JP5828094B2 - Resin sheet, metal foil with resin, board material and component mounting board - Google Patents

Resin sheet, metal foil with resin, board material and component mounting board Download PDF

Info

Publication number
JP5828094B2
JP5828094B2 JP2011030595A JP2011030595A JP5828094B2 JP 5828094 B2 JP5828094 B2 JP 5828094B2 JP 2011030595 A JP2011030595 A JP 2011030595A JP 2011030595 A JP2011030595 A JP 2011030595A JP 5828094 B2 JP5828094 B2 JP 5828094B2
Authority
JP
Japan
Prior art keywords
resin
metal foil
mass
resin layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011030595A
Other languages
Japanese (ja)
Other versions
JP2012144687A (en
Inventor
知昭 澤田
知昭 澤田
大三 馬場
大三 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011030595A priority Critical patent/JP5828094B2/en
Publication of JP2012144687A publication Critical patent/JP2012144687A/en
Application granted granted Critical
Publication of JP5828094B2 publication Critical patent/JP5828094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、遠赤外線放射率の高い樹脂シート、樹脂付金属箔、基板材料および部品実装基板に関する。   The present invention relates to a resin sheet having a high far-infrared emissivity, a metal foil with resin, a substrate material, and a component mounting substrate.

近年、電子機器においては高性能化、小型化、軽量化等に伴い半導体パッケージの高密度実装化、LSIの高集積化及び高速化等が進み、電子部品において単位面積あたりの発熱量が増大している。そのため、電子部品から熱を外部へ効果的に放散させるべく放熱フィンを取り付けるなどの方法が一般的に取られている。   In recent years, in electronic devices, with higher performance, smaller size, lighter weight, etc., higher density mounting of semiconductor packages, higher integration of LSIs, higher speeds, etc., the amount of heat generated per unit area in electronic components has increased. ing. Therefore, a method such as attaching a heat radiating fin is generally taken to effectively dissipate heat from the electronic component to the outside.

しかし、放熱フィンを取り付けることができない回路基板材料などの場合は、内部の熱を外部へ放散することができない。そこで遠赤外線放射を利用して熱を外部へ放散する方法として、遠赤外放射率が高いレジストインクを使用する方法が報告されている(特許文献1)。   However, in the case of a circuit board material or the like to which heat radiating fins cannot be attached, internal heat cannot be dissipated to the outside. Therefore, as a method of dissipating heat to the outside using far-infrared radiation, a method using a resist ink having a high far-infrared emissivity has been reported (Patent Document 1).

特開2010−59222号公報JP 2010-59222 A

しかしながら、これまでに知られている遠赤外線放射率が高いレジストインクは液状であるために取扱いにくく、また遠赤外放射率も充分に高いとはいえない状況である。遠赤外線は黒体放射がもっとも理想状態に近く、それを100%とした場合の放射率を測定して理想状態の何%の放射率があるかを測定するが、表面形状も平滑面では放射率が低くなるので、粗化面を形成するための工夫もさらに必要になってくると考えられる。   However, known resist inks having a high far-infrared emissivity are liquid and difficult to handle, and the far-infrared emissivity cannot be said to be sufficiently high. In the far-infrared, black body radiation is closest to the ideal state, and the emissivity when it is 100% is measured to determine what percentage of the emissivity is in the ideal state. Since the rate is lowered, it is considered that a device for forming the roughened surface is further required.

また、液状インクを印刷で形成しても粗化面を形成しづらく、光沢面が出来易いという問題もある。更に熱が一箇所に集中してしまうような場合には、遠赤放射がその部分に集中してしまうので、効率が下がると言う問題もある。   In addition, there is a problem that even when liquid ink is formed by printing, it is difficult to form a roughened surface and a glossy surface is easily formed. Furthermore, when heat is concentrated in one place, the far-red radiation is concentrated in that portion, so that there is a problem that the efficiency is lowered.

本発明はかかる事情に鑑みてなされたものであって、高い遠赤外線放射率を有し、かつ取り扱いが簡易である樹脂シート材料、樹脂付金属箔、基板材料、及び部品実装基板を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a resin sheet material, a resin-attached metal foil, a substrate material, and a component mounting board that have high far-infrared emissivity and are easy to handle. With the goal.

本発明者らは、前記課題を解決すべく鋭意検討した結果、以下の手段により前記課題を解決できることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by the following means.

すなわち、本発明に係る、高い遠赤外線放射率を有し、かつ取り扱いが簡易である樹脂シートは、少なくとも樹脂及び酸化物系フィラーを含有する樹脂層を有する樹脂シートであって、前記酸化物系フィラーが樹脂層中に70〜90体積%で充填され、かつ表面粗度がRa0.1〜5μmであることを特徴とする。さらに、本発明は、高い遠赤外線放射率を有し、かつ取り扱いが簡易である樹脂付金属箔、それを用いた基板材料、並びに部品実装基板を提供する。   That is, the resin sheet according to the present invention that has a high far-infrared emissivity and is easy to handle is a resin sheet having a resin layer containing at least a resin and an oxide filler, and the oxide sheet The filler is filled in the resin layer at 70 to 90% by volume, and the surface roughness is Ra 0.1 to 5 μm. Furthermore, this invention provides the metal foil with resin which has a high far-infrared emissivity and is easy to handle, a substrate material using the same, and a component mounting board.

本発明によれば、きわめて高い遠赤外線放射率を有し、かつ取り扱い性に優れた放熱性樹脂シートを得ることができる。さらに本発明は、きわめて高い遠赤外線放射率を有し、かつ取り扱い性に優れた放熱性樹脂付金属箔、それを用いた基板材料、ならびに部品実装基板を提供することができる。これらは、電子部品などにおいて、放熱フィンなどの放熱冶具が使用できない場合に特に有用である。   According to the present invention, a heat dissipating resin sheet having a very high far-infrared emissivity and excellent handleability can be obtained. Furthermore, the present invention can provide a metal foil with a heat-dissipating resin having a very high far-infrared emissivity and excellent handleability, a board material using the same, and a component mounting board. These are particularly useful when a heat radiating jig such as a heat radiating fin cannot be used in an electronic component or the like.

本発明の実施の形態(樹脂シート)の一例を示す断面図である。It is sectional drawing which shows an example of embodiment (resin sheet) of this invention. 本発明の実施の形態(樹脂付金属箔)の一例を示す断面図である。It is sectional drawing which shows an example of embodiment (metal foil with resin) of this invention. 本発明の実施の形態(樹脂付金属箔)の一例を示す断面図である。It is sectional drawing which shows an example of embodiment (metal foil with resin) of this invention. 本発明の実施の形態(基板材料)の一例を示す断面図である。It is sectional drawing which shows an example of embodiment (board | substrate material) of this invention. 本発明の実施の形態(基板材料)の一例を示す断面図である。It is sectional drawing which shows an example of embodiment (board | substrate material) of this invention. 本発明の実施の形態(金属基板材料)の一例を示す断面図である。It is sectional drawing which shows an example of embodiment (metal board | substrate material) of this invention. 本発明の実施の形態(部品実装基板)の一例を示す断面図である。It is sectional drawing which shows an example of embodiment (component mounting board | substrate) of this invention.

以下に、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described.

[樹脂シート]
本発明に係る樹脂シート1は、その基本構成として、少なくとも樹脂及び酸化物系フィラーを含有する樹脂層を有し、前記酸化物系フィラーが樹脂層中に70〜90体積%で充填され、かつ表面粗度がRa0.1〜5μmであることを特徴とする(図1参照)。
[Resin sheet]
The resin sheet 1 according to the present invention has, as its basic structure, a resin layer containing at least a resin and an oxide filler, and the oxide filler is filled at 70 to 90% by volume in the resin layer, and The surface roughness is Ra 0.1 to 5 μm (see FIG. 1).

このように、樹脂シートに酸化物系フィラーを高充填させ、表面粗度を前記範囲とすることによって、90%以上というきわめて高い遠赤外線放射率を有する樹脂シートを得ることができる。   Thus, a resin sheet having a very high far-infrared emissivity of 90% or more can be obtained by highly filling the resin sheet with an oxide filler and setting the surface roughness within the above range.

まず、本実施形態に係る樹脂シートが有する樹脂層を構成する樹脂組成物について説明する。   First, the resin composition which comprises the resin layer which the resin sheet concerning this embodiment has is demonstrated.

本実施形態において使用され得る樹脂については、特に制限はないが、例えば、エポキシ樹脂等の熱硬化性樹脂、熱可塑性樹脂、アクリル樹脂やポリエステル樹脂などの樹脂を使用用途によって適宜使用できる。   Although there is no restriction | limiting in particular about resin which can be used in this embodiment, For example, resin, such as thermosetting resins, such as an epoxy resin, a thermoplastic resin, an acrylic resin, and a polyester resin, can be used suitably.

なかでもエポキシ樹脂を用いる場合は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、環状脂肪族エポキシ樹脂、複素環式エポキシ樹脂(トリグリシジルイソシアヌレート、ジグリシジルヒダントイン等)及びこれらを種々の材料で変性した変性エポキシ樹脂等が使用できる。   In particular, when epoxy resin is used, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalenediol type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, Bisphenol A novolac type epoxy resins, cycloaliphatic epoxy resins, heterocyclic epoxy resins (triglycidyl isocyanurate, diglycidyl hydantoin, etc.) and modified epoxy resins obtained by modifying these with various materials can be used.

また、これらの臭素化物、塩素化物等のハロゲン化物も使用できる。さらに、これらの樹脂を2種類以上適宜組合せて使用することもできる。   In addition, halides such as bromides and chlorides can also be used. Furthermore, two or more of these resins can be used in appropriate combination.

特に、電気電子材料用途に適用できる高い耐熱性や信頼性を絶縁層に付与できることから、フェノールノボラック型エポキシ樹脂またクレゾールノボラック型エポキシ樹脂又はビスフェノールAノボラック型ポキシ樹脂もしくはこれらのハロゲン化物を用いることが望ましい。   In particular, since it is possible to impart high heat resistance and reliability applicable to electrical and electronic material applications to an insulating layer, it is necessary to use a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a bisphenol A novolac type epoxy resin, or a halide thereof. desirable.

上述したような樹脂の樹脂組成物中の配合量は、樹脂組成物全体に対して5〜95質量%の範囲とすることが好ましい。   It is preferable to make the compounding quantity in the resin composition of the above-mentioned resin into the range of 5-95 mass% with respect to the whole resin composition.

次に、本実施形態において用いられ得る酸化物系フィラーとしては、遠赤外線放射率の高い酸化物系フィラーであれば特に限定なく用いることができる。好ましくは、酸化物系フィラーが、特に遠赤外線放射率の高いアルミナ(酸化アルミニウム)、シリカ、酸化マグネシウム、酸化チタンなどを高い割合で含んでいることが望ましく、これらは単独で用いても、2種以上を混合して用いてもよい。   Next, the oxide filler that can be used in the present embodiment can be used without particular limitation as long as it is an oxide filler with a high far-infrared emissivity. Preferably, the oxide-based filler preferably contains a high proportion of alumina (aluminum oxide), silica, magnesium oxide, titanium oxide or the like having a particularly high far-infrared emissivity. You may mix and use a seed | species or more.

ここで遠赤外線放射とは、一定領域の波長の放射線である遠赤外線(波長4〜15μm)として、発生されたもしくは蓄積された熱を放射することをいう。この特性を用いて、例えば、加熱等により蓄積された基板の熱を大気中に放射することによって、前記基板の温度上昇を抑えたり、温度低下させたりすることができる。なお、このような遠赤外線放射率は、例えば、後述の実施例において示した方法などを用いて測定することができる。   Here, far-infrared radiation refers to radiation of generated or accumulated heat as far-infrared radiation (wavelength 4 to 15 μm) that is radiation having a wavelength in a certain region. By using this characteristic, for example, by radiating the heat of the substrate accumulated by heating or the like into the atmosphere, the temperature rise of the substrate can be suppressed or the temperature can be lowered. In addition, such a far-infrared emissivity can be measured using the method shown in the below-mentioned Example etc., for example.

樹脂層中に充填される酸化物系フィラーの充填量は、体積率で70〜90体積%であり、より好ましくは75〜90体積%である。   The filling amount of the oxide filler filled in the resin layer is 70 to 90% by volume, more preferably 75 to 90% by volume.

フィラー充填量が70体積%以上であれば高い熱伝導率を達成でき、熱を効率的に放射することができる。一方、フィラー充填量が90体積%以下であれば、樹脂シート材料としての強度が保たれるため、金属箔などに樹脂層を塗布する際にもクラックなどが発生しにくくなる。   When the filler filling amount is 70% by volume or more, high thermal conductivity can be achieved, and heat can be radiated efficiently. On the other hand, if the filler filling amount is 90% by volume or less, the strength as the resin sheet material is maintained, so that cracks are less likely to occur when a resin layer is applied to a metal foil or the like.

さらに、本実施形態においては、本発明の効果を妨げない範囲で、上述したような酸化物系フィラー以外の無機フィラーを含んでいてもよい。そのような無機フィラーとしては、例えば、水酸化アルミニウム、窒化アルミニウムなどが挙げられる。   Furthermore, in the present embodiment, an inorganic filler other than the oxide filler as described above may be included as long as the effects of the present invention are not hindered. Examples of such an inorganic filler include aluminum hydroxide and aluminum nitride.

また、前記酸化物系フィラーには、樹脂との相溶性をよくするために、カップリング処理などの表面処理を行ったり、分散剤などを添加して樹脂組成物中への分散性を向上させたりしてもよい。   In addition, in order to improve the compatibility with the resin, the oxide filler is subjected to a surface treatment such as a coupling treatment or a dispersant is added to improve the dispersibility in the resin composition. Or you may.

さらに、本実施形態に係る樹脂層を構成する樹脂組成物には、加工性改良、添加した樹脂の硬化促進等の目的で、硬化剤を添加してもよい。前記硬化剤としては、フェノール系、アミン系、シアネート系化合物等の公知の硬化剤を単独又は複数組合せて用いることができる。   Furthermore, you may add a hardening | curing agent to the resin composition which comprises the resin layer which concerns on this embodiment for the purpose of workability improvement, hardening acceleration of the added resin, etc. As said hardening | curing agent, well-known hardening | curing agents, such as a phenol type, an amine type, a cyanate type compound, can be used individually or in combination of multiple.

より具体的には、フェノールノボラック、クレゾールノボラック、ビスフェノールA、ビスフェノールF、ビスフェノールS、メラミン変性ノボラック型フェ−ノール樹脂等のフェノール性水酸基を有するフェノール系硬化剤又は、これらのハロゲン化された硬化剤、ジシアンジアミド等アミン系硬化剤等が挙げられる。   More specifically, phenolic curing agents having a phenolic hydroxyl group such as phenol novolak, cresol novolak, bisphenol A, bisphenol F, bisphenol S, melamine-modified novolak phenol resin, or halogenated curing agents thereof. And amine-based curing agents such as dicyandiamide.

なお、樹脂組成物が硬化剤を含む場合、前記硬化剤の配合量は、樹脂組成物全体に対して5〜50質量%の範囲とすることが好ましい。   In addition, when a resin composition contains a hardening | curing agent, it is preferable that the compounding quantity of the said hardening | curing agent shall be the range of 5-50 mass% with respect to the whole resin composition.

さらに、本発明の樹脂組成物には、硬化反応を促進するために硬化促進剤を含有させてもよい。硬化促進剤としては上述した樹脂成分と前記硬化剤との硬化反応を促進することができるものであれば、特に限定なく使用することができる。具体的には、例えば、イミダゾール系硬化促進剤、アミン系硬化促進剤等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。   Furthermore, the resin composition of the present invention may contain a curing accelerator in order to accelerate the curing reaction. Any curing accelerator can be used without particular limitation as long as it can accelerate the curing reaction between the above-described resin component and the curing agent. Specifically, for example, an imidazole curing accelerator, an amine curing accelerator and the like can be mentioned. These may be used alone or in combination of two or more.

本発明において硬化促進剤を含有する場合には、樹脂組成物全量中に、0.01〜2質量%程度であることが好ましい。   In the present invention, when a curing accelerator is contained, the content is preferably about 0.01 to 2% by mass in the total amount of the resin composition.

本実施形態に係る樹脂組成物は、さらに、本発明の効果を損なわない範囲でその他の添加剤、例えば、難燃剤、難燃助剤、レベリング剤、着色剤等を必要に応じて含有してもよい。   The resin composition according to the present embodiment further contains other additives, for example, a flame retardant, a flame retardant aid, a leveling agent, a colorant, and the like as necessary within a range not impairing the effects of the present invention. Also good.

なお、上述したような樹脂組成物は、通常、ワニス状に調製されて用いられる。このようなワニスは、例えば、以下のようにして調製される。   In addition, the resin composition as described above is usually prepared and used in a varnish form. Such a varnish is prepared as follows, for example.

つまり、上述したポキシ樹脂組成物の各成分に有機溶剤を配合し、さらに前記無機フィラー及び必要に応じてその他の添加剤を添加して、ボールミル、ビーズミル、ミキサー、ブレンダー等を用いて均一に分散・混合し、ワニス状に調製することができる。   In other words, an organic solvent is blended in each component of the above-mentioned poxy resin composition, and further added with the inorganic filler and other additives as necessary, and uniformly dispersed using a ball mill, a bead mill, a mixer, a blender or the like. -Can be mixed and prepared in a varnish form.

前記有機溶剤としては、特に限定されず、例えば、ベンゼン、トルエン等の芳香族炭化水素類、N,N−ジメチルホルムアミド(DMF)等のアミド類、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール等のアルコール類、セロソルブ類等を挙げることができる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。   Examples of the organic solvent include, but are not limited to, aromatic hydrocarbons such as benzene and toluene, amides such as N, N-dimethylformamide (DMF), ketones such as acetone and methyl ethyl ketone, methanol, ethanol, and the like. Alcohols, cellosolves and the like. These may be used alone or in combination of two or more.

本発明の樹脂シートは、上述のワニス状の樹脂組成物を基材(有機フィルム等)上に塗布して加熱乾燥することによって基材上に樹脂層を形成して得ることができる。この際、樹脂組成物はBステージ状に加熱乾燥させ、樹脂シート表面にフィラーが露出して粗化面を形成した樹脂シートとすることが好ましい。   The resin sheet of this invention can be obtained by forming the resin layer on a base material by apply | coating the above-mentioned varnish-like resin composition on a base material (organic film etc.), and heat-drying. At this time, the resin composition is preferably heated and dried in a B-stage shape to form a resin sheet in which a filler is exposed on the surface of the resin sheet to form a roughened surface.

樹脂層の厚みは、樹脂層の熱伝導率の観点から、0.04〜0.1mm程度であることが好ましい。   The thickness of the resin layer is preferably about 0.04 to 0.1 mm from the viewpoint of the thermal conductivity of the resin layer.

これらの積層成形、積層接着のための方法、装置、それらの条件については従来と同様のものとして、あるいはその改良としての各種の手段であってよい。   These lamination molding and lamination adhesion methods, apparatuses, and conditions thereof may be the same as those in the past or various means for improving the same.

より具体的には、例えば、ワニス状樹脂組成物が塗布された基材を、その後、所望の加熱条件(例えば、120〜140℃で5〜20分間)で加熱乾燥し、溶剤を除去するとともに樹脂成分を半硬化(Bステージ化)させて、樹脂シートを得る。この際、基材状の樹脂層が0.04〜0.1mm程度の厚みとなるように塗布することが好ましい。   More specifically, for example, the substrate coated with the varnish-like resin composition is then heated and dried under desired heating conditions (for example, 120 to 140 ° C. for 5 to 20 minutes) to remove the solvent. The resin component is semi-cured (B-stage) to obtain a resin sheet. At this time, it is preferable to apply so that the base-like resin layer has a thickness of about 0.04 to 0.1 mm.

さらに、本発明の樹脂層は、Raで0.1〜5μmの表面粗度を有することを特徴とする。表面粗度がRa0.1μm未満だと遠赤外線放射効果が十分に得られず、一方、Ra5μmを超えると樹脂層を薄膜化しにくくなるため好ましくない。   Furthermore, the resin layer of the present invention is characterized by having a surface roughness of 0.1 to 5 μm in Ra. If the surface roughness is less than Ra 0.1 μm, the far infrared radiation effect cannot be sufficiently obtained. On the other hand, if the surface roughness exceeds Ra 5 μm, it is difficult to make the resin layer thin, such being undesirable.

このような表面粗度を得るための方法としては、公知の方法を特に限定なく用いることができる。例えば、前記基材として、粗化表面が離型処理された粗化PETフィルムを用い、その粗化表面側に樹脂組成物を塗布して樹脂層を形成することによって、表面粗度を有する樹脂シートを得ることができる。その他の手段として、例えば、樹脂層をデスミア処理する方法なども使用できる。   As a method for obtaining such surface roughness, a known method can be used without particular limitation. For example, a resin having a surface roughness is obtained by using a roughened PET film whose roughened surface is subjected to a release treatment as the base material, and applying a resin composition on the roughened surface side to form a resin layer. A sheet can be obtained. As other means, for example, a method of desmearing the resin layer can be used.

このようにして得られる樹脂シートは、放熱フィンなどの放熱冶具を取り付けることができない電子部品などに用いることが特に有用であり、効率的に内部の熱を外部へ放散することができる。また、本発明に係る樹脂シートは空気に接している場合により有効に働くため、本樹脂シートを基板などの最外層に形成することが好ましい。   The resin sheet obtained in this way is particularly useful for electronic parts and the like to which heat dissipating jigs such as heat dissipating fins cannot be attached, and can efficiently dissipate internal heat to the outside. In addition, since the resin sheet according to the present invention works more effectively when it is in contact with air, it is preferable to form the resin sheet on the outermost layer such as a substrate.

[樹脂付金属箔]
本発明の樹脂シートは、その放熱特性から金属箔にコートして、樹脂付金属箔として応用することがとりわけ有効である。すなわち、本発明に係る樹脂付金属箔は、少なくとも樹脂及び酸化物系フィラーを含有する樹脂層(樹脂シート1)が金属箔2上に形成されており(例えば、図2参照)、前記酸化物系フィラーが樹脂層に70〜90体積%で充填され、かつ前記樹脂層(樹脂シート1)の表面粗度がRa0.1〜5μmであることを特徴とする。
[Metal foil with resin]
It is particularly effective to apply the resin sheet of the present invention as a metal foil with a resin by coating the metal foil because of its heat dissipation characteristics. That is, in the metal foil with resin according to the present invention, a resin layer (resin sheet 1) containing at least a resin and an oxide filler is formed on the metal foil 2 (for example, see FIG. 2), and the oxide The resin filler is filled in the resin layer at 70 to 90% by volume, and the surface roughness of the resin layer (resin sheet 1) is Ra 0.1 to 5 μm.

本実施形態において用いることができる金属箔としては、面方向の熱伝導を効率的に広げる目的に適した材料であれば、特に限定されるものではない。具体的には、例えば、アルミ箔、銅箔、ステンレス箔、チタン箔、ニッケル箔などが挙げられる。   The metal foil that can be used in the present embodiment is not particularly limited as long as it is a material suitable for the purpose of efficiently expanding the heat conduction in the surface direction. Specifically, aluminum foil, copper foil, stainless steel foil, titanium foil, nickel foil, etc. are mentioned, for example.

またこれらの金属箔の厚みは5〜400μmの範囲が好ましいが、樹脂付金属箔を形成するのに適していればこの範囲を外れていても問題はない。ただし、熱抵抗の観点から厚みが薄い方がより好ましいと考えられる。   Moreover, although the thickness of these metal foils has the preferable range of 5-400 micrometers, if it is suitable for forming metal foil with resin, even if it remove | deviates from this range, there is no problem. However, it is considered that a thinner thickness is more preferable from the viewpoint of thermal resistance.

一方、樹脂付金属箔における樹脂層の厚みは0.04〜0.1mm程度であることが好ましい。   On the other hand, the thickness of the resin layer in the metal foil with resin is preferably about 0.04 to 0.1 mm.

これらの積層成形、積層接着のための方法、装置、それらの条件については従来と同様のものとして、あるいはその改良としての各種の手段であってよい。   These lamination molding and lamination adhesion methods, apparatuses, and conditions thereof may be the same as those in the past or various means for improving the same.

具体的には、樹脂付金属箔を作成する方法の一実施態様としては、例えば、図2に参照されるように上述した樹脂組成物を金属箔2上に各種塗布プロセスを用いて任意の厚みに塗布し、加熱乾燥して樹脂層(樹脂シート1)を形成する方法が挙げられる。その際、乾燥機内部で非流動状態になるまで半硬化させるか、又は硬化状態になるまで硬化させるのが良い。加熱条件は、製造する金属箔の厚みや樹脂組成物の種類等により適宜設定することができるが、例えば、温度を120〜140℃、時間を5〜15分間とすることができる。   Specifically, as one embodiment of the method for producing a resin-attached metal foil, for example, as described with reference to FIG. And a method of forming the resin layer (resin sheet 1) by heating and drying. In that case, it is good to make it harden | cure until it becomes a non-flowing state inside a dryer, or until it becomes a hardening state. The heating conditions can be appropriately set depending on the thickness of the metal foil to be manufactured, the type of the resin composition, and the like. For example, the temperature can be 120 to 140 ° C. and the time can be 5 to 15 minutes.

さらに、本発明の樹脂層は、Raで0.1〜5μmの表面粗度を有することを特徴とする。表面粗度がRa0.1μm未満だと遠赤外線放射効果が十分に得られず、一方、Ra5μmを超えると樹脂層を薄膜化しにくくなるため好ましくない。   Furthermore, the resin layer of the present invention is characterized by having a surface roughness of 0.1 to 5 μm in Ra. If the surface roughness is less than Ra 0.1 μm, the far infrared radiation effect cannot be sufficiently obtained. On the other hand, if the surface roughness exceeds Ra 5 μm, it is difficult to make the resin layer thin, such being undesirable.

このような表面粗度を得るための方法としては、様々な方法が考えられるが、一例としては、粗化表面が離型処理された粗化PETフィルムの粗化面側を樹脂表層に貼り合せて樹脂付金属箔を作製し、この樹脂付金属箔を使用時に粗化PETフィルムを剥がして使用することにより樹脂層表面の粗度を発現させる方法などが挙げられる。   Various methods are conceivable as methods for obtaining such surface roughness. For example, the roughened surface side of the roughened PET film whose surface has been subjected to release treatment is bonded to the resin surface layer. A method for producing a resin-coated metal foil and peeling off the roughened PET film when using the resin-coated metal foil to express the roughness of the surface of the resin layer is used.

さらに、本発明に係る樹脂付金属箔の別の実施態様としては、回路板等にラミネートするために、樹脂付金属箔の金属面とは反対面に熱伝導性の高い接着層3をさらに形成する方法も挙げられる(例えば、図3参照)。   Furthermore, as another embodiment of the metal foil with resin according to the present invention, an adhesive layer 3 having high thermal conductivity is further formed on the surface opposite to the metal surface of the metal foil with resin in order to laminate it on a circuit board or the like. The method of doing is also mentioned (for example, refer FIG. 3).

樹脂付金属箔の金属箔側に形成することができる接着層3としては、本発明の効果に影響しない限り特に限定はなく、接着層として適したあらゆる材料を用いて構成され得る。接着層中のフィラーの有無も特定されるものではない。しかし、熱伝導の観点から高熱伝導性の樹脂であるほうがより好ましい。   The adhesive layer 3 that can be formed on the metal foil side of the resin-attached metal foil is not particularly limited as long as the effect of the present invention is not affected, and may be configured using any material suitable as the adhesive layer. The presence or absence of filler in the adhesive layer is not specified. However, it is more preferable to use a resin having high thermal conductivity from the viewpoint of thermal conduction.

このような接着層に用いられ得る材料の具体的な例示としては、例えば、公知の高熱伝導性接着シートや一般的に用いられるプリプレグなどの樹脂などが挙げられる。このような樹脂を用いて、上述した樹脂層を形成する方法と同様の手段を用いて、接着層を形成することができる。   Specific examples of materials that can be used for such an adhesive layer include, for example, known high heat conductive adhesive sheets and commonly used resins such as prepregs. Using such a resin, the adhesive layer can be formed using the same means as the method for forming the resin layer described above.

なお、接着性を確保するためには、上記接着層をBステージ状態まで半硬化させておくことが好ましい。   In order to secure adhesiveness, it is preferable that the adhesive layer is semi-cured to the B stage state.

このような樹脂付金属箔を各種回路基板にラミネートして使用することで、裏面に遠赤外線放射率の高い樹脂層を有する回路基板とすることが出来る。   By laminating and using such a resin-attached metal foil on various circuit boards, a circuit board having a resin layer having a high far-infrared emissivity on the back surface can be obtained.

[基板材料および部品実装基板]
上述したような遠赤外線放射率の高い樹脂層を有する樹脂シートや樹脂付金属箔を各種基板材料の最外層として積層することで、放熱性のきわめて高い基板材料が得られる。この各種基板材料についても特に限定されるわけではないが、具体的な例示としては、銅張積層板やこれを回路形成した回路基板などが挙げられる。例えば、図4に示すように、両面銅張積層板を基板材料4とし、その片側に樹脂シート1を積層したり、また、図5に示すように、両面銅張積層板を基板材料4とし、その片側に樹脂付金属箔(樹脂シート1、金属箔2および接着層3からなる)を積層した実施形態などが上げられる。
[Board materials and component mounting boards]
By laminating a resin sheet having a resin layer having a high far-infrared emissivity as described above or a metal foil with resin as the outermost layer of various substrate materials, a substrate material with extremely high heat dissipation can be obtained. The various substrate materials are not particularly limited, but specific examples include a copper clad laminate and a circuit board on which a circuit is formed. For example, as shown in FIG. 4, a double-sided copper-clad laminate is used as a substrate material 4 and the resin sheet 1 is laminated on one side thereof, or as shown in FIG. An embodiment in which a metal foil with resin (consisting of the resin sheet 1, the metal foil 2, and the adhesive layer 3) is laminated on one side thereof can be given.

特に、例えば、図6に示すように基板材料が金属基板5などである場合には、表面に実装される電子部品からの発熱を金属基板5を通して放熱する機能が強く要求されるため、上述したような遠赤外線放射率の高い樹脂層を有する樹脂シートや樹脂付金属箔は、金属基板などの基板材料に用いると非常に有用性が高い。なお、図6(A)は樹脂シート1を金属基板の最外層に直接積層した実施形態であり、図6(B)は樹脂付金属箔を金属基板の最外層に積層した実施形態を示す。また、図6及び後述の図7で示した金属基板5は、一般的なものであり、銅箔(回路面)、絶縁層、金属板からなる金属基板を一例として挙げている。   In particular, for example, as shown in FIG. 6, when the substrate material is a metal substrate 5 or the like, the function of radiating heat generated from electronic components mounted on the surface through the metal substrate 5 is strongly required. Such a resin sheet having a resin layer having a high far-infrared emissivity or a metal foil with a resin is very useful when used for a substrate material such as a metal substrate. 6A is an embodiment in which the resin sheet 1 is directly laminated on the outermost layer of the metal substrate, and FIG. 6B shows an embodiment in which a metal foil with resin is laminated on the outermost layer of the metal substrate. Moreover, the metal board | substrate 5 shown in FIG. 6 and FIG. 7 mentioned later is a general thing, The metal board | substrate which consists of copper foil (circuit surface), an insulating layer, and a metal plate is mentioned as an example.

また本発明において、金属基板としては、銅、アルミニウム、真鍮、ニッケル、鉄、などの単独金属の板の他、それらを複数用いた合金の板、複合板を用いることができるが、安価で手に入り、加工性や入手性が良いという観点から、金属基板としてアルミニウム板を用いるのが好ましい。また金属基板は厚みが0.1〜2.0mmの範囲のものが好ましく、この金属基板には必要に応じて表面粗化の処理や、接着剤塗布の処理をしておくこともできる。   In the present invention, as the metal substrate, a single metal plate such as copper, aluminum, brass, nickel, iron, etc., an alloy plate using a plurality of them, and a composite plate can be used. From the viewpoint of good workability and availability, it is preferable to use an aluminum plate as the metal substrate. The metal substrate preferably has a thickness in the range of 0.1 to 2.0 mm, and the metal substrate can be subjected to surface roughening treatment or adhesive coating treatment as necessary.

また、これら基板材料は、本発明に係る樹脂シートや樹脂付金属箔を基板材料の最外層として積層する限り、その他の手段・条件等については特に限定なく公知の手法を用いて製造することができる。   In addition, these substrate materials can be manufactured using known methods without any particular limitation as to other means and conditions as long as the resin sheet or the metal foil with resin is laminated as the outermost layer of the substrate material. it can.

また、この遠赤外線放射率の高い樹脂層を最外層に備えた基板材料を用いて、その基板の回路上に各種プロセスで部品実装することにより、放熱性に非常に優れた部品実装基板が得られる。   Also, by using a substrate material with this far-infrared emissivity resin layer as the outermost layer and mounting the component on the circuit of the substrate by various processes, a component mounting board with extremely excellent heat dissipation can be obtained. It is done.

これらの製造方法の具体的な例示としては、例えば、図7に示すように金属基板5を用いた部品実装基板の場合、回路形成前の金属基板の金属側に本発明品である樹脂シート1を170℃1時間で真空加熱プレス成型にて積層した後、回路形成する。さらにその回路上に実装部品6を実装することで遠赤外線放射率の高い樹脂層を金属側の最外層に有して、放熱性に非常に優れた部品実装基板を得ることができる。なお、図7(A)は樹脂シート1を金属基板の最外層に直接積層した実施形態であり、図7(B)は樹脂付金属箔を金属基板の最外層に積層した実施形態を示す。   As specific examples of these manufacturing methods, for example, in the case of a component mounting board using a metal substrate 5 as shown in FIG. 7, the resin sheet 1 according to the present invention is placed on the metal side of the metal substrate before circuit formation. Are laminated by vacuum heating press molding at 170 ° C. for 1 hour, and a circuit is formed. Further, by mounting the mounting component 6 on the circuit, a resin layer having a high far-infrared emissivity is provided on the outermost layer on the metal side, and a component mounting board having excellent heat dissipation can be obtained. 7A shows an embodiment in which the resin sheet 1 is directly laminated on the outermost layer of the metal substrate, and FIG. 7B shows an embodiment in which a metal foil with resin is laminated on the outermost layer of the metal substrate.

以下に、本発明について、実施例によりさらに具体的に説明する。なお、本発明は以下の実施例により何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited at all by the following examples.

(実施例1)
エポキシ樹脂(DIC株式会社製 EPICLON840S)11.8質量%とジシアンジアミド(試薬)0.7質量%を混合した。これにアルミナフィラー(昭和電工社製 CB−A05S)を87.5質量%含有させて得られた樹脂組成物に溶剤(ジメチルホルムアミド、DMF)を6質量%加えてプラネタリーミキサーで混練した。次に、得られたスラリーを50μmの厚みで粗化PETフィルム(Ra=0.2μm粗化処理品、東レ社製、厚み0.05mm)に塗布して、120〜130℃で7〜15分間加熱乾燥し、溶剤を除去するとともに樹脂成分を半硬化(Bステージ化)させ、Bステージ状の樹脂シートを作成した。
Example 1
11.8% by mass of an epoxy resin (EPICLON 840S manufactured by DIC Corporation) and 0.7% by mass of dicyandiamide (reagent) were mixed. 6 mass% of a solvent (dimethylformamide, DMF) was added to a resin composition obtained by containing 87.5 mass% of alumina filler (CB-A05S manufactured by Showa Denko KK) and kneaded with a planetary mixer. Next, the obtained slurry was applied to a roughened PET film (Ra = 0.2 μm roughened product, manufactured by Toray Industries, Inc., thickness 0.05 mm) with a thickness of 50 μm, and 120 to 130 ° C. for 7 to 15 minutes. Heat drying was performed to remove the solvent, and the resin component was semi-cured (B-staged) to prepare a B-stage resin sheet.

(実施例2)
エポキシ樹脂(DIC株式会社製 EPICLON840S)19.1質量%とジシアンジアミド(試薬)1.1質量%を混合した。これにシリカフィラー(アドマテックス社製 SO−25R)を79.8質量%含有させ得られた樹脂組成物に溶剤(DMF)を6質量%加えてプラネタリーミキサーで混練した。次に、得られたスラリーを50μmの厚みで粗化PETフィルム(Ra=0.2μm粗化処理品、東レ社製、厚み0.05mm)に塗布して、120〜130℃で7〜15分間加熱乾燥し、溶剤を除去するとともに樹脂成分を半硬化(Bステージ化)させ、Bステージ状の樹脂シートを作成した。
(Example 2)
Epoxy resin (EPICLON 840S manufactured by DIC Corporation) 19.1% by mass and dicyandiamide (reagent) 1.1% by mass were mixed. 6% by mass of a solvent (DMF) was added to the resulting resin composition containing 79.8% by mass of silica filler (SO-25R manufactured by Admatechs) and kneaded with a planetary mixer. Next, the obtained slurry was applied to a roughened PET film (Ra = 0.2 μm roughened product, manufactured by Toray Industries, Inc., thickness 0.05 mm) with a thickness of 50 μm, and 120 to 130 ° C. for 7 to 15 minutes. Heat drying was performed to remove the solvent, and the resin component was semi-cured (B-staged) to prepare a B-stage resin sheet.

(実施例3)
エポキシ樹脂(DIC株式会社製 EPICLON840S)12.9質量%とジシアンジアミド(試薬)0.7質量%を混合した。これにシリカフィラー(アドマテックス社製 SO−25R)を86.4質量%含有させ得られた樹脂組成物に溶剤(DMF)を9質量%加えてプラネタリーミキサーで混練した。次に、得られたスラリーを50μmの厚みでアルミ箔(20μm厚み)上に塗布し、120〜130℃で7〜15分間加熱乾燥し、樹脂付金属箔を得た。この樹脂層の上に粗化PETフィルム(Ra=0.2μm粗化処理品、、東レ社製、厚み0.05mm)を80℃の熱圧着で貼り合せて、170℃で15分加熱することにより、表面粗度をもった樹脂層が形成された樹脂付金属箔を得た。
(Example 3)
12.9% by mass of an epoxy resin (EPICLON 840S manufactured by DIC Corporation) and 0.7% by mass of dicyandiamide (reagent) were mixed. 9 mass% of solvent (DMF) was added to the resin composition obtained by containing 86.4 mass% of silica filler (manufactured by Admatechs Corporation SO-25R) and kneaded with a planetary mixer. Next, the obtained slurry was applied on an aluminum foil (20 μm thickness) with a thickness of 50 μm and dried by heating at 120 to 130 ° C. for 7 to 15 minutes to obtain a metal foil with resin. A roughened PET film (Ra = 0.2 μm roughened product, manufactured by Toray Industries, Inc., thickness 0.05 mm) is bonded onto this resin layer by thermocompression bonding at 80 ° C. and heated at 170 ° C. for 15 minutes. Thus, a resin-coated metal foil in which a resin layer having a surface roughness was formed was obtained.

(実施例4)
エポキシ樹脂(DIC株式会社製 EPICLON840S)11.8質量%とジシアンジアミド(試薬)0.7質量%を混合した。これにアルミナフィラー(昭和電工社製 CB−A05S)を87.5質量%含有させ得られた樹脂組成物に溶剤(DMF)を6質量%加えてプラネタリーミキサーで混練した。次に、得られたスラリーを50μmの厚みでアルミ箔(20μm厚み)上に塗布し、120〜130℃で7〜15分間加熱乾燥し、樹脂付金属箔を得た。この樹脂層の上に粗化PETフィルム(Ra=0.2μm粗化処理品、東レ社製、厚み0.05mm)を80℃の熱圧着で貼り合せて、170℃で15分加熱することにより、表面粗度をもった樹脂層が形成された樹脂付金属箔を得た。
Example 4
11.8% by mass of an epoxy resin (EPICLON 840S manufactured by DIC Corporation) and 0.7% by mass of dicyandiamide (reagent) were mixed. 6 mass% of solvent (DMF) was added to the resin composition obtained by containing 87.5 mass% alumina filler (Showa Denko CB-A05S), and kneaded with a planetary mixer. Next, the obtained slurry was applied on an aluminum foil (20 μm thickness) with a thickness of 50 μm and dried by heating at 120 to 130 ° C. for 7 to 15 minutes to obtain a metal foil with resin. By laminating a roughened PET film (Ra = 0.2 μm roughened product, manufactured by Toray Industries, Ltd., thickness 0.05 mm) on this resin layer by thermocompression bonding at 80 ° C. and heating at 170 ° C. for 15 minutes. A metal foil with resin on which a resin layer having surface roughness was formed was obtained.

(実施例5)
エポキシ樹脂(DIC株式会社製 EPICLON840S)7.7質量%とジシアンジアミド(試薬)0.4質量%を混合した。これにアルミナフィラー(昭和電工社製 CB−A05S)を91.9質量%含有させ得られた樹脂組成物に溶剤(DMF)を8質量%加えてプラネタリーミキサーで混練した。次に、得られたスラリーを50μmの厚みでアルミ箔(20μm厚み)上に塗布し、120〜130℃で7〜15分間加熱乾燥し、樹脂付金属箔を得た。この樹脂層の上に粗化PETフィルム(Ra=0.2μm粗化処理品、東レ社製、厚み0.05mm)を80℃の熱圧着で貼り合せて、170℃で15分加熱することにより、表面粗度をもった樹脂層が形成された樹脂付金属箔を得た。
(Example 5)
7.7 mass% of epoxy resin (DICLON840S by DIC Corporation) and 0.4 mass% of dicyandiamide (reagent) were mixed. 8% by mass of a solvent (DMF) was added to the resulting resin composition containing 91.9% by mass of alumina filler (CB-A05S manufactured by Showa Denko KK) and kneaded with a planetary mixer. Next, the obtained slurry was applied on an aluminum foil (20 μm thickness) with a thickness of 50 μm and dried by heating at 120 to 130 ° C. for 7 to 15 minutes to obtain a metal foil with resin. By laminating a roughened PET film (Ra = 0.2 μm roughened product, manufactured by Toray Industries, Ltd., thickness 0.05 mm) on this resin layer by thermocompression bonding at 80 ° C. and heating at 170 ° C. for 15 minutes. A metal foil with resin on which a resin layer having surface roughness was formed was obtained.

(実施例6)
エポキシ樹脂(DIC株式会社製 EPICLON840S)3.8質量%とジシアンジアミド(試薬)0.2質量%を混合した。これにアルミナフィラー(昭和電工社製 CB−A05S)を96.0質量%含有させ得られた樹脂組成物に溶剤(DMF)を8質量%加えてプラネタリーミキサーで混練した。次に、得られたスラリーを50μmの厚みでアルミ箔(20μm厚み)上に塗布し、120〜130℃で7〜15分間加熱乾燥し、樹脂付金属箔を得た。この樹脂層の上に粗化PETフィルム(Ra=0.2μm粗化処理品、東レ社製、厚み0.05mm)を80℃の熱圧着で貼り合せて、170℃で15分加熱することにより、表面粗度をもった樹脂層が形成された樹脂付金属箔を得た。
(Example 6)
3.8% by mass of an epoxy resin (EPICLON840S manufactured by DIC Corporation) and 0.2% by mass of dicyandiamide (reagent) were mixed. 8% by mass of a solvent (DMF) was added to the resulting resin composition containing 96.0% by mass of alumina filler (CB-A05S manufactured by Showa Denko KK), and kneaded by a planetary mixer. Next, the obtained slurry was applied on an aluminum foil (20 μm thickness) with a thickness of 50 μm and dried by heating at 120 to 130 ° C. for 7 to 15 minutes to obtain a metal foil with resin. By laminating a roughened PET film (Ra = 0.2 μm roughened product, manufactured by Toray Industries, Ltd., thickness 0.05 mm) on this resin layer by thermocompression bonding at 80 ° C. and heating at 170 ° C. for 15 minutes. A metal foil with resin on which a resin layer having surface roughness was formed was obtained.

(実施例7)
エポキシ樹脂(DIC株式会社製 EPICLON840S)11.8質量%とジシアンジアミド(試薬)0.7質量%を混合した。これにアルミナフィラー(昭和電工社製 CB−A05S)を87.5質量%含有させ得られた樹脂組成物に溶剤(DMF)を6質量%加えてプラネタリーミキサーで混練した。次に、得られたスラリーを50μmの厚みでアルミ箔(20μm厚み)上に塗布し、120〜130℃で7〜15分間加熱乾燥し、樹脂付金属箔を得た。この樹脂層の上に粗化PETフィルム(Ra=1μm粗化処理品、東レ社製、厚み0.05mm)を80℃の熱圧着で貼り合せて、170℃で15分加熱することにより、表面粗度をもった樹脂層が形成された樹脂付金属箔を得た。
(Example 7)
11.8% by mass of an epoxy resin (EPICLON 840S manufactured by DIC Corporation) and 0.7% by mass of dicyandiamide (reagent) were mixed. 6 mass% of solvent (DMF) was added to the resin composition obtained by containing 87.5 mass% alumina filler (Showa Denko CB-A05S), and kneaded with a planetary mixer. Next, the obtained slurry was applied on an aluminum foil (20 μm thickness) with a thickness of 50 μm and dried by heating at 120 to 130 ° C. for 7 to 15 minutes to obtain a metal foil with resin. A roughened PET film (Ra = 1 μm roughened product, manufactured by Toray Industries, Inc., thickness 0.05 mm) is bonded onto this resin layer by thermocompression bonding at 80 ° C., and heated at 170 ° C. for 15 minutes to obtain a surface. A metal foil with resin on which a resin layer having roughness was formed was obtained.

(実施例8)
エポキシ樹脂(DIC株式会社製 EPICLON840S)11.8質量%とジシアンジアミド(試薬)0.7質量%を混合した。これにアルミナフィラー(昭和電工社製 CB−A05S)を87.5質量%含有させ得られた樹脂組成物に溶剤(DMF)を6質量%加えてプラネタリーミキサーで混練した。次に、得られたスラリーを50μmの厚みでアルミ箔(20μm厚み)上に塗布し、120〜130℃で7〜15分間加熱乾燥し、樹脂付金属箔を得た。この樹脂層の上に粗化PETフィルム(Ra=1μm粗化処理品、東レ社製、厚み0.05mm)を80℃の熱圧着で貼り合せて、170℃で15分加熱することにより、表面粗度をもった樹脂層が形成された樹脂付金属箔を得た。
(Example 8)
11.8% by mass of an epoxy resin (EPICLON 840S manufactured by DIC Corporation) and 0.7% by mass of dicyandiamide (reagent) were mixed. 6 mass% of solvent (DMF) was added to the resin composition obtained by containing 87.5 mass% alumina filler (Showa Denko CB-A05S), and kneaded with a planetary mixer. Next, the obtained slurry was applied on an aluminum foil (20 μm thickness) with a thickness of 50 μm and dried by heating at 120 to 130 ° C. for 7 to 15 minutes to obtain a metal foil with resin. A roughened PET film (Ra = 1 μm roughened product, manufactured by Toray Industries, Inc., thickness 0.05 mm) is bonded onto this resin layer by thermocompression bonding at 80 ° C., and heated at 170 ° C. for 15 minutes to obtain a surface. A metal foil with resin on which a resin layer having roughness was formed was obtained.

(比較例1)
比較のための基板材料として、銅張両面板(パナソニック電工社製CCL:R−1766)を準備した。
(Comparative Example 1)
A copper-clad double-sided board (CCL: R-1766 manufactured by Panasonic Electric Works Co., Ltd.) was prepared as a substrate material for comparison.

(比較例2)
エポキシ樹脂(DIC株式会社製 EPICLON840S)94.6質量%とジシアンジアミド(試薬)5.4質量%を混合して得られた樹脂組成物に溶剤(DMF)を15質量%加えて、ホモディスパーにて攪拌した。次に、得られたスラリーを50μmの厚みでアルミ箔(20μm厚み)上に塗布し、120〜130℃で7〜15分間加熱乾燥し、樹脂付金属箔を得た。この樹脂層の上に粗化PETフィルム(Ra=0.2μm粗化処理品、東レ社製、厚み0.05mm)を80℃の熱圧着で貼り合せて、170℃で15分加熱することにより、表面粗度をもった樹脂層が形成された樹脂付金属箔を得た。
(Comparative Example 2)
15% by mass of a solvent (DMF) was added to a resin composition obtained by mixing 94.6% by mass of an epoxy resin (EPICLON 840S manufactured by DIC Corporation) and 5.4% by mass of dicyandiamide (reagent). Stir. Next, the obtained slurry was applied on an aluminum foil (20 μm thickness) with a thickness of 50 μm and dried by heating at 120 to 130 ° C. for 7 to 15 minutes to obtain a metal foil with resin. By laminating a roughened PET film (Ra = 0.2 μm roughened product, manufactured by Toray Industries, Ltd., thickness 0.05 mm) on this resin layer by thermocompression bonding at 80 ° C. and heating at 170 ° C. for 15 minutes. A metal foil with resin on which a resin layer having surface roughness was formed was obtained.

(比較例3)
エポキシ樹脂(DIC株式会社製 EPICLON840S)17.8質量%とジシアンジアミド(試薬)1.0質量%を混合した。これに水酸化アルミニウムフィラー(住友化学社製 C−303)を81.2質量%含有させ得られた樹脂組成物に溶剤(DMF)を8質量%加えて、プラネタリーミキサーで混練した。次に、得られたスラリーを50μmの厚みでアルミ箔(20μm厚み)上に塗布し、120〜130℃で7〜15分間加熱乾燥し、樹脂付金属箔を得た。この樹脂層の上に粗化PETフィルム(Ra=0.2μm粗化処理品、東レ社製、厚み0.05mm)を80℃の熱圧着で貼り合せて、170℃で15分加熱することにより、表面粗度をもった樹脂層が形成された樹脂付金属箔を得た。。
(Comparative Example 3)
17.8% by mass of an epoxy resin (EPICLON 840S manufactured by DIC Corporation) and 1.0% by mass of dicyandiamide (reagent) were mixed. 8% by mass of a solvent (DMF) was added to the resin composition obtained by adding 81.2% by mass of an aluminum hydroxide filler (C-303 manufactured by Sumitomo Chemical Co., Ltd.) and kneaded with a planetary mixer. Next, the obtained slurry was applied on an aluminum foil (20 μm thickness) with a thickness of 50 μm and dried by heating at 120 to 130 ° C. for 7 to 15 minutes to obtain a metal foil with resin. By laminating a roughened PET film (Ra = 0.2 μm roughened product, manufactured by Toray Industries, Ltd., thickness 0.05 mm) on this resin layer by thermocompression bonding at 80 ° C. and heating at 170 ° C. for 15 minutes. A metal foil with resin on which a resin layer having surface roughness was formed was obtained. .

(比較例4)
エポキシ樹脂(DIC株式会社製 EPICLON840S)6.0質量%とジシアンジアミド(試薬)0.3質量%を混合した。これに水酸化アルミニウムフィラー(住友化学社製 C−303)を93.7質量%含有させ、得られた樹脂組成物に溶剤(DMF)を6質量%加えて、プラネタリーミキサーで混練した。次に、得られたスラリーを50μmの厚みでアルミ箔(20μm厚み)上に塗布し、120〜130℃で7〜15分間加熱乾燥し、樹脂付金属箔を得た。この樹脂層の上に粗化PETフィルム(Ra=0.2μm粗化処理品、東レ社製、厚み0.05mm)を80℃の熱圧着で貼り合せて、170℃で15分加熱することにより、表面粗度をもった樹脂層が形成された樹脂付金属箔を得た。
(Comparative Example 4)
An epoxy resin (EPICLON 840S manufactured by DIC Corporation) 6.0 mass% and dicyandiamide (reagent) 0.3 mass% were mixed. To this was added 93.7% by mass of an aluminum hydroxide filler (C-303 manufactured by Sumitomo Chemical Co., Ltd.), 6% by mass of a solvent (DMF) was added to the obtained resin composition, and the mixture was kneaded with a planetary mixer. Next, the obtained slurry was applied on an aluminum foil (20 μm thickness) with a thickness of 50 μm and dried by heating at 120 to 130 ° C. for 7 to 15 minutes to obtain a metal foil with resin. By laminating a roughened PET film (Ra = 0.2 μm roughened product, manufactured by Toray Industries, Ltd., thickness 0.05 mm) on this resin layer by thermocompression bonding at 80 ° C. and heating at 170 ° C. for 15 minutes. A metal foil with resin on which a resin layer having surface roughness was formed was obtained.

(比較例5)
エポキシ樹脂(DIC株式会社製 EPICLON840S)17.2質量%とジシアンジアミド(試薬)1.0質量%を混合した。これにアルミナフィラー(昭和電工社製 CB−A05S)を81.8質量%含有させ得られた樹脂組成物に溶剤(DMF)を8質量%加えて、プラネタリーミキサーで混練した。次に、得られたスラリーを50μmの厚みでアルミ箔(20μm厚み)上に塗布し、120〜130℃で7〜15分間加熱乾燥し、樹脂付金属箔を得た。この樹脂層の上に粗化PETフィルム(Ra=0.2μm粗化処理品、東レ社製、厚み0.05mm)を80℃の熱圧着で貼り合せて、170℃で15分加熱することにより、表面粗度をもった樹脂層が形成された樹脂付金属箔を得た。
(Comparative Example 5)
Epoxy resin (EPICLON 840S manufactured by DIC Corporation) 17.2% by mass and dicyandiamide (reagent) 1.0% by mass were mixed. 8% by mass of a solvent (DMF) was added to the resulting resin composition containing 81.8% by mass of alumina filler (CB-A05S manufactured by Showa Denko KK) and kneaded with a planetary mixer. Next, the obtained slurry was applied on an aluminum foil (20 μm thickness) with a thickness of 50 μm and dried by heating at 120 to 130 ° C. for 7 to 15 minutes to obtain a metal foil with resin. By laminating a roughened PET film (Ra = 0.2 μm roughened product, manufactured by Toray Industries, Ltd., thickness 0.05 mm) on this resin layer by thermocompression bonding at 80 ° C. and heating at 170 ° C. for 15 minutes. A metal foil with resin on which a resin layer having surface roughness was formed was obtained.

(比較例6)
エポキシ樹脂(DIC株式会社製 EPICLON840S)11.8質量%とジシアンジアミド(試薬)0.7質量%を混合した。これにアルミナフィラー(昭和電工社製 CB−A05S)を87.5質量%含有させ得られた樹脂組成物に溶剤(DMF)を6質量%加えて、プラネタリーミキサーで混練した。次に、得られたスラリーを50μmの厚みでアルミ箔(20μm厚み)上に塗布し、120〜130℃で7〜15分間加熱乾燥し、樹脂付金属箔を得た。この樹脂層の上に粗化PETフィルム(Ra=0.05μm粗化処理品、東レ社製、厚み0.05mm)を80℃の熱圧着で貼り合せて、170℃で15分加熱することにより、表面粗度をもった樹脂層が形成された樹脂付金属箔を得た。
(Comparative Example 6)
11.8% by mass of an epoxy resin (EPICLON 840S manufactured by DIC Corporation) and 0.7% by mass of dicyandiamide (reagent) were mixed. 6 mass% of solvent (DMF) was added to the resin composition obtained by containing 87.5 mass% of alumina filler (Showa Denko CB-A05S), and kneaded with a planetary mixer. Next, the obtained slurry was applied on an aluminum foil (20 μm thickness) with a thickness of 50 μm and dried by heating at 120 to 130 ° C. for 7 to 15 minutes to obtain a metal foil with resin. By bonding a roughened PET film (Ra = 0.05 μm roughened product, manufactured by Toray Industries, Inc., thickness 0.05 mm) onto this resin layer by thermocompression bonding at 80 ° C. and heating at 170 ° C. for 15 minutes. A metal foil with resin on which a resin layer having surface roughness was formed was obtained.

(比較例7)
エポキシ樹脂(DIC株式会社製 EPICLON840S)3.8質量%とジシアンジアミド(試薬)0.2質量%を混合した。これにアルミナフィラー(昭和電工社製 CB−A05S)を96.0質量%含有させ得られた樹脂組成物に溶剤(DMF)を8質量%加えて、プラネタリーミキサーで混練した。次に、得られたスラリーを50μmの厚みでアルミ箔(20μm厚み)上に塗布し、120〜130℃で7〜15分間加熱乾燥し、樹脂付金属箔を得た。この樹脂層の上に粗化PETフィルム(Ra=0.05μm粗化処理品、東レ社製、厚み0.05mm)を80℃の熱圧着で貼り合せて、170℃で15分加熱することにより、表面粗度をもった樹脂層が形成された樹脂付金属箔を得た。
(Comparative Example 7)
3.8% by mass of an epoxy resin (EPICLON840S manufactured by DIC Corporation) and 0.2% by mass of dicyandiamide (reagent) were mixed. 8% by mass of a solvent (DMF) was added to the resulting resin composition containing 96.0% by mass of alumina filler (CB-A05S manufactured by Showa Denko KK) and kneaded with a planetary mixer. Next, the obtained slurry was applied on an aluminum foil (20 μm thickness) with a thickness of 50 μm and dried by heating at 120 to 130 ° C. for 7 to 15 minutes to obtain a metal foil with resin. By bonding a roughened PET film (Ra = 0.05 μm roughened product, manufactured by Toray Industries, Inc., thickness 0.05 mm) onto this resin layer by thermocompression bonding at 80 ° C. and heating at 170 ° C. for 15 minutes. A metal foil with resin on which a resin layer having surface roughness was formed was obtained.

<評価>
(遠赤外線放射率測定)
比較例1を除く上記の実施例と比較例で得られた樹脂シートもしくは樹脂付金属箔の樹脂層について、100℃の加熱時の遠赤外線放射率を変換赤外分光光度計により測定(JIS R 1801)した。測定値については、波長4〜15μmの遠赤外線領域での平均放射率として表1に示す。
<Evaluation>
(Far infrared emissivity measurement)
With respect to the resin layers of the resin sheets or resin-coated metal foils obtained in the above Examples and Comparative Examples except for Comparative Example 1, the far-infrared emissivity when heated at 100 ° C. was measured with a conversion infrared spectrophotometer (JIS R 1801). About a measured value, it shows in Table 1 as an average emissivity in the far-infrared area | region of wavelength 4-15 micrometers.

(放熱性試験)
比較例1を除く上記の実施例と比較例で得られた樹脂シートもしくは樹脂付金属箔に、さらにエポキシ系樹脂シート(パナソニック電工(株)製CV2008)を接着層として積層し、基板材料に樹脂層が最外層となるように貼り付けた。ここで基板材料としては、銅張両面板(パナソニック電工社製CCL:R−1766)を用いた。樹脂シートもしくは樹脂付金属箔を張り合わせて得られた基板材料の樹脂層側とは反対の表面に発熱部品(チップ抵抗を複数搭載した発熱部品(自作品))を実装して放熱性試験サンプルとした。
(Heat dissipation test)
An epoxy resin sheet (CV2008 manufactured by Panasonic Electric Works Co., Ltd.) is further laminated as an adhesive layer on the resin sheet or resin-coated metal foil obtained in the above examples and comparative examples except for Comparative Example 1, and the resin is used as a substrate material. The layers were pasted so as to be the outermost layer. Here, a copper-clad double-sided plate (CCL: R-1766 manufactured by Panasonic Electric Works Co., Ltd.) was used as the substrate material. A heat dissipation test sample by mounting a heat-generating component (a heat-generating component with multiple chip resistors (original work)) on the surface opposite to the resin layer side of the substrate material obtained by laminating a resin sheet or metal foil with resin did.

比較例1については、準備した基板材料の表面に同様の発熱部品を実装して放熱性試験サンプルとした。   For Comparative Example 1, a similar heat-generating component was mounted on the surface of the prepared substrate material to obtain a heat dissipation test sample.

発熱部品を2.5Wの電力を印加した時に各サンプル上の部品温度がどのように上昇するかを測定した。   It was measured how the component temperature on each sample increased when 2.5 W of power was applied to the heat generating component.

各サンプルの、各経過時間(0秒、30秒、60秒、120秒、240秒、360秒、480秒、600秒)における部品の上昇温度測定結果を表1に示す。   Table 1 shows the measurement results of the temperature rise of the parts at each elapsed time (0 seconds, 30 seconds, 60 seconds, 120 seconds, 240 seconds, 360 seconds, 480 seconds, 600 seconds) for each sample.

なお、表1中のそれぞれのフィラー体積率は:以下の計算式によって求めた値である:体積率=フィラー重量×フィラー比重/(樹脂成分重量×樹脂成分比重+フィラー重量×
フィラー比重)。
In addition, each filler volume ratio in Table 1 is a value obtained by the following calculation formula: volume ratio = filler weight × filler specific gravity / (resin component weight × resin component specific gravity + filler weight ×
Filler specific gravity).

Figure 0005828094
(結果)
表1の結果からも明らかなように、本発明の実施例に係る樹脂シートおよび樹脂付金属箔は、比較例に係るそれらよりも有意に放熱性に優れていた。
Figure 0005828094
(result)
As is clear from the results in Table 1, the resin sheet and the resin-attached metal foil according to the example of the present invention were significantly superior in heat dissipation than those according to the comparative example.

(実施例9)
実施例1の樹脂シートを樹脂層がアルミニウム側の最外層となるようにアルミニウム基板材料に貼り付けて積層した。ここでアルミニウム基板材料としては、銅箔(福田金属社製、厚み:35μm)とFR−4のプリプレグ(パナソニック電工製 R−1766)をアルミニウム金属板(1mm厚み)へ積層して作製したアルミニウム基板を用いた。樹脂シートを張り合わせて得られたアルミニウム基板の銅箔側の表面に発熱部品(チップ抵抗を複数搭載した発熱部品(自作品))を実装して放熱性試験サンプルとした。
Example 9
The resin sheet of Example 1 was laminated on an aluminum substrate material so that the resin layer became the outermost layer on the aluminum side. Here, as an aluminum substrate material, an aluminum substrate prepared by laminating copper foil (Fukuda Metal Co., Ltd., thickness: 35 μm) and FR-4 prepreg (Panasonic Electric Works R-1766) on an aluminum metal plate (1 mm thickness). Was used. A heat generating component (a heat generating component (manufactured with a plurality of chip resistors) mounted thereon) was mounted on the surface of the copper foil side of the aluminum substrate obtained by laminating the resin sheets to obtain a heat dissipation test sample.

(実施例10)
上記実施例5で得られたスラリーを50μmの厚みで粗化PETフィルム(Ra=0.2μm粗化処理品、東レ社製、厚み0.05mm)に塗布して、120〜130℃で7〜15分間加熱乾燥し、溶剤を除去するとともに樹脂成分を半硬化(Bステージ化)させ、Bステージ状の樹脂シートを作成した。
(Example 10)
The slurry obtained in Example 5 was applied to a roughened PET film (Ra = 0.2 μm roughened product, manufactured by Toray Industries, Inc., thickness 0.05 mm) with a thickness of 50 μm, and 7 to 120 ° C. at 120 to 130 ° C. The mixture was heated and dried for 15 minutes to remove the solvent, and the resin component was semi-cured (B-stage) to prepare a B-stage resin sheet.

この樹脂シートを用いて、実施例9と同様の方法で放熱性試験サンプルを得た。   Using this resin sheet, a heat dissipation test sample was obtained in the same manner as in Example 9.

(比較例8)
樹脂シートを用いない以外は、実施例9と同様にして放熱性試験サンプルとした。
(Comparative Example 8)
A heat dissipation test sample was prepared in the same manner as in Example 9 except that no resin sheet was used.

(比較例9)
上記比較例2の樹脂シートを用いて、実施例9と同様の方法で放熱性試験サンプルを得た。
(Comparative Example 9)
Using the resin sheet of Comparative Example 2 above, a heat dissipation test sample was obtained in the same manner as in Example 9.

<評価>
(放熱性試験)
実施例9〜10および比較例8〜9の発熱部品を2.5Wの電力を印加した時に各サンプル上の部品温度がどのように上昇するかを測定した。
<Evaluation>
(Heat dissipation test)
It was measured how the component temperature on each sample rose when 2.5 W of power was applied to the heat generating components of Examples 9 to 10 and Comparative Examples 8 to 9.

各サンプルの、各経過時間(0秒、30秒、60秒、120秒、240秒、360秒、480秒、600秒)における部品の上昇温度測定結果を表2に示す。   Table 2 shows the results of measuring the temperature rise of each part at each elapsed time (0 seconds, 30 seconds, 60 seconds, 120 seconds, 240 seconds, 360 seconds, 480 seconds, 600 seconds).

Figure 0005828094
(結果)
表2の結果からも明らかなように、本発明の実施例に係る金属基板は、比較例に係るそれらよりも有意に放熱性に優れていた。
Figure 0005828094
(result)
As is clear from the results in Table 2, the metal substrate according to the example of the present invention was significantly superior in heat dissipation than those according to the comparative example.

以上、説明したように、本発明の一局面である樹脂シートは、少なくとも樹脂及び酸化物系フィラーを含有する樹脂層を有する樹脂シートであって、前記酸化物系フィラーが樹脂層中に70〜90体積%で充填され、かつ表面粗度がRa0.1〜5μmであることを特徴とする。このような構成により、きわめて高い放熱性を有し、取り扱いが簡便な樹脂シートを得ることができる。この樹脂シートは、放熱フィンなどの放熱冶具が使用できない場合に特に有用である。   As described above, the resin sheet according to one aspect of the present invention is a resin sheet having a resin layer containing at least a resin and an oxide filler, and the oxide filler is 70 to in the resin layer. It is filled with 90% by volume and has a surface roughness of Ra 0.1 to 5 μm. With such a configuration, it is possible to obtain a resin sheet having extremely high heat dissipation and easy handling. This resin sheet is particularly useful when a heat dissipation jig such as a heat dissipation fin cannot be used.

さらに、前記酸化物系フィラーが遠赤外線放射率に非常に優れているアルミナを含むことにより、きわめて高い放熱性を有する樹脂シートを確実に得ることができる。   Furthermore, when the oxide filler contains alumina which is very excellent in far-infrared emissivity, a resin sheet having extremely high heat dissipation can be reliably obtained.

前記樹脂シートは、遠赤外線放射率が90%以上であることがさらに望ましい。   More preferably, the resin sheet has a far-infrared emissivity of 90% or more.

本発明の他の局面である樹脂付金属箔は、少なくとも樹脂及び酸化物系フィラーを含有する樹脂層が金属箔上に形成されており、前記酸化物系フィラーが樹脂層中に70〜90体積%で充填され、かつ前記樹脂層の表面粗度がRa0.1〜5μmであることを特徴とする。このような構成により、きわめて高い放熱性を有し、取り扱いが簡便な樹脂付金属箔を得ることができる。   In the metal foil with resin which is another aspect of the present invention, a resin layer containing at least a resin and an oxide filler is formed on the metal foil, and the oxide filler is 70 to 90 volumes in the resin layer. %, And the surface roughness of the resin layer is Ra 0.1 to 5 μm. With such a configuration, it is possible to obtain a resin-attached metal foil having extremely high heat dissipation and easy handling.

また、樹脂層とは反対側にさらに接着層が設けられていることがより好ましい。これにより、本発明に係る樹脂付金属箔を回路基板などによりラミネートしやすくなる。   More preferably, an adhesive layer is further provided on the side opposite to the resin layer. Thereby, it becomes easy to laminate the resin-coated metal foil according to the present invention on a circuit board or the like.

本発明のさらなる局面である基板材料は、上述したような樹脂付金属箔が、基板材料の最外層に積層されていることを特徴とする。このように遠赤外線放射率の高い樹脂層を最外層に有する基板材料を用いることにより、電子部品などから内部の熱を外部へ効率的に放散させることができる。   A substrate material which is a further aspect of the present invention is characterized in that the resin-coated metal foil as described above is laminated on the outermost layer of the substrate material. By using the substrate material having the resin layer having a high far-infrared emissivity as the outermost layer in this way, it is possible to efficiently dissipate internal heat from the electronic component or the like to the outside.

特に、基板材料が金属基板である場合には、表面に実装される電子部品からの発熱を金属基板を通して放熱する機能が強く要求されるため、上述したような遠赤外線放射率の高い樹脂層を有する樹脂シートや樹脂付金属箔は、金属基板などの基板材料に用いると非常に有用性が高い。   In particular, when the substrate material is a metal substrate, a function to dissipate heat from electronic components mounted on the surface through the metal substrate is strongly required. The resin sheet and the resin-attached metal foil are very useful when used as a substrate material such as a metal substrate.

また、本発明には、さらなる局面として、前記基板材料に部品を実装して得られる部品実装基板も包含される。   Moreover, the component mounting board | substrate obtained by mounting components in the said board | substrate material is also included by this invention as the further situation.

1 樹脂シート
2 金属箔
3 接着層
4 基板材料
5 金属基板
6 実装部品
DESCRIPTION OF SYMBOLS 1 Resin sheet 2 Metal foil 3 Adhesive layer 4 Substrate material 5 Metal substrate 6 Mounting component

Claims (8)

少なくとも樹脂及び酸化物系フィラーを含有する樹脂層を有する樹脂シートであって、
前記酸化物系フィラーが樹脂層中に70〜90体積%で充填され、かつ表面粗度がRa0.1〜5μmであり、
100℃に加熱時の放射率を変換赤外分光光度計により測定し、4〜15μmの遠赤外線領域の平均放射率で表した遠赤外線放射率が90%以上である、樹脂シート。
A resin sheet having a resin layer containing at least a resin and an oxide filler,
Wherein the oxide-based filler is filled in 70 to 90% by volume in the resin layer, and the surface roughness Ri Ra0.1~5μm der,
A resin sheet in which the emissivity during heating at 100 ° C. is measured with a conversion infrared spectrophotometer, and the far-infrared emissivity represented by the average emissivity in the far-infrared region of 4 to 15 μm is 90% or more .
前記酸化物系フィラーがアルミナを含む、請求項1に記載の樹脂シート。   The resin sheet according to claim 1, wherein the oxide filler includes alumina. 少なくとも樹脂及び酸化物系フィラーを含有する樹脂層が金属箔上に形成されており、前記酸化物系フィラーが樹脂層中に70〜90体積%で充填され、かつ前記樹脂層の表面粗度がRa0.1〜5μmであり、
100℃に加熱時の放射率を変換赤外分光光度計により測定し、4〜15μmの遠赤外線領域の平均放射率で表した遠赤外線放射率が90%以上である、樹脂付金属箔。
A resin layer containing at least a resin and an oxide filler is formed on the metal foil, the oxide filler is filled in the resin layer at 70 to 90% by volume, and the surface roughness of the resin layer is Ra0.1~5μm der is,
A metal foil with a resin, wherein the emissivity at the time of heating to 100 ° C. is measured with a conversion infrared spectrophotometer, and the far infrared emissivity expressed by the average emissivity in the far infrared region of 4 to 15 μm is 90% or more .
樹脂層とは反対側にさらに接着層が設けられた、請求項に記載の樹脂付金属箔。 The metal foil with a resin according to claim 3 , wherein an adhesive layer is further provided on the side opposite to the resin layer. 請求項1または2に記載の樹脂シートが、基板材料の最外層に直接積層されている、基板材料。 A substrate material, wherein the resin sheet according to claim 1 or 2 is directly laminated on the outermost layer of the substrate material. 請求項に記載の樹脂付金属箔が、基板材料の最外層に積層されている、基板材料。 A substrate material, wherein the resin-coated metal foil according to claim 4 is laminated on the outermost layer of the substrate material. 金属基板である、請求項又は請求項に記載の基板材料。 The substrate material according to claim 5 or 6 , which is a metal substrate. 請求項のいずれかに記載の基板材料に部品を実装して得られる、部品実装基板。 A substrate material according to any one of claims 5-7 obtained by mounting components, the component mounting board.
JP2011030595A 2010-12-20 2011-02-16 Resin sheet, metal foil with resin, board material and component mounting board Active JP5828094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011030595A JP5828094B2 (en) 2010-12-20 2011-02-16 Resin sheet, metal foil with resin, board material and component mounting board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010282604 2010-12-20
JP2010282604 2010-12-20
JP2011030595A JP5828094B2 (en) 2010-12-20 2011-02-16 Resin sheet, metal foil with resin, board material and component mounting board

Publications (2)

Publication Number Publication Date
JP2012144687A JP2012144687A (en) 2012-08-02
JP5828094B2 true JP5828094B2 (en) 2015-12-02

Family

ID=46788585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011030595A Active JP5828094B2 (en) 2010-12-20 2011-02-16 Resin sheet, metal foil with resin, board material and component mounting board

Country Status (1)

Country Link
JP (1) JP5828094B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244128B2 (en) * 2013-07-17 2017-12-06 日東シンコー株式会社 Thermally conductive sheet and thermally conductive sheet with release sheet
JP6364614B2 (en) * 2014-05-09 2018-08-01 パナソニックIpマネジメント株式会社 High thermal radiation resin composition
JP6501075B2 (en) 2016-02-24 2019-04-17 パナソニックIpマネジメント株式会社 Resin structure and electronic component and electronic device using the structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3351852B2 (en) * 1992-04-20 2002-12-03 電気化学工業株式会社 Insulating material and circuit board using the same
JPH09331123A (en) * 1996-06-13 1997-12-22 Furukawa Electric Co Ltd:The Metallic base multilayer wiring board
JP2003229508A (en) * 2001-11-28 2003-08-15 Nitto Shinko Kk High heat dissipation insulating substrate and module using it
JP4672425B2 (en) * 2005-04-19 2011-04-20 電気化学工業株式会社 Metal base circuit board, manufacturing method thereof, and hybrid integrated circuit using the same
JP2007115837A (en) * 2005-10-19 2007-05-10 Matsushita Electric Ind Co Ltd Module with built-in semiconductor and its production method
JP2007153969A (en) * 2005-12-02 2007-06-21 Showa Denko Kk Highly heat-conductive resin composition and substrate for wiring
JP2010218975A (en) * 2009-03-18 2010-09-30 Sekisui Chem Co Ltd Insulating sheet, laminated plate, and multilayer laminated plate

Also Published As

Publication number Publication date
JP2012144687A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5338187B2 (en) Inorganic filler-containing resin composition, prepreg, laminate and wiring board
JP2014167053A (en) High thermal conductivity prepreg, printed wiring board and multilayer printed wiring board using prepreg, and semiconductor device using multilayer printed wiring board
JP2010053224A (en) Thermally conductive resin sheet, heat conduction plate, thermally conductive printed wiring board and radiating member
JP2009024126A (en) Polymer composition, thermally-conductive sheet, highly thermally-conductive adhesive sheet with metal foil, highly thermally-conductive adhesive sheet with metal plate, metal-based circuit board and power module
JP5547032B2 (en) Thermally conductive resin composition, resin sheet, prepreg, metal laminate and printed wiring board
JP2007314782A (en) Resin composition, prepreg, laminated board and wiring board
JP2008297429A (en) Adhesive composition, adhesive sheet and copper foil with adhesive agent
JP5828094B2 (en) Resin sheet, metal foil with resin, board material and component mounting board
JP5904256B2 (en) Resin composition
JP2012102227A (en) Epoxy resin precursor composition, prepreg, laminated plate, resin sheet, printed wiring board and semiconductor device
JP2007329371A (en) Laminate circuit board
JP2010229368A (en) Epoxy resin composition and prepreg, laminated board, and wiring board
KR101254035B1 (en) Adhesive composition of metal copper clad laminate for high efficiency radiating pcb
JP5644823B2 (en) Resin composition
WO2011122232A1 (en) Metal support flexible board, metal support carrier tape for tape automated bonding using same, metal support flexible circuit board for mounting led, and copper foil-laminated metal support flexible circuit board for forming circuit
JP2003193016A (en) Highly thermo resistant adhesive film with high heat dissipation
JPH10330696A (en) Adhesive film for multilayer printed circuit board
JP2006036869A (en) Prepreg, laminate and printed wiring board
JP4765975B2 (en) Laminated board and printed wiring board using the same
JP4706468B2 (en) Resin composition, prepreg, and laminate and printed wiring board using the same
JP2010087402A (en) Method of manufacturing multilayered board for printed wiring board
JP2006082370A (en) Laminate and wiring board
JP7124355B2 (en) Resin substrate
JP2001316591A (en) Insulating material composition, metal foil with insulating material, insulating material with metal foil on both surfaces, and metal-clad laminated board
JP2012091322A (en) High thermal conductive laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141009

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150521

R151 Written notification of patent or utility model registration

Ref document number: 5828094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151