JP2005337579A - Heat quantity control method for incinerated ash melting furnace and heat quantity control device - Google Patents

Heat quantity control method for incinerated ash melting furnace and heat quantity control device Download PDF

Info

Publication number
JP2005337579A
JP2005337579A JP2004156624A JP2004156624A JP2005337579A JP 2005337579 A JP2005337579 A JP 2005337579A JP 2004156624 A JP2004156624 A JP 2004156624A JP 2004156624 A JP2004156624 A JP 2004156624A JP 2005337579 A JP2005337579 A JP 2005337579A
Authority
JP
Japan
Prior art keywords
heat
melting furnace
amount
output
heating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004156624A
Other languages
Japanese (ja)
Other versions
JP4249086B2 (en
Inventor
Yasuyuki Aida
泰之 合田
Toru Kawakami
亨 川上
Koichi Sato
浩一 佐藤
Teruaki Tsukamoto
輝彰 塚本
Yoshiji Sato
誉司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2004156624A priority Critical patent/JP4249086B2/en
Publication of JP2005337579A publication Critical patent/JP2005337579A/en
Application granted granted Critical
Publication of JP4249086B2 publication Critical patent/JP4249086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly control a heating means for an incinerated ash melting furnace corresponding to the condition of the melting furnace. <P>SOLUTION: This heat quantity control device comprises a means DM01 for calculating incoming heat to the melting furnace, including the quantity of heat to be supplied to the melting furnace 11 by the heating means 21, means DM02, DM03, DM04, DM05, DM06, DM07, DM08, DM09 for calculating outgoing heat for the melting furnace, including the quantity of heat to be exhausted to the outside of the melting furnace in a slug form, a means 26 for calculating a heat balance between the incoming heat and the outgoing heat, and a means 26 for controlling the output of the heating means for the melting furnace in accordance with the calculated heat balance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は焼却灰の溶融炉について運転時の熱量を過不足なく設定するために当該溶融炉に対する加熱手段の出力を制御するための方法及び装置に関する。   The present invention relates to a method and apparatus for controlling the output of heating means for a melting furnace in order to set the amount of heat during operation of the melting furnace for incinerated ash without excess or deficiency.

都市ゴミで代表される廃棄物は焼却処理されるのが一般的となっている。そして、多くの場合、焼却処理に伴い発生する焼却灰は高温で溶融し減容固化(スラグ化)することで、これに含まれる重金属類・ダイオキシン類を不溶出化したり無害化し、得られた無害な減容固化物(スラグ)を再資源化している。   It is common for waste represented by municipal waste to be incinerated. And in many cases, the incineration ash generated in the incineration process is obtained by melting at high temperature and reducing the volume (slag) to make the heavy metals and dioxins contained therein insoluble or harmless. Harmless volume reduction solidified material (slag) is recycled.

焼却灰を溶融するときの溶融炉内は約1200〜1400℃の高温とされる。炉内温度が必要以上に高温にすることは、炉内耐火材の寿命を短くし、また、ランニングコストのアップにつながる。逆に炉内温度が所定の高温に到達しないときは、焼却灰の溶融状況が悪くなり、それが原因で焼却灰が炉内に堆積するため、操業の継続が困難になる。従って、溶融炉内のガス相の温度を正確に把握することや、焼却灰の溶融状況を的確に把握することが重要となる。
この点、現状では、炉内温度を熱電対や監視カメラ等を使用して、溶融炉の状態を把握し、それに基づいて溶融炉へ投入する熱量の制御を行う技術が開発されている。
The inside of the melting furnace when melting the incinerated ash is set to a high temperature of about 1200 to 1400 ° C. Making the furnace temperature higher than necessary shortens the life of the refractory material in the furnace and increases running costs. Conversely, when the in-furnace temperature does not reach a predetermined high temperature, the melting state of the incineration ash deteriorates, and the incineration ash accumulates in the furnace due to this, so that it is difficult to continue the operation. Therefore, it is important to accurately grasp the temperature of the gas phase in the melting furnace and accurately grasp the melting state of the incineration ash.
In this regard, at present, a technique has been developed in which the temperature inside the furnace is grasped by using a thermocouple, a monitoring camera, or the like to grasp the state of the melting furnace, and the amount of heat input to the melting furnace is controlled based on this.

そのような先行技術情報としては、次のようなものがある。
再表WO98/54514号公報
Such prior art information includes the following.
Table WO98 / 54514

しかし、炉内温度や焼却灰の溶融状態等は、以下にあげるような種々のファクターが関係するものであり、熱電対や監視カメラ等によるデータだけでは必ずしも十分でない場合もある。
すなわち、雑多な廃棄物の焼却処理で発生する焼却灰などは、性状が一定でなかったり未燃焼分が若干含まれていたりするから、同じ炉内温度でも溶融状態が同じとは限らない。
また、揮散成分も焼却灰の種類で異なる。とくに揮散成分比率の高い焼却排ガス中の煤塵などは、これの混入量で熱条件が変化したりする。
一方、溶融炉への焼却灰投入量を急激に増減し溶融スラグ量が変化する場合には、それに対応して入熱量の設定を変更しなければならないが、変更が炉運転に適切であったか否かを確認できるまでに数分〜数十分のタイムラグが生じるため、適切な入熱量になるまでの間、熱量の過不足が生じる。
さらに、溶融炉の内面を被覆している耐火材も、その熱容量が大きく、投入熱量を設定する上で無視できない。
また、耐火材の寿命延長のため炉壁を外部から水冷したりしているが、この冷却のための熱量も一定ではなく、耐火材の損耗の度合い、内部温度等によって変化する。
However, the furnace temperature, the molten state of the incinerated ash, and the like are related to various factors as described below, and data from a thermocouple, a monitoring camera, or the like may not always be sufficient.
That is, incineration ash generated by incineration of miscellaneous waste does not have the same properties or contains a little unburned matter, so the molten state is not always the same even at the same furnace temperature.
Also, the volatilization component varies depending on the type of incinerated ash. Especially for dust in incineration exhaust gas with a high volatilization component ratio, the heat condition changes depending on the amount of the dust.
On the other hand, when the amount of incinerated ash input to the melting furnace is suddenly increased and decreased and the amount of molten slag changes, the setting of the heat input must be changed accordingly, but whether or not the change was appropriate for furnace operation Since a time lag of several minutes to several tens of minutes occurs until it can be confirmed, an excess or deficiency of the heat amount occurs until an appropriate heat input amount is reached.
Furthermore, the refractory material covering the inner surface of the melting furnace has a large heat capacity and cannot be ignored in setting the input heat amount.
Further, although the furnace wall is water-cooled from the outside for extending the life of the refractory material, the amount of heat for this cooling is not constant and varies depending on the degree of wear of the refractory material, the internal temperature, and the like.

焼却灰の溶融炉についてさらにいうと、これは焼却炉の後段に設置して使用するのが一般である。その場合の溶融炉の処理能力は、焼却灰発生量の最大値に対し余裕をもたせて決定される。この関係を実際面からみると、溶融炉に供給される焼却灰の量は溶融炉の処理能力を下回ることが多く、したがって溶融炉は処理能力面で余力を残していることになる。他方で焼却炉には廃熱発電設備が設けられ、余剰電気を売電するようにする場合がある。この場合、溶融炉の熱源が電気式の場合に、廃熱の発電量から廃棄物処理施設内の電気使用量を差し引いたものが売電量になる。溶融炉の熱源として使用する電力は、通常、廃棄物処理施設内電気使用量の30〜40%を占めるため溶融炉への焼却灰供給量が容易に操作できるのであれば、売電量も一定の範囲内で加減できるようになる。電力需要の一般的傾向として、1日のうちでは、昼間電力需要が多くて夜間電力需要が少なく、従って、夜間電力の売電単価は低い。このような点からして、焼却灰の溶融炉においては、電力需要の多い昼間は焼却灰の溶融量を抑制することで廃棄物処理施設内での電力消費量を低して売電量を多くし、夜間は溶融量を多くして廃熱エネルギを有効活用できるようにすることが望ましい。   When it says further about the melting furnace of incineration ash, this is generally installed and used in the back | latter stage of an incinerator. In this case, the processing capacity of the melting furnace is determined with a margin with respect to the maximum amount of incinerated ash generated. When this relationship is viewed from an actual aspect, the amount of incinerated ash supplied to the melting furnace is often lower than the processing capacity of the melting furnace, and therefore the melting furnace has a surplus in terms of processing capacity. On the other hand, the incinerator may be provided with waste heat power generation equipment to sell surplus electricity. In this case, when the heat source of the melting furnace is an electric type, the amount of power sold is the amount of waste heat generated minus the amount of electricity used in the waste treatment facility. Electricity used as a heat source for the melting furnace usually occupies 30 to 40% of the amount of electricity used in the waste treatment facility, so if the amount of incinerated ash supplied to the melting furnace can be easily manipulated, the amount of electricity sold is also constant. It can be adjusted within the range. As a general tendency of electric power demand, during the day, there is much daytime electric power demand and low nighttime electric power demand, and therefore the electric power selling unit price for night electric power is low. In view of these points, incinerator ash melting furnaces reduce the amount of incineration ash melting during the daytime when there is a large demand for electricity, thereby reducing the power consumption in the waste treatment facility and increasing the amount of electricity sold. However, it is desirable to increase the amount of melting at night so that the waste heat energy can be used effectively.

本発明はこのような技術上の課題に鑑み、炉の安定運転・焼却灰供給量の変化に対する加熱量の高い応答性・廃熱エネルギの有効利用などを可能とする焼却灰溶融炉の加熱手段出力制御方法及び装置を提供しようとするものである。   In view of such technical problems, the present invention provides a heating means for an incineration ash melting furnace that enables stable operation of the furnace, high responsiveness to heating with respect to changes in the supply of incineration ash, effective use of waste heat energy, and the like. It is an object of the present invention to provide an output control method and apparatus.

すなわち、本発明は、
焼却灰を加熱溶融してスラグ化する溶融炉の加熱手段の出力を制御するための方法において、
溶融炉に対する入熱及び出熱の熱収支を算定し、それに基づき、当該溶融炉の加熱手段の出力を制御することを特徴とする溶融炉の加熱手段出力制御方法を提供する。
上記熱収支の算定にあたっては、焼却灰を加熱溶融しスラグとするために必要な溶融スラグ熱量、排ガス搬出熱量、溶融炉の冷却熱量、溶融炉からの放散熱量、溶融炉内部の耐火材に蓄積される熱量、熱源の冷却熱量等の出熱ファクターのうち、所要の出熱ファクターに基づき出熱を算定することができる。
That is, the present invention
In the method for controlling the output of the heating means of the melting furnace for melting slag by heating and melting incineration ash,
Provided is a heating means output control method for a melting furnace, characterized in that the heat balance of heat input and output heat to the melting furnace is calculated and the output of the heating means of the melting furnace is controlled based on the calculated heat balance.
In calculating the above heat balance, the amount of molten slag heat required to heat and melt the incinerated ash into slag, the amount of heat discharged from the exhaust gas, the amount of heat discharged from the melting furnace, the amount of heat dissipated from the melting furnace, and accumulated in the refractory material inside the melting furnace The heat output can be calculated based on the required heat output factor among the heat output factors such as the amount of heat generated and the heat source cooling heat.

また、入熱算定に当たっては、加熱手段から溶融炉に出力される熱量、及び、溶融炉内に供給された焼却灰に含まれる未燃の可燃物から生じる熱量に基づき入熱算定を行うようにすることができる。   In calculating heat input, heat input should be calculated based on the amount of heat output from the heating means to the melting furnace and the amount of heat generated from unburned combustibles contained in the incinerated ash supplied to the melting furnace. can do.

出熱算定は、具体的には、
上記溶融スラグ熱量を、
溶融スラグ熱量=焼却灰供給量×(1−焼却灰揮散率)×溶融スラグ熱容量定数
上記排ガス搬出熱量を、
排ガス搬出熱量=(排ガス流量)×{(流路中の排ガス温度)×(流路中の排ガス温度における排ガス比熱)−(基準温度)×(基準温度における排ガス比熱)}
上記溶融炉の冷却熱量を、
溶融炉の冷却熱量=(冷媒流量)×{(冷媒出口温度)−(冷媒出口温度)}×(冷媒比熱)
上記溶融炉から放散する熱量を、
溶融炉から放散する熱量=(炉本体または溶融炉付帯装置の表面温度)×(放熱温度係数)×(放熱温度面積)
上記溶融炉内部の耐火材に蓄積される熱量を、
溶融炉内部の耐火材に蓄積される熱量=(炉構成部材の一定時間の温度変化量)×(炉構成部材重量あたりの比熱)×(炉構成部材の重量)
上記熱源の冷却熱量を、
熱源の冷却熱量=(冷媒流量)×{(冷媒出口温度)−(冷媒出口温度)}×(冷媒比熱)
として算定することができる。
Specifically, heat output calculation
The molten slag heat quantity is
Molten slag heat quantity = incineration ash supply quantity x (1-incineration ash volatilization rate) x molten slag heat capacity constant
Exhaust gas discharge heat amount = (exhaust gas flow rate) × {(exhaust gas temperature in flow channel) × (exhaust gas specific heat at exhaust gas temperature in flow channel) − (reference temperature) × (exhaust gas specific heat at reference temperature)}
The cooling heat quantity of the melting furnace is
Cooling heat amount of melting furnace = (refrigerant flow rate) × {(refrigerant outlet temperature) − (refrigerant outlet temperature)} × (refrigerant specific heat)
The amount of heat dissipated from the melting furnace
Amount of heat dissipated from the melting furnace = (surface temperature of furnace body or melting furnace accessory) 4 x (heat dissipation temperature coefficient) x (heat dissipation temperature area)
The amount of heat accumulated in the refractory material inside the melting furnace,
Amount of heat accumulated in the refractory material inside the melting furnace = (temperature change amount of the furnace component for a certain time) × (specific heat per furnace component weight) × (weight of the furnace component)
Cooling heat quantity of the heat source
Heat source cooling heat amount = (refrigerant flow rate) × {(refrigerant outlet temperature) − (refrigerant outlet temperature)} × (refrigerant specific heat)
It can be calculated as

また、焼却灰が焼却主灰及び焼却飛灰からなるものとし、溶融スラグ熱量を、
溶融スラグ熱量=焼却灰供給量×{焼却主灰供給比率×(1−焼却主灰揮散率)×焼却主灰熱容量定数+焼却飛灰供給比率×(1−焼却飛灰揮散率)×焼却飛灰熱容量定数}
から求めることができる。
Incineration ash shall consist of incineration main ash and incineration fly ash.
Molten slag heat amount = incineration ash supply amount x {incineration main ash supply ratio x (1-incineration main ash volatilization rate) x incineration main ash heat capacity constant + incineration fly ash supply ratio x (1-incineration fly ash volatilization rate) x incineration flying Ash heat capacity constant}
Can be obtained from

溶融スラグ熱量を算定するのに、溶融炉から排出される溶融スラグ量を計測して、該排出される溶融スラグ量から算定することができる。   In order to calculate the heat amount of molten slag, the amount of molten slag discharged from the melting furnace can be measured and calculated from the amount of molten slag discharged.

熱収支補正は、投入焼却灰の投入量の増減に対して即座に熱源の出力を調整する役割を持ち合わせており、短時間の炉内の溶融状況の変化に対応することができる。しかしながら、熱収支補正だけで長時間の操業を行うと、計量および計算上の誤差が制御周期毎に蓄積されて、妥当な炉内温度が保てない場合がある。
本発明では、出熱制御をより的確にするために、炉内のガス相温度の計測値と予め設定した同ガス相温度の設定値との差を計測し、それを上記入熱及び出熱の熱収支に加味して、当該溶融炉の加熱手段の出力を制御するようにすることもできる。
さらに、溶融炉への灰の投入量を変化させて操業している場合と灰の投入量を一定にして操業している場合とで、熱収支補正熱量と炉内温度補正熱量の荷重係数を予め設定されていたパターンにより変化させることで、より操炉安定性を持たせている。
The heat balance correction has a role of immediately adjusting the output of the heat source with respect to the increase or decrease of the input amount of the incinerated ash, and can cope with a change in the melting state in the furnace in a short time. However, if the operation is performed for a long time with only the heat balance correction, errors in measurement and calculation are accumulated for each control cycle, and an appropriate furnace temperature may not be maintained.
In the present invention, in order to make the heat output control more accurate, the difference between the measured value of the gas phase temperature in the furnace and the preset value of the same gas phase temperature is measured, and this is used as the above heat input and heat output. In consideration of the heat balance, the output of the heating means of the melting furnace can be controlled.
Furthermore, the load coefficient of heat balance correction calorific value and furnace temperature correction calorific value are calculated depending on whether the operation is performed by changing the amount of ash input to the melting furnace or when the amount of ash input is constant. By changing the pattern according to a preset pattern, the operation stability is further improved.

更に、例えば、昼間操業における焼却灰溶融量と夜間操業における焼却灰溶融量とを異なる量としておき、昼間運転から夜間運転に、また夜間運転から昼間運転に運転切り替えを行う場合のように、時間的に焼却灰溶融量を切り換える場合には、次のような方法をとることができる。   Furthermore, for example, when the amount of incinerated ash melted in daytime operation is different from the amount of incinerated ash melted in nighttime operation, the time is switched from daytime operation to nighttime operation and from nighttime operation to daytime operation. In order to switch the incinerated ash melting amount, the following method can be used.

すなわち、溶融炉に灰を定量供給する灰定量供給装置について時間との対応であらかじめ記憶手段に記憶されている供給量設定値のうちから次期設定時点のものを読み出すためのステップと、
読み出された供給量設定値が現在の供給量設定値と相違しているとき、その読み出された設定値の供給量が達成可能であるか否かを現時点における加熱手段の発生熱量および当該焼却灰溶融設備の特性に基づき判定するためのステップと、
その読み出された設定値の供給量が達成可能でないとき、あらかじめ定められた達成可能な上限設定値を次期設定時点の供給量設定値と決定するためのステップと、
その読み出された設定値の供給量が達成可能であるとき、これを次期設定時点の供給量設定値として決定するステップと、
を有し、
上記溶融スラグ熱量を算定するのに用いる上記供給量設定値として、上記決定された次期設定時点の供給量設定値を用いる方法。
この方法は、溶融スラグ熱量を算定するのに、測定された焼却灰の量に基づくのではなく、焼却灰の供給量の切り換えにより迅速に対応することが可能となる。
That is, a step for reading the next set time point from among the supply amount set values stored in the storage means in advance in correspondence with the time for the ash fixed amount supply device for supplying ash to the melting furnace in a fixed amount,
When the read supply amount setting value is different from the current supply amount setting value, whether the supply amount of the read set value is achievable or not is determined at the present time and the generated heat amount of the heating means A step for determining based on the characteristics of the incineration ash melting facility;
When the supply amount of the read set value is not achievable, a step for determining a predetermined achievable upper limit set value as a supply amount set value at the next set point;
When the supply amount of the read set value is achievable, determining this as the supply amount set value at the next set point;
Have
A method of using the determined supply amount set value at the next set time as the supply amount set value used to calculate the molten slag heat quantity.
In this method, the calorific value of molten slag can be calculated quickly by switching the supply amount of incineration ash, not based on the measured amount of incineration ash.

本発明ではまた、
焼却灰を加熱溶融してスラグ化する溶融炉の加熱手段の出力を制御するための装置であって、
上記加熱手段によって溶融炉に供給される熱量を含む、当該溶融炉に対する入熱を算定するための手段と、
スラグ化されて当該溶融炉の外部に排出される熱量などの該溶融炉に対する出熱を算定するための手段と
上記入熱及び出熱の熱収支を算定するための手段と、
算定された熱収支に基づき、当該溶融炉の加熱手段の出力を制御する手段と
を有することを特徴とする溶融炉の加熱手段出力制御装置を提供する。
The present invention also provides
An apparatus for controlling the output of a heating means of a melting furnace that heats and melts incinerated ash to form slag,
Means for calculating the heat input to the melting furnace, including the amount of heat supplied to the melting furnace by the heating means;
Means for calculating the heat output to the melting furnace, such as the amount of heat that is slagted and discharged to the outside of the melting furnace, and means for calculating the heat balance of the heat input and output heat;
There is provided a heating means output control device for a melting furnace, characterized in that it has means for controlling the output of the heating means of the melting furnace based on the calculated heat balance.

上記出熱を算定するための手段は、焼却灰を加熱溶融しスラグとするために必要な溶融スラグ熱量、排ガス搬出熱量、溶融炉の冷却熱量、溶融炉からの放散熱量、溶融炉内部の耐火材に蓄積される熱量、熱源の冷却熱量等の出熱ファクターのうち、所要の出熱ファクターに基づき出熱を算定するようにすることができる。   The means for calculating the heat output is as follows: the amount of molten slag heat required to heat and melt the incinerated ash into slag, the amount of heat exhausted from the exhaust gas, the amount of heat discharged from the melting furnace, the amount of heat dissipated from the melting furnace, The heat output can be calculated based on a required heat output factor among heat output factors such as the amount of heat accumulated in the material and the amount of heat generated by cooling the heat source.

また、上記入熱を算定するための手段は、上記加熱手段から溶融炉に出力される熱量、及び、溶融炉内に供給された焼却灰に含まれる未燃の可燃物から生じる熱量に基づき入熱を算定するようにすることができる。   The means for calculating the heat input is based on the amount of heat output from the heating means to the melting furnace and the amount of heat generated from unburned combustibles contained in the incinerated ash supplied to the melting furnace. Heat can be calculated.

更に、この装置においては、
炉内のガス相温度の計測値と予め設定した同ガス相温度の設定値との差を計測するための手段を備え、
上記熱収支に基づき当該溶融炉の加熱手段の出力を制御する手段該手段が、上記ガス相温度の計測値と設定値の差を上記入熱及び出熱の熱収支に加味して、当該溶融炉の加熱手段の出力を制御するようにすることもできる。
Furthermore, in this device,
Means for measuring the difference between the measured value of the gas phase temperature in the furnace and the preset value of the same gas phase temperature;
Means for controlling the output of the heating means of the melting furnace based on the heat balance, the means taking into account the difference between the measured value of the gas phase temperature and the set value in the heat balance of the heat input and output heat, It is also possible to control the output of the heating means of the furnace.

本発明に係る焼却灰溶融炉の熱量制御方法と熱量制御装置によるときは、つぎのような効果が得られる。
(1)入熱と出熱との熱収支に基づく炉の加熱手段を制御するから、従来の炉内温度や監視カメラ等による炉内の視覚的データにより制御を行っていたものに比べて、溶融炉に対する過不足のない熱量調整がより適正に行うことができる。
(2)また、焼却灰の供給量を大幅に変更する場合でも、迅速に対応することができる。
(3)従って、電力需要の多い昼間には焼却灰の溶融量を抑制することで余剰電力を生じ、これを売電し、夜間は昼間に焼却を控えた分を含めた大量の焼却灰を処理するなどといった、焼却灰処理量を大幅に切り換えて操業するような場合にも、当該溶融炉の加熱手段を適正に制御することを可能とする。
When the heat amount control method and heat amount control apparatus for an incinerated ash melting furnace according to the present invention are used, the following effects are obtained.
(1) Since the heating means of the furnace is controlled based on the heat balance between the heat input and the heat output, compared to the conventional furnace temperature control or visual data inside the furnace using a monitoring camera, Heat quantity adjustment without excess or deficiency with respect to the melting furnace can be performed more appropriately.
(2) Moreover, even when the supply amount of incineration ash is changed significantly, it can respond quickly.
(3) Therefore, surplus electricity is generated by suppressing the amount of incineration ash melted during the daytime when there is a lot of demand for electricity, and this is sold. Even when the incineration ash processing amount is switched significantly, such as when processing, the heating means of the melting furnace can be appropriately controlled.

本発明に係る焼却灰溶融炉の熱量制御方法と熱量制御装置の実施形態について、添付の図面を参照して説明する。   Embodiments of a heat amount control method and a heat amount control apparatus for an incineration ash melting furnace according to the present invention will be described with reference to the accompanying drawings.

図1において、11は炉本体、21は加熱手段、31・32は焼却灰の供給系、41は排ガス系、51は溶融スラグの送出系、61は冷却装置、71は制御盤をそれぞれ示す。   In FIG. 1, 11 is a furnace body, 21 is a heating means, 31 and 32 are incineration ash supply systems, 41 is an exhaust gas system, 51 is a molten slag delivery system, 61 is a cooling device, and 71 is a control panel.

図1に例示された溶融炉の炉本体11は公知ないし周知のもので、内部空間12のある耐火構造物(炉殻)を主体にして構成されている。炉本体11は、焼却灰の供給口(導入口)13と排ガス口14と溶融スラグの流出口15とを備えており、内部空間12の壁面に耐火材が内張され、底壁部に炉底電極16が設けられている。さらに焼却灰の供給口13には、焼却灰の供給量を調整するための供給量設定器17が付設されている。   The furnace main body 11 of the melting furnace illustrated in FIG. 1 is a known or well-known one, and is mainly composed of a refractory structure (furnace shell) having an internal space 12. The furnace body 11 includes an incineration ash supply port (introduction port) 13, an exhaust gas port 14, and an outlet 15 for molten slag. A refractory material is lined on the wall surface of the internal space 12, and a furnace wall is provided on the bottom wall portion. A bottom electrode 16 is provided. Further, a supply amount setting unit 17 for adjusting the supply amount of the incineration ash is attached to the supply port 13 of the incineration ash.

加熱手段21としては、電気式溶融炉の場合にはプラズマトーチが、燃焼式加熱手段21の場合にはガスバーナが代表的なものである。図1に例示された加熱手段21は二重管構造の水冷式プラズマトーチからなり、炉本体11の上部側から炉本体11内に挿入されている。この場合の加熱手段(水冷式プラズマトーチ)21はプラズマ発生手段としてプラズマ電源22やプラズマガス供給系23を備えるとともに、冷却水源に通じる冷却水往路系24や冷却水帰還用の冷却水復路系25が冷却手段として接続されている。図において、22はプラズマ電源、26は該電源に電力設定信号を送るための制御器、27は制御器26に接続された監視警報器である。プラズマ発生装置(プラズマトーチ)の形式として、他に黒鉛電極式、水冷電極ノントランスファ式、水冷電極トランスファ式があるが、どの方式においても適用可能である。また、電気式溶融炉の熱源として、他にアーク式、抵抗式などがあるが、熱源の形式が異なるだけで、炉廻りの機器の構成は変わらないので、即座に熱源の出力が変更できれば異なる熱源でも実施は十分に可能である。   The heating means 21 is typically a plasma torch in the case of an electric melting furnace, and a gas burner in the case of the combustion heating means 21. The heating means 21 illustrated in FIG. 1 is a water-cooled plasma torch having a double tube structure, and is inserted into the furnace body 11 from the upper side of the furnace body 11. The heating means (water-cooled plasma torch) 21 in this case is provided with a plasma power source 22 and a plasma gas supply system 23 as plasma generating means, a cooling water forward path system 24 leading to a cooling water source, and a cooling water return path system 25 for cooling water feedback. Are connected as cooling means. In the figure, 22 is a plasma power source, 26 is a controller for sending a power setting signal to the power source, and 27 is a monitoring alarm connected to the controller 26. Other types of plasma generators (plasma torches) include a graphite electrode type, a water-cooled electrode non-transfer type, and a water-cooled electrode transfer type, but any type is applicable. In addition, there are other types of heat sources for electric melting furnaces, such as an arc type and a resistance type, but the configuration of the equipment around the furnace does not change except for the type of the heat source, so it will be different if the output of the heat source can be changed immediately. Implementation with a heat source is also possible.

焼却灰の一方の供給系31は焼却主灰(焼却灰の一種)を、他方の供給系32は焼却飛灰を、それぞれ、炉本体11内に供給するためのものである。これらの供給系31・32は、図示しない廃棄物焼却炉における焼却灰排出部に接続されるようにすることができる。両供給系31・32のいずれか一方だけが炉本体11の供給口13に接続され、他方が省略されることもある。   One supply system 31 for incineration ash is for supplying incineration main ash (a kind of incineration ash), and the other supply system 32 is for supplying incineration fly ash into the furnace body 11. These supply systems 31 and 32 can be connected to an incineration ash discharge unit in a waste incinerator (not shown). Only one of the supply systems 31 and 32 may be connected to the supply port 13 of the furnace body 11 and the other may be omitted.

排ガス系41は、溶融炉11の排ガス口14に接続された排ガス流路に、排ガス冷却管42や集塵機43などを備えて構成されている。図示の例では、排ガス冷却管42には冷媒(冷却空気)供給系44が接続されている。   The exhaust gas system 41 includes an exhaust gas cooling pipe 42, a dust collector 43, and the like in an exhaust gas passage connected to the exhaust gas outlet 14 of the melting furnace 11. In the illustrated example, a refrigerant (cooling air) supply system 44 is connected to the exhaust gas cooling pipe 42.

溶融スラグの送出系51は炉本体11の流出口15に接続されており、炉本体11内から自然流出または強制流出される溶融スラグを所定部へ送り出すための配管流路である。   The molten slag delivery system 51 is connected to the outlet 15 of the furnace body 11 and is a piping flow path for sending molten slag that naturally flows out or forcibly out of the furnace body 11 to a predetermined part.

冷却装置61はウォータジャケット62と冷却水往路管63と冷却水復路管64と冷却水源(図示せず)とを主要構成部材にしている。これらのうちでウォータジャケット62は、炉本体11においてその外部表面の主要部分を被覆している。冷却水往路管63や冷却水復路管64はそれぞれ、一端部がウォータジャケット62に接続され、他端部が冷却水源に接続されている。   The cooling device 61 includes a water jacket 62, a cooling water forward pipe 63, a cooling water return pipe 64, and a cooling water source (not shown) as main components. Among these, the water jacket 62 covers the main part of the outer surface of the furnace body 11. Each of the cooling water forward pipe 63 and the cooling water return pipe 64 has one end connected to the water jacket 62 and the other end connected to a cooling water source.

図示のように、溶融炉には、つぎに述べる各種の検出手段が設けられている。
検出手段DM01は加熱手段21の出力を検出するためのものである。この検出手段DM01は、プラズマ電源22の電流及び電圧を検知するためのセンサS01・S02を備える。
検出手段DM02は、焼却灰導入にともなう可燃性未燃物(たとえば炭素)が溶融炉内で燃焼したときに発生する熱量を検出するためのものである。この検出手段DM02は、排ガス系41の流路において排ガス中の二酸化炭素濃度及び排ガス流量を測定するためのセンサS03・S04を備える。
検出手段DM03は溶融スラグ熱量を検出するためのものである。この検出手段DM03は、焼却主灰の供給系31において焼却主灰の供給量を検知するためのセンサS05と、焼却飛灰の供給系32において焼却飛灰の供給量を検知するためのセンサS06と、焼却灰の供給口13において総供給量(焼却主灰と焼却飛灰との合計供給量)を検知するためのセンサS07とを含む。
検出手段DM04は加熱手段21の冷却熱量を検出するためのものである。この検出手段DM04は、冷却水往路系24において往路冷却水の温度を検知するためのセンサS08と、冷却水復路系25において復路冷却水の温度及び流量を検知するためのセンサS09・S10とを含む。
検出手段DM05は排ガス搬出熱量を検出するためのものである。この検出手段DM05は、排ガス系41の流路において排ガス温度及び排ガス流量を検知するためのセンサS11・S04(センサS04は兼用)と、冷媒供給系44の冷媒温度を検知するためのセンサS12とを含むものである。
検出手段DM06は溶融炉すなわち炉本体11の冷却熱量を検出するためのものである。この検出手段DM06は、冷却水往路管63において往路冷却水の温度を検知するためのセンサS13と、冷却水復路管64において復路冷却水の温度及び流量を検知するためのセンサS14・S15とを含む。
検出手段DM07は溶融炉の放散熱量と溶融炉付帯装置の放散熱量とを検出するためのものである。この検出手段DM07は、炉本体11の外部(底部)表面温度を検知するためのセンサS16と前記センサS12とを含むものである。
検出手段DM08は耐火材など炉構成部材の蓄熱量を検出するためのものである。この検出手段DM08は、炉本体11の各部の温度を検知するためにそれぞれの内部に分散して配置された複数のセンサS16・S17・S18を含むものである。
検出手段DM09は炉内温度補正熱量を検出するためのものである。この検出手段DM09は、炉本体11内の温度を検知するためセンサS19を含むものである。
As shown in the figure, the melting furnace is provided with various detection means described below.
The detection means DM01 is for detecting the output of the heating means 21. The detection means DM01 includes sensors S01 and S02 for detecting the current and voltage of the plasma power source 22.
The detecting means DM02 is for detecting the amount of heat generated when combustible unburned material (for example, carbon) accompanying incineration ash introduction burns in the melting furnace. The detection means DM02 includes sensors S03 and S04 for measuring the carbon dioxide concentration in the exhaust gas and the exhaust gas flow rate in the flow path of the exhaust gas system 41.
The detection means DM03 is for detecting the amount of heat of molten slag. The detection means DM03 includes a sensor S05 for detecting the supply amount of the incineration main ash in the incineration main ash supply system 31, and a sensor S06 for detecting the supply amount of the incineration fly ash in the incineration fly ash supply system 32. And a sensor S07 for detecting the total supply amount (total supply amount of incineration main ash and incineration fly ash) at the supply port 13 of the incineration ash.
The detection means DM04 is for detecting the amount of cooling heat of the heating means 21. This detection means DM04 includes a sensor S08 for detecting the temperature of the outbound cooling water in the cooling water outbound system 24, and sensors S09 and S10 for detecting the temperature and flow rate of the inbound cooling water in the cooling water return system 25. Including.
The detection means DM05 is for detecting the amount of heat discharged from the exhaust gas. This detection means DM05 includes sensors S11 and S04 for detecting the exhaust gas temperature and the exhaust gas flow rate in the flow path of the exhaust gas system 41 (sensor S04 is also used), and a sensor S12 for detecting the refrigerant temperature of the refrigerant supply system 44. Is included.
The detection means DM06 is for detecting the amount of cooling heat of the melting furnace, that is, the furnace body 11. This detection means DM06 includes a sensor S13 for detecting the temperature of the outbound cooling water in the cooling water outbound pipe 63, and sensors S14 and S15 for detecting the temperature and flow rate of the inbound cooling water in the cooling water return pipe 64. Including.
The detecting means DM07 is for detecting the amount of heat dissipated in the melting furnace and the amount of heat dissipated in the melting furnace auxiliary device. The detection means DM07 includes a sensor S16 for detecting the external (bottom) surface temperature of the furnace body 11 and the sensor S12.
The detecting means DM08 is for detecting the heat storage amount of the furnace constituent member such as a refractory material. This detection means DM08 includes a plurality of sensors S16, S17, and S18 that are dispersedly arranged in each of the furnace body 11 in order to detect the temperature of each part.
The detecting means DM09 is for detecting the temperature correction heat quantity in the furnace. The detection means DM09 includes a sensor S19 for detecting the temperature in the furnace body 11.

図1に略示された制御器(CPUその他を備えた電子計算機)26は、溶融炉制御系と各検出手段DM01〜DM09とを統合するものであり、各検出手段DM01〜DM09からのデータに基づいて必要な全ての演算処理をし、溶融炉を運転制御する上で必要な全ての指令信号を溶融炉の制御系へ出力して後述の入熱量制御を行うものであり、その具体的一例を以下に説明する。   A controller (an electronic computer equipped with a CPU or the like) 26 schematically shown in FIG. 1 integrates the melting furnace control system and the detection means DM01 to DM09. Based on this, all necessary calculation processing is performed, and all command signals necessary for controlling the operation of the melting furnace are output to the control system of the melting furnace, and the heat input control described later is performed. Is described below.

図1において溶融炉が運転状態にあるときは、加熱手段21・供給系31・32・排ガス系41・冷却装置61などがすべて稼働していて各制御系統が制御器26の支配下にある。かかる運転状態において、焼却灰の両供給系31・32を介して炉本体11内に導入された焼却主灰や焼却飛灰などの灰は、加熱手段(プラズマトーチ)21からの熱エネルギを受けて溶融状態になり、それが溶融スラグとなって炉本体11内の底部に溜まる。これと同期して排ガス系41は、炉本体11内のガスを排ガス冷却管42で冷却したり排ガス中の煤塵を集塵機43で除去したりしながら排気を行う。冷却装置61は炉本体11をその外部から冷却している。焼却灰の溶融にともない炉本体11内の溶融スラグ量が所定量を超えるようになると、それが溶融スラグの送出系51を介して所定部へ送り出される。   In FIG. 1, when the melting furnace is in an operating state, the heating means 21, the supply systems 31, 32, the exhaust gas system 41, the cooling device 61 and the like are all in operation, and each control system is under the control of the controller 26. In such an operating state, ash such as incineration main ash and incineration fly ash introduced into the furnace main body 11 through both incineration ash supply systems 31 and 32 receives heat energy from the heating means (plasma torch) 21. It becomes a molten state and becomes molten slag and accumulates at the bottom of the furnace body 11. In synchronization with this, the exhaust gas system 41 performs exhaust while cooling the gas in the furnace body 11 with the exhaust gas cooling pipe 42 and removing dust in the exhaust gas with the dust collector 43. The cooling device 61 cools the furnace body 11 from the outside. When the amount of molten slag in the furnace main body 11 exceeds a predetermined amount due to melting of the incinerated ash, it is sent out to a predetermined portion via a molten slag delivery system 51.

本発明では、このようにして行われる焼却灰の溶融を適正に行うために、当該溶融炉に対する入熱及び出熱の熱収支を以下に述べる式に基づき算定し、該溶融炉に対する加熱手段からの入熱を制御するようにするものであり、図2はそのような制御のフローを示すものである。   In the present invention, in order to appropriately perform the melting of the incinerated ash performed in this way, the heat balance of heat input and heat output to the melting furnace is calculated based on the following formula, and from the heating means for the melting furnace FIG. 2 shows the flow of such control.

[入熱に関して]
図示の実施形態においては、溶融炉に対する入熱として、加熱手段21から当該溶融炉に投入される熱量と、焼却灰とともに溶融炉内に供給される可燃性未燃物(炭素)が燃焼することにより発生する熱量として算定する。
(1) 加熱手段21が炉本体11内に投入した単位時間あたりの熱量Q1Aについては、下記演算式に基づき、図1の検出手段DM01で求める。
加熱手段21が電気式の場合
熱量Q1A=(電力kW)=(電圧V)×(電流A)
加熱手段21が燃料式の場合
熱量Q1A=(燃料供給量kl/h)×(単位発熱量kJ)
(2) 炉本体11内に投入された焼却灰中の炭素が炉内で単位時間あたり燃焼したときの熱量Q1Bについては、下記の演算式に基づき、図1の検出手段DM02で求める。
焼却灰中の可燃性未燃物が燃焼したときの熱量Q1B=(排ガス流量m3N/h)×(二酸化炭素濃度)÷(モル定数)×(単位炭素燃焼熱量)
[Regarding heat input]
In the illustrated embodiment, as heat input to the melting furnace, the amount of heat input from the heating means 21 to the melting furnace and combustible unburned material (carbon) supplied into the melting furnace together with incineration ash are combusted. Calculated as the amount of heat generated by
(1) The amount of heat Q1A per unit time input by the heating means 21 into the furnace body 11 is obtained by the detection means DM01 in FIG. 1 based on the following arithmetic expression.
When the heating means 21 is an electric type, the amount of heat Q1A = (power kW) = (voltage V) × (current A)
When the heating means 21 is of the fuel type, the heat quantity Q1A = (fuel supply quantity kl / h) × (unit heat value kJ)
(2) The amount of heat Q1B when the carbon in the incinerated ash charged into the furnace body 11 burns per unit time in the furnace is obtained by the detection means DM02 of FIG. 1 based on the following arithmetic expression.
Calorific value when combustible unburned material in incineration ash burns Q1B = (exhaust gas flow rate m3N / h) x (carbon dioxide concentration) ÷ (mol constant) x (unit carbon calorific value)

[出熱に関して]
溶融炉に対する出熱については、以下の各出熱ファクターに基づき算定する。
(3) 溶融スラグ熱量Q1Dについては、下記の演算式に基づき、図1の検出手段DM03で求める。
溶融スラグ熱量Q1D=(焼却灰総供給量kg/h)×{(焼却主灰供給比率)×(1−焼却主灰揮散率)×(焼却主灰スラグ熱容量定数kJ/kg)+(焼却飛灰供給比率)×(1−焼却飛灰揮散率)×(焼却飛灰スラグ熱容量定数kJ/kg)}÷3600sec
上記における焼却主灰供給比率と焼却飛灰供給比率、焼却主灰スラグ熱容量定数と焼却飛灰スラグ熱容量定数はそれぞれ下記のとおりである
焼却主灰供給比率=(焼却主灰切出量計測値kg/h)÷{(焼却主灰切出量計測値kg/h)+(焼却飛灰切出量計測値kg/h)}
焼却飛灰供給比率=(焼却飛灰切出量計測値kg/h)÷{(焼却主灰切出量計測値kg/h)+(焼却飛灰切出量計測値kg/h)}
焼却主灰スラグ熱容量定数kJ/kg=(焼却主灰単独スラグ比熱kJ/kg・℃)×(想定溶融スラグ温度℃)
焼却飛灰スラグ熱容量定数kJ/kg=(焼却飛灰単独スラグ比熱kJ/kg・℃)×(想定溶融スラグ温度℃)
なお、炉の出口側での溶融スラグ発生量を用いて溶融スラグ熱量Q1Dを算出するときは下記のような演算式になる。
溶融スラグ熱量Q1D=(溶融炉出口スラグ発生量計測値kg/h)×{(焼却主灰供給比率)×(焼却主灰スラグ熱容量定数kJ/kg)+(焼却飛灰供給比率)×(焼却飛灰スラグ熱容量定数kJ/kg)}÷3600sec
(4) 排ガス搬出熱量Q1Fについては、下記の演算式に基づき、図1の検出手段DM05で求める。
排ガス搬出熱量Q1F=(排ガス流量m3N/h)×{(流路中の排ガス温度℃)×(流路中の排ガス温度における排ガス比熱kJ/m3N・℃)−(基準温度℃)×(基準温度における排ガス比熱kJ/m3N・℃)}÷3600sec
上記においては、熱量が基準温度との相対温度で求まるので、基準温度が必要になる。この基準温度については、一例として溶融炉が設置されている場の温度(室温)が適当である。
(5) 溶融炉の冷却熱量Q1Gについては、下記の演算式に基づき、図1の検出手段DM06で求める。
溶融炉の冷却熱量Q1G=(冷媒流量kg/h)×{(冷媒出口温度℃)−(冷媒入口温度℃)}×(冷媒比熱kJ/kg・℃)÷3600sec
(6) 溶融炉の放散熱量と溶融炉付帯装置の放散熱量との合算熱量Q1G’は、下記の演算式に基づき、図1の検出手段DM08で求める。
合算熱量Q1G’=(炉本体11または溶融炉付帯装置の表面温度℃)×(放熱温度係数)×(放熱温度面積)
(7) 炉構成部材の蓄熱量Q1Hは、下記の演算式に基づき、図1の検出手段DM08で求める。
炉構成部材の蓄熱量Q1H=(炉構成部材の一定時間あたりの温度変化量Δ℃/sec)×(炉構成部材重量あたりの比熱kJ/kg・℃)×(炉構成部材の重量kg)
(8)加熱手段21の冷却熱量Q1Eは、下記の演算式に基づき、図1の検出手段DM04で求める。
加熱手段21の冷却熱量Q1E=(冷媒流量kg/h)×{(冷媒出口温度℃)−(冷媒入口温度℃)}×(冷媒比熱kJ/kg・℃)÷3600sec
[Regarding heat output]
The heat output to the melting furnace is calculated based on the following heat output factors.
(3) The molten slag heat quantity Q1D is obtained by the detecting means DM03 in FIG. 1 based on the following arithmetic expression.
Molten slag heat quantity Q1D = (total incineration ash supply kg / h) x {(incineration main ash supply ratio) x (1-incineration main ash volatilization rate) x (incineration main ash slag heat capacity constant kJ / kg) + (incineration flying Ash supply ratio) x (1-incineration fly ash volatilization rate) x (incineration fly ash slag heat capacity constant kJ / kg)} ÷ 3600 sec
Incineration main ash supply ratio and incineration fly ash supply ratio, incineration main ash slag heat capacity constant and incineration fly ash slag heat capacity constant are as follows: Incineration main ash supply ratio = (Measured amount of incineration main ash extraction kg / h) ÷ {(Measured amount of incinerated main ash extraction kg / h) + (Measured amount of incineration fly ash extraction kg / h)}
Incineration fly ash supply ratio = (Measured amount of incinerated fly ash extraction kg / h) ÷ {(Measured amount of incinerated fly ash extraction kg / h) + (Measured value of incinerated fly ash extraction kg / h)}
Incinerated main ash slag heat capacity constant kJ / kg = (incinerated main ash slag specific heat kJ / kg · ° C) x (assumed molten slag temperature ° C)
Incineration fly ash slag heat capacity constant kJ / kg = (incineration fly ash slag specific heat kJ / kg · ° C) x (assumed molten slag temperature ° C)
When calculating the molten slag heat quantity Q1D using the molten slag generation amount on the outlet side of the furnace, the following arithmetic expression is obtained.
Melting slag heat Q1D = (Measured slag generation amount kg / h at melting furnace outlet) x {(incineration main ash slag heat capacity constant kJ / kg) + (incineration fly ash supply ratio) x (incineration Fly ash slag heat capacity constant kJ / kg)} ÷ 3600sec
(4) The exhaust gas carry-out heat quantity Q1F is obtained by the detection means DM05 in FIG. 1 based on the following arithmetic expression.
Exhaust gas discharge heat quantity Q1F = (exhaust gas flow rate m3N / h) x {(exhaust gas temperature in the flow path ° C) x (exhaust gas specific heat kJ / m3N · ° C at the exhaust gas temperature in the flow path)-(reference temperature ° C) x (reference temperature Exhaust gas specific heat at kJ / m3N ・ ℃)} ÷ 3600sec
In the above, since the amount of heat is obtained as a relative temperature with respect to the reference temperature, the reference temperature is required. As the reference temperature, for example, the temperature (room temperature) at the place where the melting furnace is installed is appropriate.
(5) The cooling heat quantity Q1G of the melting furnace is obtained by the detection means DM06 in FIG. 1 based on the following arithmetic expression.
Cooling heat quantity of melting furnace Q1G = (refrigerant flow rate kg / h) × {(refrigerant outlet temperature ° C.) − (Refrigerant inlet temperature ° C.)} × (refrigerant specific heat kJ / kg · ° C.) / 3600 sec.
(6) The total heat quantity Q1G ′ of the heat dissipation amount of the melting furnace and the heat dissipation capacity of the melting furnace accessory is obtained by the detection means DM08 of FIG. 1 based on the following arithmetic expression.
Total heat quantity Q1G ′ = (Surface temperature of furnace body 11 or melting furnace accessory device) 4 × (heat radiation temperature coefficient) × (heat radiation temperature area)
(7) The heat storage amount Q1H of the furnace constituent members is obtained by the detection means DM08 in FIG. 1 based on the following arithmetic expression.
Heat storage amount Q1H of furnace component = (temperature change amount ΔC / sec of furnace component per unit time) x (specific heat kJ / kg · ° C per furnace component weight) x (kg of furnace component weight)
(8) The cooling heat quantity Q1E of the heating means 21 is obtained by the detection means DM04 in FIG. 1 based on the following arithmetic expression.
Cooling heat quantity Q1E of the heating means 21 = (refrigerant flow rate kg / h) × {(refrigerant outlet temperature ° C.) − (Refrigerant inlet temperature ° C.)} × (refrigerant specific heat kJ / kg · ° C.) / 3600 sec.

本発明では、溶融炉の加熱手段の出力制御を上記入熱及び出熱ファクターから補正入熱量求め、これに基づき行うものである。すなわち、
補正入熱量=(溶融スラグ熱量Q1D+排ガス搬出熱量Q1F+溶融炉の冷却熱量Q1G+放熱合算熱量Q1G’+炉構成部材の蓄熱量Q1H+加熱手段冷却熱量Q1E)−(加熱手段出力熱量Q1A+可燃性未燃物燃焼熱量Q1B)
本実施形態においては、上記したすべての入熱及び出熱のファクターに基づき、補正入熱量を算定するようになっているが、必ずしも、すべてのファクターについての算定を行う必要はない。
In the present invention, the output control of the heating means of the melting furnace is performed based on the corrected heat input amount obtained from the heat input and heat output factors. That is,
Corrected heat input amount = (molten slag heat amount Q1D + exhaust gas heat amount Q1F + melting furnace cooling heat amount Q1G + heat radiation combined heat amount Q1G '+ furnace component heat storage amount Q1H + heating means cooling heat amount Q1E)-(heating means output heat amount Q1A + combustible unburned matter Combustion heat Q1B)
In the present embodiment, the corrected heat input amount is calculated based on all the heat input and output heat factors described above, but it is not always necessary to calculate all the factors.

図示の実施形態においては、入熱や出熱として求めた上記各熱量が制御器26に入力されると、ここで必要な演算処理が行われ、補正入熱量が求められる。制御器26は、こうして求めた補正熱量に基づいて加熱手段21の出力を適正に制御して、所要の溶融条件を整備する。このような制御操作は、定常的に行っても構わないが、通常は一定時間や任意時点で行うことで足りる場合もある。   In the illustrated embodiment, when each of the heat amounts obtained as heat input or heat output is input to the controller 26, a necessary calculation process is performed here to obtain a corrected heat input amount. The controller 26 appropriately controls the output of the heating means 21 on the basis of the corrected heat quantity thus obtained, thereby preparing the required melting conditions. Such a control operation may be performed on a regular basis, but it is usually sufficient to perform the control operation at a certain time or at an arbitrary time.

図3は本発明によって得られた熱量、炉内温度、電流値(熱量の出力)設定の結果で、出熱量に応じて入熱量を調整することで、灰の投入量が大きく変わっているにも関わらず、炉内温度は安定しており、良好な溶融状況を維持することができたことを示す。   FIG. 3 shows the results of setting the amount of heat, furnace temperature, and current value (heat amount output) obtained by the present invention. By adjusting the amount of heat input according to the amount of heat output, the amount of ash input has changed greatly. Nevertheless, the furnace temperature was stable, indicating that a good melting condition could be maintained.

本発明では、更に、炉本体11内のガス相温度を、センサS19を備えた図1の検出手段DM04で計測することができるようにしており、その計測値と所定の設定温度値との差から追加的な補正入熱量を導き、上記入熱及び出熱の収支に対して、当該補正入熱量を加味して修正し、これに基づき加熱手段出力を制御することもできるようにしている。すなわち、熱収支補正は、投入焼却灰の投入量の増減に対して即座に熱源の出力を調整する役割を持ち合わせており、短時間の炉内の溶融状況の変化に対応することができるが、熱収支補正だけで長時間の操業を行うと、計量および計算上の誤差が制御周期毎に蓄積されて、妥当な炉内温度が保てない場合があるため、これを補正するためである。
また、本発明では、溶融炉への灰の投入量を変化させて操業している場合と灰の投入量を一定にして操業している場合とで、熱収支補正熱量と炉内温度補正熱量の荷重係数を予め設定されていたパターンにより変化させることで、より操炉安定性を持たせている。
In the present invention, furthermore, the gas phase temperature in the furnace body 11 can be measured by the detection means DM04 of FIG. 1 provided with the sensor S19, and the difference between the measured value and a predetermined set temperature value. Thus, an additional corrected heat input amount is derived, and the heat input and output heat balance is corrected by taking the corrected heat input amount into account, and the heating means output can be controlled based on the corrected heat input amount. In other words, the heat balance correction has a role to immediately adjust the output of the heat source with respect to the increase or decrease of the input amount of incinerated ash, and can respond to the change in the melting state in the furnace for a short time, This is because, if the operation is performed for a long time with only the heat balance correction, errors in measurement and calculation are accumulated every control cycle, and an appropriate furnace temperature may not be maintained.
In the present invention, the heat balance correction calorific value and the in-furnace temperature correction calorific value when operating by changing the amount of ash input to the melting furnace and when operating with a constant amount of ash input By changing the load coefficient in accordance with a preset pattern, the operation stability is further improved.

焼却灰溶融を一定の定常状態で行う場合には、上述した演算式に基づき補正入熱量を求め、加熱手段出力を制御して、出熱量に見合った入熱量を生じるようにする。
これに対して、例えば、焼却灰の溶融炉への供給を低くする昼間から、供給を大きくする夜間に操業条件を変えるときには、夜間における焼却灰供給量として予め設定されている設定値を、前記の演算式で用いられる実際に測定された焼却灰供給量の値に代えて演算し、前述と同様の制御を行う。
When incineration ash melting is performed in a constant steady state, a corrected heat input amount is obtained based on the above-described arithmetic expression, and the heating means output is controlled to generate a heat input amount commensurate with the heat output amount.
On the other hand, for example, when changing the operating conditions from the daytime when the supply of incineration ash to the melting furnace is lowered to the night when the supply is increased, the set value set in advance as the incineration ash supply amount at night, The calculation is performed in place of the actually measured value of the incinerated ash supply amount used in the above equation, and the same control as described above is performed.

図4は、そのような演算に基づく制御を行う場合のフローチャートを示している。
すなわち、この制御では、まず、一日の時間に応じ、予め設定していた灰供給量設定値を読み出し、該供給量設定値が当該溶融炉の溶融処理能力以上か否か(限界処理能力以下か否か)を判定する。
次に、該読み出された供給量設定値に対応する必要消費電力を算出する。
該必要消費電量が達成可能であるか否か(熱源の限界出力以下か否か)を、現時点における加熱手段の発生熱量および当該焼却灰溶融設備の特性に基づき判定する。
これらの判定においてNo(すなわち、処理能力以上若しくは達成不可能)とされた場合は、供給量設定値から所定パーセント減じた値を供給量設定値として、同様の判定処理をする。
その読み出された設定値の供給量が達成可能すなわちYesであるときは、これを次期設定時点の供給量設定値として決定し、
決定された供給量設定値を、前記溶融スラグ熱量の算定式における供給量設定値として、
前記算定式から補正熱量を計算し、
計算された補正熱量に基づき、熱源の出力を制御する。
FIG. 4 shows a flowchart in the case of performing control based on such calculation.
That is, in this control, first, the preset ash supply amount set value is read according to the time of the day, and whether or not the supply amount set value is equal to or higher than the melting processing capacity of the melting furnace (below the limit processing capacity). Whether or not).
Next, the required power consumption corresponding to the read supply amount setting value is calculated.
Whether the required power consumption is achievable (whether it is below the limit output of the heat source) is determined based on the amount of heat generated by the heating means at present and the characteristics of the incineration ash melting facility.
If the determination is No (that is, more than the processing capacity or cannot be achieved), the same determination process is performed using the value obtained by subtracting a predetermined percentage from the supply amount set value as the supply amount set value.
When the supply amount of the read set value is achievable, that is, Yes, this is determined as the supply amount set value at the next setting time point,
The determined supply amount set value as the supply amount set value in the calculation formula of the molten slag heat amount,
Calculate the corrected calorie from the above formula,
Based on the calculated correction heat quantity, the output of the heat source is controlled.

本発明方法および本発明装置の一実施形態を略示した説明図である。It is explanatory drawing which showed schematically one Embodiment of this invention method and this invention apparatus. 溶融炉に対する加熱手段からの入熱を制御するためのデータ処理のフロー図である。It is a flowchart of the data processing for controlling the heat input from the heating means with respect to a melting furnace. 出熱量に応じた入熱量の調整、灰投入量及び炉内温度の関係を示すグラフである。It is a graph which shows the relationship of adjustment of the heat input according to the amount of heat output, the amount of ash inputs, and the temperature in a furnace. 灰投入量の変更及びそれに伴う投入熱量の制御のフローチャートである。It is a flowchart of the change of ash input amount and control of the input heat amount accompanying it.

符号の説明Explanation of symbols

11 炉本体
12 炉本体の内部空間
13 焼却灰の供給口
14 排ガス口
15 溶融スラグの流出口
21 加熱手段
31 焼却灰の供給系
32 焼却灰の供給系
41 排ガス系
51 溶融スラグの送出系
61 冷却装置
71 制御盤
DM01 加熱手段出力検出手段
DM02 排ガス中の可燃性未燃物燃焼熱量検出手段
DM03 溶融スラグ熱量検出手段
DM04 加熱手段冷却熱量検出手段
DM05 排ガス搬出熱量検出手段
DM06 炉本体冷却熱量検出手段
DM07 溶融炉放散熱量と溶融炉付帯装置放散熱量の検出手段
DM08 炉構成部材蓄熱量検出手段
DM09 炉内温度補正熱量検出手段

DESCRIPTION OF SYMBOLS 11 Furnace main body 12 Internal space of furnace main body 13 Incineration ash supply port 14 Exhaust gas outlet 15 Molten slag outlet 21 Heating means 31 Incineration ash supply system 32 Incineration ash supply system 41 Exhaust gas system 51 Molten slag delivery system 61 Cooling Device 71 Control panel DM01 Heating means output detecting means DM02 Combustible unburned substance combustion heat amount detecting means DM03 Molten slag heat amount detecting means DM04 Heating means Cooling heat amount detecting means DM05 Exhaust gas carrying heat amount detecting means DM06 Furnace body cooling heat amount detecting means DM07 Detection means for melting furnace radiated heat amount and melting furnace auxiliary device radiated heat quantity DM08 Furnace component heat storage amount detecting means DM09 Furnace temperature correction heat quantity detecting means

Claims (15)

焼却灰を加熱溶融してスラグ化する溶融炉の加熱手段の出力を制御するための方法において、
溶融炉に対する入熱及び出熱の熱収支を算定し、さらに出熱に等しくなるように入熱を補正する熱量を算定し、該補正する補正熱量に基づいて当該溶融炉の加熱手段の出力を調整することを特徴とする溶融炉の加熱手段出力制御方法。
In the method for controlling the output of the heating means of the melting furnace for melting slag by heating and melting incineration ash,
Calculate the heat balance of heat input and output heat to the melting furnace, calculate the amount of heat to correct the heat input to be equal to the heat output, and calculate the output of the heating means of the melting furnace based on the corrected heat amount to be corrected A heating means output control method of a melting furnace, characterized by adjusting.
焼却灰を加熱溶融しスラグとするために必要な溶融スラグ熱量、排ガス搬出熱量、溶融炉の冷却熱量、溶融炉からの放散熱量、溶融炉内部の耐火材に蓄積される熱量、熱源の冷却熱量等の出熱ファクターのうち、所要の出熱ファクターに基づき出熱を算定することを特徴とする請求項1に記載の溶融炉の加熱手段出力制御方法。   Melting slag heat required to heat and melt incinerated ash into slag, heat exhausted from the exhaust gas, cooling heat from the melting furnace, heat dissipated from the melting furnace, heat accumulated in the refractory inside the melting furnace, cooling heat from the heat source The heating means output control method for a melting furnace according to claim 1, wherein the heat output is calculated based on a required heat output factor among the heat output factors such as. 上記加熱手段から溶融炉に出力される熱量、及び、溶融炉内に供給された焼却灰に含まれる未燃の可燃物から生じる熱量を計測し、該計測により得られた計測値に基づき入熱を算定するようにしたことを特徴とする請求項2に記載の溶融炉の加熱手段出力制御方法。   The amount of heat output from the heating means to the melting furnace and the amount of heat generated from unburned combustibles contained in the incinerated ash supplied into the melting furnace are measured, and the heat input is based on the measured value obtained by the measurement. The heating means output control method for a melting furnace according to claim 2, wherein: 上記溶融スラグ熱量を、
溶融スラグ熱量=焼却灰供給量×(1−焼却灰揮散率)×溶融スラグ熱容量定数
上記排ガス搬出熱量を、
排ガス搬出熱量=(排ガス流量)×{(流路中の排ガス温度)×(流路中の排ガス温度における排ガス比熱)−(基準温度)×(基準温度における排ガス比熱)}
上記溶融炉の冷却熱量を、
溶融炉の冷却熱量=(冷媒流量)×{(冷媒出口温度)−(冷媒出口温度)}×(冷媒比熱)
上記溶融炉から放散する熱量を、
溶融炉から放散する熱量=(炉本体または溶融炉付帯装置の表面温度)×(放熱温度係数)×(放熱温度面積)
上記溶融炉内部の耐火材に蓄積される熱量を、
溶融炉内部の耐火材に蓄積される熱量=(炉構成部材の一定時間の温度変化量)×(炉構成部材重量あたりの比熱)×(炉構成部材の重量)
上記熱源の冷却熱量を、
熱源の冷却熱量=(冷媒流量)×{(冷媒出口温度)−(冷媒出口温度)}×(冷媒比熱)
として算定するようにしたことを特徴とする請求項2若しくは3に記載の溶融炉の加熱手段出力制御方法
The molten slag heat quantity is
Molten slag heat quantity = incineration ash supply quantity x (1-incineration ash volatilization rate) x molten slag heat capacity constant
Exhaust gas discharge heat amount = (exhaust gas flow rate) × {(exhaust gas temperature in flow channel) × (exhaust gas specific heat at exhaust gas temperature in flow channel) − (reference temperature) × (exhaust gas specific heat at reference temperature)}
The cooling heat quantity of the melting furnace is
Cooling heat amount of melting furnace = (refrigerant flow rate) × {(refrigerant outlet temperature) − (refrigerant outlet temperature)} × (refrigerant specific heat)
The amount of heat dissipated from the melting furnace
Amount of heat dissipated from the melting furnace = (surface temperature of furnace body or melting furnace accessory) 4 x (heat dissipation temperature coefficient) x (heat dissipation temperature area)
The amount of heat accumulated in the refractory material inside the melting furnace,
Amount of heat accumulated in the refractory material inside the melting furnace = (temperature change amount of the furnace component for a certain time) × (specific heat per furnace component weight) × (weight of the furnace component)
Cooling heat quantity of the heat source
Heat source cooling heat amount = (refrigerant flow rate) × {(refrigerant outlet temperature) − (refrigerant outlet temperature)} × (refrigerant specific heat)
The heating means output control method for a melting furnace according to claim 2 or 3, characterized in that it is calculated as
焼却灰が焼却主灰及び焼却飛灰からなるものとし、溶融スラグ熱量を、次式から求めることを特徴とする請求項4に記載の溶融炉の加熱手段出力制御方法。
溶融スラグ熱量=焼却灰供給量×{焼却主灰供給比率×(1−焼却主灰揮散率)×焼却主灰スラグ熱容量定数+焼却飛灰供給比率×(1−焼却飛灰揮散率)×焼却飛灰スラグ熱容量定数}
5. The heating means output control method for a melting furnace according to claim 4, wherein the incineration ash is composed of incineration main ash and incineration fly ash, and the amount of heat of molten slag is obtained from the following equation.
Molten slag heat quantity = incineration ash supply quantity x {incineration main ash supply ratio x (1-incineration main ash volatilization ratio) x incineration main ash slag heat capacity constant + incineration fly ash supply ratio x (1- incineration fly ash volatilization ratio) x incineration Fly ash slag heat capacity constant}
溶融炉から排出される溶融スラグ量を計測して、該溶融スラグ量から溶融スラグ熱量を算定する請求項2若しくは3に記載の溶融炉の加熱手段出力制御方法。   The heating means output control method of a melting furnace according to claim 2 or 3, wherein the amount of molten slag discharged from the melting furnace is measured and the amount of heat of molten slag is calculated from the amount of molten slag. 炉内のガス相温度の計測値と予め設定した同ガス相温度の設定値との差を計測し、それを上記入熱及び出熱の熱収支に加味して、当該溶融炉の加熱手段の出力を制御することを特徴とする請求項1乃至8のいずれかに記載の溶融炉の加熱手段出力制御方法。   The difference between the measured value of the gas phase temperature in the furnace and the preset value of the same gas phase temperature is measured, and the difference is added to the heat balance of the heat input and output heat to determine the heating means of the melting furnace. 9. The heating means output control method for a melting furnace according to claim 1, wherein the output is controlled. 炉内のガス相温度の計測値と予め設定した同ガス相温度の設定値との差を計測し、該計測値から炉内温度を補正するための熱量を算定し、該炉内温度を補正する熱量と上記入熱と出熱の熱収支を補正するための熱量に、予め設定された溶融炉の運転状況に合わせて変化する係数をそれぞれ掛けて、それらを足し合わせた熱量を当該溶融炉の加熱手段の出力を制御するための補正熱量とする請求項7に記載の溶融炉の過熱手段の出力制御方法。   The difference between the measured value of the gas phase temperature in the furnace and the preset value of the same gas phase temperature is measured, the amount of heat for correcting the furnace temperature is calculated from the measured value, and the furnace temperature is corrected. The heat amount for correcting the heat balance of the heat input and the heat input and output heat is multiplied by a coefficient that changes in accordance with the preset operating condition of the melting furnace, and the heat amount obtained by adding them is added to the melting furnace. The method for controlling the output of the superheating means of the melting furnace according to claim 7, wherein the correction heat quantity is used for controlling the output of the heating means. 上記溶融炉に灰を定量供給する灰定量供給装置について、時間との対応であらかじめ記憶手段に記憶されている供給量設定値のうちから次期設定時点のものを読み出すためのステップと、
該読み出された供給量設定値が現在の供給量設定値と相違しているとき、その読み出された設定値の供給量が達成可能であるか否かを現時点における加熱手段の発生熱量および当該焼却灰溶融設備の特性に基づき判定するためのステップと、
その読み出された設定値の供給量が達成可能でないとき、あらかじめ定められた達成可能な上限設定値を次期設定時点の供給量設定値と決定するためのステップと、
その読み出された設定値の供給量が達成可能であるとき、これを次期設定時点の供給量設定値として決定するステップと、
を有し、
上記溶融スラグ熱量を算定するのに用いる上記供給量設定値として、上記決定された次期設定時点の供給量設定値を用いる
ことを特徴とする請求項4若しくは5に記載の溶融炉の加熱手段出力制御方法。
For the ash quantitative supply device for supplying ash quantitatively to the melting furnace, a step for reading out the next set point of time from among the supply amount set values stored in the storage means in advance in correspondence with time,
When the read supply amount setting value is different from the current supply amount setting value, whether or not the supply amount of the read set value is achievable is determined as follows: A step for determining based on the characteristics of the incineration ash melting facility;
When the supply amount of the read set value is not achievable, a step for determining a predetermined achievable upper limit set value as a supply amount set value at the next set point;
When the supply amount of the read set value is achievable, determining this as the supply amount set value at the next set point;
Have
The heating means output of the melting furnace according to claim 4 or 5, wherein the determined supply amount set value at the next set point is used as the supply amount set value used for calculating the melting slag heat amount. Control method.
焼却灰を加熱溶融してスラグ化する溶融炉の加熱手段の出力を制御するための装置において、
上記加熱手段によって溶融炉に供給される熱量を含む、当該溶融炉に対する入熱を算定するための手段と、
スラグ化されて当該溶融炉の外部に排出される熱量などの該溶融炉に対する出熱を算定するための手段と
上記入熱及び出熱の熱収支を算定するための手段と、
算定された熱収支に基づき、当該溶融炉の加熱手段の出力を制御する手段と
を有することを特徴とする溶融炉の加熱手段出力制御装置。
In the apparatus for controlling the output of the heating means of the melting furnace that heats and melts the incinerated ash into slag,
Means for calculating the heat input to the melting furnace, including the amount of heat supplied to the melting furnace by the heating means;
Means for calculating the heat output to the melting furnace, such as the amount of heat that is slagted and discharged to the outside of the melting furnace, and means for calculating the heat balance of the heat input and output heat;
A heating means output control apparatus for a melting furnace, comprising: a means for controlling the output of the heating means for the melting furnace based on the calculated heat balance.
上記出熱を算定するための手段は、焼却灰を加熱溶融しスラグとするために必要な溶融スラグ熱量、排ガス搬出熱量、溶融炉の冷却熱量、溶融炉からの放散熱量、溶融炉内部の耐火材に蓄積される熱量、熱源の冷却熱量等の出熱ファクターのうち、いずれかの出熱ファクターに基づき出熱を算定するようにしたことを特徴とする請求項10に記載の溶融炉の加熱手段出力制御装置。   The means for calculating the heat output is as follows. The heating of a melting furnace according to claim 10, wherein the heat output is calculated based on any one of the heat output factors such as the amount of heat accumulated in the material and the heat of cooling of the heat source. Means output control device. 上記入熱を算定するための手段は、上記加熱手段から溶融炉に出力される熱量、及び、溶融炉内に供給された焼却灰に含まれる未燃の可燃物から生じる熱量に基づき入熱を算定するようにしたことを特徴とする請求項10若しくは11のいずれかに記載の溶融炉の加熱手段出力制御装置。   The means for calculating the heat input is based on the amount of heat output from the heating means to the melting furnace and the amount of heat generated from unburned combustibles contained in the incinerated ash supplied into the melting furnace. 12. The heating means output control device for a melting furnace according to claim 10, wherein the heating means output control device is calculated. 炉内のガス相温度の計測値と予め設定した同ガス相温度の設定値との差を計測するための手段を備え、
上記熱収支に基づき当該溶融炉の加熱手段の出力を制御する手段該手段が、上記ガス相温度の計測値と設定値の差を上記入熱及び出熱の熱収支に加味して、当該溶融炉の加熱手段の出力を制御するようにしたことを特徴とする請求項10乃至12のいずれかに記載の溶融炉の加熱手段出力制御装置。
Means for measuring the difference between the measured value of the gas phase temperature in the furnace and the preset value of the same gas phase temperature;
Means for controlling the output of the heating means of the melting furnace based on the heat balance, the means taking into account the difference between the measured value of the gas phase temperature and the set value in the heat balance of the heat input and output heat, 13. The heating means output control device for a melting furnace according to claim 10, wherein the output of the heating means of the furnace is controlled.
炉内のガス相温度の計測値と予め設定した同ガス相温度の設定値との差を計測する手段を備え、上記熱収支に基づき当該溶融炉の加熱手段の出力を制御する手段が、該炉内温度を補正する熱量と上記入熱と出熱の熱収支を補正するための熱量に、予め設定された溶融炉の運転状況に合わせて変化する係数をそれぞれ掛けて、それらを足し合わせた熱量に基づいて、当該溶融炉の加熱手段の出力を制御することを特徴とする請求項13に記載の溶融炉の加熱手段出力制御装置。   Means for measuring a difference between a measured value of the gas phase temperature in the furnace and a preset value of the same gas phase temperature, and means for controlling the output of the heating means of the melting furnace based on the heat balance, The heat amount for correcting the furnace temperature and the heat amount for correcting the heat balance of the above heat input and output heat were respectively multiplied by coefficients that change in accordance with the preset operating conditions of the melting furnace. 14. The heating means output control device for a melting furnace according to claim 13, wherein the output of the heating means of the melting furnace is controlled based on the amount of heat. 請求項10乃至14のいずれかに記載の加熱手段出力制御装置を備えた焼却灰の溶融施設。
An incineration ash melting facility comprising the heating means output control device according to any one of claims 10 to 14.
JP2004156624A 2004-05-26 2004-05-26 Heating means output control method for melting furnace Expired - Fee Related JP4249086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004156624A JP4249086B2 (en) 2004-05-26 2004-05-26 Heating means output control method for melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156624A JP4249086B2 (en) 2004-05-26 2004-05-26 Heating means output control method for melting furnace

Publications (2)

Publication Number Publication Date
JP2005337579A true JP2005337579A (en) 2005-12-08
JP4249086B2 JP4249086B2 (en) 2009-04-02

Family

ID=35491346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156624A Expired - Fee Related JP4249086B2 (en) 2004-05-26 2004-05-26 Heating means output control method for melting furnace

Country Status (1)

Country Link
JP (1) JP4249086B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096067A (en) * 2006-10-13 2008-04-24 Takuma Co Ltd Control method for plasma melting furnace
KR101257421B1 (en) * 2009-08-14 2013-04-23 주식회사 포스코 Deivce and method for measuring quantity of heat for sintering furnace
CN113790817A (en) * 2021-09-10 2021-12-14 山西格盟中美清洁能源研发中心有限公司 Soft measurement method for fly ash melting temperature of plasma fly ash melting furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096067A (en) * 2006-10-13 2008-04-24 Takuma Co Ltd Control method for plasma melting furnace
KR101257421B1 (en) * 2009-08-14 2013-04-23 주식회사 포스코 Deivce and method for measuring quantity of heat for sintering furnace
CN113790817A (en) * 2021-09-10 2021-12-14 山西格盟中美清洁能源研发中心有限公司 Soft measurement method for fly ash melting temperature of plasma fly ash melting furnace
CN113790817B (en) * 2021-09-10 2023-07-21 山西格盟中美清洁能源研发中心有限公司 Soft measurement method for melting temperature of fly ash of plasma fly ash melting furnace

Also Published As

Publication number Publication date
JP4249086B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP3284606B2 (en) Ash melting furnace
RU2507724C2 (en) Control method of melting process in electric-arc furnace, and signal processing device, programme code and data carrier for implementation of that method
JP4024833B1 (en) Plasma ash melting furnace control method and plasma ash melting furnace
JP4249086B2 (en) Heating means output control method for melting furnace
JP3746921B2 (en) Operation method of electric melting furnace
JP5007094B2 (en) Control method of plasma melting furnace
JP3722674B2 (en) Method and apparatus for lowering melting furnace
JP2006242411A (en) Control method and control device of melting furnace
JP3771800B2 (en) Operating method of plasma ash melting furnace
JP4245600B2 (en) Operating method of plasma ash melting furnace
JP2008309461A (en) Control method of plasma type ash melting furnace and plasma type ash melting furnace
JP3529160B2 (en) Control method of electric melting furnace
JP3986519B2 (en) Electric ash melting furnace and operation method thereof
JP2001289427A (en) Plasma heating type melting furnace, and its operation method
JP4917950B2 (en) Plant operation control method by omnidirectional monitoring
JP2004212005A (en) Heat amount monitoring device in arc melting facility
JP3534695B2 (en) Operating method of plasma ash melting furnace
JP3198593B2 (en) Power control method for ash melting furnace
JP3621805B2 (en) Combustion control method in fluidized bed incinerator
JP2002122317A (en) Combustion control system of refuse incinerator
JP2004353944A (en) Combustion control method in refuse disposal facility and refuse disposal facility
JP3717229B2 (en) Waste combustion equipment
JP2617830B2 (en) Control method of combustion air volume in ash melting furnace
JP2004177080A (en) Dc electric resistance type melting furnace and its operation method
JP2006097914A (en) Ash melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4249086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees