JP2005338550A - 反射防止フィルム、偏光板及び画像表示装置 - Google Patents

反射防止フィルム、偏光板及び画像表示装置 Download PDF

Info

Publication number
JP2005338550A
JP2005338550A JP2004158861A JP2004158861A JP2005338550A JP 2005338550 A JP2005338550 A JP 2005338550A JP 2004158861 A JP2004158861 A JP 2004158861A JP 2004158861 A JP2004158861 A JP 2004158861A JP 2005338550 A JP2005338550 A JP 2005338550A
Authority
JP
Japan
Prior art keywords
refractive index
layer
film
index layer
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004158861A
Other languages
English (en)
Inventor
Masayuki Kurematsu
雅行 榑松
Sota Kawakami
壮太 川上
Shigeki Oka
繁樹 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2004158861A priority Critical patent/JP2005338550A/ja
Publication of JP2005338550A publication Critical patent/JP2005338550A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

【課題】 長期使用時の耐擦傷性、反射光の色バランスの変動に優れた反射防止フィルム及びそれを用いた偏光板、画像表示装置を提供する。
【解決手段】 透明基材フィルム上に、少なくともハードコート層、該透明基材フィルムより屈折率が高い層及び該透明基材フィルムより屈折率が低い層を有する反射防止フィルムにおいて、該透明基材フィルムより屈折率が高い層が、バインダーとして少なくともフルオレン骨格を有するアクリレート化合物またはメタクリレート化合物を重合成分とする重合体を含有することを特徴とする反射防止フィルム。
【選択図】 なし

Description

本発明は、反射防止フィルム、偏光板及び画像表示装置に関する。
液晶等の画像表示装置の最表面で使用される反射防止フィルムでは、光学干渉方式の反射防止層を設けて低反射率とする技術が提案されている。
反射率を下げる技術として、最表面の低屈折率層の屈折率を低下させることで、反射率を下げることが知られている。低屈折率素材や、空隙を多くして屈折率を下げる方式が多い。しかし、いずれの技術についても、膜強度、耐傷性が弱点となっている。
最近提案された、外殻層を有し、内部が多孔質または空洞となっている中空シリカ系微粒子を用いる技術(例えば、特許文献1〜3参照。)は、空隙による屈折率低下を維持したまま膜強度アップする技術である。しかし、膜強度は不十分であり、中空微粒子をバインダー成分に対して20質量%添加すると実用膜強度以下に低下する問題がある。
また、チタンアルコキシドやシランアルコキシドに代表される金属アルコキシドを支持体の表面に塗布、乾燥、加熱して金属酸化物の膜を形成する方法が行われている。しかし、この方法では加熱温度が300℃以上という高い温度が必要で支持体にダメージを与え、また特開平8−75904号公報に記載されているような加熱温度が100℃と比較的低い方法では作製に長時間が必要となり、いずれにも問題点があった。
一方、金属酸化物の膜を形成する方法としては、例えば、機能性膜の下地膜としてシリカ系膜を所謂ゾルゲル法によって形成する方法(特許文献4参照。)、さらには、低屈折率層を同じくゾルゲル法によって形成する方法(特許文献5参照。)が知られている。しかしこの方法も耐擦傷性は不十分であった。
また、バインダー成分としてフッ素系樹脂を用いる技術(例えば、特許文献6〜8参照。)についても、屈折率は低下するが膜強度が弱い問題がある。即ち、低屈折率化と膜強度はトレードオフの関係にあり、その改善が求められている。
また、反射防止フィルムは画像表示装置の外側表面に設置されるため、高い耐光性が求められるが、塗布法において中屈折率層または高屈折率層に好適に用いられる二酸化チタン微粒子は光触媒機能を有しているため、隣接する有機化合物を分解し、物理特性や透明性を著しく劣化させるという問題があった。さらに、バインダーとして紫外線硬化樹脂を適用している場合、光照射によって紫外線硬化が進行するため、バインダーの収縮が発生し、膜収縮、屈折率変化、膜物性の著しい劣化が起こるという問題もあった。この問題に対し、コア/シェル構造を有する無機微粒子を適用する方法が開示されているが(例えば、特許文献9参照。)、この方法では二酸化チタン微粒子の光触媒作用は抑えられる傾向が見られるものの、紫外線硬化樹脂の収縮を抑えることはできなかった。
特開2001−167637号公報 特開2001−233611号公報 特開2002−79616号公報 特開平11−269657号公報 特開2000−910号公報 特開2003−236970号公報 特開2003−240906号公報 特開2003−255103号公報 特開2001−166104号公報
本発明の目的は、長期使用時の耐擦傷性、反射光の色バランスの変動に優れた反射防止フィルム及びそれを用いた偏光板、画像表示装置を提供することにある。
本発明の上記目的は、以下の手段によって達成される。
(請求項1)
透明基材フィルム上に、少なくともハードコート層、該透明基材フィルムより屈折率が高い層及び該透明基材フィルムより屈折率が低い層を有する反射防止フィルムにおいて、該透明基材フィルムより屈折率が高い層が、バインダーとして少なくともフルオレン骨格を有するアクリレート化合物またはメタクリレート化合物を重合成分とする重合体を含有することを特徴とする反射防止フィルム。
(請求項2)
前記透明基材フィルムより屈折率が高い層が、Ti、Ta、Zr、Sn、Sb、Zn、Nb、In、Alから選択される金属酸化物微粒子を含有することを特徴とする請求項1に記載の反射防止フィルム。
(請求項3)
透明基材フィルム上にハードコート層、中屈折率層、高屈折率層及び低屈折率層が積層され、前記透明基材フィルムより屈折率が高い層は中屈折率層であり、該中屈折率層がZr、Sn、Sb、Zn、Nb、Inから選択される金属酸化物微粒子を含有することを特徴とする請求項1または2に記載の反射防止フィルム。
(請求項4)
透明基材フィルム上にハードコート層、中屈折率層、高屈折率層及び低屈折率層が積層され、前記透明基材フィルムより屈折率が高い層は高屈折率層であり、該高屈折率層がコアシェル構造の酸化チタン微粒子を含有することを特徴とする請求項1または2に記載の反射防止フィルム。
(請求項5)
透明基材フィルム上にハードコート層、中屈折率層、高屈折率層及び低屈折率層が積層され、前記透明基材フィルムより屈折率が低い層は低屈折率層であり、該低屈折率層が中空微粒子とバインダー成分を主成分として含有することを特徴とする請求項1〜4のいずれか1項に記載の反射防止フィルム。
(請求項6)
前記ハードコート層が、バインダーの主成分として、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、トリメチロールエタン(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレートから選択されるアクリル系の活性エネルギー線硬化樹脂を含有することを特徴とする請求項1〜5のいずれか1項に記載の反射防止フィルム。
(請求項7)
前記透明基材フィルムがセルロースエステルフィルムであることを特徴とする請求項1〜6のいずれか1項に記載の反射防止フィルム。
(請求項8)
請求項1〜7のいずれか1項に記載の反射防止フィルムを片側に使用し、偏光子の反対面側に位相差フィルムを使用することを特徴とする偏光板。
(請求項9)
請求項8に記載の偏光板の反射防止フィルム面を鑑賞面側に使用することを特徴とする画像表示装置。
本発明により、長期使用時の耐擦傷性、反射光の色バランスの変動に優れた反射防止フィルム及びそれを用いた偏光板、画像表示装置を提供することができる。
本発明者は鋭意検討の結果、透明基材フィルム上に、少なくともハードコート層、該透明基材フィルムより屈折率が高い層及び該透明基材フィルムより屈折率が低い層を有する反射防止フィルムにおいて、該透明基材フィルムより屈折率が高い層が、バインダーとして少なくともフルオレン骨格を有するアクリレート化合物またはメタクリレート化合物を重合成分とする重合体を含有すること反射防止フィルムにより、長期使用時の耐擦傷性、反射光の色バランスの変動に優れた反射防止フィルムが得られることを見出した。
フルオレン骨格を有するアクリレート化合物またはメタクリレート化合物(以下、(メタ)アクリレート化合物ともいう)を重合成分とする重合体については、特開平5−164903号、特開2000−187102号、同2002−293762号に、ハードコート層、オーバーコート層に使用することが開示されいるが、その目的は摩耗性及び鉛筆硬度の向上であり、ハードコート層、オーバーコート層は膜厚が2〜20μmである。本発明ではフルオレン骨格を有する(メタ)アクリレート化合物を重合成分とする重合体を使用するが、その目的は光学干渉を利用した反射防止機能であり、用いる層は膜厚が0.02〜0.5μmの中屈折率層、高屈折率層であり、目的、機能が異なる。
中屈折率層、高屈折率層のバインダーとして一般に使用されるテトラブトキシシラン(ゾルゲル法)やジペンタエリスリトールヘキサアクリレートを用いた場合、特に長期使用時を想定した紫外線照射強制劣化試験で反射光の色バランスを生じることが分かった。さらに、紫外線照射強制劣化試験後、中屈折率層、高屈折率層の膜厚が小さくなっていることが判明した。光学干渉を利用した反射防止機能は、膜厚で反射光波長の調整をしており、長期使用時に膜厚が変化することは致命的な問題である。
本発明は、中屈折率層、高屈折率層のバインダー成分として、少なくともフルオレン骨格を有する(メタ)アクリレート化合物を重合成分とする重合体を含有することで、紫外線照射強制劣化試験における上記問題を解消できることを見いだし、本発明を完成したものである。
以下本発明を詳細に説明する。
〔フルオレン骨格を有する(メタ)アクリレート化合物〕
本発明では、透明基材フィルムより屈折率が高い層、すなわち中屈折率層、高屈折率層のバインダーとしてフルオレン骨格を有する(メタ)アクリレート化合物を重合成分とする重合体を用いることが特徴である。フルオレン骨格を有する(メタ)アクリレート化合物は、その分子中に、(メタ)アクリレート基を(メタ)アクリロイルオキシ基を1〜2個有している。
本発明に好ましく用いられるフルオレン骨格を有する(メタ)アクリレート化合物は下記一般式(1)〜(3)で表される。
Figure 2005338550
式中、R1、R2、R5、R6、R7は水素原子、メチル基を表し、R3、R4は水素原子、メチル基、エチル基を表し、R8は水素原子または炭素数1〜6のアルキル基を表し、炭素数1〜6のアルキル基としては、メチル、エチル、n−プロピル、イソプロイル、n−ブチル、sec−ブチル、tert−ブチル、n−ペンチル、n−ヘキシル等の直鎖状または分岐状のアルキル基を表す。n1、n2は0〜3の整数を表し、n3、n4は1〜3の整数を表し、n5は0〜10の整数を表す。
繰り返し数n1〜n6は、組成物を硬化して得られる中屈折率層、高屈折率層の性能に影響を与えるものである。繰り返し数n1〜n6が大きくなると、得られる中屈折率層、高屈折率層の隣接層に対する密着性が向上する反面、中屈折率層、高屈折率層の硬度及び透明性が低下する傾向がある。この点から、n1、n2は好ましくは0であり、n3、n4は好ましくは1であり、n5は0〜6が好ましく、0または1であることがより好ましい。
1〜R8は水素原子またはメチル基が好ましい。さらに、R1〜R9が同一で水素原子またはメチル基であり、n1、n2が0であり、n3、n4が1であり、n5は1であることが最も好ましい。
以下に化合物例を示す。
Figure 2005338550
これらの化合物は、公知の方法により、(メタ)アクリル酸または(メタ)アクリル酸クロリドを用いて、フルオレン酸を有するアルコールまたはフルオレン環置換−OH基を(メタ)アクリルエステル化することによって得られる。
また、フルオレン環を有するアルコールまたはフルオレン環置換−OH基含有化合物と、エポキシ基を有する反応性化合物または環状エステル化合物、あるいは水酸基を有するカルボン酸化合物等とを反応させ、更に、水酸基を(メタ)アクリルエステル化することによっても得られる。
ここで使用するフルオレン環を有するアルコールまたはフルオレン環置換−OH基含有化合物としては、例えば、9−フルオレンメタノール、9,9−ビス(4−ヒドロキシエチルオキシフェニル)フルオレン、9,9−ビス(3−メチル−4−ヒドロキシエチルオキシフェニル)フルオレン、9,9−ビス(3−エチル−4−ヒドロキシエチルオキシフェニル)フルオレン、9,9−ビス(3,3′−ジメチル−4−ヒドロキシエチルオキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(3−メチル−4−ヒドロキシフェニル)フルオレン、9,9−ビス(3−エチル−4−ヒドロキシフェニル)フルオレン等を挙げることができる。
エポキシ基を有する反応性化合物としては、例えば、エチレンオキシド、プロピレンオキシド、スチレンオキシド、シクロヘキセンオキシド等のエポキシド化合物やメチル、エチル、n−プロピル、イソプロピル、n−ブチル、t−ブチル、2−エチルヘキシル、ラウリル、ステアリル、フェニル、2−メチルフェニル、フルフリル等の基を有するグリシジルエーテルまたはグリシジルエステル化合物等を挙げることができる。
環状エステル化合物としては、例えば、γ−ラクトン、δ−ラクトン等が挙げられる。
本発明に用いられるフルオレン環を有する(メタ)アクリレート誘導体の市販品としては、例えば、新日鉄化学社製のビスフェノールフルオレンジヒドロキシアクリレート、ビスフェノールフルオレンジメタアクリレート等を挙げることができる。
一般式(3)で表される化合物は、例えば、R7が水素原子またはメチル基であってn5=0の場合、9,9−ビス(4−ヒドロキシフェニル)−フルオレンに等モル程度のアクリル酸クロリドまたはメタクリル酸クロリドを、常法に従って反応させたり、n5=1〜10の場合は9,9−ビス(4−ヒドロキシフェニル)−フルオレンにエチレンオキシド、プロピレンオキシド等を、常法に従って平均で1〜10mol付加させた後に等モル程度のアクリル酸またはメタクリル酸を常法に従って反応させて得ることができる。R7が2〜6の場合も、適当な酸クロリドを用いて上記と同様にして得ることができる。反応生成物は、通常の分離、精製手段、例えば再結晶、溶媒抽出法、カラムクロマトグラフィー法等を用いて、容易に単離、精製することができる。
以下に合成例を示す。
合成例1
ビスフェノキシエタノールフルオレン(大阪ガスケミカル(株)社製、商品名BPEF)600g、アクリル酸258g、p−トルエンスルホン酸30g、トルエン1350g、ハイドロキノンモノメチルエーテル1g、及びハイドロキノン0.03gを混合し、100〜115℃で還流しながら理論脱水量を得るまで脱水エステル化反応を行った。その後、反応液をアルカリ中和し、10%食塩水で洗浄を行った。洗浄後トルエン除去し、前記例示化合物2を得た。
合成例2
ビスヒドロキシフェニルフルオレン350g、エピクロルヒドリン500g、及びトリエチルベンジルアンモニウムクロライド10gを混合し、還流下50質量%苛性ソーダ水溶液160gを滴下し、留出水を系外に除去しながら約3時間反応した。次に、水300gを添加し、静置後有機層を分別した後、pHが5になるように酢酸で調整し、その後、水300gで2回水洗した。濃縮して残存する水分とエピクロルヒドリンを除去した。この生成物のエポキシ当量は270であった。ここにトルエン80g、ハイドロキノンモノメチルエーテル0.5g、及びアクリル酸95gを添加し、100℃に加熱し、約15時間反応した。樹脂酸値5mgKOH/g、エポキシ当量7500、固形分85%の、前記例示化合物7を得た。
合成例3
攪拌機、冷却管及びビュレットを備えた内容積1000mlの容器にビスフェノキシエタノールフルオレン(分子量438.5)100g、トルエン500g、アクリル酸20g、硫酸10g、ハイドロキノン0.1gを入れ、110℃で、生成する水を共沸除去しながら3時間反応させた。その後、トルエンを200g加えて、アルカリ水で洗浄し、トルエンを留去した。その後、展開溶媒としてトルエン50/酢酸エチル50(体積比)を用いたシリカゲルカラムを通して、前記例示化合物11を得た。得られた化合物は、マススペクトル、赤外線吸収スペクトル及びNMRにより確認した。
フルオレン骨格を有する(メタ)アクリレート化合物を重合成分とする重合体とは、フルオレン骨格を有する(メタ)アクリレート化合物のホモポリマー、または他の(メタ)アクリレート化合物との共重合体をいう。他の(メタ)アクリレート化合物としては、相溶性が極めて高いことから多官能アクリレートであるエポキシ系アクリレート、ウレタン系アクリレートが好ましい。
〔透明基材フィルム〕
本発明で反射防止フィルムの基材として用いられる透明基材フィルムは特に限定はされないが、例えば、ポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートフタレートフィルム、セルロースアセテートプロピオネートフィルム(CAPフィルム)、セルローストリアセテート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体からなるフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン樹脂系フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルスルホンフィルム、ポリスルホン系フィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム、ポリアリレート系フィルムあるいはポリ乳酸系フィルム等を挙げることができるが、本発明には、セルローストリアセテートフィルム(TACフィルム)等のセルロースエステルフィルム、ポリカーボネート(以下PCと略すことがある)フィルム、シンジオタクティックポリスチレン系フィルム、ポリアリレート系フィルム、ノルボルネン樹脂系フィルム及びポリスルホン系フィルムが透明性、機械的性質、光学的異方性がない点等好ましく、特にセルロースエステルフィルム(CAPフィルム、TACフィルム)が、それらの中でも製膜性が容易で加工性に優れているため好ましく用いられ、特にTACフィルムを使用するのが好ましい。
セルロースエステルフィルムを用いる場合、本発明の各塗布層塗設前にセルロースエステルフィルムがケン化処理されていてもよい。例えば、製膜後ケン化処理した後、活性エネルギー線硬化樹脂層を塗設し、さらにケン化処理をすることもできる。
次に、TACフィルムの製膜法について述べるが、CAPも同様に製膜することができる。TACフィルムは一般的に、TACフレーク原料及び可塑剤をメチレンクロライドに溶解して粘稠液とし、これに可塑剤を溶解してドープとなし、エクストルーダーダイスから、エンドレスに回転するステンレス等の金属ベルト(バンドともいう)上に流延して、乾燥させ、生乾きの状態でベルトから剥離し、ロール等の搬送装置により、両面から乾燥させて巻き取り、製造される。PCフィルムについてもTACフィルムと同様に製膜することができる。
上記可塑剤としては、リン酸エステルまたはカルボン酸エステルが好ましく用いられる。リン酸エステルとしては、トリフェニルフォスフェート(TPP)及びトリクレジルホスフェート(TCP)、ビフェニル−ジフェニルホスフェート、ジメチルエチルホスフェートが含まれる。カルボン酸エステルとしては、フタル酸エステル及びクエン酸エステルが代表的なものである。フタル酸エステルの例には、ジメチルフタレート(DMP)、ジエチルフタレート(DEP)、ジブチルフタレート(DBP)、ジオクチルフタレート(DOP)及びジエチルヘキシルフタレート(DEHP)、エチルフタリルエチルグリコレート等が用いられる。クエン酸エステルとしては、クエン酸アセチルトリエチル(OACTE)及びクエン酸アセチルトリブチル(OACTB)が用いられる。その他のカルボン酸エステルの例には、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。リン酸エステル系可塑剤(TPP、TCP、ビフェニル−ジフェニルホスフェート、ジメチルエチルホスフェート)、フタル酸エステル系可塑剤(DMP、DEP、DBP、DOP、DEHP)が好ましく用いられる。このほか、ポリ酢酸ビニル共重合体、脂肪族直鎖状ポリエステル、メチルメタクリレート系共重合物等の重量平均分子量1000〜100000の高分子化合物を高分子可塑剤として添加することができる。
この中でもトリフェニルフォスフェート(TPP)、エチルフタリルエチルグリコレートが特に好ましく用いられる。可塑剤の添加量はフィルム中に通常2〜15質量%添加され、より好ましくは4〜8質量%になるよう添加することが望ましい。
また、PCフィルムにも上記可塑剤を添加することができる。
さらに本発明に有用な基材であるTACまたはPCフィルム中に、紫外線吸収剤を含有させることによって、耐光性に優れた偏光板用保護フィルムを得ることができる。本発明に有用な紫外線吸収剤としては、サリチル酸誘導体(UV−1)、ベンゾフェノン誘導体(UV−2)、ベンゾトリアゾール誘導体(UV−3)、アクリロニトリル誘導体(UV−4)、安息香酸誘導体(UV−5)または有機金属錯塩(UV−6)等があり、それぞれ(UV−1)としては、サリチル酸フェニル、4−t−ブチルフェニルサリチル酸等を、(UV−2)としては、2−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン等を、(UV−3)としては、2−(2′−ヒドロキシ−5′−メチルフェニル)−ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−5′−ジ−ブチルフェニル)−5−クロロベンゾトリアゾール等を、(UV−4)としては、2−エチルヘキシル−2−シアノ−3,3′−ジフェニルアクリレート、メチル−α−シアノ−β−(p−メトキシフェニル)アクリレート等を、(UV−5)としては、レゾルシノール−モノベンゾエート、2′,4′−ジ−t−ブチルフェニル−3,5−t−ブチル−4−ヒドロキシベンゾエート等を、(UV−6)としては、ニッケルビス−オクチルフェニルサルファミド、エチル−3,5−ジ−t−ブチル−4−ヒドロキシベンジルリン酸のニッケル塩等を挙げることができる。
また、すべり性を改善するために、これら基材透明基材フィルムを製造する際のドープ中に、シリカ等の微粒子(平均粒径0.005〜0.2μm)を0.01〜0.5質量%添加することもできる。例えば日本アエロジル社製アエロジル200V、アエロジルR972V等を添加することができる。すべり性は鋼球での測定で、動摩擦係数0.4以下好ましくは0.2以下であることが望まれる。
〔ハードコート層〕
本発明の反射防止フィルムのハードコート層は活性エネルギー線硬化樹脂を主成分として用いる。従って、以下ハードコート層を活性エネルギー線硬化樹脂層ともいう。活性エネルギー線硬化樹脂層とは紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂を主たる成分とする層をいう。
(活性エネルギー線硬化樹脂)
ハードコート層に用いる活性エネルギー線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて活性エネルギー線硬化樹脂層が形成される。本発明ではハードコート層が、バインダーとしてアクリル系の活性エネルギー線硬化樹脂を主成分とすることが好ましい。活性エネルギー線硬化アクリレート系樹脂としては、例えば、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、エポキシアクリレート系樹脂、ポリオールアクリレート系樹脂等が挙げられる。
アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物に更に2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59−151110号に記載のものを用いることができる。
例えば、ユニディック17−806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。
紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることができ、特開昭59−151112号に記載のものを用いることができる。
紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させて生成するものを挙げることができ、特開平1−105738号に記載のものを用いることができる。
紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。
これらの中で、バインダーの主成分として、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、トリメチロールエタン(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレートから選択されるアクリル系の活性エネルギー線硬化樹脂が好ましい。
本発明において使用し得る紫外線硬化樹脂の市販品としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(旭電化(株)製);コーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(広栄化学(株)製);セイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業(株)製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー(株)製);RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(大日本インキ化学工業(株)製);オーレックスNo.340クリヤ(中国塗料(株)製);サンラッドH−601、RC−750、RC−700、RC−600、RC−500、RC−611、RC−612(三洋化成工業(株)製);SP−1509、SP−1507(昭和高分子(株)製);RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(東亞合成(株)製)等を適宜選択して利用できる。
これら紫外線硬化性樹脂の光反応開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。光増感剤と共に使用してもよい。上記光反応開始剤も光増感剤として使用できる。また、エポキシアクリレート系の光反応開始剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることができる。紫外線硬化樹脂組成物に用いられる光反応開始剤また光増感剤は該組成物100質量部に対して0.1〜15質量部であり、好ましくは1〜10質量部である。
活性エネルギー線硬化性樹脂組成物は塗布乾燥された後、活性エネルギー線、例えば、紫外線を照射し硬化する。
こうして得た硬化皮膜層に、ブロッキングを防止するため、また対擦り傷性等を高めるために無機または有機の微粒子を加えることが好ましい。例えば、無機微粒子としては酸化珪素、酸化チタン、酸化アルミニウム、酸化錫、酸化亜鉛、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム等を挙げることができ、また有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等を挙げることができ、紫外線硬化性樹脂組成物に加えることができる。これらの微粒子粉末の平均粒径としては、0.005μm〜1μmが好ましく0.01〜0.1μmであることが特に好ましい。
活性エネルギー線硬化樹脂組成物と微粒子粉末との割合は、樹脂組成物100質量部に対して、0.1〜10質量部となるように配合することが望ましい。
このようにして形成された活性エネルギー線硬化樹脂を硬化させた層は、JIS B 0601に規定される中心線平均粗さRaが1〜50nmのクリアハードコート層であっても、Raが0.1〜1μm程度の防眩層であってもよい。
ハードコート層の屈折率は、透明基材フィルムの屈折率に対して±0.005以内とすることが干渉ムラ防止のために好ましく、±0.002以内とすることより好ましい。
透明基材フィルムとハードコート層の間には、密着層、接着層を設けてもよく、この場合は0.1μm以下の膜厚として本発明の効果の障害とならないようにしなくてはならない。支持体上にハードコート層を塗布する前処理として、火炎処理、コロナ放電、プラズマ加工を行ってもよい。これらのハードコート層層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法で塗設することができる。
紫外線硬化性樹脂を光硬化反応により硬化させ、硬化皮膜層を形成するための光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、活性エネルギー線の照射量は、通常5〜500mJ/cm2、好ましくは5〜100mJ/cm2であるが、特に好ましくは20〜80mJ/cm2である。
また、活性エネルギー線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30〜300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、若しくは2軸方向に張力を付与してもよい。これによって更に平面性優れたフィルムを得ることができる。
紫外線硬化樹脂層組成物塗布液には溶媒が含まれていてもよく、必要に応じて適宜含有し、希釈されたものであってもよい。塗布液に含有される有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中でもから適宜選択し、あるいはこれらを混合し利用できる。プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等を5質量%以上、より好ましくは5〜80質量%以上含有する上記有機溶媒を用いるのが好ましい。
また、紫外線硬化樹脂層組成物塗布液には、特にシリコン化合物を添加することが好ましい。例えば、ポリエーテル変性シリコーンオイル等が好ましく添加される。ポリエーテル変性シリコーンオイルの数平均分子量は、例えば、1,000〜100,000、好ましくは、2,000〜50,000が適当であり、数平均分子量が1,000未満では、塗膜の乾燥性が低下し、逆に、数平均分子量が100,000を越えると、塗膜表面にブリードアウトしにくくなる傾向にある。
シリコン化合物の市販品としては、DKQ8−779(ダウコーニング社製商品名)、SF3771、SF8410、SF8411、SF8419、SF8421、SF8428、SH200、SH510、SH1107、SH3749、SH3771、BX16−034、SH3746、SH3749、SH8400、SH3771M、SH3772M、SH3773M、SH3775M、BY−16−837、BY−16−839、BY−16−869、BY−16−870、BY−16−004、BY−16−891、BY−16−872、BY−16−874、BY22−008M、BY22−012M、FS−1265(以上、東レ・ダウコーニングシリコーン社製商品名)、KF−101、KF−100T、KF351、KF352、KF353、KF354、KF355、KF615、KF618、KF945、KF6004、シリコーンX−22−945、X22−160AS(以上、信越化学工業社製商品名)、XF3940、XF3949(以上、東芝シリコーン社製商品名)、ディスパロンLS−009(楠本化成社製)、グラノール410(共栄社油脂化学工業(株)製)、TSF4440、TSF4441、TSF4445、TSF4446、TSF4452、TSF4460(GE東芝シリコーン製)、BYK−306、BYK−330、BYK−307、BYK−341、BYK−344、BYK−361(ビックケミ−ジャパン社製)日本ユニカー(株)製のLシリーズ(例えばL7001、L−7006、L−7604、L−9000)、Yシリーズ、FZシリーズ(FZ−2203、FZ−2206、FZ−2207)等が挙げられ、好ましく用いられる。
これらの成分は基材や下層への塗布性を高める。積層体最表面層に添加した場合には、塗膜の撥水、撥油性、防汚性を高めるばかりでなく、表面の耐擦り傷性にも効果を発揮する。これらの成分は、塗布液中の固形分成分に対し、0.01〜3質量%の範囲で添加することが好ましい。
紫外線硬化性樹脂組成物塗布液の塗布方法としては、前述のものを用いることができる。塗布量はウェット膜厚として1〜40μmが適当で、好ましくは、3〜20μmである。また、ドライ膜厚としては前述のように1〜20μm、好ましくは1.5〜10μmである。
紫外線硬化性樹脂組成物は塗布乾燥中または後に、紫外線を照射するのがよく、必要な活性エネルギー線の照射量を得るための照射時間としては、0.1秒〜1分程度がよく、紫外線硬化性樹脂の硬化効率または作業効率の観点から0.1〜10秒がより好ましい。また、これら活性エネルギー線照射部の照度は50〜150mW/m2であることが好ましい。ハードコート層を2層重層して塗布するときは重層した状態で紫外線を照射するのが好ましい。
〔バックコート層〕
本発明においては、透明基材フィルムの片側にバックコート層を有することが好ましい。
バックコート層の塗布組成物の一つ(バインダー)としてセルロースエステルを用いることがことが好ましい。セルロースエステルとしては、ニトロセルロース、セルロースアセテートプロピオネート、ジアセチルセルロース、セルロースアセテートブチレート、セルロースアセテートプロピオネート樹脂等のセルロースエステル系樹脂を用いることができる。中でもジアセチルセルロースが特に好ましい。
その他のバインダーとして、例えば塩化ビニル/酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル/酢酸ビニル共重合体、塩化ビニル/塩化ビニリデン共重合体、塩化ビニル/アクリロニトリル共重合体、エチレン/ビニルアルコール共重合体、塩素化ポリ塩化ビニル、エチレン/塩化ビニル共重合体、エチレン/酢酸ビニル共重合体等のビニル系重合体あるいは共重合体、マレイン酸及び/またはアクリル酸の共重合体、アクリル酸エステル共重合体、アクリロニトリル/スチレン共重合体、塩素化ポリエチレン、アクリロニトリル/塩素化ポリエチレン/スチレン共重合体、メチルメタクリレート/ブタジエン/スチレン共重合体、アクリル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン/ブタジエン樹脂、ブタジエン/アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂等を用いることができる。
アクリル樹脂としては、アクリペットMD、VH、MF、V(三菱レーヨン社製)、ハイパールM−4003、M−4005、M−4006、M−4202、M−5000、M−5001、M−4501(根上工業社製)、ダイヤナールBR−50、BR−52、BR−53、BR−60、BR−64、BR−73、BR−75、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−90、BR−93、BR−95、BR−100、BR−101、BR−102、BR−105、BR−106、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118等(三菱レーヨン社製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマー等が好ましく用いられる。
バックコート層は、ハードコート層やその他の層を設けることで生じるカールを矯正するために設けられる。即ち、バックコート層を設けた面を内側にして丸まろうとする性質を持たせることにより、カールの度合いをバランスさせることができる。本発明の反射防止フィルムでは、バックコート層は好ましくはブロッキング防止層を兼ねて塗設され、バックコート層塗布組成物には、ブロッキング防止機能を持たせるために微粒子が添加される。バックコート層に添加されるこれらの微粒子としては、無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子は珪素を含むものがヘイズが低くなる点で好ましく、特に二酸化珪素、中でも中空シリカ系微粒子が好ましい。
これらの微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。ポリマーの微粒子の例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することができる。
これらの中でもでアエロジル200V、アエロジルR972Vがヘイズを低く保ちながら、ブロッキング防止効果が大きいため特に好ましく用いられる。
バックコート層に含まれる微粒子は、バインダーに対して0.1〜50質量%好ましくは0.1〜10質量%であることが好ましい。バックコート層を設けた場合のヘイズの増加は1%以下であることが好ましく0.5%以下であることが好ましく、特に0.0〜0.1%であることが好ましい。
バックコート層の塗布組成物の一つとして可塑剤を用いることが好ましい。可塑剤としては前記透明基材フィルムの項で述べた可塑剤を用いることができる。
バックコート層に用いる有機溶媒は、溶媒としての機能の他に、アンチカール機能の付与がある。アンチカール機能の付与は、具体的には反射防止フィルム基材として用いる透明基材フィルムを溶解させる溶媒または膨潤させる溶媒を含む組成物を塗布することによって行われる。用いる有機溶媒としては、溶解させる溶媒または膨潤させる溶媒の混合物の他、さらに溶解させない溶媒を含む場合もあり、これらを透明基材フィルムのカール度合や樹脂の種類によって適宜の割合で混合した組成物及び塗布量を用いて行う。
カール防止機能を強めたい場合は、用いる溶媒組成を溶解させる溶媒または膨潤させる溶媒の混合比率を大きくし、溶解させない溶媒の比率を小さくするのが効果的である。この混合比率は好ましくは(溶解させる溶媒または膨潤させる溶媒):(溶解させない溶媒)=10:0〜1:9で用いられる。
このような混合組成物に含まれる、透明基材フィルムを溶解または膨潤させる溶媒としては、例えば、ジオキサン、アセトン、メチルエチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、トリクロロエチレン、メチレンクロライド、エチレンクロライド、テトラクロロエタン、トリクロロエタン、クロロホルム等がある。溶解させない溶媒としては、例えば、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノール、シクロヘキサノールまたは炭化水素類(トルエン、キシレン)等がある。
これらの塗布組成物をグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、またはスプレー塗布、インクジェット塗布等を用いて透明基材フィルムの表面にウェット膜厚1〜100μmで塗布するのが好ましいが、特に5〜30μmであることが好ましい。
バックコート層を塗設する順番は透明基材フィルムのハードコート層を塗設する前でも後でも構わないが、バックコート層がブロッキング防止層を兼ねる場合は先に塗設することが望ましい。また、2回以上に分けてバックコート層を塗布することもできる。
〔低屈折率層〕
本発明の反射防止フィルムは、ハードコート層上に直接または間接に設けた反射防止層(低屈折率層、高屈折率層、中屈折率層)の他に、透明導電層、帯電防止層、防汚層等を更に形成することができる。
本発明の反射防止フィルムは、ハードコート層上に中屈折率層、高屈折率層等のその他の光学層を介して低屈折率層を有する。
低屈折率層は、外殻層を有し内部が多孔質または空洞の中空シリカ系微粒子、またはフッ素系樹脂を含有することが好ましい。特に中空シリカ系微粒子を含有することが好ましい。中空シリカ系微粒子とアルコキシシラン化合物を主成分とすることが好ましい。
本発明においては、耐傷性、滑り性や屈折率を調整するためにボイドを有する金属酸化物微粒子を含むことが好ましい。ボイドを有する金属酸化物微粒子とは、多孔質粒子と多孔質粒子表面に設けられた被覆層とからなる微粒子、または内部に空洞を有し、かつ内容物が溶媒、気体または多孔質物質で充填された微粒子である。本発明においては、ボイドを有する金属酸化物微粒子は、直径が5〜200nmの中空シリカ系微粒子であることが好ましい。
低屈折率層の屈折率は、1.30〜1.50であることが好ましく、1.35〜1.49であることがより好ましい。低屈折率層の膜厚(nm)は、550/(4×低屈折率層の屈折率)×0.85〜550/(4×低屈折率層の屈折率)×1.15が好ましい。
低屈折率層に好ましく用いられる外殻層を有し内部が多孔質または空洞の中空シリカ系微粒子について説明する。
外殻層を有し内部が多孔質の中空シリカ系微粒子とは、多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合シリカ系微粒子をいう。空洞の中空シリカ系微粒子とは、内部に空洞を有し、かつ内容物が溶媒、気体または多孔質物質で充填された空洞シリカ系微粒子である。なお、ハードコート層にはこれらの粒子のいずれかが含まれていればよく、また双方が含まれていてもよい。
なお、空洞粒子は、内部に空洞を有する粒子であり、空洞は粒子壁で囲まれている。空洞内には、調製時に使用した溶媒、気体または多孔質物質等の内容物で充填されている。このようなシリカ系微粒子の平均粒子径が5〜300nm、好ましくは5〜200nmの範囲にあることが望ましい。使用されるシリカ系微粒子は、形成される透明被膜の厚さに応じて適宜選択され、形成される低屈折率層等の透明被膜の膜厚の2/3〜1/10の範囲にあることが望ましい。これらのシリカ系微粒子は、ハードコート層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)が好ましい。
複合粒子の被覆層の厚さまたは空洞粒子の粒子壁の厚さは、1〜20nm、好ましくは2〜15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することができないことがあり、後述する塗布液成分である重合度の低いケイ酸モノマー、オリゴマー等が容易に複合粒子の内部に内部に進入して内部の多孔性が減少し、ハードコート層の効果が十分得られないことがある。また、被覆層の厚さが20nmを越えると、前記ケイ酸モノマー、オリゴマーが内部に進入することはないが、複合粒子の多孔性(細孔容積)が低下しハードコート層の効果が十分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持できないことがあり、また厚さが20nmを越えても、ハードコート層の効果が十分に現れないことがある。
前記複合粒子の被覆層または空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また複合粒子の被覆層または空洞粒子の粒子壁には、シリカ以外の成分が含まれていてもよく、具体的には、Al23、B23、TiO2、ZrO2、SnO2、CeO2、P23、Sb23、MoO3、ZnO2、WO3等が挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF2、NaF、NaAlF6、MgF等からなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。シリカ以外の無機化合物としては、Al23、B23、TiO2、ZrO2、SnO2、CeO2、P23、Sb23、MoO3、ZnO2、WO3等との1種または2種以上を挙げることができる。このような多孔質粒子では、シリカをSiO2で表し、シリカ以外の無機化合物を酸化物換算(MOX)で表したときのモル比MOX/SiO2が、0.0001〜1.0、好ましくは0.001〜0.3の範囲にあることが望ましい。多孔質粒子のモル比MOX/SiO2が0.0001未満のものは得ることが困難であり、得られたとしても更に屈折率が低いものを得ることはない。また、多孔質粒子のモル比MOX/SiO2が、1.0を越えると、シリカの比率が少なくなるので、細孔容積が小さく、かつ屈折率の低い粒子を得られないことがある。
このような多孔質粒子の細孔容積は、0.1〜1.5ml/g、好ましくは0.2〜1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。
なお、このような多孔質粒子の細孔容積は水銀圧入法によって求めることができる。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。また多孔質物質としては、前記多孔質粒子で例示した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。
このようなシリカ系微粒子の製造方法としては、例えば特開平7−133105号公報の段落番号[0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。具体的に、複合粒子が、シリカ、シリカ以外の無機化合物とからなる場合、以下の第1〜第3工程から製造される。
第1工程:多孔質粒子前駆体の調製
第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、または、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
シリカ原料としては、アルカリ金属、アンモニウムまたは有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることができる。なお、アンモニウムのケイ酸塩または有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。
また、シリカ以外の無機化合物の原料としては、アルカリ可溶の無機化合物を用いられる。具体的には、Al、B、Ti、Zr、Sn、Ce、P、Sb、Mo、Zn、W等から選ばれる元素のオキソ酸、該オキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができる。より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノケイ酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウムが適当である。
これらの水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度にはとくに制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。当該シード粒子としては、特に制限はないが、SiO2、Al23、TiO2またはZrO2等の無機酸化物またはこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることができる。更に前記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整したのち、該シード粒子分散液中に前記化合物の水溶液を、上記したアルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行う必要はない。この様にして、シード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。
上記したシリカ原料及び無機化合物原料はアルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、あるいは、シード粒子上に析出して粒子成長が起る。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行う必要がない。
第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MOx)に換算し、MOx/SiO2のモル比が、0.05〜2.0、好ましくは0.2〜2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積はほとんど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。空洞粒子を調製する場合、MOx/SiO2のモル比は、0.25〜2.0の範囲内にあることが望ましい。
第2工程:多孔質粒子からのシリカ以外の無機化合物の除去
第2工程では、前記第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、あるいは、陽イオン交換樹脂と接触させてイオン交換除去する。
なお、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。この様に多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することができる。
また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られるケイ酸液あるいは加水分解性の有機珪素化合物を添加してシリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5〜15nmの厚さであればよい。なおシリカ保護膜を形成しても、この工程での保護膜は多孔質であり厚さが薄いので、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。
このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することができる。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく後述するシリカ被覆層を形成することができる。なお、除去する無機化合物の量が少ない場合は粒子が壊れることがないので必ずしも保護膜を形成する必要はない。
また空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、該シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、該空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。
上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持できる範囲で少ないことが好ましい。シリカ源の量が多すぎると、シリカ保護膜が厚くなりすぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては、一般式RnSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることができる。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
多孔質粒子前駆体の分散媒が、水単独、または有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。なお、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。
第3工程:シリカ被覆層の形成
第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に加水分解性の有機珪素化合物またはケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物またはケイ酸液等の重合物で被覆してシリカ被覆層を形成する。
シリカ被覆層形成用に使用される加水分解性の有機珪素化合物としては、前記したような一般式RnSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることが好ましい。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。
添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。
多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の分散媒が水単独、または有機溶媒との混合溶媒であって、有機溶媒に対する水の比率が高い混合溶媒の場合には、ケイ酸液を用いて被覆層を形成してもよい。ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。
ケイ酸液は、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中に添加され、同時にアルカリを加えてケイ酸低重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)表面に沈着させる。なお、ケイ酸液を上記アルコキシシランと併用して被覆層形成用に使用してもよい。被覆層形成用に使用される有機珪素化合物またはケイ酸液の添加量は、コロイド粒子の表面を十分被覆できる程度であればよく、最終的に得られるシリカ被覆層の厚さが1〜20nmとなるように量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。また前記シリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1〜20nmの範囲となるような量で、有機珪素化合物またはケイ酸液は添加される。
次いで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体または多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。
このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞できる程度であれば特に制限はなく、80〜300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化できないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率の効果が得られないことがある。
このようにして得られた無機微粒子の屈折率は、1.44未満と低い。このような無機微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。
低屈折率層を塗布により形成する方法としては、溶剤に溶解したバインダー樹脂中に金属酸化物の粉末を分散し、塗布乾燥する方法、架橋構造を有するポリマーをバインダー樹脂として用いる方法、エチレン性不飽和モノマーと光重合開始剤を含有させ、活性エネルギー線を照射することにより層を形成する方法等を挙げることができる。
本発明においては、ハードコート層を付与した透明基材フィルムの上に反射防止層を設け、該反射防止層の少なくとも一層が低屈折率層である。
好ましい反射防止フィルムの構成を下記に示すが、これらに限定されるものではない。
透明基材フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
透明基材フィルム/ハードコート層/高屈折率層/低屈折率層/高屈折率層/低屈折率層
透明基材フィルム/帯電防止層/ハードコート層/中屈折率層/高屈折率層/低屈折率層
透明基材フィルム/防眩性ハードコート層/中屈折率層/高屈折率層/低屈折率層
透明基材フィルム/防眩性ハードコート層/中屈折率層/高屈折率層/低屈折率層/防汚層
前記中屈折率層、高屈折率層については後述する。
(フッ素系樹脂)
低屈折率層のバインダーとしては、熱または電離放射線により架橋するフッ素系樹脂(以下、「架橋前のフッ素系樹脂」ともいう)が好ましく用いられる。
架橋前のフッ素系樹脂としては、含フッ素ビニルモノマーと架橋性基付与のためのモノマーから形成される含フッ素共重合体を好ましく挙げることができる。上記含フッ素ビニルモノマー単位の具体例としては、例えばフルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えば、ビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられる。架橋性基付与のためのモノマーとしては、グリシジルメタクリレートや、ビニルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、ビニルグリシジルエーテル等のように分子内に予め架橋性官能基を有するビニルモノマーの他、カルボキシル基やヒドロキシル基、アミノ基、スルホン酸基等を有するビニルモノマー(例えば、(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシアルキルビニルエーテル、ヒドロキシアルキルアリルエーテル等)が挙げられる。後者は共重合の後、ポリマー中の官能基と反応する基ともう1つ以上の反応性基を持つ化合物を加えることにより、架橋構造を導入できることが特開平10−25388号、同10−147739号に記載されている。架橋性基の例には、アクリロイル、メタクリロイル、イソシアナート、エポキシ、アジリジン、オキサゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシル、メチロール及び活性メチレン基等が挙げられる。含フッ素共重合体が、加熱により反応する架橋基、若しくは、エチレン性不飽和基と熱ラジカル発生剤若しくはエポキシ基と熱酸発生剤等の相み合わせにより、加熱により架橋する場合、熱硬化型であり、エチレン性不飽和基と光ラジカル発生剤若しくは、エポキシ基と光酸発生剤等の組み合わせにより、光(好ましくは紫外線、電子ビーム等)の照射により架橋する場合、電離放射線硬化型である。
また上記モノマー加えて、含フッ素ビニルモノマー及び架橋性基付与のためのモノマー以外のモノマーを併用して形成された含フッ素共重合体を架橋前のフッ素系樹脂として用いてもよい。併用可能なモノマーには特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることができる。また、含フッ素共重合体中に、滑り性、防汚性付与のため、ポリオルガノシロキサン骨格や、パーフルオロポリエーテル骨格を導入することも好ましい。これは、例えば末端にアクリル基、メタクリル基、ビニルエーテル基、スチリル基等を持つポリオルガノシロキサンやパーフルオロポリエーテルと上記のモノマーとの重合、末端にラジカル発生基を持つポリオルガノシロキサンやパーフルオロポリエーテルによる上記モノマーの重合、官能基を持つポリオルガノシロキサンやパーフルオロポリエーテルと、含フッ素共重合体との反応等によって得られる。
架橋前の含フッ素共重合体を形成するために用いられる上記各モノマーの使用割合は、含フッ素ビニルモノマーが好ましくは20〜70モル%、より好ましくは40〜70モル%、架橋性基付与のためのモノマーが好ましくは1〜20モル%、より好ましくは5〜20モル%、併用されるその他のモノマーが好ましくは10〜70モル%、より好ましくは10〜50モル%の割合である。
含フッ素共重合体は、これらモノマーをラジカル重合開始剤の存在下で、溶液重合、塊状重合、乳化重合、懸濁重合法等の手段により重合することにより得ることができる。
架橋前のフッ素系樹脂は、市販されており使用することができる。市販されている架橋前のフッ素系樹脂の例としては、サイトップ(旭硝子製)、テフロン(登録商標)AF(デュポン製)、ポリフッ化ビニリデン、ルミフロン(旭硝子製)、オプスター(JSR製)等が挙げられる。
架橋したフッ素系樹脂を構成成分とする低屈折率層は、動摩擦係数が0.03〜0.15の範囲、水に対する接触角が90〜120度の範囲にあることが好ましい。
架橋したフッ素系樹脂を構成成分とする低屈折率層は、前述のシリカ系微粒子を含有する。
(アルコキシシラン化合物)
また、他の低屈折率層用のバインダーとして、各種ゾルゲル素材を用いることもできる。このようなゾルゲル素材としては、金属アルコレート(シラン、チタン、アルミニウム、ジルコニウム等のアルコレート)、オルガノアルコキシ金属化合物及びその加水分解物を用いることができる。特に、アルコキシシラン、オルガノアルコキシシラン及びその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ−グリシジルオキシプロピルトリアルコキシシラン、γ−グリシジルオキシプロピルメチルジアルコキシシラン、β−(3,4−エポキジシクロヘキシル)エチルトリアルコキシシラン、γ−メタクリロイルオキシプロピルトリアルコキシシラン、γ−アミノプロピルトリアルコキシシラン、γ−メルカプトプロピルトリアルコキシシラン、γ−クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば、(ヘプタデカフルオロ−1,1,2,2−テトラデシル)トリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン等)、フルオロアルキルエーテル基含有シラン化合物を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化及び撥水・撥油性付与の点で好ましい。
低屈折率層は、5〜50質量%のポリマーを含むことが好ましい。ポリマーは、シリカ系微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。ポリマーの使用量は、空隙を充填することなく低屈折率層の強度を維持できるように調整する。ポリマーの量は、低屈折率層の全量の10〜30質量%であることが好ましい。ポリマーでシリカ系微粒子(以下、単に微粒子ともいう)を接着するためには、(1)微粒子の表面処理剤にポリマーを結合させるか、(2)微粒子をコアとして、その周囲にポリマーシェルを形成するか、あるいは(3)微粒子間のバインダーとして、ポリマーを使用することが好ましい。(1)の表面処理剤に結合させるポリマーは、(2)のシェルポリマーまたは(3)のバインダーポリマーであることが好ましい。(2)のポリマーは、低屈折率層の塗布液の調製前に、微粒子の周囲に重合反応により形成することが好ましい。(3)のポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に、重合反応により形成することが好ましい。上記(1)〜(3)のうちの二つまたは全てを組み合わせて実施することが好ましく、(1)と(3)の組み合わせ、または(1)〜(3)全ての組み合わせで実施することが特に好ましい。(1)表面処理、(2)シェル及び(3)バインダーについて順次説明する。
(1)表面処理
微粒子(特に無機微粒子)には、表面処理を実施して、ポリマーとの親和性を改善することが好ましい。表面処理は、プラズマ放電処理やコロナ放電処理のような物理的表面処理と、カップリング剤を使用する化学的表面処理に分類できる。化学的表面処理のみ、または物理的表面処理と化学的表面処理の組み合わせで実施することが好ましい。カップリング剤としては、オルガノアルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。微粒子がSiO2からなる場合は、シランカップリング剤による表面処理が特に有効に実施できる。具体的なシランカップリング剤の例としては、後述するシランカップリング剤が好ましく用いられる。
カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施できる。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。
(2)シェル
シェルを形成するポリマーは、飽和炭化水素を主鎖として有するポリマーであることが好ましい。フッ素原子を主鎖または側鎖に含むポリマーが好ましく、フッ素原子を側鎖に含むポリマーが更に好ましい。ポリアクリル酸エステルまたはポリメタクリル酸エステルが好ましく、フッ素置換アルコールとポリアクリル酸またはポリメタクリル酸とのエステルが最も好ましい。シェルポリマーの屈折率は、ポリマー中のフッ素原子の含有量の増加に伴い低下する。低屈折率層の屈折率を低下させるため、シェルポリマーは35〜80質量%のフッ素原子を含むことが好ましく、45〜75質量%のフッ素原子を含むことが更に好ましい。フッ素原子を含むポリマーは、フッ素原子を含むエチレン性不飽和モノマーの重合反応により合成することが好ましい。フッ素原子を含むエチレン性不飽和モノマーの例としては、フルオロオレフィン(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、フッ素化ビニルエーテル及びフッ素置換アルコールとアクリル酸またはメタクリル酸とのエステルが挙げられる。
シェルを形成するポリマーは、フッ素原子を含む繰り返し単位とフッ素原子を含まない繰り返し単位からなるコポリマーであってもよい。フッ素原子を含まない繰り返し単位は、フッ素原子を含まないエチレン性不飽和モノマーの重合反応により得ることが好ましい。フッ素原子を含まないエチレン性不飽和モノマーの例としては、オレフィン(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート)、スチレン及びその誘導体(例えば、スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル(例えば、メチルビニルエーテル)、ビニルエステル(例えば、酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル)、アクリルアミド(例えば、N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド及びアクリロニトリルが挙げられる。
後述する(3)のバインダーポリマーを併用する場合は、シェルポリマーに架橋性官能基を導入して、シェルポリマーとバインダーポリマーとを架橋により化学的に結合させてもよい。シェルポリマーは、結晶性を有していてもよい。シェルポリマーのガラス転移温度(Tg)が低屈折率層の形成時の温度よりも高いと、低屈折率層内のミクロボイドの維持が容易である。但し、Tgが低屈折率層の形成時の温度よりも高いと、微粒子が融着せず、低屈折率層が連続層として形成されない(その結果、強度が低下する)場合がある。その場合は、後述する(3)のバインダーポリマーを併用し、バインダーポリマーにより低屈折率層を連続層として形成することが望ましい。微粒子の周囲にポリマーシェルを形成して、コアシェル微粒子が得られる。コアシェル微粒子中に無機微粒子からなるコアが5〜90体積%含まれていることが好ましく、15〜80体積%含まれていることが更に好ましい。二種類以上のコアシェル微粒子を併用してもよい。また、シェルのない無機微粒子とコアシェル粒子とを併用してもよい。
(3)バインダー
バインダーポリマーは、飽和炭化水素またはポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることが更に好ましい。バインダーポリマーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーポリマーを得るためには、二以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。2以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと(メタ)アクリル酸とのエステル(例えば、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例えば、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。ポリエーテルを主鎖として有するポリマーは、多官能エポシキ化合物の開環重合反応により合成することが好ましい。2以上のエチレン性不飽和基を有するモノマーの代わりまたはそれに加えて、架橋性基の反応により、架橋構造をバインダーポリマーに導入してもよい。架橋性官能基の例としては、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基及び活性メチレン基が挙げられる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタンも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。また、架橋基は、上記化合物に限らず上記官能基が分解した結果反応性を示すものであってもよい。バインダーポリマーの重合反応及び架橋反応に使用する重合開始剤は、熱重合開始剤や、光重合開始剤が用いられるが、光重合開始剤の方がより好ましい。光重合開始剤の例としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類がある。アセトフェノン類の例としては、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノン及び2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが挙げられる。ベンゾイン類の例としては、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインイソプロピルエーテルが挙げられる。ベンゾフェノン類の例としては、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノン及びp−クロロベンゾフェノンが挙げられる。ホスフィンオキシド類の例としては、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが挙げられる。
バインダーポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に重合反応(必要ならば更に架橋反応)により形成することが好ましい。低屈折率層の塗布液に、少量のポリマー(例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂)を添加してもよい。
また、本発明に係る低屈折率層あるいは他の屈折率層には滑り剤を添加することが好ましく、滑り性を付与することによって耐傷性を改善することができる。滑り剤としては、シリコンオイルまたはワックス状物質が好ましく用いられる。例えば、下記一般式で表される化合物が好ましい。
一般式 R1COR2
式中、R1は炭素原子数が12以上の飽和または不飽和の脂肪族炭化水素基を表す。アルキル基またはアルケニル基が好ましく、更に炭素原子数が16以上のアルキル基またはアルケニル基が好ましい。R2は−OM1基(M1はNa、K等のアルカリ金属を表す)、−OH基、−NH2基、または−OR3基(R3は炭素原子数が12以上の飽和または不飽和の脂肪族炭化水素基、好ましくはアルキル基またはアルケニル基を表す)を表し、R2としては−OH基、−NH2基または−OR3基が好ましい。具体的には、ベヘン酸、ステアリン酸アミド、ペンタコ酸等の高級脂肪酸またはその誘導体、天然物としてこれらの成分を多く含んでいるカルナバワックス、蜜蝋、モンタンワックスも好ましく使用できる。特公昭53−292号公報に開示されているようなポリオルガノシロキサン、米国特許第4,275,146号明細書に開示されているような高級脂肪酸アミド、特公昭58−33541号公報、英国特許第927,446号明細書または特開昭55−126238号公報及び同58−90633号公報に開示されているような高級脂肪酸エステル(炭素数が10〜24の脂肪酸と炭素数が10〜24のアルコールのエステル)、そして米国特許第3,933,516号明細書に開示されているような高級脂肪酸金属塩、特開昭51−37217号公報に開示されているような炭素数10までのジカルボン酸と脂肪族または環式脂肪族ジオールからなるポリエステル化合物、特開平7−13292号公報に開示されているジカルボン酸とジオールからのオリゴポリエステル等を挙げることができる。
例えば、低屈折率層に使用する滑り剤の添加量は0.01〜10mg/m2が好ましい。
〔中屈折率層、高屈折率層〕
本発明においては、反射率の低減のために、透明支持体またはハードコート層を付与した透明支持体と低屈折率層との間に、高屈折率層を設けることが好ましい。また、透明支持体と高屈折率層との間に中屈折率層を設けることは、反射率の低減のために更に好ましい。高屈折率層の屈折率は、1.55〜2.30であることが好ましく、1.57〜2.20であることが更に好ましい。中屈折率層の屈折率は、透明支持体の屈折率と高屈折率層の屈折率との中間の値となるように調整する。中屈折率層の屈折率は、1.55〜1.80であることが好ましい。高屈折率層及び中屈折率層の厚さは、5nm〜1μmであることが好ましく、10nm〜0.2μmであることが更に好ましく、30nm〜0.1μmであることが最も好ましい。高屈折率層及び中屈折率層のヘイズは、5%以下であることが好ましく、3%以下であることが更に好ましく、1%以下であることが最も好ましい。高屈折率層及び中屈折率層の強度は、1kg荷重の鉛筆硬度でH以上であることが好ましく、2H以上であることが更に好ましく、3H以上であることが最も好ましい。
中屈折率層、高屈折率層及び低屈折率層を有する反射防止積層体では、特開昭59−50401号に記載されているように、中屈折率層が下記数式(1)を、高屈折率層が下記数式(2)を、低屈折率層が下記数式(3)をそれぞれ満足することにより、反射防止積層体としての平均反射率を更に下げる設計が可能となり好ましい。
(hλ/4)×0.7<n33<(hλ/4)×1.3・・・数式(1)
数式(1)中でも、hは正の整数(一般に1、2または3)であり、n3は中屈折率層の屈折率であり、そして、d3は中屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
(jλ/4)×0.7<n44<(jλ/4)×1.3・・・数式(2)
数式(2)中でも、jは正の整数(一般に1、2または3)であり、n4は高屈折率層の屈折率であり、そして、d4は高屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
(kλ/4)×0.7<n55<(kλ/4)×1.3・・・数式(3)
数式(3)中でも、kは正の奇数(一般に1)であり、n5は低屈折率層の屈折率であり、そして、d5は低屈折率層の膜厚(nm)である。また、λは波長であり、350〜800(nm)の範囲の値である。
また、本発明においては、ハードコート層または高屈折率層に凹凸を付与して防眩性反射防止積層体とすることも好ましい。
この他、透明支持体、ハードコート層(防眩層)、高屈折率層、低屈折率層、高屈折率層、低屈折率層の順の層構成も好ましい構成である。表面の低屈折率層に防眩性を付与することもでき、表面に防眩層を設けてもよい。
本発明に用いられる高屈折率層及び中屈折率層は、フルオレン骨格を有する(メタ)アクリレート化合物を重合成分とする重合体をバインダー成分として含有し、金属酸化物粒子を含むものが好ましく用いられる。
高屈折率層及び中屈折率層に用いる金属酸化物粒子は、屈折率が1.80〜2.80であることが好ましく、1.90〜2.80であることが更に好ましい。金属酸化物粒子の1次粒子の質量平均径は、1〜150nmであることが好ましく、1〜100nmであることが更に好ましく、1〜80nmであることが最も好ましい。層中での金属酸化物粒子の質量平均径は、1〜200nmであることが好ましく、5〜150nmであることがより好ましく、10〜100nmであることが更に好ましく、10〜80nmであることが最も好ましい。金属酸化物粒子の平均粒径は、20〜30nm以上であれば光散乱法により、20〜30nm以下であれば電子顕微鏡写真により測定される。金属酸化物粒子の比表面積は、BET法で測定された値として、10〜400m2/gであることが好ましく、20〜200m2/gであることが更に好ましく、30〜150m2/gであることが最も好ましい。
透明基材フィルムより屈折率が高い層すなわち、高屈折率層及び中屈折率層に用いられる金属酸化物粒子としては、Ti、Ta、Zr、Sn、Sb、Zn、Nb、In、Alから選択される少なくとも一種の元素を有する金属酸化物微粒子が好ましい。具体的には二酸化チタン(例、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造)、酸化錫、酸化インジウム、酸化亜鉛、及び酸化ジルコニウムが挙げられる。
中屈折率層にはZr、Sn、Sb、Zn、Nb、Inから選択される少なくとも一種の元素を有する金属酸化物微粒子が帯電防止機能が付与でき好ましい。具体的にはITO、酸化アンチモンが好ましい。
高屈折率層には酸化チタン微粒子、特にコアは酸化チタン(ルチル型、アナターゼ型、アモルファス型等、ルチル型の酸化チタンが好ましい)、シェルは酸化ジルコニウム、シリカまたはアルミナの酸化物から形成されるコアシェル構造の酸化チタン微粒子が好ましい。
金属酸化物粒子は、これらの金属の酸化物を主成分とし、更に他の元素を含むことができ、導電性を付与した微粒子も好ましく用いられる。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びS等が挙げられる。
金属酸化物粒子は表面処理されていることが好ましい。表面処理は、無機化合物または有機化合物を用いて実施することができる。表面処理に用いる無機化合物の例としては、アルミナ、シリカ、酸化ジルコニウム及び酸化鉄が挙げられる。中でもアルミナ及びシリカが好ましい。表面処理に用いる有機化合物の例としては、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が挙げられる。中でも、シランカップリング剤が最も好ましい。
具体的なシランカップリング剤の例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。
また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。
これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。
2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。
カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施できる。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。
これらシランカップリング剤は予め必要量の水で加水分解されていることが好ましい。シランカップリング剤が加水分解されていると、前述の有機チタン化合物及び金属酸化物粒子の表面が反応しやすく、より強固な膜が形成される。また、加水分解されたシランカップリング剤を予め塗布液中に加えることも好ましい。この加水分解に用いた水も有機チタン化合物の加水分解/重合に用いることができる。
本発明では2種類以上の表面処理を組み合わせて処理されていても構わない。金属酸化物粒子の形状は、米粒状、球形状、立方体状、紡錘形状あるいは不定形状であることが好ましい。2種類以上の金属酸化物粒子を高屈折率層あるいは中屈折率層に用いてもよい。
高屈折率層及び中屈折率層中の金属酸化物粒子の割合は、5〜65体積%であることが好ましく、より好ましくは10〜60体積%であり、更に好ましくは20〜55体積%である。
上記金属酸化物粒子は、媒体に分散した分散体の状態で、高屈折率層及び中屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、ケトンアルコール(例、ジアセトンアルコール)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
また金属酸化物粒子は、分散機を用いて媒体中に分散することができる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。
本発明に用いられる高屈折率層及び中屈折率層は、フルオレン骨格を有する(メタ)アクリレート化合物を重合成分とする重合体に併用して他のバインダーを用いることも好ましい態様である。他のバインダーとしては架橋構造を有するポリマーが好ましい。架橋構造を有するポリマーの例として、ポリオレフィン等の飽和炭化水素鎖を有するポリマー(以下、ポリオレフィンと総称する)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミド及びメラミン樹脂等の架橋物が挙げられる。中でも、ポリオレフィン、ポリエーテル及びポリウレタンの架橋物が好ましく、ポリオレフィン及びポリエーテルの架橋物が更に好ましく、ポリオレフィンの架橋物が最も好ましい。また、架橋ポリマーがアニオン性基を有することは更に好ましい。アニオン性基は無機微粒子の分散状態を維持する機能を有し、架橋構造はポリマーに皮膜形成能を付与して皮膜を強化する機能を有する。上記アニオン性基は、ポリマー鎖に直接結合していてもよいし、連結基を介してポリマー鎖に結合していてもよいが、連結基を介して側鎖として主鎖に結合していることが好ましい。
アニオン性基の例としては、カルボン酸基(カルボキシル)、スルホン酸基(スルホ)及びリン酸基(ホスホノ)が挙げられる。中でも、スルホン酸基及びリン酸基が好ましい。ここで、アニオン性基は、塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは、解離していてもよい。アニオン性基とポリマー鎖とを結合する連結基は、−CO−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる二価の基であることが好ましい。好ましいバインダーポリマーである架橋ポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。この場合、コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96質量%であることが好ましく、4〜94質量%であることが更に好ましく、6〜92質量%であることが最も好ましい。繰り返し単位は、2以上のアニオン性基を有していてもよい。
アニオン性基を有する架橋ポリマーには、その他の繰り返し単位(アニオン性基も架橋構造も有しない繰り返し単位)が含まれていてもよい。その他の繰り返し単位としては、アミノ基または4級アンモニウム基を有する繰り返し単位及びベンゼン環を有する繰り返し単位が好ましい。アミノ基または4級アンモニウム基は、アニオン性基と同様に、無機微粒子の分散状態を維持する機能を有する。ベンゼン環は、高屈折率層の屈折率を高くする機能を有する。なお、アミノ基、4級アンモニウム基及びベンゼン環は、アニオン性基を有する繰り返し単位あるいは架橋構造を有する繰り返し単位に含まれていても、同様の効果が得られる。
上記アミノ基または4級アンモニウム基を有する繰り返し単位を構成単位として含有する架橋ポリマーにおいて、アミノ基または4級アンモニウム基は、ポリマー鎖に直接結合していてもよいし、あるいは連結基を介し側鎖としてポリマー鎖に結合していてもよいが、後者がより好ましい。アミノ基または4級アンモニウム基は、2級アミノ基、3級アミノ基または4級アンモニウム基であることが好ましく、3級アミノ基または4級アンモニウム基であることが更に好ましい。2級アミノ基、3級アミノ基または4級アンモニウム基の窒素原子に結合している基としては、アルキル基が好ましく、より好ましくは炭素数1〜12のアルキル基であり、更に好ましくは炭素数1〜6のアルキル基である。4級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基または4級アンモニウム基とポリマー鎖とを結合する連結基は、−CO−、−NH−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる2価の基であることが好ましい。架橋ポリマーが、アミノ基または4級アンモニウム基を有する繰り返し単位を含む場合、その割合は、0.06〜32質量%であることが好ましく、0.08〜30質量%であることが更に好ましく、0.1〜28質量%であることが最も好ましい。
架橋ポリマーは、架橋ポリマーを生成するためのモノマーを配合して高屈折率層及び中屈折率層形成用の塗布液を調製し、塗布液の塗布と同時または塗布後に、重合反応によって生成させることが好ましい。架橋ポリマーの生成と共に、各層が形成される。アニオン性基を有するモノマーは、塗布液中で無機微粒子の分散剤として機能する。アニオン性基を有するモノマーは、無機微粒子に対して、好ましくは1〜50質量%、より好ましくは5〜40質量%、更に好ましくは10〜30質量%使用される。また、アミノ基または4級アンモニウム基を有するモノマーは、塗布液中で分散助剤として機能する。アミノ基または4級アンモニウム基を有するモノマーは、アニオン性基を有するモノマーに対して、好ましくは3〜33質量%使用される。塗布液の塗布と同時または塗布後に、重合反応によって架橋ポリマーを生成する方法により、塗布液の塗布前にこれらのモノマーを有効に機能させることができる。
本発明で、前記フルオレン骨格を有する(メタ)アクリレート化合物に好ましく併用されるモノマーとしては、2個以上のエチレン性不飽和基を有するモノマーが最も好ましいが、その例としては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミド等が挙げられる。アニオン性基を有するモノマー、及びアミノ基または4級アンモニウム基を有するモノマーは市販のモノマーを用いてもよい。好ましく用いられる市販のアニオン性基を有するモノマーとしては、KAYAMARPM−21、PM−2(日本化薬(株)製)、AntoxMS−60、MS−2N、MS−NH4(日本乳化剤(株)製)、アロニックスM−5000、M−6000、M−8000シリーズ(東亞合成化学工業(株)製)、ビスコート#2000シリーズ(大阪有機化学工業(株)製)、ニューフロンティアGX−8289(第一工業製薬(株)製)、NKエステルCB−1、A−SA(新中村化学工業(株)製)、AR−100、MR−100、MR−200(第八化学工業(株)製)等が挙げられる。また、好ましく用いられる市販のアミノ基または4級アンモニウム基を有するモノマーとしてはDMAA(大阪有機化学工業(株)製)、DMAEA,DMAPAA(興人(株)製)、ブレンマーQA(日本油脂(株)製)、ニューフロンティアC−1615(第一工業製薬(株)製)等が挙げられる。
ポリマーの重合反応は、光重合反応または熱重合反応を用いることができる。特に光重合反応が好ましい。重合反応のため、重合開始剤を使用することが好ましい。例えば、ハードコート層のバインダーポリマーを形成するために用いられる後述する熱重合開始剤、及び光重合開始剤が挙げられる。
重合開始剤として市販の重合開始剤を使用してもよい。重合開始剤に加えて、重合促進剤を使用してもよい。重合開始剤と重合促進剤の添加量は、モノマーの全量の0.2〜10質量%の範囲であることが好ましい。塗布液(モノマーを含む無機微粒子の分散液)を加熱して、モノマー(またはオリゴマー)の重合を促進してもよい。また、塗布後の光重合反応の後に加熱して、形成されたポリマーの熱硬化反応を追加処理してもよい。
中屈折率層及び高屈折率層には、比較的屈折率が高いポリマーを用いることが好ましい。屈折率が高いポリマーの例としては、ポリスチレン、スチレン共重合体、ポリカーボネート、メラミン樹脂、フェノール樹脂、エポキシ樹脂及び環状(脂環式または芳香族)イソシアネートとポリオールとの反応で得られるポリウレタンが挙げられる。その他の環状(芳香族、複素環式、脂環式)基を有するポリマーや、フッ素以外のハロゲン原子を置換基として有するポリマーも、屈折率が高く用いることができる。
また、中、高屈折率層にはハードコート層の項で述べたシリコン化合物を添加することが好ましい。
中、高屈折率層の希釈のための有機溶媒としては、水混和性の有機溶媒であることが好ましい。水混和性の有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(例えば、2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。
反射防止層の各層は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、マイクログラビアコート法やエクストルージョンコート法により、塗布により形成することができる。
本発明に係る高屈折率層組成であれば、高屈折率層を塗布、乾燥し、活性エネルギー線照射を行った後、低屈折率層を塗布するまでの間に、高屈折率層表面に対し製造装置の部材が接触する製造工程で製造されても輝点異物の発生が少ない。
〔偏光板〕
本発明の反射防止フィルムを用いた偏光板について述べる。
偏光板は一般的な方法で作製することができる。本発明の反射防止フィルムの裏面側をアルカリ鹸化処理し、処理した反射防止フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面にも該反射防止フィルムを用いても、別の偏光板保護フィルムを用いてもよい。本発明の反射防止フィルムに対して、もう一方の面に用いられる偏光板保護フィルムは面内リターデーションRoが590nmで、20〜70nm、Rtが70〜400nmの位相差を有していることが好ましい。これらは例えば、特開2002−71957号、特願2002−155395号記載の方法で作製することができる。あるいは更にディスコチック液晶等の液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる偏光板保護フィルムを用いることが好ましい。例えば、特開2003−98348号記載の方法で光学異方性層を形成することができる。本発明の反射防止フィルムと組み合わせて使用することによって、平面性に優れ、安定した視野角拡大効果を有する偏光板を得ることができる。
裏面側に用いられる偏光板保護フィルムとしては、市販の透明基材フィルムとして、KC8UX2MW、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC8UCR−3(コニカミノルタオプト(株)製)等が好ましく用いられる。
偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。該偏光膜の面上に、本発明の反射防止フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。
従来の反射防止フィルムを使用した偏光板は干渉ムラが認められ、60℃、90%RHの条件での耐久性試験により、干渉ムラが増大したが、これに対して本発明の反射防止フィルムを用いた偏光板は、干渉ムラが少ない。また、60℃、90%RHの条件での耐久性試験によっても干渉ムラが増加することはなく、裏面側に光学補償フィルムを有する偏光板であっても、耐久性試験後も視認性を提供することができた。
〈画像表示装置〉
本発明の偏光板を画像表示装置に組み込むことによって、干渉ムラの少ない、種々の視認性に優れた画像表示装置を作製することができる。本発明の反射防止フィルムは反射型、透過型、半透過型LCDあるいはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられる。また、本発明の反射防止フィルムは干渉ムラが著しく少なく、プラズマディスプレイ、フィールドエミッションディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー等の各種表示装置にも好ましく用いられる。特に画面が30型以上の大画面の表示装置では、干渉ムラが少なく、長時間の鑑賞でも目が疲れないという効果があった。
以下、実施例を用いて、本発明を具体的に説明するが、本発明はこれらの態様に限定されない。「%」は「質量%」を表す。
実施例1
〔セルロースエステルフィルムの作製〕
以下のセルロースエステル、可塑剤、紫外線吸収剤、微粒子及び溶媒を用いてセルロースエステル溶液(ドープ)を調製し、溶液流延製膜法にてセルロースエステルフィルムを作製した。
セルロースエステル(セルローストリアセテート、アセチル基置換度2.9、Mn=160000、Mw/Mn=1.8) 100kg
可塑剤(トリメチロールプロパントリベンゾエート) 5kg
可塑剤(エチルフタリルエチルグリコレート) 5kg
紫外線吸収剤(チヌビン109、チバスペシャリティーケミカルズ(株)製)
1.0kg
紫外線吸収剤(チヌビン171、チバスペシャリティーケミカルズ(株)製)
1.0kg
微粒子(アエロジルR972V、日本アエロジル(株)製) 0.3kg
溶媒(酢酸メチル) 440kg
溶媒(エタノール) 110kg
上記のセルロースエステル、可塑剤、紫外線吸収剤、微粒子及び溶媒を用いてセルロースエステル溶液(ドープ)を調製した。
即ち、溶媒を密閉容器に投入し、攪拌しながら残りの素材を順に投入し、加熱、撹拌しながら完全に溶解し、混合した。微粒子は溶媒の一部で分散して添加した。溶液を流延する温度まで下げて一晩静置し、脱泡操作を施した後、溶液を安積濾紙(株)製の安積濾紙No.244を使用して濾過し、セルロースエステル溶液を得た。
次に、33℃に温度調整したセルロースエステル溶液を、ダイに送液して、ダイスリットからステンレスベルト上に均一に流延した。ステンレスベルトの流延部は裏面から37℃の温水で加熱した。流延後、金属支持体上のドープ膜(ステンレスベルトに流延以降はウエブという)に44℃の温風をあてて乾燥させ、剥離の残留溶媒量が120質量%で剥離し、剥離の際の張力をかけて1.1倍の縦延伸倍率となるように延伸し、ついで、残留溶媒量が35質量%から10質量%となる間にテンターでウェブ端部を把持し、幅手方向に1.1倍の延伸倍率となるように延伸した。延伸後、その幅を維持したまま数秒間保持した後、幅方向の張力を緩和させた後、幅保持を解放し、さらに125℃に設定された第3乾燥ゾーンで20分間搬送させて、乾燥を行い、幅1.5m、膜厚50μmのセルロースエステルフィルムを作製した。
〔ハードコートフィルムの作製〕
上記セルロースエステルフィルムの表面(B面側;流延製膜法において用いられるステンレスバンド等の支持体鏡面に接した面;支持体側)上に、下記のハードコート層塗布液を孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層塗布液を調製し、これをマイクログラビアコーターを用いて塗布し、90℃で乾燥の後、紫外線ランプを用い照射部の照度が100mW/cm2で、照射量を80mJ/cm2として塗布層を硬化させ、厚さ5μmのハードコート層を形成しハードコートフィルムを作製した。
(ハードコート層塗布液)
下記材料を攪拌、混合しハードコート層塗布液とした。
ジペンタエリスリトールヘキサアクリレート単量体 60質量部
ジペンタエリスリトールヘキサアクリレート2量体 20質量部
ジペンタエリスリトールヘキサアクリレート3量体以上の成分 20質量部
重合開始剤:イルガキュア184(チバスペシャルティケミカルズ(株)製)
4質量部
プロピレングリコールモノメチルエーテル 75質量部
メチルエチルケトン 75質量部
〔バックコート層の塗設〕
下記のバックコート層塗布液を、3μmの粒子捕捉効率が99%以上で0.5μm以下の粒子捕捉効率が10%以下のフィルターで濾過して調製した。このバックコート層塗布液を上記のハードコート層を塗設した面の反対側の面に、エクストルージョンコーターにてウエット膜厚が15μmになるように塗布し、90℃で30秒間乾燥させた。
(バックコート層塗布液)
ジアセチルセルロース(アセチル基置換度2.4) 0.5質量部
アセトン 70質量部
メタノール 20質量部
プロピレングリコールモノメチルエーテル 10質量部
超微粒子シリカ アエロジル200V(日本アエロジル(株)製)0.002質量部
以上のようにして、バックコート層付きハードコートフィルムH1〜5を作製した。
〔反射防止フィルム1〜14の作製〕
バックコート層付きハードコートフィルム上に以下の表面処理を行った後、下記中屈折率層M1〜M7、高屈折率層H1〜H4、低屈折率層L1〜L3を表1に記載のように、この順に塗設し反射防止フィルム1〜14を作製した。
(表面処理)
上記のバックコート層付きハードコートフィルムを、50℃に加熱した1.5mol/l−NaOH水溶液に2分間浸漬しアルカリ処理を行い、水洗後、0.5質量%−H2SO4水溶液に室温で30秒間浸漬し中和させ、水洗、乾燥を行った。
〔中屈折率層の作製〕
上記作製したバックコート層付きハードコートフィルムのハードコート層上に下記中屈折率層塗布液をバーコーターを用いて塗布し、60℃で乾燥の後、紫外線を照射して塗布層を硬化させ中屈折率層を形成した。
中屈折率層の膜厚:100nm
中屈折率層の屈折率:1.64
(中屈折率層M1組成)
酸化チタン微粒子分散物(RTSPNB、シーアイ化成工業社製、固形分15%)
270質量部
ジペンタエリスリトールヘキサアクリレート(KAYARAD DPHA、日本化薬社製) 55質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 1質量部
イルガキュア907(チバガイギー社製) 3質量部
プロピレングリコールモノメチルエーテル 1470質量部
イソプロピルアルコール 2720質量部
メチルエチルケトン 490質量部
(中屈折率層M2組成)
LCOM V−2504(触媒化成工業(株)製、ITOゾル、固形分20%)
100質量部
ジペンタエリスリトールヘキサアクリレート(KAYARAD DPHA、日本化薬社製) 55質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 1質量部
テトラブトキシチタン 4質量部
イルガキュア907(チバガイギー社製) 3質量部
プロピレングリコールモノメチルエーテル 1470質量部
イソプロピルアルコール 2720質量部
メチルエチルケトン 490質量部
(中屈折率層M3組成)
酸化チタン微粒子分散物(RTSPNB、シーアイ化成工業社製、固形分15%)
270質量部
フルオレンアクリルA(森六(株)製) 55質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 1質量部
イルガキュア907(チバガイギー社製) 3質量部
プロピレングリコールモノメチルエーテル 1470質量部
イソプロピルアルコール 2720質量部
メチルエチルケトン 490質量部
(中屈折率層M4組成)
LCOM V−2504(触媒化成工業(株)製、ITOゾル、固形分20%)
100質量部
フルオレンアクリルA(森六(株)製) 55質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 1質量部
イルガキュア907(チバガイギー社製) 3質量部
プロピレングリコールモノメチルエーテル 1470質量部
イソプロピルアルコール 2720質量部
メチルエチルケトン 490質量部
(中屈折率層M5組成)
LCOM V−2504(触媒化成工業(株)製、ITOゾル、固形分20%)
100質量部
フルオレンアクリルB(森六(株)製) 55質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 1質量部
イルガキュア907(チバガイギー社製) 3質量部
プロピレングリコールモノメチルエーテル 1470質量部
イソプロピルアルコール 2720質量部
メチルエチルケトン 490質量部
(中屈折率層M6組成)
LCOM V−2504(触媒化成工業(株)製、ITOゾル、固形分20%)
100質量部
フルオレンアクリルA(森六(株)製) 27.5質量部
フルオレンアクリルB(森六(株)製) 27.5質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 1質量部
イルガキュア907(チバガイギー社製) 3質量部
プロピレングリコールモノメチルエーテル 1470質量部
イソプロピルアルコール 2720質量部
メチルエチルケトン 490質量部
(中屈折率層M7組成)
LCOM V−2504(触媒化成工業(株)製、ITOゾル、固形分20%)
100質量部
フルオレンアクリルA(森六(株)製) 27.5質量部
ジペンタエリスリトールヘキサアクリレート(KAYARAD DPHA、日本化薬社製) 27.5質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 1質量部
イルガキュア907(チバガイギー社製) 3質量部
プロピレングリコールモノメチルエーテル 1470質量部
イソプロピルアルコール 2720質量部
メチルエチルケトン 490質量部
〔高屈折率層の作製〕
上記作製した中屈折率層上に下記高屈折率層塗布液をバーコーターを用いて塗布し、60℃で乾燥の後、紫外線を照射して塗布層を硬化させ高屈折率層を形成した。
高屈折率層の膜厚:50nm
高屈折率層の屈折率:1.80
(高屈折率層H1組成)
RTSPNB(シーアイ化成工業(株)製、酸化チタン微粒子分散物、固形分15%) 60質量部
KBM503(シランカップリング剤、信越化学(株)製) 2質量部
テトラブトキシチタン 5質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 0.2質量部
イルガキュア907(チバガイギー社製) 2質量部
イソプロピルアルコール 560質量部
メチルエチルケトン 90質量部
プロピレングリコールモノメチルエーテル 280質量部
(高屈折率層H2組成)
RTSPNB(シーアイ化成工業(株)製、酸化チタン微粒子分散物、固形分15%) 60質量部
KBM503(シランカップリング剤、信越化学(株)製) 2質量部
ジペンタエリスリトールヘキサアクリレート(KAYARAD DPHA、日本化薬社製) 8質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 0.2質量部
イルガキュア907(チバガイギー社製) 2質量部
イソプロピルアルコール 560質量部
メチルエチルケトン 90質量部
プロピレングリコールモノメチルエーテル 280質量部
(高屈折率層H3組成)
RTSPNB(シーアイ化成工業(株)製、酸化チタン微粒子分散物、固形分15%) 60質量部
KBM503(シランカップリング剤、信越化学(株)製) 2質量部
フルオレンアクリルA(森六(株)製) 8質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 0.2質量部
イルガキュア907(チバガイギー社製) 2質量部
イソプロピルアルコール 560質量部
メチルエチルケトン 90質量部
プロピレングリコールモノメチルエーテル 280質量部
(高屈折率層H4組成)
RTSPNB(シーアイ化成工業(株)製、酸化チタン微粒子分散物、固形分15%) 60質量部
KBM503(シランカップリング剤、信越化学(株)製) 2質量部
フルオレンアクリルB(森六(株)製) 8質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 0.2質量部
イルガキュア907(チバガイギー社製) 2質量部
イソプロピルアルコール 560質量部
メチルエチルケトン 90質量部
プロピレングリコールモノメチルエーテル 280質量部
〔低屈折率層の作製〕
上記作製した高屈折率層上に下記低屈折率層塗布液をバーコーターを用いて塗布し、60℃で乾燥の後、紫外線を照射して塗布層を硬化させ低屈折率層を形成した。
低屈折率層の膜厚:90nm
低屈折率層の屈折率:1.38
(低屈折率層L1組成)
〈アルコキシケイ素加水分解液1の調製〉
テトラエトキシシラン289gとエタノール553gを混和し、これに0.15%酢酸水溶液157gを添加し、25℃のウォーターバス中で30時間攪拌することで加水分解物液1を調製した。
アルコキシケイ素加水分解物液1 100質量部
KBM503(シランカップリング剤、信越化学(株)製) 1質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 1質量部
プロピレングリコールモノメチルエーテル 380質量部
イソプロピルアルコール 380質量部
(低屈折率層L2組成)
アルコキシケイ素加水分解物液1 100質量部
中空シリカ微粒子分散物(触媒化成工業社製、P−4) 50質量部
KBM503(シランカップリング剤、信越化学(株)製) 1質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 1質量部
プロピレングリコールモノメチルエーテル 380質量部
イソプロピルアルコール 380質量部
(低屈折率層L3組成)
アルコキシケイ素加水分解物液1 50質量部
(CH3O)3SiC2461224Si(OCH33 50質量部
KBM503(シランカップリング剤、信越化学(株)製) 1質量部
FZ−2207(シリコン化合物、日本ユニカー(株)製) 1質量部
プロピレングリコールモノメチルエーテル 380質量部
イソプロピルアルコール 380質量部
Figure 2005338550
〔反射防止フィルムの評価〕
このようにして作製した反射防止フィルム1〜14について、下記方法で長期使用時を想定した強制劣化試験で耐光性及び耐擦傷性の評価を行った。
(耐光性)
反射防止フィルムを紫外線オートフェードメーター(スガ試験機社製)に投入し、192時間紫外線照射下に保持した後、照射前後の中屈折率層及び高屈折率層の膜厚減少率(%)を求めた。また、紫外線照射前後の反射防止フィルムの裏面を黒に塗装た後、蛍光灯を写して反射光の色バランスの差を下記基準で目視評価した。
◎:紫外線照射前後の反射防止フィルムの差がない
○:紫外線照射前後の反射防止フィルムの差が小さく気にならない
△:紫外線照射前後の反射防止フィルムの差があるが許容レベルである
×:紫外線照射前後の反射防止フィルムの差が大きく許容できない
(耐擦傷性)
耐光性試験と同様にして作製した紫外線照射前後の反射防止フィルムを平滑な台の上に置き、#0000のスチールウール上に1cm2当たり200gの荷重をかけて、フィルム表面を20往復擦り、擦る方向と垂直方向に1cmの範囲で発生した傷の本数を目視で数え、以下の基準で評価した。
○ :傷の本数が0本
○△:傷の本数が1〜5本未満である
△ :傷の本数が5本以上〜20本未満である
× :傷の本数が20本以上である
本発明では、○△、○を実用可とした。
以上の評価結果を下記表2に示す。
Figure 2005338550
表2より、中屈折率層または高屈折率層にフルオレン骨格を有するアクリレート化合物またはメタクリレート化合物を重合成分とする重合体を含有する本発明に係る反射防止フィルムは、比較に対し、膜厚減少率が小さく、長時間の紫外線照射下後も表面蛍光灯反射光の色バランスの変動が小さく、耐擦傷性に優れていることが分かった。
実施例2
実施例1で作製した反射防止フィルムを用いて下記のようにして偏光板を作製し、それらの偏光板を液晶表示パネル(画像表示装置)に組み込み、視認性を評価した。
下記の方法に従って、反射防止フィルムと該フィルムに支持体として用いられているセルローストリアセテートフィルム各々1枚を偏光板保護フィルムとして用いて本発明の偏光板を作製した。
(a)偏光膜の作製
厚さ120μmの長尺のポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gの比率からなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gの比率からなる68℃の水溶液に浸漬した。これを水洗、乾燥し長尺の偏光膜を得た。
(b)偏光板の作製
次いで、下記工程1〜5に従って、偏光膜と偏光板用保護フィルムとを貼り合わせて偏光板を作製した。
工程1:セルローストリアセテートフィルムと反射防止フィルムを2mol/Lの水酸化ナトリウム溶液に60℃で90秒間浸漬し、次いで水洗、乾燥させた。反射防止フィルムの反射防止層を設けた面にはあらかじめ剥離性の保護フィルム(PET製)を張り付けて保護した。
同様にセルローストリアセテートフィルムを2mol/Lの水酸化ナトリウム溶液に60℃で90秒間浸漬し、次いで水洗、乾燥させた。
工程2:前述の偏光膜を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒間浸漬した。
工程3:工程2で偏光膜に付着した過剰の接着剤を軽く取り除き、それを工程1でアルカリ処理したセルローストリアセテートフィルムと反射防止フィルムで挟み込んで、積層配置した。
工程4:2つの回転するローラにて20〜30N/cm2の圧力で約2m/minの速度で張り合わせた。このとき気泡が入らないように注意して実施した。
工程5:80℃の乾燥機中にて工程4で作製した試料を2分間乾燥処理し、本発明の偏光板を作製した。
市販の液晶表示パネル(NEC製 カラー液晶ディスプレイ MultiSync LCD1525J:型名 LA−1529HM)の最表面の偏光板を注意深く剥離し、ここに偏光方向を合わせた本発明の偏光板を張り付けた。
上記のようにして得られた液晶パネルを床から80cmの高さの机上に配置し、床から3mの高さの天井部に昼色光直管蛍光灯(FLR40S・D/M−X 松下電器産業(株)製)40W×2本を1セットとして1.5m間隔で10セット配置した。このとき評価者が液晶パネル表示面正面にいるときに、評価者の頭上より後方に向けて天井部に前記蛍光灯がくるように配置した。液晶パネルは机に対する垂直方向から25°傾けて蛍光灯が写り込むようにして画面の見易さ(視認性)を下記のようにランク評価した。
A:最も近い蛍光灯の移りこみから気にならず、フォントの大きさ8以下の文字もはっきりと読める
B:近くの蛍光灯の写りこみはやや気になるが、遠くは気にならず、フォントの大きさ8以下の文字もなんとかと読める
C:遠くの蛍光灯の写りこみも気になり、フォントの大きさ8以下の文字を読むのは困難である
D:蛍光灯の写りこみがかなり気になり、写り込みの部分はフォントの大きさ8以下の文字を読むことはできない
評価の結果、本発明の試料はB以上であり、比較試料より良好であった。

Claims (9)

  1. 透明基材フィルム上に、少なくともハードコート層、該透明基材フィルムより屈折率が高い層及び該透明基材フィルムより屈折率が低い層を有する反射防止フィルムにおいて、該透明基材フィルムより屈折率が高い層が、バインダーとして少なくともフルオレン骨格を有するアクリレート化合物またはメタクリレート化合物を重合成分とする重合体を含有することを特徴とする反射防止フィルム。
  2. 前記透明基材フィルムより屈折率が高い層が、Ti、Ta、Zr、Sn、Sb、Zn、Nb、In、Alから選択される金属酸化物微粒子を含有することを特徴とする請求項1に記載の反射防止フィルム。
  3. 透明基材フィルム上にハードコート層、中屈折率層、高屈折率層及び低屈折率層が積層され、前記透明基材フィルムより屈折率が高い層は中屈折率層であり、該中屈折率層がZr、Sn、Sb、Zn、Nb、Inから選択される金属酸化物微粒子を含有することを特徴とする請求項1または2に記載の反射防止フィルム。
  4. 透明基材フィルム上にハードコート層、中屈折率層、高屈折率層及び低屈折率層が積層され、前記透明基材フィルムより屈折率が高い層は高屈折率層であり、該高屈折率層がコアシェル構造の酸化チタン微粒子を含有することを特徴とする請求項1または2に記載の反射防止フィルム。
  5. 透明基材フィルム上にハードコート層、中屈折率層、高屈折率層及び低屈折率層が積層され、前記透明基材フィルムより屈折率が低い層は低屈折率層であり、該低屈折率層が中空微粒子とバインダー成分を主成分として含有することを特徴とする請求項1〜4のいずれか1項に記載の反射防止フィルム。
  6. 前記ハードコート層が、バインダーの主成分として、1,4−シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、トリメチロールエタン(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレートから選択されるアクリル系の活性エネルギー線硬化樹脂を含有することを特徴とする請求項1〜5のいずれか1項に記載の反射防止フィルム。
  7. 前記透明基材フィルムがセルロースエステルフィルムであることを特徴とする請求項1〜6のいずれか1項に記載の反射防止フィルム。
  8. 請求項1〜7のいずれか1項に記載の反射防止フィルムを片側に使用し、偏光子の反対面側に位相差フィルムを使用することを特徴とする偏光板。
  9. 請求項8に記載の偏光板の反射防止フィルム面を鑑賞面側に使用することを特徴とする画像表示装置。
JP2004158861A 2004-05-28 2004-05-28 反射防止フィルム、偏光板及び画像表示装置 Pending JP2005338550A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004158861A JP2005338550A (ja) 2004-05-28 2004-05-28 反射防止フィルム、偏光板及び画像表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158861A JP2005338550A (ja) 2004-05-28 2004-05-28 反射防止フィルム、偏光板及び画像表示装置

Publications (1)

Publication Number Publication Date
JP2005338550A true JP2005338550A (ja) 2005-12-08

Family

ID=35492197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158861A Pending JP2005338550A (ja) 2004-05-28 2004-05-28 反射防止フィルム、偏光板及び画像表示装置

Country Status (1)

Country Link
JP (1) JP2005338550A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188035A (ja) * 2006-01-12 2007-07-26 Samsung Corning Co Ltd 酸化物を積層してなる光学層が形成されているバックライトユニット
JP2007232872A (ja) * 2006-02-28 2007-09-13 Seiko Epson Corp 反射防止層を有する製品およびその製造方法
JP2008133379A (ja) * 2006-11-29 2008-06-12 Osaka Gas Co Ltd 酸化ジルコニウム含有樹脂組成物及びその成形体
JP2008266550A (ja) * 2006-06-29 2008-11-06 Chisso Corp 重合性液晶組成物
WO2008150081A1 (en) * 2007-06-07 2008-12-11 Kolon Industries, Inc. Eco-optical sheet
US7622055B2 (en) 2006-05-16 2009-11-24 Nitto Denko Corporation Polarizing plate and image display including the same
WO2010024115A1 (ja) * 2008-08-29 2010-03-04 コニカミノルタオプト株式会社 光学フィルム、反射防止フィルム、偏光板及び液晶表示装置
US7911564B2 (en) 2006-06-15 2011-03-22 Nitto Denko Corporation Polarizing plate, image display, and method of manufacturing polarizing plate
JP2011150330A (ja) * 2009-12-25 2011-08-04 Dainippon Printing Co Ltd 映像源ユニット、及びこれを備える表示装置、映像源ユニットの製造方法
JP2014232279A (ja) * 2013-05-30 2014-12-11 凸版印刷株式会社 反射防止フィルム
JP2019012294A (ja) * 2013-01-29 2019-01-24 日東電工株式会社 反射防止フィルムおよびその製造方法
JP2020015223A (ja) * 2018-07-25 2020-01-30 株式会社デンソー 反射防止フィルム、車両用表示装置
WO2024075804A1 (ja) * 2022-10-06 2024-04-11 東山フイルム株式会社 反射防止フィルムおよび反射防止フィルムの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007741A (ja) * 1998-06-25 2000-01-11 Kyoeisha Chem Co Ltd 耐擦傷性に優れた高屈折率樹脂組成物
JP2000047004A (ja) * 1998-07-27 2000-02-18 Fuji Photo Film Co Ltd 反射防止膜およびそれを配置した表示装置
JP2000329905A (ja) * 1998-09-22 2000-11-30 Fuji Photo Film Co Ltd 反射防止膜およびその製造方法
JP2001166104A (ja) * 1999-09-28 2001-06-22 Fuji Photo Film Co Ltd 反射防止膜、偏光板、及びそれを用いた画像表示装置
JP2003302503A (ja) * 2002-01-09 2003-10-24 Konica Minolta Holdings Inc 人工照明用反射防止フィルム、人工照明用反射防止層の形成方法、人工照明用偏光板、表示装置及び表示装置の反射防止方法
JP2004012592A (ja) * 2002-06-04 2004-01-15 Tomoegawa Paper Co Ltd 近赤外線吸収および反射防止複合機能フィルム
JP2004069983A (ja) * 2002-08-06 2004-03-04 Fuji Photo Film Co Ltd 反射防止膜、反射防止フィルム、および画像表示装置
JP2004117852A (ja) * 2002-09-26 2004-04-15 Sony Corp 反射防止部品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007741A (ja) * 1998-06-25 2000-01-11 Kyoeisha Chem Co Ltd 耐擦傷性に優れた高屈折率樹脂組成物
JP2000047004A (ja) * 1998-07-27 2000-02-18 Fuji Photo Film Co Ltd 反射防止膜およびそれを配置した表示装置
JP2000329905A (ja) * 1998-09-22 2000-11-30 Fuji Photo Film Co Ltd 反射防止膜およびその製造方法
JP2001166104A (ja) * 1999-09-28 2001-06-22 Fuji Photo Film Co Ltd 反射防止膜、偏光板、及びそれを用いた画像表示装置
JP2003302503A (ja) * 2002-01-09 2003-10-24 Konica Minolta Holdings Inc 人工照明用反射防止フィルム、人工照明用反射防止層の形成方法、人工照明用偏光板、表示装置及び表示装置の反射防止方法
JP2004012592A (ja) * 2002-06-04 2004-01-15 Tomoegawa Paper Co Ltd 近赤外線吸収および反射防止複合機能フィルム
JP2004069983A (ja) * 2002-08-06 2004-03-04 Fuji Photo Film Co Ltd 反射防止膜、反射防止フィルム、および画像表示装置
JP2004117852A (ja) * 2002-09-26 2004-04-15 Sony Corp 反射防止部品

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188035A (ja) * 2006-01-12 2007-07-26 Samsung Corning Co Ltd 酸化物を積層してなる光学層が形成されているバックライトユニット
JP2007232872A (ja) * 2006-02-28 2007-09-13 Seiko Epson Corp 反射防止層を有する製品およびその製造方法
US7622055B2 (en) 2006-05-16 2009-11-24 Nitto Denko Corporation Polarizing plate and image display including the same
US7911564B2 (en) 2006-06-15 2011-03-22 Nitto Denko Corporation Polarizing plate, image display, and method of manufacturing polarizing plate
JP2008266550A (ja) * 2006-06-29 2008-11-06 Chisso Corp 重合性液晶組成物
JP2008133379A (ja) * 2006-11-29 2008-06-12 Osaka Gas Co Ltd 酸化ジルコニウム含有樹脂組成物及びその成形体
WO2008150081A1 (en) * 2007-06-07 2008-12-11 Kolon Industries, Inc. Eco-optical sheet
JP2010530985A (ja) * 2007-06-07 2010-09-16 コーロン インダストリーズ,インコーポレイテッド 環境保護光学シート
CN103085204A (zh) * 2007-06-07 2013-05-08 可隆株式会社 生态光学片
TWI411632B (zh) * 2007-06-07 2013-10-11 Kolon Inc 環保光學片
WO2010024115A1 (ja) * 2008-08-29 2010-03-04 コニカミノルタオプト株式会社 光学フィルム、反射防止フィルム、偏光板及び液晶表示装置
JPWO2010024115A1 (ja) * 2008-08-29 2012-01-26 コニカミノルタオプト株式会社 光学フィルム、反射防止フィルム、偏光板及び液晶表示装置
JP5408135B2 (ja) * 2008-08-29 2014-02-05 コニカミノルタ株式会社 光学フィルム、反射防止フィルム、偏光板及び液晶表示装置
US9493620B2 (en) 2008-08-29 2016-11-15 Konica Minolta Opto, Inc. Optical film, anti-reflection film, polarizing plate and liquid crystal display device
JP2011150330A (ja) * 2009-12-25 2011-08-04 Dainippon Printing Co Ltd 映像源ユニット、及びこれを備える表示装置、映像源ユニットの製造方法
JP2019012294A (ja) * 2013-01-29 2019-01-24 日東電工株式会社 反射防止フィルムおよびその製造方法
JP2014232279A (ja) * 2013-05-30 2014-12-11 凸版印刷株式会社 反射防止フィルム
JP2020015223A (ja) * 2018-07-25 2020-01-30 株式会社デンソー 反射防止フィルム、車両用表示装置
WO2024075804A1 (ja) * 2022-10-06 2024-04-11 東山フイルム株式会社 反射防止フィルムおよび反射防止フィルムの製造方法

Similar Documents

Publication Publication Date Title
JP5038625B2 (ja) 延伸セルロースエステルフィルム、ハードコートフィルム、反射防止フィルム及び光学補償フィルム、並びにそれらを用いた偏光板及び表示装置
JP5170083B2 (ja) 防眩性反射防止フィルムの製造方法、防眩性反射防止フィルム、偏光板及び表示装置
JP4655663B2 (ja) 塗布層を有するロール状フィルムの製造方法、ロール状光学フィルム、偏光板、液晶表示装置
JP4992122B2 (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び表示装置
JP4747769B2 (ja) 凹凸パターンフイルムの製造方法
US20060181774A1 (en) Antireflection film, production method of the same, polarizing plate and display
JP2009042351A (ja) 光学フィルム、偏光板及び表示装置
JP4622472B2 (ja) 防眩性反射防止フィルム、防眩性反射防止フィルムの製造方法、偏光板及び表示装置
KR20060044595A (ko) 반사 방지 필름, 편광판 및 화상표시장치
JP2007144301A (ja) 紫外線硬化樹脂層の硬化方法及び紫外線照射装置
JP2005156615A (ja) 防眩フイルム、防眩性反射防止フィルム及びそれらの製造方法、並びに偏光板及び表示装置
JP4400211B2 (ja) 低反射積層体及び低反射積層体の製造方法
JP2005266232A (ja) 光学フィルム、偏光板及び画像表示装置
JP4896368B2 (ja) 防眩性反射防止フィルム
JP2005338550A (ja) 反射防止フィルム、偏光板及び画像表示装置
JP2005309120A (ja) 反射防止フィルム、偏光板及び画像表示装置
JP4885441B2 (ja) 防眩性反射防止フィルム、偏光板および画像表示装置
JP2006146027A (ja) 防眩性反射防止フィルム、偏光板及び表示装置
JP2005338549A (ja) 反射防止フィルム、偏光板及び画像表示装置
JP5017775B2 (ja) 防眩性反射防止フィルム、防眩性反射防止フィルムの製造方法、それを用いた偏光板及び表示装置
JP2007025329A (ja) 反射防止フィルム、その製造方法、偏光板及び表示装置
JP2005224754A (ja) ハードコート層を有する光学フィルムの製造方法、ハードコートフィルム、偏光板及び表示装置
JP2005266231A (ja) 光学フィルム、偏光板及び画像表示装置
JP2005134609A (ja) 反射防止フィルム及び反射防止フィルムの製造方法並びに偏光板及び表示装置
JP2005157037A (ja) 反射防止フィルム、偏光板および画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216