JP2004182851A - Resin composition, prepreg, and printed wiring board therewith - Google Patents

Resin composition, prepreg, and printed wiring board therewith Download PDF

Info

Publication number
JP2004182851A
JP2004182851A JP2002351160A JP2002351160A JP2004182851A JP 2004182851 A JP2004182851 A JP 2004182851A JP 2002351160 A JP2002351160 A JP 2002351160A JP 2002351160 A JP2002351160 A JP 2002351160A JP 2004182851 A JP2004182851 A JP 2004182851A
Authority
JP
Japan
Prior art keywords
resin
resin composition
weight
prepreg
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002351160A
Other languages
Japanese (ja)
Other versions
JP3946626B2 (en
Inventor
Masataka Arai
政貴 新井
Takeshi Hozumi
猛 八月朔日
Takayuki Baba
孝幸 馬塲
Tatsuhiro Yoshida
達弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002351160A priority Critical patent/JP3946626B2/en
Publication of JP2004182851A publication Critical patent/JP2004182851A/en
Application granted granted Critical
Publication of JP3946626B2 publication Critical patent/JP3946626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition, a prepreg, and a printed wiring board excellent in heat resistance, low in thermal expansion, and excellent in flame-retardant property. <P>SOLUTION: This resin composition contains as essential components, a cyanate resin and/or its prepolymer, an epoxy resin, a benzoxazine resin, and an inorganic filler. This prepreg is prepared by impregnating the resin composition to a base material. This printed wiring board is manufactured by laminating the prepreg and by heat/pressure molding. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂組成物、プリプレグおよびそれを用いたプリント配線板に関する。
【0002】
【従来の技術】
半導体の分野では高密度実装技術の進歩から従来の面実装からエリア実装に移行していくトレンドが進行し、BGAやCSPなど新しいパッケージが登場、増加しつつある。そのため以前にもましてインターポーザ用リジッド基板が注目されるようになり、高耐熱、低熱膨張基板の要求が高まってきている。
【0003】
さらに近年、電子機器の高機能化等の要求に伴い、電子部品の高密度集積化、更には高密度実装化等が進んでいる。そのため、これらに使用される高密度実装対応のプリント配線板等は、従来にも増して、小型化かつ高密度化が進んでいる。このプリント配線板等の高密度化への対応としてビルドアップ多層配線板が多く採用されている。
しかし、ビルドアップ多層配線板では、微細なビアにより層間接続されるので接続強度が低下するため、高温多湿雰囲気中での機械的、電気的な接続信頼性を保持することが困難といった問題点があった。
【0004】
また、これら半導体に用いられる樹脂部材は難燃性が求められることが多い。従来この難燃性を付与するため、エポキシ樹脂においては臭素化エポキシなどのハロゲン系難燃剤を用いることが一般的であった。しかし、ハロゲン含有化合物はダイオキシン発生の原因となるおそれがあることから、昨今の環境問題の深刻化とともに、ハロゲン系難燃剤を使用することが回避されるようになり、広く産業界にハロゲンフリーの難燃化システムが求められるようになった。このような時代の要求によってリン系難燃剤が脚光を浴び、リン酸エステルや赤リンが検討されたが、これらの従来のリン系難燃剤は加水分解しやすく樹脂との反応に乏しいため、耐半田耐熱性が低下する等の問題があった。
【0005】
【特許文献】
特開2002―80624号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、耐熱性、低熱膨張性および難燃性に優れた樹脂組成物、プリプレグおよびプリント配線板を提供することである。
【0007】
【課題を解決するための手段】
このような目的は、下記(1)〜(9)記載の本発明により達成される。
(1)シアネート樹脂および/またはそのプレポリマーと、エポキシ樹脂と、ベンゾオキサジン樹脂と、無機充填材とを必須成分とする樹脂組成物。
(2)前記シアネート樹脂および/またはそのプレポリマーは、ノボラック型シアネート樹脂及び/またはそのプレポリマーである上記(1)に記載の樹脂組成物。
(3)前記シアネート樹脂および/またはそのプレポリマーの含有量は、樹脂組成物全体の5〜60重量%である上記(1)または(2)に記載の樹脂組成物。
(4)前記エポキシ樹脂は、アリールアルキレン型エポキシ樹脂である上記(1)ないし(3)のいずれかに記載の樹脂組成物。
(5)前記ベンゾオキサジン樹脂は、一分子中に2個以上のベンゾオキサジン環を有する樹脂である上記(1)ないし(4)のいずれかに記載の樹脂組成物。
(6)前記無機充填材は、平均粒径5μm以下の球状シリカである上記(1)または(5)のいずれかに記載の樹脂組成物。
(7)前記無機充填材の含有量は、樹脂組成物全体の30〜80重量%である上記(1)ないし(6)のいずれかに記載の樹脂組成物。
(8)上記(1)ないし(7)のいずれかに記載の樹脂組成物を基材に含浸してなるものであるプリプレグ。
(9)上記(8)に記載のプリプレグに金属箔を積層し、加熱加圧成形してなるプリント配線板。
【0008】
【発明の実施の形態】
以下、本発明の樹脂組成物、プリプレグおよびそれを用いたプリント配線板について詳細に説明する。
本発明の樹脂組成物は、シアネート樹脂および/またはそのプレポリマーと、エポキシ樹脂と、ベンゾオキサジン樹脂と、無機充填材とを必須成分とすることを特徴とするものである。
本発明のプリプレグは、上記樹脂組成物を基材に含浸してなることを特徴とするものである。
本発明のプリント配線板は、上記プリプレグを積層し、加熱加圧成形してなることを特徴とするものである。
【0009】
以下、樹脂組成物に関して説明する。
本発明の樹脂組成物は、例えば基材に含浸してシート状のプリプレグを形成するのに好適に用いることができる。
本発明の樹脂組成物では、シアネート樹脂および/またはそのプレポリマーを用いる。これにより、本発明の樹脂組成物をプリント配線板にした場合に高耐熱且つ低熱膨張率とすることができる。
前記シアネート樹脂および/またはそのプレポリマーとしては、例えばハロゲン化シアン化合物とフェノール類とを反応させ、必要に応じて加熱等の方法でプレポリマー化することにより得ることができる。具体的には、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂等を挙げることができる。これらの中でもノボラック型シアネート樹脂が好ましい。これにより、架橋密度増加による耐熱性向上と、樹脂組成物等の難燃性を向上することができる。ノボラック型シアネート樹脂は、その構造上ベンゼン環の割合が高く、炭化しやすいためと考えられる。
【0010】
前記ノボラック型シアネート樹脂としては、例えば式(I)で示されるものを使用することができる。
【化1】

Figure 2004182851
前記式(I)で示されるノボラック型シアネート樹脂のnは、特に限定されないが、1〜10が好ましく、特に1〜7が好ましい。nが前記下限値未満であるとノボラック型シアネート樹脂は結晶化しやすくなり、汎用溶媒に対する溶解性が比較的低下するため、取り扱いが困難となる場合がある。また、nが前記上限値を超えると架橋密度が高くなりすぎ、吸水性の低下や、硬化物が脆くなるなどの現象を生じる場合がある。
【0011】
前記シアネート樹脂および/またはそのプレポリマーの重量平均分子量は、特に限定されないが、重量平均分子量500〜4,500が好ましく、特に600〜3,000が好ましい。重量平均分子量が前記下限値未満であるとプリプレグを作製した場合にタック性が生じ、プリプレグ同士が接触したとき互いに付着したり、樹脂の転写が生じたりする場合がある。また、重量平均分子量が前記上限値を超えると反応が速くなりすぎ、プリント配線板とした場合に、成形不良を生じたり、層間ピール強度が低下したりする場合がある。
【0012】
前記シアネート樹脂および/またはそのプレポリマーの含有量は、特に限定されないが、樹脂組成物全体の5〜60重量%が好ましく、特に15〜40重量%が好ましい。含有量が前記下限値未満では、耐熱性や低熱膨張化を向上するする効果が低下する場合があり、前記上限値を超えると架橋密度が高くなり自由体積が増えるため耐湿性が低下する場合がある。
【0013】
本発明の樹脂組成物では、エポキシ樹脂を用いる。これにより、シアネート樹脂および/またはそのプレポリマーの反応性を向上させることが出来る。
前記エポキシ樹脂としては、例えばフェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アリールアルキレン型エポキシ樹脂等が挙げられる。これらの中でもアリールアルキレン型エポキシ樹脂が好ましい。これにより、耐湿性を特に向上することができる。
前記アリールアルキレン型エポキシ樹脂とは、繰り返し単位中に一つ以上のアリールアルキレン基を有するエポキシ樹脂をいう。例えばキシリレン型エポキシ樹脂、ビフェニルジメチレン型エポキシ樹脂等が挙げられる。これらの中でもビフェニルジメチレン型エポキシ樹脂が好ましい。ビフェニルジメチレン型エポキシ樹脂は、例えば式(II)で示すことができる。
【化2】
Figure 2004182851
【0014】
前記式(II)で示されるビフェニルジメチレン型エポキシ樹脂のnは、特に限定されないが、1〜10が好ましく、特に2〜5が好ましい。nが前記下限値未満であるとビフェニルジメチレン型エポキシ樹脂は結晶化しやすくなり、汎用溶媒に対する溶解性が比較的低下するため、取り扱いが困難となる場合がある。また、nが前記上限値を超えると樹脂の流動性が低下し、成形不良等の原因となる場合がある。
更に、前述のシアネート樹脂および/またはそのプレポリマー(特にノボラック型シアネート樹脂)とアリールアルキレン型エポキシ樹脂(特にビフェニルジメチレン型エポキシ樹脂)との組合せを用いてプリント配線板を作製した場合、特に優れた寸法安定性を得ることが出来る。
【0015】
前記エポキシ樹脂の重量平均分子量は、特に限定されないが、重量平均分子量500〜20,000が好ましく、特に800〜15,000が好ましい。重量平均分子量が前記下限値より少ないとプリプレグにタック性が生じる場合が有り、前記上限値を超えるとプリプレグ作製時、基材への含浸性が低下し、均一な製品が得られなくなる場合がある。
【0016】
前記エポキシ樹脂の含有量は、特に限定されないが、樹脂組成物全体の1〜55重量%が好ましく、特に5〜30重量%が好ましい。含有量が前記下限値未満では、シアネート樹脂の反応性が低下したり、得られる製品の耐湿性が低下したり場合があり、前記上限値を超えると耐熱性を向上する効果が低下する場合がある。
【0017】
本発明の樹脂組成物では、ベンゾオキサジン樹脂を用いる。これにより、本発明の樹脂組成物に電気特性、低吸水性、低熱膨張性を向上することができる。
前記ベンゾオキサジン樹脂は、一分子中にベンゾオキサジン環を有している樹脂であり、特に一分子中にベンゾオキサジン環を2個以上有している樹脂が好ましい。
また、式(III)に示すようなベンゾオキサジン環を2個以上有している物を使用することが最も好ましい。ベンゾオキサジン樹脂は加熱することにより開環重合し、フェノール性の水酸基が生じる。このフェノール性の水酸基と、前記エポキシ樹脂、前記シアネート樹脂が反応する事により、樹脂組成物の架橋密度を低下させる事なく、電気特性の向上、低吸水性、低熱膨張性というベンゾオキサジン樹脂が有する特徴を付与することができる。
【化3】
Figure 2004182851
【0018】
前記ベンゾオキサジン樹脂の含有量は、特に限定されないが、樹脂組成物全体の1〜50重量%が好ましく、特に5〜30重量%が好ましい。含有量が前記下限値未満では、電気特性の向上、低吸水性、低熱膨張性を向上する効果が低下する場合があり、前記上限値を超えると耐熱性を向上する効果が低下する場合がある。
【0019】
本発明では、無機充填材を用いるものである。これにより、特にプリント配線板Z方向(プリント配線板の厚さ方向)の低熱膨張化および難燃性の向上を図ることができる。
また、前述したシアネート樹脂および/またはそのプレポリマー(特にノボラック型シアネート樹脂)と無機充填材との組合せにより、プリプレグの弾性率を特に向上することができる。
前記無機充填材としては、例えばタルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカ等の酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素等の窒化物等を挙げることができる。これらの中でもシリカが好ましく、特に溶融シリカ(特に球状溶融シリカ)が低膨張性に優れる点で好ましい。
【0020】
前記シリカの形状には、破砕状、球状等があるが、ガラス基材への含浸性を確保するために樹脂組成物の溶融粘度を下げるには球状シリカを使うなど、その目的にあわせた使用方法が採用される。
【0021】
前記無機充填材の平均粒径は、特に限定されないが、0.01〜5μmが好ましく、特に0.2〜2μmが好ましい。無機充填材の粒径が前記下限値より小さいとワニスの粘度が高くなるため、プリプレグ作製時の作業性が低下する場合がある。また、粒径が前記上限値より大きいと、ワニス中で無機充填剤の沈降等の現象が生じる場合がある。
【0022】
前記球状シリカ(特に球状溶融シリカ)の平均粒径は、特に限定されないが、5μm以下が好ましく、特に2μm以下が好ましい。これにより、無機充填剤の充填性を特に向上させることができる。
【0023】
前記無機充填材の含有量は、特に限定されないが、樹脂組成物全体の30〜80重量%が好ましく、特に40〜70重量%が好ましい。含有量が前記下限値未満であると低膨張性を向上する効果が低下する場合があり、前記上限値を超えると成形性が低下する場合がある。
【0024】
本発明の樹脂組成物では、上記シアネート樹脂および/またはそのプレポリマー、エポキシ樹脂およびベンゾオキサジン樹脂の一部をビニルエステル樹脂、メラミン樹脂等の他の熱硬化性樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンオキサイド樹脂、ポリエーテルスルホン樹脂等の熱可塑性樹脂と併用しても良い。
【0025】
本発明の樹脂組成物では、特に限定されないが、カップリング剤を用いることが好ましい。前記カップリング剤は、樹脂と無機充填剤の界面の濡れ性を向上させることにより、基材に対して樹脂および充填剤を均一に定着させ、耐熱性、特に吸湿後の半田耐熱性を改良するために配合することができる。
前記カップリング剤は、通常用いられるものなら何でも使用できるが、これらの中でもエポキシシランカップリング剤、チタネート系カップリング剤、アミノシランカップリング剤及びシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが無機充填剤界面との濡れ性が高く、耐熱性向上の点で好ましい。
【0026】
前記カップリング剤の含有量は、特に限定されないが、前記無機充填剤100重量部に対して0.05〜3重量部が好ましい。含有量が前記下限値未満であると充填剤を十分に被覆できず耐熱性を向上する効果が低下する場合があり、前記上限値を超えると反応に影響を与え、曲げ強度等が低下する場合がある。
【0027】
本発明の樹脂組成物では、必要に応じて硬化促進剤を用いてもよい。硬化促進剤としては公知の物を用いることが出来る。たとえば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)等の有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタン等の3級アミン類、2−フェニル−4−メチルイミダゾール、2−エチル−4−エチルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシイミダゾール、2−フェニル−4,5−ジヒドロキシイミダゾール等のイミダゾール類、フェノール、ビスフェノールA、ノニルフェノー等のフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸等の有機酸等、またはこの混合物が挙げられる。
【0028】
本発明の樹脂組成物では、必要に応じて、上記成分以外の添加物を特性が低下しない範囲で添加することが出来る。
【0029】
次に、本発明のプリプレグについて説明する。
本発明のプリプレグは、上記樹脂組成物を基材に含浸してなるものである。これにより、耐熱性、低膨張性および難燃性に優れたプリプレグを得ることができる。
前記基材としては、例えばガラス織布、ガラス不繊布、ガラスペーパー等のガラス繊維基材、紙、アラミド、ポリエステル、芳香族ポリエステル、フッ素樹脂等の合成繊維等からなる織布や不織布、金属繊維、カーボン繊維、鉱物繊維等からなる織布、不織布、マット類等が挙げられる。これらの基材は単独又は混合して使用してもよい。これらの中でもガラス繊維基材が好ましい。これにより、プリプレグの剛性、寸法安定性を向上することができる。
【0030】
前記樹脂組成物を前記基材に含浸させる方法は、例えば基材を樹脂ワニスに浸漬する方法、各種コーターによる塗布する方法、スプレーによる吹き付ける方法等が挙げられる。これらの中でも、基材を樹脂ワニスに浸漬する方法が好ましい。これにより、基材に対する樹脂組成物の含浸性を向上することができる。なお、基材を樹脂ワニスに浸漬する場合、通常の含浸塗布設備を使用することができる。
【0031】
前記樹脂ワニスに用いられる溶媒は、前記樹脂組成物に対して良好な溶解性を示すことが望ましいが、悪影響を及ぼさない範囲で貧溶媒を使用しても構わない。良好な溶解性を示す溶媒としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等が挙げられる。
前記樹脂ワニスの固形分は、特に限定されないが、前記樹脂組成物の固形分30〜80重量%が好ましく、特に40〜70重量%が好ましい。これにより、樹脂ワニスの基材への含浸性を向上できる。
前記基材に前記樹脂組成物を含浸させ、所定温度、例えば90〜180℃で乾燥させることによりプリプレグを得ることが出来る。
【0032】
次に、プリント配線板について説明する。
本発明のプリント配線板は、上記のプリプレグを加熱加圧成形してなるものである。これにより、耐熱性、低膨張性および難燃性に優れたプリント配線板を得ることができる。
プリプレグ1枚のときは、その上下両面もしくは片面に金属箔を重ねる。また、プリプレグを2枚以上積層することもできる。プリプレグ2枚以上積層するときは、積層したプリプレグの最も外側の上下両面もしくは片面に金属箔あるいはフィルムを重ねる。
次に、プリプレグと金属箔とを重ねたものを加熱加圧成形することでプリント配線板を得ることができる。前記加熱する温度は、特に限定されないが、120〜220℃が好ましく、特に150〜200℃が好ましい。前記加圧する圧力は、特に限定されないが、1.5〜5MPaが好ましく、特に2〜4MPaが好ましい。
また、必要に応じて高温漕等で150〜300℃の温度で後硬化を行ってもかまわない。
前記金属箔を構成する金属としては、例えば銅または銅系金属、アルミまたはアルミ系金属、鉄または鉄系金属等が挙げられる。
【0033】
【実施例】
以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
(実施例1)
樹脂ワニスの調製
シアネート樹脂としてノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセット PT−30、重量平均分子量約700)20重量%と、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬株式会社製、NC−3000SH、エポキシ当量290)12重量%と、ベンゾオキサジン樹脂としてB−a型ベンゾオキサジン樹脂(四国化成工業株式会社製)8重量%と、無機充填材として球状溶融シリカ(SO−32R株式会社アドマテックス社製、平均粒径1.5μm)60重量%と、エポキシシラン型カップリング剤(日本ユニカー株式会社製、A−187)を無機充填材100重量部に対して0.3重量部とをメチルエチルケトンに常温で添加し、高速攪拌機を用いて10分攪拌した。
【0034】
プリプレグの作製
上述の樹脂ワニスをガラス織布(厚さ200μm、日東紡績製、WEA−7628)に含浸し、120℃の加熱炉で2分乾燥してワニス固形分(プリプレグ中に樹脂とシリカの占める成分)が約50%のプリプレグを得た。
【0035】
積層板の製造
上記プリプレグを2枚数重ね、両面に18μmの銅箔を重ねて、圧力4MPa、温度200℃で2時間加熱加圧成形することによって両面銅張積層板を得た。
【0036】
(実施例2)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にした。
シアネート樹脂としてノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセット PT−30)12重量%およびノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセット PT−60、重量平均分子量約2,600)4重量%と、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬株式会社製、NC−3000SH)16重量%と、ベンゾオキサジン樹脂としてB−a型ベンゾオキサジン樹脂(四国化成工業株式会社製)8重量%と、無機充填材として球状溶融シリカ(SO−32R株式会社アドマテックス社製)60重量%と、エポキシシラン型カップリング剤(日本ユニカー株式会社製、A−187)を無機充填材100重量部に対して0.3重量部とをメチルエチルケトンに常温で添加し、高速攪拌機を用いて10分攪拌した。
【0037】
(実施例3)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にした。
シアネート樹脂としてノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセット PT−30)5重量%と、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬株式会社製、NC−3000SH)27重量%と、ベンゾオキサジン樹脂としてB−a型ベンゾオキサジン樹脂(四国化成工業株式会社製)8重量%と、無機充填材として球状溶融シリカ(SO−32R株式会社アドマテックス社製)60重量%と、エポキシシラン型カップリング剤(日本ユニカー株式会社製、A−187)を無機充填材100重量部に対して0.3重量部とをメチルエチルケトンに常温で添加し、高速攪拌機を用いて10分攪拌した。
【0038】
(実施例4)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にした。
シアネート樹脂としてノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセット PT−30)42重量%と、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬株式会社製、NC−3000SH)3重量%と、ベンゾオキサジン樹脂としてB−a型ベンゾオキサジン樹脂(四国化成工業株式会社製)5重量%と、無機充填材として球状溶融シリカ(SO−32R株式会社アドマテックス社製)50重量%と、エポキシシラン型カップリング剤(日本ユニカー株式会社製、A−187)を無機充填材100重量部に対して0.3重量部とをメチルエチルケトンに常温で添加し、高速攪拌機を用いて10分攪拌した。
【0039】
(実施例5)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にした。
シアネート樹脂としてノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセット PT−30)20重量%と、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬株式会社製、NC−3000SH)17重量%と、ベンゾオキサジン樹脂としてB−a型ベンゾオキサジン樹脂(四国化成工業株式会社製)3重量%と、無機充填材として球状溶融シリカ(SO−32R株式会社アドマテックス社製)60重量%と、エポキシシラン型カップリング剤(日本ユニカー株式会社製、A−187)を無機充填材100重量部に対して0.3重量部とをメチルエチルケトンに常温で添加し、高速攪拌機を用いて10分攪拌した。
【0040】
(実施例6)
樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にした。
シアネート樹脂としてノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセット PT−30)15重量%と、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬株式会社製、NC−3000SH)3重量%と、ベンゾオキサジン樹脂としてB−a型ベンゾオキサジン樹脂(四国化成工業株式会社製)32重量%と、無機充填材として球状溶融シリカ(SO−32R株式会社アドマテックス社製)50重量%と、エポキシシラン型カップリング剤(日本ユニカー株式会社製、A−187)を無機充填材100重量部に対して0.3重量部とをメチルエチルケトンに常温で添加し、高速攪拌機を用いて10分攪拌した。
【0041】
(実施例7)
シアネート樹脂として以下のものを用いた以外は、実施例1と同様にした。
シアネート樹脂としてビスフェノールA型シアネート樹脂(旭化成エポキシ(株)社製、AroCy B−30)を用いた。
【0042】
(実施例8)
エポキシ樹脂として以下のものを用いた以外は、実施例1と同様にした。
エポキシ樹脂としてノボラック型エポキシ樹脂(大日本インキ(株)社製 エピクロン N−775 エポキシ当量190)を用いた。
【0043】
(実施例9)
ベンゾオキサジン樹脂として以下のものを用いた以外は、実施例1と同様にした。
ベンゾオキサジン樹脂として一分子中にベンゾオキサジン環を1個のみ有している樹脂(四国化成工業(株)社製 P−a型ベンゾオキサジン)を用いた。
【0044】
(比較例1)
ベンゾオキサジン樹脂を用いずに樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にした。
シアネート樹脂としてノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセット PT−30)20重量%と、エポキシ樹脂としてビフェニルジメチレン型エポキシ樹脂(日本化薬株式会社製、NC−3000SH)20重量%と、無機充填材として球状溶融シリカ(SO−32R株式会社アドマテックス社製)60重量%と、エポキシシラン型カップリング剤(日本ユニカー株式会社製、A−187)を無機充填材100重量部に対して0.3重量部とをメチルエチルケトンに常温で添加し、高速攪拌機を用いて10分攪拌した。
【0045】
(比較例2)
エポキシ樹脂を用いずに樹脂ワニスの配合を以下のようにした以外は、実施例1と同様にした。
シアネート樹脂としてノボラック型シアネート樹脂(ロンザジャパン株式会社製、プリマセット PT−30)20重量%と、ベンゾオキサジン樹脂としてB−a型ベンゾオキサジン樹脂(四国化成工業株式会社製)20重量%と、無機充填材として球状溶融シリカ(SO−32R株式会社アドマテックス社製)60重量%と、エポキシシラン型カップリング剤(日本ユニカー株式会社製、A−187)を無機充填材100重量部に対して0.3重量部とをメチルエチルケトンに常温で添加し、高速攪拌機を用いて10分攪拌した。
【0046】
各実施例および比較例で得られた積層板について、次の各評価を行った。評価項目を内容と共に以下に示す。得られた結果を表1に示す。
▲1▼ガラス転移温度
厚さ0.6mmの両面銅張積層板を全面エッチングし、得られた積層板から10mm×60mmのテストピースを切り出し、TAインスツルメント社製動的粘弾性測定装置DMA983を用いて3℃/分で昇温し、tanδのピーク位置をガラス転移温度とした。
【0047】
▲2▼線膨張係数
厚さ1.2mmの両面銅張積層板を全面エッチングし、得られた積層板から2mm×2mmのテストピースを切り出し、TMAを用いて厚み方向(Z方向)の線膨張係数を5℃/分で測定した。
【0048】
▲3▼難燃性
UL−94規格に従い、1mm厚のテストピースを垂直法により測定した。
【0049】
▲4▼吸水率
厚さ0.6mmの両面銅張り積層板を全面エッチングし、得られた積層板から50mm×50mmのテストピースを切り出し、JIS6481に従い測定した。
【0050】
▲5▼吸湿はんだ耐熱性
厚さ0.6mmの両面銅張積層板から50mm×50mmに切り出し、JIS6481に従い半面エッチングを行ってテストピースを作成した。121℃のプレッシャークッカーで4時間処理した後、260℃のはんだ槽に銅箔面を下にして浮かべ、180秒後に膨れはがれの有無を調べた。
【0051】
【表1】
Figure 2004182851
【0052】
表1から明らかなように、実施例1〜9は、ガラス転移温度が高く、低線膨張係数であり、難燃性に優れていた。
また、特定のエポキシ樹脂を用いた場合、吸水率も低くなっていた。
また、吸湿半田耐熱性にも優れていた。
【0053】
【発明の効果】
本発明によれば、耐熱性、低熱膨張性および難燃性に優れた樹脂組成物、プリプレグおよびプリント配線板を提供することができる。
また、特定量の無機充填材を用いる場合、特にプリプレグの厚さ方向の熱膨張係数を制御することができることであり、これによって層間の接続強度を向上し、高温多湿雰囲気中での機械的、電気的な接続信頼性を改善することができる。また、特定のエポキシ樹脂を用いる場合、特に吸水率を低くすることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin composition, a prepreg, and a printed wiring board using the same.
[0002]
[Prior art]
In the field of semiconductors, the trend of shifting from conventional surface mounting to area mounting due to the progress of high-density mounting technology has progressed, and new packages such as BGA and CSP have appeared and are increasing. Therefore, more attention has been paid to rigid substrates for interposers than before, and demands for substrates having high heat resistance and low thermal expansion have been increasing.
[0003]
Furthermore, in recent years, with the demand for higher functionality of electronic devices, high-density integration of electronic components, high-density mounting, and the like have been advanced. For this reason, the printed wiring boards and the like used for these, which are compatible with high-density mounting, are becoming smaller and more dense than ever before. Build-up multilayer wiring boards are often used to cope with higher densities of printed wiring boards and the like.
However, the build-up multilayer wiring board has a problem that it is difficult to maintain the mechanical and electrical connection reliability in a high-temperature and high-humidity atmosphere because the connection strength is reduced due to the interlayer connection by fine vias. there were.
[0004]
Further, resin members used for these semiconductors are often required to have flame retardancy. Conventionally, to impart this flame retardancy, it has been common to use a halogen-based flame retardant such as a brominated epoxy resin in an epoxy resin. However, since halogen-containing compounds may cause the generation of dioxins, the use of halogen-based flame retardants has been avoided as the environmental problems have become more serious in recent years. A flame retardant system has been required. Phosphorus-based flame retardants have come into the limelight in response to the demands of such times, and phosphate esters and red phosphorus have been considered.However, these conventional phosphorus-based flame retardants are easily hydrolyzed and have a poor reaction with the resin. There were problems such as a decrease in solder heat resistance.
[0005]
[Patent Document]
JP-A-2002-80624
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a resin composition, a prepreg, and a printed wiring board having excellent heat resistance, low thermal expansion properties, and flame retardancy.
[0007]
[Means for Solving the Problems]
Such an object is achieved by the present invention described in the following (1) to (9).
(1) A resin composition containing a cyanate resin and / or a prepolymer thereof, an epoxy resin, a benzoxazine resin, and an inorganic filler as essential components.
(2) The resin composition according to the above (1), wherein the cyanate resin and / or a prepolymer thereof is a novolak-type cyanate resin and / or a prepolymer thereof.
(3) The resin composition according to the above (1) or (2), wherein the content of the cyanate resin and / or the prepolymer thereof is 5 to 60% by weight of the entire resin composition.
(4) The resin composition according to any one of (1) to (3), wherein the epoxy resin is an arylalkylene type epoxy resin.
(5) The resin composition according to any one of (1) to (4), wherein the benzoxazine resin is a resin having two or more benzoxazine rings in one molecule.
(6) The resin composition according to any one of (1) and (5), wherein the inorganic filler is spherical silica having an average particle size of 5 μm or less.
(7) The resin composition according to any one of the above (1) to (6), wherein the content of the inorganic filler is 30 to 80% by weight of the entire resin composition.
(8) A prepreg obtained by impregnating a substrate with the resin composition according to any one of (1) to (7).
(9) A printed wiring board obtained by laminating a metal foil on the prepreg according to the above (8) and molding by heating and pressing.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the resin composition, the prepreg, and the printed wiring board using the same according to the present invention will be described in detail.
The resin composition of the present invention is characterized by comprising a cyanate resin and / or a prepolymer thereof, an epoxy resin, a benzoxazine resin, and an inorganic filler as essential components.
The prepreg of the present invention is obtained by impregnating a substrate with the above resin composition.
The printed wiring board of the present invention is characterized in that the above prepregs are laminated, and formed by heating and pressing.
[0009]
Hereinafter, the resin composition will be described.
The resin composition of the present invention can be suitably used, for example, to impregnate a base material to form a sheet-shaped prepreg.
In the resin composition of the present invention, a cyanate resin and / or a prepolymer thereof are used. Thereby, when the resin composition of the present invention is used for a printed wiring board, high heat resistance and a low coefficient of thermal expansion can be obtained.
The cyanate resin and / or a prepolymer thereof can be obtained, for example, by reacting a halogenated cyanide compound with a phenol and, if necessary, prepolymerizing by a method such as heating. Specific examples include bisphenol-type cyanate resins such as a novolak-type cyanate resin, a bisphenol-A-type cyanate resin, a bisphenol-E-type cyanate resin, and a tetramethylbisphenol-F-type cyanate resin. Among these, a novolak type cyanate resin is preferred. Thereby, the heat resistance can be improved by increasing the crosslink density, and the flame retardancy of the resin composition and the like can be improved. It is considered that the novolak type cyanate resin has a high ratio of benzene rings due to its structure and is easily carbonized.
[0010]
As the novolak type cyanate resin, for example, a resin represented by the formula (I) can be used.
Embedded image
Figure 2004182851
The n of the novolak type cyanate resin represented by the formula (I) is not particularly limited, but is preferably 1 to 10, and particularly preferably 1 to 7. If n is less than the lower limit, the novolak-type cyanate resin tends to crystallize, and the solubility in general-purpose solvents is relatively reduced, so that handling may be difficult. On the other hand, if n exceeds the upper limit, the crosslinking density may be too high, causing phenomena such as a decrease in water absorption and a brittle cured product.
[0011]
The weight average molecular weight of the cyanate resin and / or its prepolymer is not particularly limited, but is preferably 500 to 4,500, and more preferably 600 to 3,000. When the weight-average molecular weight is less than the lower limit, tackiness occurs when the prepreg is produced, and when the prepregs come into contact with each other, they may adhere to each other or transfer of the resin may occur. When the weight average molecular weight exceeds the upper limit, the reaction becomes too fast, and when a printed wiring board is used, molding failure may occur or interlayer peel strength may decrease.
[0012]
The content of the cyanate resin and / or its prepolymer is not particularly limited, but is preferably 5 to 60% by weight, and particularly preferably 15 to 40% by weight of the whole resin composition. If the content is less than the lower limit, the effect of improving heat resistance and low thermal expansion may decrease, and if the content exceeds the upper limit, the moisture resistance may decrease because the crosslink density increases and the free volume increases. is there.
[0013]
In the resin composition of the present invention, an epoxy resin is used. Thereby, the reactivity of the cyanate resin and / or its prepolymer can be improved.
Examples of the epoxy resin include a phenol novolak type epoxy resin, a bisphenol type epoxy resin, a naphthalene type epoxy resin, and an arylalkylene type epoxy resin. Among them, arylalkylene type epoxy resins are preferred. Thereby, the moisture resistance can be particularly improved.
The arylalkylene type epoxy resin refers to an epoxy resin having one or more arylalkylene groups in a repeating unit. For example, xylylene type epoxy resin, biphenyl dimethylene type epoxy resin and the like can be mentioned. Among these, a biphenyl dimethylene type epoxy resin is preferable. The biphenyl dimethylene type epoxy resin can be represented by, for example, the formula (II).
Embedded image
Figure 2004182851
[0014]
Although n of the biphenyl dimethylene type epoxy resin represented by the formula (II) is not particularly limited, it is preferably 1 to 10, and particularly preferably 2 to 5. If n is less than the above lower limit, the biphenyl dimethylene type epoxy resin tends to crystallize, and the solubility in general-purpose solvents is relatively reduced, so that handling may be difficult. On the other hand, if n exceeds the upper limit, the fluidity of the resin may be reduced, which may cause molding failure.
Furthermore, when a printed wiring board is produced using a combination of the above-described cyanate resin and / or a prepolymer thereof (particularly, a novolak-type cyanate resin) and an arylalkylene-type epoxy resin (particularly, a biphenyldimethylene-type epoxy resin), particularly excellent results are obtained. Dimensional stability can be obtained.
[0015]
The weight average molecular weight of the epoxy resin is not particularly limited, but is preferably from 500 to 20,000, more preferably from 800 to 15,000. If the weight average molecular weight is less than the lower limit, tackiness may occur in the prepreg, and if the weight average molecular weight exceeds the upper limit, prepreg production, impregnation into the base material is reduced, and a uniform product may not be obtained. .
[0016]
The content of the epoxy resin is not particularly limited, but is preferably from 1 to 55% by weight, and particularly preferably from 5 to 30% by weight of the whole resin composition. If the content is less than the lower limit, the reactivity of the cyanate resin may be reduced, or the moisture resistance of the obtained product may be reduced.If the content exceeds the upper limit, the effect of improving heat resistance may be reduced. is there.
[0017]
In the resin composition of the present invention, a benzoxazine resin is used. As a result, the resin composition of the present invention can have improved electrical characteristics, low water absorption, and low thermal expansion.
The benzoxazine resin is a resin having a benzoxazine ring in one molecule, and particularly preferably a resin having two or more benzoxazine rings in one molecule.
It is most preferable to use a compound having two or more benzoxazine rings as shown in the formula (III). Benzoxazine resin undergoes ring-opening polymerization by heating to produce phenolic hydroxyl groups. By reacting the phenolic hydroxyl group with the epoxy resin and the cyanate resin, a benzoxazine resin having improved electrical properties, low water absorption, and low thermal expansion is provided without reducing the crosslink density of the resin composition. Features can be added.
Embedded image
Figure 2004182851
[0018]
The content of the benzoxazine resin is not particularly limited, but is preferably 1 to 50% by weight, particularly preferably 5 to 30% by weight of the whole resin composition. If the content is less than the lower limit, the effect of improving electrical properties, low water absorption, and improving low thermal expansion may decrease.If the content exceeds the upper limit, the effect of improving heat resistance may decrease. .
[0019]
In the present invention, an inorganic filler is used. Thereby, it is possible to achieve a low thermal expansion and an improvement in flame retardancy particularly in the printed wiring board Z direction (the thickness direction of the printed wiring board).
In addition, the elastic modulus of the prepreg can be particularly improved by combining the above-described cyanate resin and / or a prepolymer thereof (particularly, a novolak type cyanate resin) with an inorganic filler.
Examples of the inorganic filler include talc, calcined clay, unfired clay, mica, silicates such as glass, oxides such as titanium oxide, alumina, silica, and fused silica, calcium carbonate, magnesium carbonate, hydrotalcite, and the like. Carbonates, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate and calcium sulfite, zinc borate, barium metaborate, aluminum borate and borate Borates such as calcium oxide and sodium borate; nitrides such as aluminum nitride, boron nitride and silicon nitride; Among these, silica is preferred, and fused silica (particularly, spherical fused silica) is preferred because it has excellent low expansion properties.
[0020]
The shape of the silica may be crushed, spherical, etc., but use according to the purpose, such as using spherical silica to lower the melt viscosity of the resin composition to ensure impregnation into the glass substrate The method is adopted.
[0021]
The average particle size of the inorganic filler is not particularly limited, but is preferably 0.01 to 5 μm, and particularly preferably 0.2 to 2 μm. If the particle size of the inorganic filler is smaller than the above lower limit, the viscosity of the varnish increases, so that the workability during prepreg production may be reduced. If the particle size is larger than the upper limit, a phenomenon such as sedimentation of the inorganic filler in the varnish may occur.
[0022]
The average particle size of the spherical silica (particularly, spherical fused silica) is not particularly limited, but is preferably 5 μm or less, and particularly preferably 2 μm or less. Thereby, the filling property of the inorganic filler can be particularly improved.
[0023]
The content of the inorganic filler is not particularly limited, but is preferably from 30 to 80% by weight, and particularly preferably from 40 to 70% by weight of the entire resin composition. If the content is less than the lower limit, the effect of improving the low expandability may decrease, and if the content exceeds the upper limit, the moldability may decrease.
[0024]
In the resin composition of the present invention, a part of the above cyanate resin and / or a prepolymer thereof, an epoxy resin and a benzoxazine resin is partially cured with another thermosetting resin such as a vinyl ester resin and a melamine resin, a phenoxy resin, a polyimide resin, and a polyamide. You may use together with thermoplastic resins, such as an imide resin, a polyphenylene oxide resin, and a polyether sulfone resin.
[0025]
In the resin composition of the present invention, although not particularly limited, it is preferable to use a coupling agent. The coupling agent improves the wettability of the interface between the resin and the inorganic filler, thereby uniformly fixing the resin and the filler to the base material, and improving the heat resistance, particularly the solder heat resistance after absorbing moisture. Can be blended for
As the coupling agent, any one can be used as long as it is generally used. Among them, at least one selected from epoxysilane coupling agents, titanate coupling agents, aminosilane coupling agents and silicone oil type coupling agents It is preferable to use the coupling agent from the viewpoint of high wettability with the inorganic filler interface and improvement of heat resistance.
[0026]
The content of the coupling agent is not particularly limited, but is preferably 0.05 to 3 parts by weight based on 100 parts by weight of the inorganic filler. If the content is less than the lower limit, the filler may not be sufficiently covered, and the effect of improving heat resistance may be reduced.If the content exceeds the upper limit, the reaction is affected, and the bending strength and the like are reduced. There is.
[0027]
In the resin composition of the present invention, a curing accelerator may be used as necessary. Known substances can be used as the curing accelerator. For example, organic metal salts such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonatocobalt (II), and trisacetylacetonatocobalt (III), triethylamine, tributylamine, diazabicyclo [2, Tertiary amines such as 2,2] octane, 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxy Imidazoles such as imidazole and 2-phenyl-4,5-dihydroxyimidazole; phenol compounds such as phenol, bisphenol A and nonylphenol; organic acids such as acetic acid, benzoic acid, salicylic acid, and paratoluenesulfonic acid; and mixtures thereof. Can be
[0028]
In the resin composition of the present invention, if necessary, additives other than the above-mentioned components can be added in a range where the properties are not deteriorated.
[0029]
Next, the prepreg of the present invention will be described.
The prepreg of the present invention is obtained by impregnating a substrate with the above resin composition. Thereby, a prepreg excellent in heat resistance, low expansion property and flame retardancy can be obtained.
Examples of the substrate include glass fiber substrates such as glass woven fabric, glass nonwoven fabric, and glass paper; woven and nonwoven fabrics made of synthetic fibers such as paper, aramid, polyester, aromatic polyester, and fluororesin; and metal fibers. Woven fabric, nonwoven fabric, mats and the like made of carbon fibers, mineral fibers and the like. These substrates may be used alone or in combination. Of these, glass fiber substrates are preferred. Thereby, rigidity and dimensional stability of the prepreg can be improved.
[0030]
Examples of the method of impregnating the base material with the resin composition include a method of immersing the base material in a resin varnish, a method of applying with a variety of coaters, and a method of spraying with a spray. Among these, the method of immersing the base material in the resin varnish is preferable. Thereby, the impregnation property of the resin composition to the base material can be improved. When the substrate is immersed in the resin varnish, ordinary impregnation coating equipment can be used.
[0031]
The solvent used for the resin varnish desirably exhibits good solubility in the resin composition, but a poor solvent may be used as long as it does not adversely affect the solvent. Examples of the solvent exhibiting good solubility include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like.
The solid content of the resin varnish is not particularly limited, but the solid content of the resin composition is preferably 30 to 80% by weight, and particularly preferably 40 to 70% by weight. Thereby, the impregnation property of the resin varnish into the substrate can be improved.
A prepreg can be obtained by impregnating the base material with the resin composition and drying at a predetermined temperature, for example, 90 to 180 ° C.
[0032]
Next, the printed wiring board will be described.
The printed wiring board of the present invention is obtained by heating and pressing the above prepreg. Thereby, a printed wiring board excellent in heat resistance, low expansion property and flame retardancy can be obtained.
In the case of one prepreg, the metal foil is laminated on both upper and lower surfaces or one surface. Also, two or more prepregs can be laminated. When laminating two or more prepregs, a metal foil or a film is laminated on the outermost upper and lower surfaces or one surface of the laminated prepreg.
Next, a printed wiring board can be obtained by subjecting a prepreg and a metal foil to each other to heat and pressure molding. The heating temperature is not particularly limited, but is preferably from 120 to 220 ° C, particularly preferably from 150 to 200 ° C. The pressure to be applied is not particularly limited, but is preferably 1.5 to 5 MPa, and particularly preferably 2 to 4 MPa.
If necessary, post-curing may be performed at a temperature of 150 to 300 ° C. in a high-temperature bath or the like.
Examples of the metal constituting the metal foil include copper or a copper-based metal, aluminum or an aluminum-based metal, iron or an iron-based metal, and the like.
[0033]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(Example 1)
Preparation of resin varnish
20% by weight of a novolak type cyanate resin (manufactured by Lonza Japan Co., Ltd., Primaset PT-30, weight average molecular weight: about 700) as a cyanate resin, and a biphenyl dimethylene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC- 3000SH, epoxy equivalent 290) 12% by weight, Ba-type benzoxazine resin (manufactured by Shikoku Kasei Kogyo Co., Ltd.) 8% by weight as a benzoxazine resin, and spherical fused silica (SO-32R Admatex Co., Ltd.) as an inorganic filler. 60 parts by weight of an epoxy silane type coupling agent (manufactured by Nippon Unicar Co., Ltd., A-187) in an amount of 0.3 parts by weight with respect to 100 parts by weight of an inorganic filler. At room temperature and stirred for 10 minutes using a high-speed stirrer.
[0034]
Preparation of prepreg
The above resin varnish is impregnated into a glass woven cloth (200 μm thick, manufactured by Nitto Boseki Co., Ltd., WEA-7628), dried in a heating furnace at 120 ° C. for 2 minutes, and solidified in a varnish (component occupied by resin and silica in the prepreg). Obtained about 50% of prepreg.
[0035]
Manufacture of laminated boards
Two sheets of the above prepreg were laminated, copper foil of 18 μm was laminated on both sides, and heated and pressed at a pressure of 4 MPa and a temperature of 200 ° C. for 2 hours to obtain a double-sided copper clad laminate.
[0036]
(Example 2)
Example 1 was repeated except that the composition of the resin varnish was as follows.
12% by weight of a novolak type cyanate resin (manufactured by Lonza Japan Ltd., Primaset PT-30) and a novolak type cyanate resin (manufactured by Lonza Japan Ltd., Primaset PT-60, weight average molecular weight: about 2,600) 4 16% by weight of a biphenyl dimethylene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC-3000SH) as an epoxy resin, and Ba-type benzoxazine resin (manufactured by Shikoku Chemical Industry Co., Ltd.) 8 as a benzoxazine resin % By weight, spherical fused silica (SO-32R manufactured by Admatechs Co., Ltd.) as an inorganic filler 60% by weight, and an epoxysilane type coupling agent (Nippon Unicar Co., Ltd., A-187) 100% by weight of an inorganic filler. 0.3 parts by weight to methyl ethyl ketone at room temperature , And the mixture was stirred for 10 minutes using a high-speed stirrer.
[0037]
(Example 3)
Example 1 was repeated except that the composition of the resin varnish was as follows.
5% by weight of a novolak type cyanate resin (manufactured by Lonza Japan, Primaset PT-30) as a cyanate resin and 27% by weight of a biphenyl dimethylene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC-3000SH) as an epoxy resin. 8% by weight of Ba-type benzoxazine resin (manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a benzoxazine resin, 60% by weight of spherical fused silica (manufactured by Admatex Co., Ltd., SO-32R) as an inorganic filler, and epoxysilane 0.3 parts by weight of a mold coupling agent (A-187, manufactured by Nippon Unicar Co., Ltd.) based on 100 parts by weight of the inorganic filler was added to methyl ethyl ketone at room temperature, and the mixture was stirred for 10 minutes using a high-speed stirrer.
[0038]
(Example 4)
Example 1 was repeated except that the composition of the resin varnish was as follows.
42% by weight of a novolak type cyanate resin (manufactured by Lonza Japan, Primaset PT-30) as a cyanate resin, and 3% by weight of a biphenyl dimethylene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC-3000SH) as an epoxy resin. 5% by weight of Ba-type benzoxazine resin (manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a benzoxazine resin, 50% by weight of spherical fused silica (manufactured by Admatex Co., Ltd., SO-32R) as an inorganic filler, and epoxysilane 0.3 parts by weight of a mold coupling agent (A-187, manufactured by Nippon Unicar Co., Ltd.) based on 100 parts by weight of the inorganic filler was added to methyl ethyl ketone at room temperature, and the mixture was stirred for 10 minutes using a high-speed stirrer.
[0039]
(Example 5)
Example 1 was repeated except that the composition of the resin varnish was as follows.
20% by weight of a novolak type cyanate resin (manufactured by Lonza Japan Ltd., Primaset PT-30) as a cyanate resin, and 17% by weight of a biphenyl dimethylene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC-3000SH) as an epoxy resin. 3% by weight of Ba-type benzoxazine resin (manufactured by Shikoku Kasei Kogyo Co., Ltd.) as benzoxazine resin, 60% by weight of spherical fused silica (manufactured by Admatechs Co., Ltd., SO-32R), and epoxysilane 0.3 parts by weight of a mold coupling agent (A-187, manufactured by Nippon Unicar Co., Ltd.) based on 100 parts by weight of the inorganic filler was added to methyl ethyl ketone at room temperature, and the mixture was stirred for 10 minutes using a high-speed stirrer.
[0040]
(Example 6)
Example 1 was repeated except that the composition of the resin varnish was as follows.
15% by weight of a novolak type cyanate resin (manufactured by Lonza Japan, Primaset PT-30) as a cyanate resin and 3% by weight of a biphenyl dimethylene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC-3000SH) as an epoxy resin. 32% by weight of Ba-type benzoxazine resin (manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a benzoxazine resin, 50% by weight of spherical fused silica (manufactured by Admatechs, Inc., SO-32R) as an inorganic filler, and epoxysilane 0.3 parts by weight of a mold coupling agent (A-187, manufactured by Nippon Unicar Co., Ltd.) based on 100 parts by weight of the inorganic filler was added to methyl ethyl ketone at room temperature, and the mixture was stirred for 10 minutes using a high-speed stirrer.
[0041]
(Example 7)
It carried out similarly to Example 1 except having used the following as a cyanate resin.
A bisphenol A type cyanate resin (AroCy B-30, manufactured by Asahi Kasei Epoxy Co., Ltd.) was used as the cyanate resin.
[0042]
(Example 8)
It carried out similarly to Example 1 except having used the following as an epoxy resin.
A novolak type epoxy resin (Epiclon N-775 epoxy equivalent 190, manufactured by Dainippon Ink and Chemicals, Inc.) was used as the epoxy resin.
[0043]
(Example 9)
It carried out similarly to Example 1 except having used the following as a benzoxazine resin.
As the benzoxazine resin, a resin having only one benzoxazine ring in one molecule (Pa-type benzoxazine manufactured by Shikoku Chemicals Co., Ltd.) was used.
[0044]
(Comparative Example 1)
Example 1 was repeated except that the varnish of the resin varnish was changed as follows without using the benzoxazine resin.
20% by weight of a novolak type cyanate resin (manufactured by Lonza Japan, Primaset PT-30) as a cyanate resin and 20% by weight of a biphenyldimethylene type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., NC-3000SH) as an epoxy resin. 60% by weight of a spherical fused silica (manufactured by Admatechs Co., Ltd.) as an inorganic filler and an epoxysilane type coupling agent (A-187, manufactured by Nippon Unicar Co., Ltd.) based on 100 parts by weight of the inorganic filler. Was added to methyl ethyl ketone at room temperature and stirred for 10 minutes using a high-speed stirrer.
[0045]
(Comparative Example 2)
Example 1 was repeated except that the resin varnish was blended as follows without using the epoxy resin.
20% by weight of a novolak type cyanate resin (manufactured by Lonza Japan Co., Ltd., Primaset PT-30) as a cyanate resin, 20% by weight of Ba-type benzoxazine resin (manufactured by Shikoku Chemical Industry Co., Ltd.) as a benzoxazine resin, and inorganic As a filler, 60% by weight of spherical fused silica (manufactured by Admatechs, Inc., SO-32R) and an epoxysilane-type coupling agent (A-187, manufactured by Nippon Unicar Co., Ltd.) were added in an amount of 0 to 100 parts by weight of the inorganic filler. Was added to methyl ethyl ketone at room temperature, and the mixture was stirred for 10 minutes using a high-speed stirrer.
[0046]
The following evaluations were performed on the laminates obtained in the examples and the comparative examples. The evaluation items are shown below together with the contents. Table 1 shows the obtained results.
(1) Glass transition temperature
A double-sided copper-clad laminate having a thickness of 0.6 mm was entirely etched, a test piece of 10 mm × 60 mm was cut out from the obtained laminate, and 3 ° C./° C. was measured using a dynamic viscoelasticity measuring device DMA983 manufactured by TA Instruments. And the peak position of tan δ was taken as the glass transition temperature.
[0047]
(2) Coefficient of linear expansion
A double-sided copper-clad laminate having a thickness of 1.2 mm is entirely etched, and a test piece of 2 mm × 2 mm is cut out from the obtained laminate, and the linear expansion coefficient in the thickness direction (Z direction) is determined at 5 ° C./min using TMA. Was measured.
[0048]
(3) Flame retardancy
According to the UL-94 standard, a 1 mm thick test piece was measured by the vertical method.
[0049]
▲ 4 ▼ Water absorption rate
A double-sided copper-clad laminate having a thickness of 0.6 mm was entirely etched, and a test piece of 50 mm × 50 mm was cut out from the obtained laminate and measured according to JIS6481.
[0050]
(5) Moisture absorption solder heat resistance
A test piece was prepared by cutting out a 50 mm × 50 mm piece from a double-sided copper-clad laminate having a thickness of 0.6 mm and performing half-face etching in accordance with JIS6481. After treating with a 121 ° C. pressure cooker for 4 hours, the copper foil surface was floated in a 260 ° C. solder bath, and after 180 seconds, the presence or absence of swelling and peeling was examined.
[0051]
[Table 1]
Figure 2004182851
[0052]
As is clear from Table 1, Examples 1 to 9 had high glass transition temperatures, low linear expansion coefficients, and excellent flame retardancy.
In addition, when a specific epoxy resin was used, the water absorption was low.
Also, it was excellent in heat resistance to moisture absorption solder.
[0053]
【The invention's effect】
According to the present invention, it is possible to provide a resin composition, a prepreg, and a printed wiring board having excellent heat resistance, low thermal expansion properties, and flame retardancy.
When a specific amount of the inorganic filler is used, it is possible to control the thermal expansion coefficient particularly in the thickness direction of the prepreg, thereby improving the connection strength between the layers, mechanically in a high-temperature and high-humidity atmosphere, and Electrical connection reliability can be improved. When a specific epoxy resin is used, the water absorption can be particularly reduced.

Claims (9)

シアネート樹脂および/またはそのプレポリマーと、エポキシ樹脂と、ベンゾオキサジン樹脂と、無機充填材とを必須成分とする樹脂組成物。A resin composition comprising a cyanate resin and / or a prepolymer thereof, an epoxy resin, a benzoxazine resin, and an inorganic filler as essential components. 前記シアネート樹脂および/またはそのプレポリマーは、ノボラック型シアネート樹脂及び/またはそのプレポリマーである請求項1に記載の樹脂組成物。The resin composition according to claim 1, wherein the cyanate resin and / or a prepolymer thereof is a novolak-type cyanate resin and / or a prepolymer thereof. 前記シアネート樹脂および/またはそのプレポリマーの含有量は、樹脂組成物全体の5〜60重量%である請求項1または2に記載の樹脂組成物。3. The resin composition according to claim 1, wherein the content of the cyanate resin and / or the prepolymer thereof is 5 to 60% by weight of the entire resin composition. 4. 前記エポキシ樹脂は、アリールアルキレン型エポキシ樹脂である請求項1ないし3のいずれかに記載の樹脂組成物。The resin composition according to any one of claims 1 to 3, wherein the epoxy resin is an arylalkylene type epoxy resin. 前記ベンゾオキサジン樹脂は、一分子中に2個以上のベンゾオキサジン環を有する樹脂である請求項1ないし4いずれかに記載の樹脂組成物。The resin composition according to any one of claims 1 to 4, wherein the benzoxazine resin is a resin having two or more benzoxazine rings in one molecule. 前記無機充填材は、平均粒径5μm以下の球状シリカである請求項1または5のいずれかに記載の樹脂組成物。The resin composition according to claim 1, wherein the inorganic filler is spherical silica having an average particle size of 5 μm or less. 前記無機充填材の含有量は、樹脂組成物全体の30〜80重量%である請求項1ないし6のいずれかに記載の樹脂組成物。The resin composition according to any one of claims 1 to 6, wherein the content of the inorganic filler is 30 to 80% by weight of the entire resin composition. 請求項1ないし7のいずれかに記載の樹脂組成物を基材に含浸してなるものであるプリプレグ。A prepreg obtained by impregnating a substrate with the resin composition according to any one of claims 1 to 7. 請求項8に記載のプリプレグに金属箔を積層し、加熱加圧成形してなるプリント配線板。A printed wiring board obtained by laminating a metal foil on the prepreg according to claim 8 and molding by heating and pressing.
JP2002351160A 2002-12-03 2002-12-03 Resin composition, prepreg and printed wiring board using the same Expired - Lifetime JP3946626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351160A JP3946626B2 (en) 2002-12-03 2002-12-03 Resin composition, prepreg and printed wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351160A JP3946626B2 (en) 2002-12-03 2002-12-03 Resin composition, prepreg and printed wiring board using the same

Publications (2)

Publication Number Publication Date
JP2004182851A true JP2004182851A (en) 2004-07-02
JP3946626B2 JP3946626B2 (en) 2007-07-18

Family

ID=32753146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351160A Expired - Lifetime JP3946626B2 (en) 2002-12-03 2002-12-03 Resin composition, prepreg and printed wiring board using the same

Country Status (1)

Country Link
JP (1) JP3946626B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057007A (en) * 2004-08-20 2006-03-02 Namics Corp Liquid resin composition for sealing
WO2007037500A1 (en) * 2005-09-30 2007-04-05 Sumitomo Bakelite Co., Ltd. Epoxy resin composition and semiconductor device
WO2007064801A1 (en) * 2005-12-02 2007-06-07 Henkel Corporation Curable compositions
WO2009001658A1 (en) * 2007-06-22 2008-12-31 Adeka Corporation One-pack type cyanate/epoxy composite resin composition
WO2009047885A1 (en) * 2007-10-09 2009-04-16 Adeka Corporation Single-component cyanate-epoxy composite resin composition, cured product thereof and method for producing the same, and sealing material and adhesive each using the single-component cyanate-epoxy composite resin composition
DE112007001047T5 (en) 2006-04-28 2009-04-16 Hitachi Chemical Co., Ltd. Resin composition, prepreg, laminate and circuit board
JP2010504382A (en) * 2006-09-21 2010-02-12 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Low temperature polymerization with catalyst
WO2010110433A1 (en) 2009-03-27 2010-09-30 日立化成工業株式会社 Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
JP2010254895A (en) * 2009-04-28 2010-11-11 Yokohama National Univ Epoxy resin composition and cured product from the same
WO2010096295A3 (en) * 2009-02-19 2011-02-24 Henkel Corporation Oxazoline and/or oxazine compositions
WO2011104905A1 (en) 2010-02-24 2011-09-01 日立化成工業株式会社 Varnish, prepreg, film with resin, metal foil-clad laminate, and printed circuit board
US8029889B1 (en) 2004-12-03 2011-10-04 Henkel Corporation Prepregs, towpregs and preforms
CN102206415A (en) * 2010-03-30 2011-10-05 台光电子材料股份有限公司 Resin composition, and prepreg, laminate and circuit board containing the composition
KR20120052249A (en) * 2009-07-29 2012-05-23 헨켈 아게 운트 코. 카게아아 Impact resistant modified compositions
WO2012083727A1 (en) 2010-12-23 2012-06-28 广东生益科技股份有限公司 Halogen-free high-tg resin composition and prepreg and laminate fabricated by using the same
KR20120131159A (en) 2010-02-24 2012-12-04 히다치 가세고교 가부시끼가이샤 Varnish, prepreg, film with resin, metal foil-clad laminate, and printed circuit board
WO2013042748A1 (en) 2011-09-22 2013-03-28 日立化成株式会社 Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
CN103724997A (en) * 2013-12-31 2014-04-16 福建新世纪电子材料有限公司 Halogen-free low water-absorbent thermosetting flame retardant resin composition and application thereof
KR20140056029A (en) 2012-10-29 2014-05-09 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone resin composition, and silicone laminated substrate, method for manufacturing the same and led device using said silicone resin composition
KR20140063711A (en) 2011-09-22 2014-05-27 히타치가세이가부시끼가이샤 Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
CN103980704A (en) * 2014-05-28 2014-08-13 苏州生益科技有限公司 Halogen-free resin composition for high-frequency and high-speed substrate as well as prepreg and laminated plate
WO2015076399A1 (en) 2013-11-25 2015-05-28 四国化成工業株式会社 Glycolurils having functional group and use thereof
US9050780B2 (en) 2011-09-22 2015-06-09 Hitachi Chemical Company, Ltd. Laminate body, laminate plate, multilayer laminate plate, printed wiring board, and method for manufacture of laminate plate
US9101061B2 (en) 2011-09-22 2015-08-04 Hitachi Chemical Company, Ltd. Laminate body, laminate plate, multilayer laminate plate, printed wiring board, and method for manufacture of laminate plate
US9265145B2 (en) 2009-02-24 2016-02-16 Hitachi Chemical Company, Ltd. Varnish, prepreg, film with resin, metal foil-clad laminate, and printed circuit board
KR20160090327A (en) 2013-11-25 2016-07-29 시코쿠가세이고교가부시키가이샤 Glycolurils having functional group and use thereof
JP2016183204A (en) * 2015-03-25 2016-10-20 Jsr株式会社 Thermosetting resin composition and use therefor
JP2019196434A (en) * 2018-05-09 2019-11-14 住友ベークライト株式会社 Highly thermoconductive curable composition, highly thermoconductive cured film, laminate and power module
KR20200092979A (en) 2017-12-08 2020-08-04 히타치가세이가부시끼가이샤 Prepregs, laminates, and methods for their manufacture, and printed wiring boards and semiconductor packages
JP2020128046A (en) * 2019-02-08 2020-08-27 住友ベークライト株式会社 Prepreg, print wiring boad, and semiconductor device

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057007A (en) * 2004-08-20 2006-03-02 Namics Corp Liquid resin composition for sealing
JP4570419B2 (en) * 2004-08-20 2010-10-27 ナミックス株式会社 Liquid sealing resin composition
US8029889B1 (en) 2004-12-03 2011-10-04 Henkel Corporation Prepregs, towpregs and preforms
WO2007037500A1 (en) * 2005-09-30 2007-04-05 Sumitomo Bakelite Co., Ltd. Epoxy resin composition and semiconductor device
US8470918B2 (en) 2005-09-30 2013-06-25 Sumitomo Bakelite Co., Ltd. Epoxy resin composition and semiconductor device
KR101288703B1 (en) * 2005-09-30 2013-07-22 스미토모 베이클리트 컴퍼니 리미티드 Epoxy resin composition and semiconductor device
TWI394791B (en) * 2005-09-30 2013-05-01 Sumitomo Bakelite Co Epoxy resin composition for semiconductor sealing and semiconductor device
JP5620047B2 (en) * 2005-09-30 2014-11-05 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
WO2007064801A1 (en) * 2005-12-02 2007-06-07 Henkel Corporation Curable compositions
US7649060B2 (en) 2005-12-02 2010-01-19 Henkel Corporation Curable compositions
CN101360788B (en) * 2005-12-02 2012-10-10 汉高公司 Curable compositions
DE112007001047T5 (en) 2006-04-28 2009-04-16 Hitachi Chemical Co., Ltd. Resin composition, prepreg, laminate and circuit board
US9078365B2 (en) 2006-04-28 2015-07-07 Hitachi Chemical Co., Ltd. Resin composition, prepreg, laminate, and wiring board
JP2010504382A (en) * 2006-09-21 2010-02-12 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Low temperature polymerization with catalyst
US7928170B2 (en) 2007-06-22 2011-04-19 Adeka Corporation Cyanate ester, epoxy resin and curing agent of phenol resin and epoxy compound-modified polyamine
WO2009001658A1 (en) * 2007-06-22 2008-12-31 Adeka Corporation One-pack type cyanate/epoxy composite resin composition
US7923516B2 (en) 2007-10-09 2011-04-12 Adeka Corporation One liquid type cyanate-epoxy composite resin composition, its hardened material, manufacturing method thereof, and materials for sealing and adhesive agents using the same
WO2009047885A1 (en) * 2007-10-09 2009-04-16 Adeka Corporation Single-component cyanate-epoxy composite resin composition, cured product thereof and method for producing the same, and sealing material and adhesive each using the single-component cyanate-epoxy composite resin composition
WO2010096295A3 (en) * 2009-02-19 2011-02-24 Henkel Corporation Oxazoline and/or oxazine compositions
KR20180067715A (en) 2009-02-24 2018-06-20 히타치가세이가부시끼가이샤 Varnish, prepreg, film with resin, metal foil-clad laminate, and printed circuit board
US9265145B2 (en) 2009-02-24 2016-02-16 Hitachi Chemical Company, Ltd. Varnish, prepreg, film with resin, metal foil-clad laminate, and printed circuit board
US10465089B2 (en) 2009-02-24 2019-11-05 Hitachi Chemical Company, Ltd. Varnish, prepreg, film with resin, metal foil-clad laminate, and printed circuit board
KR20170051537A (en) 2009-03-27 2017-05-11 히타치가세이가부시끼가이샤 Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
WO2010110433A1 (en) 2009-03-27 2010-09-30 日立化成工業株式会社 Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
JP2010254895A (en) * 2009-04-28 2010-11-11 Yokohama National Univ Epoxy resin composition and cured product from the same
KR20120052249A (en) * 2009-07-29 2012-05-23 헨켈 아게 운트 코. 카게아아 Impact resistant modified compositions
KR101722797B1 (en) 2009-07-29 2017-04-05 헨켈 아게 운트 코. 카게아아 Impact resistant modified compositions
KR20120131159A (en) 2010-02-24 2012-12-04 히다치 가세고교 가부시끼가이샤 Varnish, prepreg, film with resin, metal foil-clad laminate, and printed circuit board
WO2011104905A1 (en) 2010-02-24 2011-09-01 日立化成工業株式会社 Varnish, prepreg, film with resin, metal foil-clad laminate, and printed circuit board
CN102206415A (en) * 2010-03-30 2011-10-05 台光电子材料股份有限公司 Resin composition, and prepreg, laminate and circuit board containing the composition
WO2012083727A1 (en) 2010-12-23 2012-06-28 广东生益科技股份有限公司 Halogen-free high-tg resin composition and prepreg and laminate fabricated by using the same
KR20140063711A (en) 2011-09-22 2014-05-27 히타치가세이가부시끼가이샤 Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
US9050780B2 (en) 2011-09-22 2015-06-09 Hitachi Chemical Company, Ltd. Laminate body, laminate plate, multilayer laminate plate, printed wiring board, and method for manufacture of laminate plate
US9101061B2 (en) 2011-09-22 2015-08-04 Hitachi Chemical Company, Ltd. Laminate body, laminate plate, multilayer laminate plate, printed wiring board, and method for manufacture of laminate plate
WO2013042748A1 (en) 2011-09-22 2013-03-28 日立化成株式会社 Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
EP3028851A1 (en) 2011-09-22 2016-06-08 Hitachi Chemical Company, Ltd. Use of a laminate body, laminate board or multi-layer laminate plate for making a printed wiring board, the printed wiring board and production method for laminate plate
KR20190064661A (en) 2011-09-22 2019-06-10 히타치가세이가부시끼가이샤 Laminated body, laminated board, multi-layer laminated board, printed wiring board, and production method for laminated board
US9163144B2 (en) 2012-10-29 2015-10-20 Shin-Etsu Chemical Co., Ltd. Silicone resin composition, silicone laminated substrate using the same, method for producing the same, and LED device
KR20140056029A (en) 2012-10-29 2014-05-09 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone resin composition, and silicone laminated substrate, method for manufacturing the same and led device using said silicone resin composition
KR20160090327A (en) 2013-11-25 2016-07-29 시코쿠가세이고교가부시키가이샤 Glycolurils having functional group and use thereof
WO2015076399A1 (en) 2013-11-25 2015-05-28 四国化成工業株式会社 Glycolurils having functional group and use thereof
EP3369735A1 (en) 2013-11-25 2018-09-05 Shikoku Chemicals Corporation Glycolurils having functional group and use thereof
CN103724997B (en) * 2013-12-31 2016-01-06 福建新世纪电子材料有限公司 A kind of Halogen low water suction thermoset fire-proof resin composition and application
CN103724997A (en) * 2013-12-31 2014-04-16 福建新世纪电子材料有限公司 Halogen-free low water-absorbent thermosetting flame retardant resin composition and application thereof
CN103980704A (en) * 2014-05-28 2014-08-13 苏州生益科技有限公司 Halogen-free resin composition for high-frequency and high-speed substrate as well as prepreg and laminated plate
JP2016183204A (en) * 2015-03-25 2016-10-20 Jsr株式会社 Thermosetting resin composition and use therefor
KR20200092979A (en) 2017-12-08 2020-08-04 히타치가세이가부시끼가이샤 Prepregs, laminates, and methods for their manufacture, and printed wiring boards and semiconductor packages
JPWO2019112065A1 (en) * 2017-12-08 2020-12-03 昭和電工マテリアルズ株式会社 Prepregs, laminates, and their manufacturing methods, as well as printed wiring boards and semiconductor packages.
JPWO2019112066A1 (en) * 2017-12-08 2020-12-10 昭和電工マテリアルズ株式会社 Prepregs, laminates, and their manufacturing methods, as well as printed wiring boards and semiconductor packages.
JPWO2019112067A1 (en) * 2017-12-08 2020-12-10 昭和電工マテリアルズ株式会社 Prepreg, laminated board, printed wiring board and semiconductor package
JP7210847B2 (en) 2017-12-08 2023-01-24 株式会社レゾナック Prepreg, laminated board, manufacturing method thereof, printed wiring board and semiconductor package
JP7276142B2 (en) 2017-12-08 2023-05-18 株式会社レゾナック Prepreg, laminated board, manufacturing method thereof, printed wiring board and semiconductor package
JP2019196434A (en) * 2018-05-09 2019-11-14 住友ベークライト株式会社 Highly thermoconductive curable composition, highly thermoconductive cured film, laminate and power module
JP7151156B2 (en) 2018-05-09 2022-10-12 住友ベークライト株式会社 High thermal conductivity curable composition, high thermal conductivity cured film, laminate and power module
JP2020128046A (en) * 2019-02-08 2020-08-27 住友ベークライト株式会社 Prepreg, print wiring boad, and semiconductor device
JP7363041B2 (en) 2019-02-08 2023-10-18 住友ベークライト株式会社 Prepreg, printed wiring boards, and semiconductor devices

Also Published As

Publication number Publication date
JP3946626B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
JP3946626B2 (en) Resin composition, prepreg and printed wiring board using the same
US20110256367A1 (en) Prepreg, method for manufacturing prepreg, substrate, and semiconductor device
US11647583B2 (en) Prepreg, metal-clad laminated board, and printed wiring board
KR20130095730A (en) Process for producing compatibilized resin, thermosetting resin composition, prepreg, and laminate
JP3821728B2 (en) Prepreg
JP2007070418A (en) Adhesive sheet, metal foil-clad laminated sheet and built-up type multilayered printed wiring board
JP5303826B2 (en) Resin composition, prepreg and printed wiring board using the same
JP4132703B2 (en) Prepreg for copper-clad laminate and copper-clad laminate using the same
JP4322463B2 (en) Copper-clad laminate prepreg and copper-clad laminate
JP4132755B2 (en) Resin composition, prepreg and printed wiring board using the same
JP4400191B2 (en) Resin composition and substrate using the same
JP2004277671A (en) Prepreg and printed circuit board using the same
JP7426629B2 (en) Resin compositions, prepregs, resin-coated films, resin-coated metal foils, metal-clad laminates, and printed wiring boards
JP2003213019A (en) Prepreg and printed wiring board using the same
JP6778889B2 (en) Prepreg, metal-clad laminate and printed wiring board
JP2007099956A (en) Thermosetting resin composition, resin film and structure
JP2002194119A (en) Prepreg and metal foil clad laminated plate
JP5428212B2 (en) Resin composition, prepreg and printed wiring board using the same
JP2006312751A (en) Resin composition, prepreg and copper-clad laminate using the prepreg
JP4150178B2 (en) Resin composition, prepreg and printed wiring board using the same
JP2020050797A (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board
JP5476772B2 (en) Prepreg and laminate
JP4517699B2 (en) Resin composition, prepreg and laminate
JP2005097524A (en) Resin composition, prepreg and laminated sheet
JP5140959B2 (en) Resin composition, prepreg and printed wiring board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070411

R150 Certificate of patent or registration of utility model

Ref document number: 3946626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

EXPY Cancellation because of completion of term