JP2006028313A - Carbon fiber-reinforced thermoplastic resin compound and method for producing the same - Google Patents

Carbon fiber-reinforced thermoplastic resin compound and method for producing the same Download PDF

Info

Publication number
JP2006028313A
JP2006028313A JP2004207792A JP2004207792A JP2006028313A JP 2006028313 A JP2006028313 A JP 2006028313A JP 2004207792 A JP2004207792 A JP 2004207792A JP 2004207792 A JP2004207792 A JP 2004207792A JP 2006028313 A JP2006028313 A JP 2006028313A
Authority
JP
Japan
Prior art keywords
carbon fiber
thermoplastic resin
fiber
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004207792A
Other languages
Japanese (ja)
Inventor
Susumu Katagiri
片桐  進
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Original Assignee
Mitsubishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp filed Critical Mitsubishi Corp
Priority to JP2004207792A priority Critical patent/JP2006028313A/en
Publication of JP2006028313A publication Critical patent/JP2006028313A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber-reinforced thermoplastic resin compound giving a carbon fiber-reinforced resin molding excellent in electric conductivity, mechanical strength and surface smoothness without detriment to lightweight nature, and to provide a method for producing the same. <P>SOLUTION: This carbon fiber-reinforced resin compound comprises a carbon fiber with 5-20 μm fiber diameter and 1-10 mm fiber length, a fine carbon fiber with 0.5-500 nm fiber diameter and ≤1,000 μm fiber length having a hollow-structured central axis, and a thermoplastic resin, where contents of the carbon fiber, the fine carbon fiber and the thermoplastic resin are 5-40 wt.%, 1-50 wt.% and 5-99 wt.%, respectively. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、射出成形などによる成形体の製造に使用される炭素繊維強化熱可塑性樹脂コンパウンドに関し、特に、得られる成形体の導電性、機械的特性、及び表面平滑性に優れた炭素繊維強化熱可塑性樹脂コンパウンド及びその製造方法に関する。   The present invention relates to a carbon fiber reinforced thermoplastic resin compound used for the production of a molded article by injection molding or the like, and in particular, a carbon fiber reinforced heat excellent in the conductivity, mechanical properties, and surface smoothness of the obtained molded article. The present invention relates to a plastic resin compound and a method for producing the same.

炭素繊維強化樹脂材料は、軽量でしかも高い導電性や機械的強度を有するために、近年のエレクトロニクスの発展に伴い、電磁波シールドや静電気防止のための材料、さらには、OA部品、車両部品、機械部品などの材料として幅広い分野に使用され、また使用が期待されている。特に、車両部品、例えば、静電塗装可能な自動車外装部品(バンパー、バックドアパネル)などの材料として大きな期待がかけられている。   Carbon fiber reinforced resin materials are lightweight and have high electrical conductivity and mechanical strength. Therefore, with the recent development of electronics, materials for electromagnetic wave shielding and static electricity prevention, as well as OA parts, vehicle parts, and machinery. It is used in a wide range of fields as materials for parts and is expected to be used. In particular, great expectations are placed on materials for vehicle parts such as automotive exterior parts (bumpers and back door panels) that can be electrostatically coated.

炭素繊維強化樹脂材料は、予め炭素繊維と適当な樹脂とを混練、押出ししたコンパウンドと呼ばれるペレット状物を作製し、これを射出成形機などの成形機により所望の形態に成形するのが一般的である。コンパウンドの作製では、炭素繊維と所望の樹脂を単軸あるいは2軸混練機により樹脂の軟化点以上で混練、押出したものを冷却しながら適当な長さに切断しペレットを得るものである。   Carbon fiber reinforced resin materials are generally prepared in the form of pellets called compound by kneading and extruding carbon fiber and appropriate resin, and then molding them into a desired shape using a molding machine such as an injection molding machine. It is. In the production of a compound, carbon fibers and a desired resin are kneaded at a temperature equal to or higher than the softening point of the resin with a single or biaxial kneader and cut to an appropriate length while cooling to obtain pellets.

しかしながら、炭素繊維強化樹脂材料は、軽量性に優れるものの、金属系の導電性材料に比べて導電性が低く、十分な性能が得られないという難点があり、これを補うために炭素繊維の配合量を多くすると成形加工性や衝撃強度などの機械的特性が低下するという問題が生じる。また、炭素繊維を用いる強化樹脂材料の場合、得られる成形体の表面平滑性が一般的に小さく、特に炭素繊維の配合量を多くしたときにはますます低下してしまう問題がある。特に、OA部品、車両部品、機械部品などに使用する場合、表面平滑性の低下は、成形体表面を静電塗装などにより塗装する場合には、外観がわるくなり商品価値を著しく低下させるものである。   However, although carbon fiber reinforced resin material is excellent in lightness, there is a problem in that it has low conductivity compared to metal-based conductive material, and sufficient performance cannot be obtained. When the amount is increased, there arises a problem that mechanical properties such as moldability and impact strength are lowered. Further, in the case of a reinforced resin material using carbon fibers, the surface smoothness of the obtained molded body is generally small, and there is a problem that it is further lowered particularly when the amount of carbon fibers is increased. In particular, when used for OA parts, vehicle parts, machine parts, etc., the decrease in surface smoothness is that when the surface of the molded body is coated by electrostatic coating, the appearance becomes poor and the commercial value is significantly reduced. is there.

したがって、本発明は、軽量性を損なわずに、優れた導電性、大きい機械的強度、表面平滑性に優れる、炭素繊維強化樹脂成形体が得られる炭素繊維強化熱可塑性樹脂コンパウンド及びその製造方法を提供することを目的とする。   Therefore, the present invention provides a carbon fiber reinforced thermoplastic resin compound and a method for producing the same, which can provide a carbon fiber reinforced resin molded article having excellent conductivity, large mechanical strength, and excellent surface smoothness without impairing lightness. The purpose is to provide.

本発明者は、上記の目的を達成すべく鋭意研究を進めたところ、炭素繊維強化熱可塑性樹脂コンパウンド中に、強化材料として、特定の炭素繊維とともに、特定の物性を有する微細炭素繊維の特定量を含有させた場合には、予想外なことに、該コンパウンドから得られる成形体の表面平滑性が顕著に改善され、同時に、得られる成形体全体にわたって均一な導電性や機械的強度も得られることを見出した。   The present inventor has conducted earnest research to achieve the above object, and as a reinforcing material in the carbon fiber reinforced thermoplastic resin compound, a specific amount of fine carbon fibers having specific physical properties as well as specific carbon fibers. Unexpectedly, the surface smoothness of the molded product obtained from the compound is remarkably improved, and at the same time, uniform conductivity and mechanical strength can be obtained throughout the obtained molded product. I found out.

本発明は、上記の新規な知見に基づくもので、以下の特徴を有するものである。
(1)繊維径5〜20μm及び繊維長1〜10mmの炭素繊維と、繊維径0.5〜500nm及び繊維長1000μm以下を有し、中心軸が空洞構造からなる微細炭素繊維と、熱可塑性樹脂とを含む炭素繊維強化熱可塑性樹脂コンパウンドであって、上記炭素繊維が5〜40重量%、微細炭素繊維が1〜50重量%、及び熱可塑性樹脂が50〜99重量%含有することをすることを特徴とする炭素繊維強化熱可塑性樹脂コンパウンド。
(2)微細炭素繊維が気相法炭素繊維である請求項1に記載の炭素繊維強化熱可塑性樹脂コンパウンド。
(3)微細炭素繊維が、非酸化性雰囲気にて2300〜3500℃で黒鉛化処理されている請求項1又は2に記載の請求項1又は2に記載の炭素繊維強化熱可塑性樹脂コンパウンド。
(4)微細炭素繊維が、その100重量部あたり、1〜40重量部のフェノール樹脂がその表面に被覆された微細炭素繊維である請求項1〜3のいずれかに記載の炭素繊維強化熱可塑性樹脂コンパウンド。
(5)熱可塑性樹脂が、ポリエーテルエーテルケトン、ポリアミド、ポリカーボネート及び/又はポリフェニレンサルファイドである請求項1〜5のいずれかに記載の炭素繊維強化熱可塑性樹脂コンパウンド。
(6)熱可塑性樹脂を溶融し、該溶融した熱可塑性樹脂に対して、繊維径5〜20μm及び繊維長1〜10mmの炭素繊維と、繊維径0.5〜500nm及び繊維長1000μm以下を有し、中心軸が空洞構造からなる微細炭素繊維とを配合し混練することを特徴とする炭素繊維強化熱可塑性樹脂コンパウンドの製造方法。
(7)微細炭素繊維が、その100重量部あたり、1〜40重量部のフェノール樹脂がその表面に被覆された微細炭素繊維である請求項6に記載の炭素繊維強化熱可塑性樹脂コンパウンドの製造方法。
(8)熱可塑性樹脂が、ポリエーテルエーテルケトン、ポリアミド、ポリカーボネート及び/又はポリフェニレンサルファイドである請求項6又は7に記載の炭素繊維強化熱可塑性樹脂コンパウンドの製造方法。
The present invention is based on the above novel findings and has the following characteristics.
(1) Carbon fiber having a fiber diameter of 5 to 20 μm and a fiber length of 1 to 10 mm, a fine carbon fiber having a fiber diameter of 0.5 to 500 nm and a fiber length of 1000 μm or less, and a central axis having a hollow structure, and a thermoplastic resin A carbon fiber reinforced thermoplastic resin compound containing 5 to 40% by weight of the carbon fiber, 1 to 50% by weight of the fine carbon fiber, and 50 to 99% by weight of the thermoplastic resin. Carbon fiber reinforced thermoplastic resin compound.
(2) The carbon fiber reinforced thermoplastic resin compound according to claim 1, wherein the fine carbon fibers are vapor grown carbon fibers.
(3) The carbon fiber reinforced thermoplastic resin compound according to claim 1 or 2, wherein the fine carbon fibers are graphitized at 2300 to 3500 ° C in a non-oxidizing atmosphere.
(4) The carbon fiber-reinforced thermoplastic according to any one of claims 1 to 3, wherein the fine carbon fiber is a fine carbon fiber having 1 to 40 parts by weight of a phenol resin coated on its surface per 100 parts by weight of the fine carbon fiber. Resin compound.
(5) The carbon fiber reinforced thermoplastic resin compound according to any one of claims 1 to 5, wherein the thermoplastic resin is polyetheretherketone, polyamide, polycarbonate and / or polyphenylene sulfide.
(6) A thermoplastic resin is melted, and the melted thermoplastic resin has a carbon fiber with a fiber diameter of 5 to 20 μm and a fiber length of 1 to 10 mm, a fiber diameter of 0.5 to 500 nm, and a fiber length of 1000 μm or less. And a method for producing a carbon fiber reinforced thermoplastic resin compound, comprising mixing and kneading fine carbon fibers having a hollow center structure.
(7) The method for producing a carbon fiber-reinforced thermoplastic resin compound according to claim 6, wherein the fine carbon fiber is a fine carbon fiber having 1 to 40 parts by weight of a phenolic resin coated on its surface per 100 parts by weight of the fine carbon fiber. .
(8) The method for producing a carbon fiber reinforced thermoplastic resin compound according to claim 6 or 7, wherein the thermoplastic resin is polyether ether ketone, polyamide, polycarbonate and / or polyphenylene sulfide.

本発明によれば、軽量性に優れ、導電性が大きく、機械的特性とともに表面平滑性に優れる成形体を製造することができる炭素繊維強化熱可塑性樹脂コンパウンドが提供される。このため、本発明の炭素繊維強化熱可塑性樹脂コンパウンドを使用して得られる成形体は、その表面を静電塗装などにより塗装し、OA部品、車両部品、機械部品などに使用される場合にも、優れた外観の商品価値を高いものを与えるものである。   ADVANTAGE OF THE INVENTION According to this invention, the carbon fiber reinforced thermoplastic resin compound which can manufacture the molded object which is excellent in lightweight property, is large in electroconductivity, and is excellent in surface smoothness with mechanical characteristics is provided. For this reason, the molded body obtained by using the carbon fiber reinforced thermoplastic resin compound of the present invention can be used for OA parts, vehicle parts, machine parts, etc. by coating the surface with electrostatic coating or the like. Gives a high product value, excellent appearance.

本発明の炭素繊維強化熱可塑性樹脂コンパウンドに含まれる炭素繊維としては、PAN系、ピッチ系その他の炭素繊維の何れでもよい。その繊維径は好ましくは5〜20μm、特に好ましくは7〜15μmのものが好適である。繊維の長さについては、特に制限はないが、成形加工性や機械的強度などからして、通常は、好ましくは1〜10mm、特に好ましくは、2.5〜6.5mmである。炭素繊維としては、なかでも、導電性の高い高性能のメソフェーズピッチ系炭素繊維が好ましい。もちろん、更に高温で焼成して得られた黒鉛繊維であってもよい。   The carbon fiber contained in the carbon fiber reinforced thermoplastic resin compound of the present invention may be any of PAN-based, pitch-based and other carbon fibers. The fiber diameter is preferably 5 to 20 μm, particularly preferably 7 to 15 μm. Although there is no restriction | limiting in particular about the length of a fiber, From the moldability, mechanical strength, etc., Usually, it is preferably 1-10 mm, Most preferably, it is 2.5-6.5 mm. Among these carbon fibers, high-performance mesophase pitch carbon fibers having high conductivity are preferable. Of course, it may be a graphite fiber obtained by firing at a higher temperature.

また、本発明で使用される微細炭素繊維としては、繊維径0.5〜500nm以下、繊維長1000μm以下で、好ましくはアスペクト比3〜1000を有する、好ましくは炭素六角網面からなる円筒が同心円状に配置された多層構造を有し、その中心軸が空洞構造の微細炭素繊維が使用される。かかる微細炭素繊維は、上記の炭素繊維と比べて繊維径や繊維長さが異なるだけでなく、構造的にも大きく異なっている。この結果、導電性、熱伝導性、摺動性などの物性の点でも異なる。   The fine carbon fiber used in the present invention has a fiber diameter of 0.5 to 500 nm or less, a fiber length of 1000 μm or less, and preferably an aspect ratio of 3 to 1000, preferably a cylinder made of carbon hexagonal mesh surface, and is a concentric circle. Fine carbon fibers having a multilayer structure arranged in a shape and having a hollow structure in the central axis are used. Such fine carbon fibers not only differ in fiber diameter and fiber length from the carbon fibers described above, but also differ greatly in structure. As a result, the physical properties such as conductivity, thermal conductivity, and slidability are also different.

微細炭素繊維は、その繊維径が0.5nmより小さい場合には、得られる複合材料の強度が不十分になり、500nmより大きいと、機械的強度、熱伝導性、摺動性などが低下する。また、繊維長が1000μmより大きい場合には、微細炭素繊維が炭素マトリックス中に均一に分散し難くなるため、材料の組成が不均一になり、得られる複合材料の機械的強度が低下する。本発明で使用される微細炭素繊維は、繊維径が10〜200nm、繊維長が3〜300μm、好ましくはアスペクト比が3〜500を有するものが特に好ましい。なお、本発明において微細炭素繊維の繊維径や繊維長は、電子顕微鏡により測定することができる。   If the fiber diameter of the fine carbon fiber is smaller than 0.5 nm, the strength of the resulting composite material becomes insufficient. If it is larger than 500 nm, the mechanical strength, thermal conductivity, slidability, etc. are lowered. . On the other hand, when the fiber length is larger than 1000 μm, it becomes difficult to disperse the fine carbon fibers uniformly in the carbon matrix, so that the composition of the material becomes non-uniform and the mechanical strength of the resulting composite material decreases. The fine carbon fiber used in the present invention is particularly preferably one having a fiber diameter of 10 to 200 nm, a fiber length of 3 to 300 μm, and preferably an aspect ratio of 3 to 500. In the present invention, the fiber diameter and fiber length of the fine carbon fiber can be measured with an electron microscope.

本発明で使用される好ましい微細炭素繊維は、カーボンナノチューブである。このカーボンナノチューブは、グラファイトウイスカー、フィラメンタスカーボン、炭素フィブリルなどとも呼ばれているもので、チューブを形成するグラファイト膜が一層である単層カーボンナノチューブと、多層である多層カーボンナノチューブとがあり、本発明ではそのいずれも使用できる。しかし、多層カーボンナノチューブの方が、大きい機械的強度が得られるとともに経済面でも有利であり好ましい。   A preferred fine carbon fiber used in the present invention is a carbon nanotube. These carbon nanotubes are also called graphite whiskers, filamentous carbon, carbon fibrils, etc., and there are single-walled carbon nanotubes with a single graphite film forming the tube and multi-walled carbon nanotubes with multiple layers. Any of them can be used in the invention. However, multi-walled carbon nanotubes are preferred because they provide a high mechanical strength and are advantageous in terms of economy.

カーボンナノチューブは、例えば、「カーボンナノチュ−ブの基礎」(コロナ社発行、23〜57頁、1998年発行)に記載されるようにアーク放電法、レーザ蒸発法及び熱分解法などにより製造される。カーボンナノチューブは、繊維径が好ましくは0.5〜500nm、繊維長が好ましくは1〜500μm、好ましくはアスペクト比が3〜500のものである。   Carbon nanotubes are produced, for example, by an arc discharge method, a laser evaporation method, a thermal decomposition method, or the like as described in “Basics of Carbon Nanotube” (issued by Corona, pages 23-57, issued in 1998). The The carbon nanotube has a fiber diameter of preferably 0.5 to 500 nm, a fiber length of preferably 1 to 500 μm, and preferably an aspect ratio of 3 to 500.

本発明において特に好ましい微細炭素繊維は、上記カーボンナノチューブのうちで繊維径と繊維長が比較的大きい気相法炭素繊維である。このような気相法炭素繊維は、VGCF(Vapor Grown Carbon Fiber)とも呼ばれ、特開2003−176327号公報に記載されるように、炭化水素などのガスを有機遷移金属系触媒の存在下において水素ガスとともに気相熱分解することによって製造される。この気相法炭素繊維(VGCF)は、繊維径が好ましくは50〜300nm、繊維長が好ましくは3〜300μm、好ましくはアスペクト比が3〜500のものである。そして、このVGCFは、製造しやすさや取り扱い性の点で優れている。   Particularly preferred fine carbon fibers in the present invention are vapor grown carbon fibers having a relatively large fiber diameter and fiber length among the carbon nanotubes. Such a vapor grown carbon fiber is also referred to as VGCF (Vapor Grown Carbon Fiber) and, as described in Japanese Patent Application Laid-Open No. 2003-176327, a gas such as a hydrocarbon in the presence of an organic transition metal catalyst. Manufactured by vapor phase pyrolysis with hydrogen gas. The vapor grown carbon fiber (VGCF) has a fiber diameter of preferably 50 to 300 nm, a fiber length of preferably 3 to 300 μm, and preferably an aspect ratio of 3 to 500. This VGCF is excellent in terms of ease of manufacture and handling.

本発明で使用される微細炭素繊維は、2300℃以上、好ましくは2500〜3500℃の温度で非酸化性雰囲気にて熱処理することが好ましく、これにより、その表面が黒鉛化され、機械的強度、化学的安定性が大きく向上し、得られる複合材料の軽量化に貢献する。非酸化性雰囲気は、アルゴン、ヘリウム、窒素ガスが好ましく使用される。   The fine carbon fiber used in the present invention is preferably heat-treated in a non-oxidizing atmosphere at a temperature of 2300 ° C. or higher, preferably 2500 to 3500 ° C., whereby the surface thereof is graphitized, mechanical strength, Chemical stability is greatly improved, contributing to weight reduction of the resulting composite material. As the non-oxidizing atmosphere, argon, helium, and nitrogen gas are preferably used.

本発明で使用される微細炭素繊維は、そのままでもよいが、表面にフェノール樹脂を被覆した微細炭素繊維の使用が好ましい。かかる樹脂を被覆した微細炭素繊維を使用した場合には、分散状態が均一になり、樹脂コンパウンドの作製時の加工性が向上し、樹脂コンパウンドの生産効率が大幅に向上する。フェノール樹脂の微細炭素繊維の表面への被覆量が、上記微細炭素繊維100重量部あたり、好ましくは1〜40重量部、特に好ましくは5〜25重量部が好適である。このフェノール樹脂を被覆した微細炭素繊維は、フェノール類とアルデヒド類とを、触媒の存在下で、微細炭素繊維と混合させつつ反応させることにより製造するのが好ましい。   The fine carbon fiber used in the present invention may be used as it is, but it is preferable to use fine carbon fiber having a surface coated with a phenol resin. When fine carbon fibers coated with such a resin are used, the dispersion state becomes uniform, the processability during the production of the resin compound is improved, and the production efficiency of the resin compound is greatly improved. The coating amount of the phenol resin on the surface of the fine carbon fibers is preferably 1 to 40 parts by weight, particularly preferably 5 to 25 parts by weight per 100 parts by weight of the fine carbon fibers. The fine carbon fiber coated with the phenol resin is preferably produced by reacting phenols and aldehydes in the presence of a catalyst while being mixed with the fine carbon fibers.

本発明で使用される熱可塑性樹脂は、目的とする成形体によって適宜に選ばれるが、成形分野で使用される樹脂であれば特に制限はない。例えばポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;ポリスチレン、ABS、AS樹脂などのスチレン系樹脂;ナイロン6、ナイロン66、ナイロン12などのポリアミド樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアセタール、ボリフェニレンサルファイト、ポリスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、液晶ポリマー(LCP);などのエンジニアリングプラスチックなどが挙げられる。本発明においては、これらの熱可塑性樹脂を1種又は2種以上組合せて使用することができる。   The thermoplastic resin used in the present invention is appropriately selected depending on the intended molded article, but is not particularly limited as long as it is a resin used in the molding field. For example, polyolefin resins such as polyethylene and polypropylene; styrene resins such as polystyrene, ABS, and AS resin; polyamide resins such as nylon 6, nylon 66, and nylon 12; polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyphenylene sulfite, polysulfone, Engineering plastics such as polyether ketone, polyether ether ketone, polyether sulfone, and liquid crystal polymer (LCP); In the present invention, these thermoplastic resins can be used alone or in combination of two or more.

なかでも、本発明では、ポリエーテルエーテルケトン、ポリアミド、ポリカーボネート及び/又はポリフェニレンサルファイドの樹脂の場合には優れた特性の成形体を与える樹脂コンパウンドが得られる。なお、熱可塑性樹脂に、通常使用される種々の添加剤、たとえば酸化防止剤、潤滑剤、可塑剤、安定剤などを予め配合してもよい。   In particular, in the present invention, in the case of a polyether ether ketone, polyamide, polycarbonate and / or polyphenylene sulfide resin, a resin compound which gives a molded article having excellent characteristics can be obtained. In addition, you may mix | blend various additives normally used for a thermoplastic resin, for example, antioxidant, a lubrication agent, a plasticizer, a stabilizer, etc. previously.

本発明の炭素繊維強化熱可塑性樹脂コンパウンドにおいて、炭素繊維、微細炭素繊維及び熱可塑性樹脂の含有される割合は重要である。本発明で、炭素繊維が5〜40重量%、微細炭素繊維が1〜50重量%及び熱可塑性樹脂が50〜99重量%が含有される。炭素繊維が5重量%より小さい場合には、機械的強度が充分に発揮されず、逆に40重量%を超える場合には、加工性や表面平滑性が好ましくない。また、微細炭素繊維が1重量%より小さい場合には、導電性の安定化や機械的強度の向上が充分に得られない。逆に50重量%を超える場合には、添加量に見合うだけの改善効果が発言しない。また、熱可塑性樹脂が50重量%より小さい場合には、流動性の低下による成形加工性の問題が発生し、逆に99重量%を超える場合には本発明によりもたらされる効果が充分に得られない。なかでも、本発明では、炭素繊維が10〜30重量%、微細炭素繊維が3〜15重量%及び熱可塑性樹脂が60〜90重量%の比率で含有されるのが好ましい。   In the carbon fiber reinforced thermoplastic resin compound of the present invention, the proportions of carbon fiber, fine carbon fiber and thermoplastic resin are important. In the present invention, 5 to 40% by weight of carbon fiber, 1 to 50% by weight of fine carbon fiber, and 50 to 99% by weight of thermoplastic resin are contained. When the carbon fiber is less than 5% by weight, the mechanical strength is not sufficiently exhibited. Conversely, when the carbon fiber exceeds 40% by weight, the workability and the surface smoothness are not preferable. On the other hand, when the fine carbon fiber is smaller than 1% by weight, the conductivity cannot be stabilized and the mechanical strength cannot be sufficiently improved. On the other hand, when it exceeds 50% by weight, the improvement effect commensurate with the amount added is not remarked. Further, when the thermoplastic resin is less than 50% by weight, a problem of moldability due to a decrease in fluidity occurs. Conversely, when it exceeds 99% by weight, the effects brought about by the present invention are sufficiently obtained. Absent. Especially, in this invention, it is preferable to contain carbon fiber in a ratio of 10 to 30% by weight, fine carbon fiber in a ratio of 3 to 15% by weight, and a thermoplastic resin in a ratio of 60 to 90% by weight.

本発明の炭素繊維強化熱可塑性樹脂コンパウンドは、上記の炭素繊維、微細炭素繊維及び熱可塑性樹脂を配合することによって製造される。配合は、通常の熱可塑性樹脂の配合方法を用いることができるが、好ましくは、バンバリミキサー、ニーダーヘンシェルミキサーなどの混練機、又は1軸又は2軸押出機を使用することもできる。本発明の炭素繊維強化熱可塑性樹脂コンパウンドは、かかる混練機又は押出機を使用し、溶融させた熱可塑性樹脂に対して、炭素繊維及び微細炭素繊維を配合し、均一に分散した後、冷却、固化させ、次いでペレタイザーにて、平均サイズ(長さ)が好ましくは2〜6mm、特に好ましくは2.5〜3.5mmに切断せしめられる。   The carbon fiber reinforced thermoplastic resin compound of the present invention is produced by blending the above carbon fiber, fine carbon fiber, and thermoplastic resin. The blending can be performed by a usual thermoplastic resin blending method. Preferably, a kneader such as a Banbury mixer or a Nieder Henschel mixer, or a single or twin screw extruder can be used. The carbon fiber reinforced thermoplastic resin compound of the present invention uses such a kneader or an extruder, blends the carbon fiber and fine carbon fiber with the molten thermoplastic resin, uniformly disperses, and then cools, It is solidified and then cut with a pelletizer so that the average size (length) is preferably 2 to 6 mm, particularly preferably 2.5 to 3.5 mm.

本発明の炭素繊維強化熱可塑性樹脂コンパウンドには、本発明の目的を阻害しない範囲で必要に応じて、公知の種々の添加剤を添加することができる。添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤、安定剤、充填剤、補強剤、難燃剤、滑剤、溶剤、加工助剤などを挙げることができる。さらには、炭素粉末、金属系や他の炭素系導電材料などを添加、併用することもできる。   Various known additives can be added to the carbon fiber reinforced thermoplastic resin compound of the present invention as necessary within a range not impairing the object of the present invention. Examples of the additive include an antioxidant, an ultraviolet absorber, a plasticizer, a stabilizer, a filler, a reinforcing agent, a flame retardant, a lubricant, a solvent, and a processing aid. Furthermore, carbon powder, metal-based or other carbon-based conductive materials can be added and used together.

本発明の炭素繊維強化熱可塑性樹脂コンパウンドは、射出成形のほかに、押出成形、トランスファー成形、プレス成形など各種の成形方法なども使用でき、使用する樹脂および目的の成形体の形状に応じた成形方法が選択できる。かくして本発明の炭素繊維強化熱可塑性樹脂コンパウンドからは、具体的には、ファクシミリなどの低抵抗パンド、非帯電コンベアベルト、導電タイヤ、IC収納ケース、コピー機用ロール、加熱用エレメント、過電流・過熱防止用素子、電磁波シールド筺体、キーボードスイッチ、コネクター素子など各種の電気・電子部品、OA部品、さらには、静電塗装可能な自動車外装部品(バンパー、バックドアパネル)、車輌部品、機械部品など広範囲の成形体が製造される。   The carbon fiber reinforced thermoplastic resin compound of the present invention can be used not only for injection molding but also for various molding methods such as extrusion molding, transfer molding, press molding, etc., and molding according to the resin used and the shape of the target molded body You can choose the method. Thus, from the carbon fiber reinforced thermoplastic resin compound of the present invention, specifically, a low resistance band such as a facsimile, an uncharged conveyor belt, a conductive tire, an IC storage case, a roll for a copying machine, a heating element, an overcurrent, Various electrical and electronic parts such as overheat prevention elements, electromagnetic shielding housings, keyboard switches, connector elements, OA parts, and automotive exterior parts (bumpers, back door panels) that can be electrostatically painted, vehicle parts, mechanical parts, etc. The molded body is manufactured.

以下、実施例により本発明を更に詳細に説明するが、本発明の技術的範囲がこれらにより限定されるものではない。なお、以下に示す部はすべて重量基準である。また、下記の実施例において、成形体の各特性はそれぞれ下記のようにして求めた。
体積固有抵抗(導電性):JIS K7194に準拠する方法による。
引張強度:ISO527に準拠する方法による。
曲げ強度:ISO178に準拠する方法による。
表面平滑性(Ra):JISB0601に準拠する方法による。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, the technical scope of this invention is not limited by these. All parts shown below are based on weight. Further, in the following examples, each characteristic of the molded body was determined as follows.
Volume resistivity (conductivity): According to a method according to JIS K7194.
Tensile strength: According to ISO 527.
Bending strength: According to ISO 178.
Surface smoothness (Ra): According to a method according to JISB0601.

実施例1
炭素繊維として、繊維径が7〜15μm、繊維長が6mmのメソフェーズピッチ系の高弾性炭素繊維20部、微細炭素繊維として、繊維径が150nm、繊維長が15μm、アスペクト比が100の気相法炭素繊維をアルゴンガス雰囲気中、温度2800℃で30分間、加熱処理して黒鉛化した繊維3部、及び熱可塑性樹脂として、ポリアミド66(66PA)80部を使用した。
Example 1
As a carbon fiber, a gas phase method having a fiber diameter of 7 to 15 μm and a fiber length of 20 mm, 20 parts of mesophase pitch-based highly elastic carbon fiber, and a fine carbon fiber having a fiber diameter of 150 nm, a fiber length of 15 μm, and an aspect ratio of 100 3 parts of fiber obtained by graphitizing carbon fiber by heating at 2800 ° C. for 30 minutes in an argon gas atmosphere, and 80 parts of polyamide 66 (66PA) were used as the thermoplastic resin.

2軸押出し混練機を使用し、溶融した上記ポリアミド66と、炭素繊維及び微細炭素繊維を配合、混練し、得られる混練物をペレタイザーによる直径2.5mm、長さ3mmのペレット状の樹脂コンパウンドを製造した。この樹脂コンパウンドを射出成形機にして成形し、縦88mm、横48mm、厚み3mmの試験成形板を得た。   Using a twin-screw extrusion kneader, the melted polyamide 66, carbon fiber and fine carbon fiber are blended and kneaded, and the resulting kneaded product is formed into a pellet-shaped resin compound having a diameter of 2.5 mm and a length of 3 mm by a pelletizer. Manufactured. This resin compound was molded using an injection molding machine to obtain a test molded plate having a length of 88 mm, a width of 48 mm, and a thickness of 3 mm.

この試験成形板の体積固有抵抗(導電性)、引張強度、曲げ強度、及び表面平滑性(Ra)を試験し、その結果を表1に示した。なお、表1において、比較例1は、実施例1において、炭素繊維及び微細炭素繊維のいずれも使用しないで,樹脂のみを使用して同様に製造した試験成形板についての結果である。また、比較例2は、実施例1において、微細炭素繊維を使用しないで,樹脂と炭素繊維を使用して同様に製造した試験成形板についての結果である。   The test molded plate was tested for volume resistivity (conductivity), tensile strength, bending strength, and surface smoothness (Ra), and the results are shown in Table 1. In Table 1, Comparative Example 1 is a result of a test molded plate manufactured in the same manner using Example 1 but using only a resin without using any of carbon fibers and fine carbon fibers. Moreover, the comparative example 2 is a result about the test molding board manufactured similarly in Example 1 using resin and carbon fiber, without using fine carbon fiber.

Figure 2006028313
Figure 2006028313

表1の結果からわかるように、本発明の実施例1の試験成形板は、比較例1の試験成形板に比べて、体積固有抵抗が飛躍的に小さく、従って導電性能が大きく向上し、また、引張強度、曲げ強度も2倍に向上している。また、比較例2の試験成形板に比べても導電性能を維持しつつ、引張強度、曲げ強度などの機械的強度を向上させ、表面平滑性も著しく向上していることがわかる。   As can be seen from the results in Table 1, the test molded plate of Example 1 of the present invention has a remarkably lower volume resistivity than the test molded plate of Comparative Example 1, thus greatly improving the conductive performance. Also, the tensile strength and bending strength are improved twice. Further, it can be seen that the mechanical strength such as tensile strength and bending strength is improved and the surface smoothness is remarkably improved while maintaining the conductive performance as compared with the test molded plate of Comparative Example 2.

実施例2
上記実施例1において、熱可塑性樹脂として、ポリアミドの代わりに、ポリカーボネート(PC)を使用し、また、ポリカーボネート60部、炭素繊維30部、微細炭素繊維10部に変え、実施例1と同様に実施し、同寸法の試験成形板を製造した。
Example 2
In Example 1 above, polycarbonate (PC) was used as the thermoplastic resin instead of polyamide, and the same procedure as in Example 1 was performed except that the polycarbonate was 60 parts, carbon fiber 30 parts, and fine carbon fiber 10 parts. Then, a test molded plate having the same dimensions was produced.

この試験成形板の体積固有抵抗(導電性)、引張強度、曲げ強度、及び表面平滑性(Ra)を試験し、その結果を表2に示した。なお、表2において、比較例3は、実施例2において、炭素繊維及び微細炭素繊維のいずれも使用しないで,樹脂のみを使用して同様に製造した試験成形板についての結果である。また、比較例4は、実施例2において、微細炭素繊維を使用しないで,樹脂と炭素繊維を使用して同様に製造した試験成形板についての結果である。   This test molded plate was tested for volume resistivity (conductivity), tensile strength, bending strength, and surface smoothness (Ra), and the results are shown in Table 2. In Table 2, Comparative Example 3 is a result of the test molded plate manufactured in the same manner using Example 2 but using only the resin without using any carbon fiber or fine carbon fiber. Moreover, the comparative example 4 is a result about the test molding board similarly manufactured in Example 2 using resin and carbon fiber, without using fine carbon fiber.

Figure 2006028313
Figure 2006028313

表2の結果からわかるように、本発明の実施例2の試験成形板も実施例1の場合と同じく、体積固有抵抗引張強度、曲げ強度などの機械的強度を損なうことなく表面平滑性を向上させている。   As can be seen from the results of Table 2, the test molded plate of Example 2 of the present invention also improved the surface smoothness without impairing mechanical strength such as volume resistivity tensile strength and bending strength, as in Example 1. I am letting.

実施例3
上記実施例2において、微細炭素繊維として、次のようにして調製したフェノール樹脂被覆微細炭素繊維を使用した。反応容器にビスフェノールA(水に対する常温での溶解度0.036)を20重量部、フェノールを365重量部、37重量%ホルマリンを547重量部、トリエチルアミンを7.7重量部仕込んだ。さらに、1835重量部及び水を1500重量部仕込んだ(疎水性のビスフェノールAはフェノール類中の5重量%)。攪拌混合しながら60分を要して90℃まで昇温し、そのまま4時間反応を行なった。次に、20℃まで冷却した後、反応容器の内容物をヌッチェによりろ別して、含有水分22重量%の微細炭素繊維を得た。これを、熱風循環式乾燥器で器内温度45℃で約48時間乾燥することにより、フェノール樹脂の含有量は15重量%のフェノール樹脂被覆微細炭素繊維を得た。フェノール樹脂の被覆により、微細炭素繊維の見かけ密度は大幅に改善され、樹脂コンパウンド作製時の加工性が飛躍的に向上し、樹脂コンパウンドの生産能力が約3倍になった。
Example 3
In the said Example 2, the phenol resin coating fine carbon fiber prepared as follows was used as fine carbon fiber. A reaction vessel was charged with 20 parts by weight of bisphenol A (solubility 0.036 at room temperature in water), 365 parts by weight of phenol, 547 parts by weight of 37% by weight formalin, and 7.7 parts by weight of triethylamine. Further, 1835 parts by weight and 1500 parts by weight of water were charged (hydrophobic bisphenol A was 5% by weight in phenols). While stirring and mixing, 60 minutes were required, the temperature was raised to 90 ° C., and the reaction was carried out for 4 hours. Next, after cooling to 20 ° C., the contents of the reaction vessel were separated by Nutsche to obtain fine carbon fibers having a moisture content of 22% by weight. This was dried with a hot air circulation dryer at an internal temperature of 45 ° C. for about 48 hours to obtain a phenol resin-coated fine carbon fiber having a phenol resin content of 15% by weight. By coating with phenolic resin, the apparent density of fine carbon fibers has been greatly improved, the processability during resin compound production has improved dramatically, and the production capacity of resin compounds has nearly tripled.

このフェノール樹脂被覆微細炭素繊維を20部、ポリカーボネート60部、炭素繊維20部使用した他は、実施例2と同様に実施し、同寸法の試験成形板を製造した。
この試験成形板の体積固有抵抗(導電性)、引張強度、曲げ強度、及び表面平滑性(Ra)を試験し、その結果を表3に示した。
A test molded plate of the same size was produced in the same manner as in Example 2 except that 20 parts of this phenol resin-coated fine carbon fiber, 60 parts of polycarbonate, and 20 parts of carbon fiber were used.
This test molded plate was tested for volume resistivity (conductivity), tensile strength, bending strength, and surface smoothness (Ra), and the results are shown in Table 3.

Figure 2006028313
Figure 2006028313

表3の結果からわかるように、本発明の実施例3の試験成形板は、比較例3の試験成形板に比べて、体積固有抵抗、引張強度、及び曲げ強度を著しく向上させた。   As can be seen from the results in Table 3, the test molded plate of Example 3 of the present invention significantly improved the volume resistivity, tensile strength, and bending strength as compared with the test molded plate of Comparative Example 3.

実施例4
上記実施例1において、熱可塑性樹脂として、ポリアミドの代わりに、ポリフェニンサルファイド(PPS)を使用し、また、ポリフェニンサルファイド70部、炭素繊維15部、微細炭素繊維15部に変えた他は、実施例1と同様に実施し、同寸法の試験成形板を製造した。この試験成形板の表面平滑性(Ra)は、0.105であった。
上記において、微細炭素繊維を使用せずに、炭素繊維のみを30部使用し他は同様にして製造した試験成形板の表面平滑性は0.225であった。
Example 4
In Example 1 above, polyphenine sulfide (PPS) was used in place of polyamide as the thermoplastic resin, and 70 parts of polyphenine sulfide, 15 parts of carbon fiber, and 15 parts of fine carbon fiber were used. The test was carried out in the same manner as in Example 1 to produce a test molded plate having the same dimensions. The test molded plate had a surface smoothness (Ra) of 0.105.
In the above, the surface smoothness of the test molded plate produced in the same manner except that 30 parts of carbon fiber was used without using fine carbon fiber was 0.225.

実施例5〜7
上記実施例1において、熱可塑性樹脂として、ポリアミドの代わりに、ポリエーテルエーテルケトン(PEEK)を使用し、かつポリエーテルエーテルケトン75部、炭素繊維20部、微細炭素繊維5部に変えた他は、実施例1と同様に実施し、同寸法の試験成形板(実施例5)を製造した。
Examples 5-7
In Example 1 described above, polyether ether ketone (PEEK) was used as the thermoplastic resin instead of polyamide, and 75 parts of polyether ether ketone, 20 parts of carbon fiber, and 5 parts of fine carbon fiber were used. This was carried out in the same manner as in Example 1 to produce a test molded plate (Example 5) having the same dimensions.

上記において、ポリエーテルエーテルケトン75部、炭素繊維15部、微細炭素繊維10部に変えた他は同様に実施し、同寸法の試験成形板(実施例6)を製造した。また、同様にして、ポリエーテルエーテルケトン80部、炭素繊維15部、微細炭素繊維5部に変えた他は同様に実施し、同寸法の試験成形(実施例7)を製造した。   In the above, it carried out similarly except having changed into 75 parts of polyether ether ketone, 15 parts of carbon fibers, and 10 parts of fine carbon fibers, and manufactured the test molding board (Example 6) of the same dimension. Similarly, test molding (Example 7) of the same size was carried out in the same manner except that 80 parts of polyetheretherketone, 15 parts of carbon fiber, and 5 parts of fine carbon fiber were used.

製造された実施例5、6及び7の試験成形板の体積固有抵抗(導電性)、引張強度、曲げ強度、及び表面平滑性(Ra)を試験し、その結果を表4に示した。   The manufactured test molded plates of Examples 5, 6, and 7 were tested for volume resistivity (conductivity), tensile strength, bending strength, and surface smoothness (Ra). The results are shown in Table 4.

Figure 2006028313
Figure 2006028313

表4の結果からわかるように、本発明の実施例5、6及び7の試験成形板は、比較例7試験成形板に比べて、優れた引張強度及び曲げ強度を維持しつつ、安定した体積固有抵抗を有し、かつ炭素繊維のみの強化樹脂に比較して高い表面平滑性(Ra)を有することがわかる。   As can be seen from the results in Table 4, the test molded plates of Examples 5, 6 and 7 of the present invention have a stable volume while maintaining excellent tensile strength and bending strength as compared to the test molded plate of Comparative Example 7. It can be seen that it has a specific resistance and a high surface smoothness (Ra) as compared with a reinforced resin containing only carbon fibers.

Claims (8)

繊維径5〜20μm及び繊維長1〜10mmの炭素繊維と、繊維径0.5〜500nm及び繊維長1000μm以下を有し、中心軸が空洞構造からなる微細炭素繊維と、熱可塑性樹脂とを含む炭素繊維強化熱可塑性樹脂コンパウンドであって、上記炭素繊維が5〜40重量%、微細炭素繊維が1〜50重量%、及び熱可塑性樹脂が50〜99重量%含有することをすることを特徴とする炭素繊維強化熱可塑性樹脂コンパウンド。   A carbon fiber having a fiber diameter of 5 to 20 μm and a fiber length of 1 to 10 mm, a fine carbon fiber having a fiber diameter of 0.5 to 500 nm and a fiber length of 1000 μm or less, and having a hollow structure in the central axis, and a thermoplastic resin. A carbon fiber reinforced thermoplastic resin compound, characterized in that the carbon fiber is contained in an amount of 5 to 40% by weight, the fine carbon fiber is contained in an amount of 1 to 50% by weight, and the thermoplastic resin is contained in an amount of 50 to 99% by weight. Carbon fiber reinforced thermoplastic resin compound. 微細炭素繊維が気相法炭素繊維である請求項1に記載の炭素繊維強化熱可塑性樹脂コンパウンド。   The carbon fiber reinforced thermoplastic resin compound according to claim 1, wherein the fine carbon fiber is a vapor grown carbon fiber. 微細炭素繊維が、非酸化性雰囲気にて2300〜3500℃で黒鉛化処理されている請求項1又は2に記載の請求項1又は2に記載の炭素繊維強化熱可塑性樹脂コンパウンド。   The carbon fiber-reinforced thermoplastic resin compound according to claim 1 or 2, wherein the fine carbon fiber is graphitized at 2300 to 3500 ° C in a non-oxidizing atmosphere. 微細炭素繊維が、その100重量部あたり、1〜40重量部のフェノール樹脂がその表面に被覆された微細炭素繊維である請求項1〜3のいずれかに記載の炭素繊維強化熱可塑性樹脂コンパウンド。   The carbon fiber reinforced thermoplastic resin compound according to any one of claims 1 to 3, wherein the fine carbon fiber is a fine carbon fiber having 1 to 40 parts by weight of a phenol resin coated on its surface per 100 parts by weight of the fine carbon fiber. 熱可塑性樹脂が、ポリエーテルエーテルケトン、ポリアミド、ポリカーボネート及び/又はポリフェニレンサルファイドである請求項1〜5のいずれかに記載の炭素繊維強化熱可塑性樹脂コンパウンド。   The carbon fiber reinforced thermoplastic resin compound according to any one of claims 1 to 5, wherein the thermoplastic resin is polyetheretherketone, polyamide, polycarbonate, and / or polyphenylene sulfide. 熱可塑性樹脂を溶融し、該溶融した熱可塑性樹脂に対して、繊維径5〜20μm及び繊維長1〜10mmの炭素繊維と、繊維径0.5〜500nm及び繊維長1000μm以下を有し、中心軸が空洞構造からなる微細炭素繊維とを供給して混練することを特徴とする炭素繊維強化熱可塑性樹脂コンパウンドの製造方法。   The thermoplastic resin is melted, and the melted thermoplastic resin has a fiber diameter of 5 to 20 μm and a fiber length of 1 to 10 mm, a fiber diameter of 0.5 to 500 nm, and a fiber length of 1000 μm or less, A method for producing a carbon fiber-reinforced thermoplastic resin compound, characterized in that a fine carbon fiber having a hollow shaft structure is supplied and kneaded. 微細炭素繊維が、その100重量部あたり、1〜40重量部のフェノール樹脂がその表面に被覆された微細炭素繊維である請求項6に記載の炭素繊維強化熱可塑性樹脂コンパウンドの製造方法。   The method for producing a carbon fiber-reinforced thermoplastic resin compound according to claim 6, wherein the fine carbon fiber is fine carbon fiber having 1 to 40 parts by weight of a phenolic resin coated on its surface per 100 parts by weight of the fine carbon fiber. 熱可塑性樹脂が、ポリエーテルエーテルケトン、ポリアミド、ポリカーボネート及び/又はポリフェニレンサルファイドである請求項6又は7に記載の炭素繊維強化熱可塑性樹脂コンパウンドの製造方法。   The method for producing a carbon fiber reinforced thermoplastic resin compound according to claim 6 or 7, wherein the thermoplastic resin is polyetheretherketone, polyamide, polycarbonate, and / or polyphenylene sulfide.
JP2004207792A 2004-07-14 2004-07-14 Carbon fiber-reinforced thermoplastic resin compound and method for producing the same Withdrawn JP2006028313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207792A JP2006028313A (en) 2004-07-14 2004-07-14 Carbon fiber-reinforced thermoplastic resin compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207792A JP2006028313A (en) 2004-07-14 2004-07-14 Carbon fiber-reinforced thermoplastic resin compound and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006028313A true JP2006028313A (en) 2006-02-02

Family

ID=35895056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207792A Withdrawn JP2006028313A (en) 2004-07-14 2004-07-14 Carbon fiber-reinforced thermoplastic resin compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006028313A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097006A (en) * 2004-08-31 2006-04-13 Showa Denko Kk Method for producing electrically conductive resin composition and application thereof
JP2006225649A (en) * 2005-01-21 2006-08-31 Showa Denko Kk Heat-resistant sliding resin composition, its production method and use
KR100706653B1 (en) * 2006-12-27 2007-04-13 제일모직주식회사 Heat-conductive resin composition and plastic article
JP2007106950A (en) * 2005-10-17 2007-04-26 Tosoh Corp Polyarylene sulfide composition
JP2007269308A (en) * 2006-03-07 2007-10-18 Toray Ind Inc Interior trimming material for aircraft
JP2007291220A (en) * 2006-04-25 2007-11-08 Tosoh Corp Polyarylene sulfide composition
JP2008069474A (en) * 2006-09-13 2008-03-27 Teijin Ltd Carbon fiber aggregate suitable for reinforcing material/heat-dissipating material
JP2010059303A (en) * 2008-09-03 2010-03-18 Bridgestone Corp Rubber composition and tire using the same
WO2012096317A1 (en) 2011-01-12 2012-07-19 保土谷化学工業株式会社 Thermosetting-resin-containing liquid having dispersed fine carbon fibers, and molded thermoset resin obtained therefrom
CN102786797A (en) * 2012-08-10 2012-11-21 武汉理工大学 Multiscale carbon fiber nylon composite material and preparation method thereof
CN102786796A (en) * 2012-08-10 2012-11-21 武汉理工大学 TPU (Thermoplastic Urethane) modified carbon fiber/nylon composite material and preparation method thereof
JP2014159560A (en) * 2013-01-25 2014-09-04 Toray Ind Inc Molding material and molded product
CN110204891A (en) * 2018-02-28 2019-09-06 杜邦公司 Antistatic polymer composite

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097006A (en) * 2004-08-31 2006-04-13 Showa Denko Kk Method for producing electrically conductive resin composition and application thereof
JP2006225649A (en) * 2005-01-21 2006-08-31 Showa Denko Kk Heat-resistant sliding resin composition, its production method and use
JP2007106950A (en) * 2005-10-17 2007-04-26 Tosoh Corp Polyarylene sulfide composition
JP2007269308A (en) * 2006-03-07 2007-10-18 Toray Ind Inc Interior trimming material for aircraft
JP2007291220A (en) * 2006-04-25 2007-11-08 Tosoh Corp Polyarylene sulfide composition
JP2008069474A (en) * 2006-09-13 2008-03-27 Teijin Ltd Carbon fiber aggregate suitable for reinforcing material/heat-dissipating material
EP2102288A1 (en) * 2006-12-27 2009-09-23 Cheil Industries Inc. Heat-conductive resin composition and plastic article
WO2008078848A1 (en) 2006-12-27 2008-07-03 Cheil Industries Inc. Heat-conductive resin composition and plastic article
KR100706653B1 (en) * 2006-12-27 2007-04-13 제일모직주식회사 Heat-conductive resin composition and plastic article
JP2010514882A (en) * 2006-12-27 2010-05-06 チェイル インダストリーズ インコーポレイテッド Thermally conductive resin composition and plastic product
EP2102288A4 (en) * 2006-12-27 2012-10-10 Cheil Ind Inc Heat-conductive resin composition and plastic article
JP2010059303A (en) * 2008-09-03 2010-03-18 Bridgestone Corp Rubber composition and tire using the same
WO2012096317A1 (en) 2011-01-12 2012-07-19 保土谷化学工業株式会社 Thermosetting-resin-containing liquid having dispersed fine carbon fibers, and molded thermoset resin obtained therefrom
CN102786797A (en) * 2012-08-10 2012-11-21 武汉理工大学 Multiscale carbon fiber nylon composite material and preparation method thereof
CN102786796A (en) * 2012-08-10 2012-11-21 武汉理工大学 TPU (Thermoplastic Urethane) modified carbon fiber/nylon composite material and preparation method thereof
JP2014159560A (en) * 2013-01-25 2014-09-04 Toray Ind Inc Molding material and molded product
CN110204891A (en) * 2018-02-28 2019-09-06 杜邦公司 Antistatic polymer composite

Similar Documents

Publication Publication Date Title
CN111225954B (en) Liquid crystal polyester resin composition and injection molded article
KR100649503B1 (en) Carbon Fiber Reinforced Resin Composition and Molding Material and Molding Article therefrom
KR101309738B1 (en) Polymer/conductive filler composite with high electrical conductivity and the preparation method thereof
KR101654405B1 (en) Composite having improved mechanical propery and plastics comprising same
US8048341B2 (en) Nanocarbon-reinforced polymer composite and method of making
JP2003012939A (en) Carbon-containing resin composition, molding material and molded product
EP2041225B1 (en) Polymer composition suitable for electrostatic discharge applications
JP5268050B2 (en) Carbon nanotube-containing resin composition, cured product, molded article, and method for producing carbon nanotube-containing resin composition
CN101107679A (en) Electrically conductive compositions and method of manufacture thereof
JP2006028313A (en) Carbon fiber-reinforced thermoplastic resin compound and method for producing the same
Zhan et al. Electrical, thermal, and mechanical properties of polyarylene ether nitriles/graphite nanosheets nanocomposites prepared by masterbatch route
JP2007154100A (en) Electroconductive agent for resin, electroconductive resin composition and its roduction method
JP2006097006A (en) Method for producing electrically conductive resin composition and application thereof
JP2005200620A (en) Thermoplastic resin composition and thermoplastic resin molded product
KR101338199B1 (en) Polymer-conductive fillers composites and a preparing method thereof
JP2006089710A (en) Carbon-based conductive filler and composition thereof
KR101055620B1 (en) Polymer / carbon nanotube composite with excellent electrical properties and its manufacturing method
JP2002231051A (en) Conductive resin component, and molding product using the same
US20080075953A1 (en) Electrically Conductive Composites with Resin and Vgcf, Production Process, and Use Thereof
KR102125262B1 (en) Thermoplastic resin composition having excellent heat resistance and electromagnetic wave shielding property, method for preparing the same and injection-molded article prepared therefrom
JP4810734B2 (en) Carbon fiber reinforced resin composition, molding material and molded article thereof
JP5054344B2 (en) Heat-resistant resin composite composition and method for producing the same
JP2008248048A (en) Molding material of high heat conductive thermoplastic resin
JP2007277475A (en) Thermoplastic resin composition and thermoplastic resin molded product
US20220112370A1 (en) Polymeric blend composite and process for preparing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002