し、JIS−C−6481 5.17.2に準拠した。
熱伝導率の測定は、上記の積層板から50mm×120mmの板状試料を切り出し、プローブ法に準拠して室温で行なった。
About Examples 1-3, the measurement result of the prepreg preparation availability and the glass transition temperature, storage elastic modulus, and thermal conductivity of the laminate is shown together in Table 1 together with the composition of the epoxy resin composition.
The glass transition temperature and the storage elastic modulus were obtained by cutting out a plate sample of 5 mm × 30 mm from the above laminate and measuring the dynamic viscoelasticity. These measurements used a dynamic viscoelasticity measuring device (DMA) and conformed to JIS-C-6481 5.17.2.
The thermal conductivity was measured at room temperature in accordance with the probe method by cutting out a plate sample of 50 mm × 120 mm from the above laminate.

実施例1〜3の積層板では、ガラス転移温度に顕著な差はないものの、熱伝導率や貯蔵弾性率は窒化ホウ素の皮膜の厚みが増すごとに増加する。   In the laminated plates of Examples 1 to 3, although there is no significant difference in the glass transition temperature, the thermal conductivity and the storage elastic modulus increase as the boron nitride film thickness increases.

実施例4
実施例3において使用したエポキシ樹脂ワニス中に、フィラとして平均粒径4μmの窒化ホウ素(電気化学工業製)を69部配合して均一に分散させたエポキシ樹脂ワニスを調製し、このワニスを使用する以外は、実施例3と同様にしてプリプレグおよび積層板を作製した。
この積層板は、熱伝導率が7.2W/m・Kと大きく向上した。
Example 4
In the epoxy resin varnish used in Example 3, 69 parts of boron nitride (manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle size of 4 μm was blended as a filler to prepare an epoxy resin varnish, and this varnish was used. Except for the above, a prepreg and a laminate were produced in the same manner as in Example 3.
This laminated plate has a greatly improved thermal conductivity of 7.2 W / m · K.

実施例5、6
ガラス繊維織布に溶射するフィラを、酸化マグネシウム(熱伝導率:30W/m・K,実施例5)、シリカ(熱伝導率:1.3W/m・K,実施例6)に変えて、以下、実施例3と同様にしてプリプレグおよび積層板を作製した。
Examples 5 and 6
The filler sprayed on the glass fiber woven fabric is changed to magnesium oxide (thermal conductivity: 30 W / m · K, Example 5) and silica (thermal conductivity: 1.3 W / m · K, Example 6). Thereafter, a prepreg and a laminate were produced in the same manner as in Example 3.

実施例7
エポキシ樹脂「YL6121H」を用いず、その代わりに、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン製「Ep828」,エポキシ当量185)を用い、それ以外は実施例3と同様にしてプリプレグおよび積層板を得た。
この積層板から50mm×120mmの板状試料を切り出し、熱伝導率を測定した結果、1.0W/m・Kと「YL6121H」を用いた場合より低い値となった。
Example 7
Instead of using the epoxy resin “YL6121H”, a bisphenol A type epoxy resin (“Ep828” manufactured by Japan Epoxy Resin, epoxy equivalent 185) was used instead, and prepregs and laminates were obtained in the same manner as in Example 3. It was.
As a result of cutting out a plate-like sample of 50 mm × 120 mm from this laminated plate and measuring the thermal conductivity, it was 1.0 W / m · K and a value lower than that when “YL6121H” was used.

実施例8
硬化剤として「1,5−DAN」を用いず、その代わりに、液状のフェノールノボラック樹脂(ジャパンエポキシレジン製「YLH987」,水酸基当量116)62部を用い、それ以外は実施例3と同様にしてプリプレグおよび積層板を得た。
この積層板から50mm×120mmの板状試料を切り出し、熱伝導率を測定した結果、1.7W/m・Kであったが、ガラス転移温度は145℃、貯蔵弾性率も11MPaと減少した。
Example 8
Instead of using “1,5-DAN” as the curing agent, instead of 62 parts of a liquid phenol novolac resin (“YLH987” manufactured by Japan Epoxy Resin, hydroxyl equivalent weight 116), the same as in Example 3 was used. Thus, a prepreg and a laminate were obtained.
A plate-like sample of 50 mm × 120 mm was cut out from this laminate and the thermal conductivity was measured. As a result, it was 1.7 W / m · K, but the glass transition temperature was reduced to 145 ° C. and the storage elastic modulus was reduced to 11 MPa.

比較例1
窒化ホウ素を溶射しない生のままのガラス繊維織布を用い、それ以外は実施例4と同様にして、プリプレグおよび積層板を得た。
この積層板から50mm×120mmの板状試料を切り出し、熱伝導率を測定した結果、0.7W/m・Kであった。
Comparative Example 1
A prepreg and a laminate were obtained in the same manner as in Example 4 except that a raw glass fiber woven fabric not sprayed with boron nitride was used.
A 50 mm × 120 mm plate-like sample was cut out from this laminate and the thermal conductivity was measured. As a result, it was 0.7 W / m · K.

比較例2
比較例1において、フィラとして平均粒径4μmの窒化ホウ素183部をエポキシ樹脂ワニスに添加したところ、ワニスの粘性が高くなりすぎてプリプレグの製造に供することができなかった。
Comparative Example 2
In Comparative Example 1, when 183 parts of boron nitride having an average particle diameter of 4 μm was added as a filler to the epoxy resin varnish, the viscosity of the varnish became too high to be used for the production of the prepreg.

Figure 2006036869
Figure 2006036869

Claims (4)

電気絶縁性無機フィラの皮膜を表面に形成したシート状の繊維基材に、エポキシ樹脂を保持した電気絶縁用プリプレグ。   A prepreg for electrical insulation in which an epoxy resin is held on a sheet-like fiber base material on which a film of an electrically insulating inorganic filler is formed. 電気絶縁性無機フィラが、1W/m・K以上の熱伝導率をもつ電気絶縁性無機材料からなる請求項1記載プリプレグ。   The prepreg according to claim 1, wherein the electrically insulating inorganic filler is made of an electrically insulating inorganic material having a thermal conductivity of 1 W / m · K or more. 請求項1又は2記載のプリプレグを、プリプレグ層の全層ないしは一部の層として加熱加圧成形してなる積層板。   A laminate obtained by heat-pressing the prepreg according to claim 1 or 2 as all or a part of the prepreg layer. 請求項1又は2記載のプリプレグの層を加熱加圧成形してなる絶縁層を備えることを特徴とするプリント配線板。   A printed wiring board comprising an insulating layer formed by heating and press-molding the prepreg layer according to claim 1.
JP2004216751A 2004-07-26 2004-07-26 Prepreg, laminate and printed wiring board Abandoned JP2006036869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216751A JP2006036869A (en) 2004-07-26 2004-07-26 Prepreg, laminate and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216751A JP2006036869A (en) 2004-07-26 2004-07-26 Prepreg, laminate and printed wiring board

Publications (1)

Publication Number Publication Date
JP2006036869A true JP2006036869A (en) 2006-02-09

Family

ID=35902216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216751A Abandoned JP2006036869A (en) 2004-07-26 2004-07-26 Prepreg, laminate and printed wiring board

Country Status (1)

Country Link
JP (1) JP2006036869A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299189A (en) * 2005-04-25 2006-11-02 Hitachi Chem Co Ltd Prepreg sheet, metal foil-clad laminate, circuit board, and method for manufacturing circuit board
JP2006306977A (en) * 2005-04-27 2006-11-09 Hitachi Chem Co Ltd Composite, prepreg, metal foil-clad laminated board, printed-wiring board, multilayer printed-wiring board and manufacturing method thereof
JP2006307067A (en) * 2005-04-28 2006-11-09 Hitachi Chem Co Ltd Composite, prepreg, metal-clad laminated board, printed-wiring board and its manufacturing method
JP2006348225A (en) * 2005-06-17 2006-12-28 Hitachi Chem Co Ltd Composite, prepreg, metallic foil clad laminate and printed wiring substrate using the same, and method for manufacturing printed wiring substrate
JP2012116893A (en) * 2010-11-29 2012-06-21 Hitachi Chemical Co Ltd Prepreg, laminate and printed wiring board using the same
JP2014009343A (en) * 2012-07-02 2014-01-20 Hitachi Chemical Co Ltd Resin sheet and production method of the same, resin sheet cured product, and heat radiation component
JP2020170828A (en) * 2019-04-05 2020-10-15 Tdk株式会社 Substrate and laminated substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299189A (en) * 2005-04-25 2006-11-02 Hitachi Chem Co Ltd Prepreg sheet, metal foil-clad laminate, circuit board, and method for manufacturing circuit board
JP2006306977A (en) * 2005-04-27 2006-11-09 Hitachi Chem Co Ltd Composite, prepreg, metal foil-clad laminated board, printed-wiring board, multilayer printed-wiring board and manufacturing method thereof
JP2006307067A (en) * 2005-04-28 2006-11-09 Hitachi Chem Co Ltd Composite, prepreg, metal-clad laminated board, printed-wiring board and its manufacturing method
JP2006348225A (en) * 2005-06-17 2006-12-28 Hitachi Chem Co Ltd Composite, prepreg, metallic foil clad laminate and printed wiring substrate using the same, and method for manufacturing printed wiring substrate
JP2012116893A (en) * 2010-11-29 2012-06-21 Hitachi Chemical Co Ltd Prepreg, laminate and printed wiring board using the same
JP2014009343A (en) * 2012-07-02 2014-01-20 Hitachi Chemical Co Ltd Resin sheet and production method of the same, resin sheet cured product, and heat radiation component
JP2020170828A (en) * 2019-04-05 2020-10-15 Tdk株式会社 Substrate and laminated substrate

Similar Documents

Publication Publication Date Title
TWI594882B (en) Thermosetting resin composition and prepreg and metal clad laminate using the same
JP4735492B2 (en) Prepress and laminate for heat and pressure molding
JP6221634B2 (en) Resin composition, resin sheet, cured resin and substrate
US9745443B2 (en) Inorganic filler-containing epoxy resin cured product and laminate including the same
JP2004182851A (en) Resin composition, prepreg, and printed wiring board therewith
JP5547032B2 (en) Thermally conductive resin composition, resin sheet, prepreg, metal laminate and printed wiring board
CN108047718A (en) Maleimide resin composition, prepreg, laminate and printed circuit board (PCB)
JP2007070418A (en) Adhesive sheet, metal foil-clad laminated sheet and built-up type multilayered printed wiring board
JP3821728B2 (en) Prepreg
KR20140127039A (en) Insulating resin composition having low CTE and high thermal stability for PCB and prepreg, CCL and PCB using the same
KR20090109114A (en) Interlayer insulating film having carrier material, and multilayer printed circuit board using the interlayer insulating film
JP2007009217A (en) Resin composition, prepreg, and printed wiring board using the same
JP2006036869A (en) Prepreg, laminate and printed wiring board
JP5217865B2 (en) Flame-retardant epoxy resin composition, prepreg, laminate and wiring board
JP2003137971A (en) Epoxy resin composition, prepreg, laminate and printed wiring board
JP5828094B2 (en) Resin sheet, metal foil with resin, board material and component mounting board
JP2010229368A (en) Epoxy resin composition and prepreg, laminated board, and wiring board
JP2005340270A (en) Laminated plate, pre-preg therefor, flexible printed wiring board using the same and flex rigid printed wiring board
JP5428212B2 (en) Resin composition, prepreg and printed wiring board using the same
JP2002249641A (en) Epoxy resin composition, resin film, resin-sticking metal foil, prepreg, and laminated sheet
JP4192871B2 (en) Laminated board and wiring board
JP2006036868A (en) Prepreg, laminate and printed wiring board
JP2010129751A (en) Adhesive composite for wiring board and adhesive film for wiring board using the same, and cover ray film
JP2007009089A (en) Prepreg, laminated board and printed wiring board
JP4192870B2 (en) Laminated board and wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20080122