JP3986519B2 - Electric ash melting furnace and operation method thereof - Google Patents

Electric ash melting furnace and operation method thereof Download PDF

Info

Publication number
JP3986519B2
JP3986519B2 JP2004298038A JP2004298038A JP3986519B2 JP 3986519 B2 JP3986519 B2 JP 3986519B2 JP 2004298038 A JP2004298038 A JP 2004298038A JP 2004298038 A JP2004298038 A JP 2004298038A JP 3986519 B2 JP3986519 B2 JP 3986519B2
Authority
JP
Japan
Prior art keywords
ash
resistance value
melting furnace
slag
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004298038A
Other languages
Japanese (ja)
Other versions
JP2006112667A (en
Inventor
正孝 安部
野間  彰
敬太 井上
佳正 川見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004298038A priority Critical patent/JP3986519B2/en
Publication of JP2006112667A publication Critical patent/JP2006112667A/en
Application granted granted Critical
Publication of JP3986519B2 publication Critical patent/JP3986519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Discharge Heating (AREA)

Description

本発明は、ごみ等の焼却灰を溶融処理してスラグ化した焼却灰を、資源化若しくは減量化する電気式の灰溶融炉において、灰炉本体を焼却灰量に対応させて運転することができる電気式灰溶融炉の運転方法及び電気式灰溶融炉に関する。   The present invention is an electric ash melting furnace for recycling or reducing the amount of incineration ash obtained by melting slag by incineration ash such as garbage, and operating the ash furnace main body according to the amount of incineration ash. The present invention relates to an electric ash melting furnace operating method and an electric ash melting furnace.

灰溶融炉は、ごみ焼却灰の有効利用を図るためのものであり、灰溶融炉により溶融した焼却灰は、低沸点の揮散物や、金属類及びその他成分のスラグに分け、無害化するとともに、そのリサイクルを図っている。こうした焼却灰の溶融炉のニーズが増加してきている。これらの灰溶融炉には、焼却灰の溶融のために重油等を燃料にするバーナ式灰溶融炉や、電気抵抗式灰溶融炉及びプラズマ式灰溶融炉等のように電気を熱源として灰を溶融するものが知られている。   The ash melting furnace is intended for effective use of refuse incineration ash. The incineration ash melted by the ash melting furnace is divided into low-boiling volatilized materials and slags of metals and other components to make them harmless. , We are trying to recycle it. The need for incinerator ash melting furnaces is increasing. In these ash melting furnaces, ash is produced using electricity as a heat source, such as burner ash melting furnaces that use heavy oil as fuel to melt incinerated ash, electric resistance ash melting furnaces, and plasma ash melting furnaces. Those that melt are known.

図13は従来のプラズマアーク式灰溶融炉の概略図である。図13に示すように、灰溶融炉1は内壁11に囲まれた炉室6を設け、内壁11は耐熱レンガ等の耐熱材により形成されている。また、灰溶融炉1には、炉室6側に配設される主電極4、炉室6の炉底壁5に配設される炉底電極7及び直流電源8等を備えたプラズマ装置が設けられている。主電極4は、溶融炉本体2の天井壁3を貫通して垂下されて配設されるとともに、昇降装置15に支持されることにより炉室6内を上下動できるように構成されている。主電極4は、金属または黒鉛製であり、内部にプラズマ用ガスを発生させる通路を形成した円筒形状のものを用いている。主電極4の下端部には、その先端と対向する炉底壁5に炉底電極7を設置し、これらの主電極4及び炉底電極7間に、プラズマ発生用の直流電源8を接続している。直流電源8は、炉底電極7側に+を接続し、主電極4側に−を接続している。   FIG. 13 is a schematic view of a conventional plasma arc ash melting furnace. As shown in FIG. 13, the ash melting furnace 1 is provided with a furnace chamber 6 surrounded by an inner wall 11, and the inner wall 11 is formed of a heat-resistant material such as a heat-resistant brick. Further, the ash melting furnace 1 includes a plasma apparatus including a main electrode 4 disposed on the furnace chamber 6 side, a furnace bottom electrode 7 disposed on the furnace bottom wall 5 of the furnace chamber 6, a DC power source 8, and the like. Is provided. The main electrode 4 is arranged so as to hang down through the ceiling wall 3 of the melting furnace main body 2 and is configured to be able to move up and down in the furnace chamber 6 by being supported by the lifting device 15. The main electrode 4 is made of metal or graphite, and has a cylindrical shape in which a passage for generating a plasma gas is formed. At the lower end of the main electrode 4, a furnace bottom electrode 7 is installed on the furnace bottom wall 5 facing the tip, and a DC power source 8 for plasma generation is connected between the main electrode 4 and the furnace bottom electrode 7. ing. The DC power source 8 is connected to + on the furnace bottom electrode 7 side and connected to-on the main electrode 4 side.

溶融炉本体2の壁部には覗き窓12が設けられ、覗き窓12の近傍には、可視カメラ又は赤外線カメラ等の監視カメラ13が配設され、内壁11には該内壁11の高さ位置を計測するための目盛りが表示されている。監視カメラ13は目盛りを視ることにより溶融スラグ23の液面高さを計測するようにしている(特許文献1)。   A viewing window 12 is provided on the wall portion of the melting furnace body 2, and a monitoring camera 13 such as a visible camera or an infrared camera is disposed in the vicinity of the viewing window 12, and the inner wall 11 is at a height position of the inner wall 11. The scale for measuring is displayed. The monitoring camera 13 measures the liquid level height of the molten slag 23 by looking at the scale (Patent Document 1).

特開2002−81634号公報JP 2002-81634 A

しかしながら、特許文献1に開示するような電気式灰溶融炉においては、赤外線カメラ等の監視カメラ13のカメラ画像を画像処理することにより、アーク長さ(以下、アーク長)を求め、アーク長が所定範囲内になるように電極位置を制御するようにしていたが、灰溶融炉1の炉室6内は付着物が着き易くカメラ画像の視野が遮られてしまい、この結果長時間安定してアーク長の計測ができない、という問題がある。   However, in an electric ash melting furnace as disclosed in Patent Document 1, an arc length (hereinafter referred to as an arc length) is obtained by image processing of a camera image of a monitoring camera 13 such as an infrared camera, and the arc length is calculated as follows. Although the electrode position was controlled so as to be within a predetermined range, the deposits were easily deposited in the furnace chamber 6 of the ash melting furnace 1 and the field of view of the camera image was obstructed. There is a problem that the arc length cannot be measured.

このため、監視カメラ13での計測が不能となった場合に、例えば主電極4の位置を固定として灰溶融炉を運転するような場合には、主電極4の先端部分から消耗してアーク長が変化(徐々にアーク長が長くなる)するのに伴い、スラグ溶融に必要なジュール発熱が不足する。このため、適正なスラグ溶融状態を維持すべく、過大な電流を供給することで対応する必要があるが、この結果運転効率が低下する、という問題がある。   For this reason, when measurement with the monitoring camera 13 becomes impossible, for example, when the ash melting furnace is operated with the position of the main electrode 4 fixed, the arc length is consumed from the tip of the main electrode 4. Changes (the arc length gradually increases), the Joule heat generation required for slag melting becomes insufficient. For this reason, in order to maintain an appropriate slag melting state, it is necessary to respond by supplying an excessive current, but as a result, there is a problem that the operation efficiency is lowered.

また、溶融炉内のスラグ温度を計測する場合においては、例えば熱電対温度計や放射温度計等により計測を行っていたが、熱電対温度計では熱電対自身の溶損や付着物の付着により、また放射温度計では計測孔への付着物の付着などにより長時間安定的にスラグ温度を計測できない、という問題がある。   In addition, when measuring the slag temperature in the melting furnace, for example, a thermocouple thermometer or a radiation thermometer is used. In addition, the radiation thermometer has a problem that the slag temperature cannot be measured stably for a long time due to adhesion of deposits to the measurement hole.

本発明は、前記問題に鑑み、アーク長やスラグ温度の計測が困難な場合でも、電気式灰溶融炉の安定した連続運転が可能となる電気式灰溶融炉の運転方法及び電気式灰溶融炉を提供することを課題とする。   In view of the above problems, the present invention provides an operating method of an electric ash melting furnace and an electric ash melting furnace that enable stable continuous operation of the electric ash melting furnace even when it is difficult to measure the arc length and slag temperature. It is an issue to provide.

上述した課題を解決するための本発明の第1の発明は、焼却灰が投入される溶融炉本体と、溶融炉本体の炉室側に配設される一対の電極と、この電極間に電圧を印加する直流電源とを備え、ジュール発熱により焼却灰を加熱してスラグ化する電気式灰溶融装置の運転方法において、予め、溶融炉本体内に投入する焼却灰の投入量に応じた電極間における全抵抗値を求める工程と、溶融炉本体内に焼却灰を投入し、焼却灰の溶融が安定状態となった時点を計測開始点とし、この計測開始点における電極間の全抵抗値を、前記予め求めた全抵抗値から推定すると共に、溶融炉に応じた時間当りの灰投入量における電力設定値と、前記全抵抗値とから電圧設定値を求める工程と、溶融炉本体内に焼却灰の投入を開始すると共に、該焼却灰の投入量の増加に応じて電極間の電圧を計測する工程と、焼却灰の投入により変動した電極間に印加する電圧から電極位置を調整する工程とを含むことを特徴とする電気式灰溶融炉の運転方法にある。 A first invention of the present invention for solving the above-described problem is a melting furnace body into which incinerated ash is charged, a pair of electrodes disposed on the furnace chamber side of the melting furnace body, and a voltage between the electrodes. In the operation method of the electric ash melting apparatus that heats the incineration ash by Joule heat generation and slags with the direct current power source for applying an electric current between the electrodes according to the input amount of the incineration ash charged into the melting furnace body The total resistance value between the electrodes at the measurement start point, the process of obtaining the total resistance value at the point of time, and when the incineration ash is put into the melting furnace body, and the melting point of the incineration ash becomes a stable state, Estimating from the total resistance value obtained in advance, a step of obtaining a voltage setting value from the power setting value in the amount of ash input per hour according to the melting furnace, and the total resistance value, and incineration ash in the melting furnace body Of the incinerated ash A method for operating an electric ash melting furnace, comprising: a step of measuring a voltage between electrodes in response to the heating, and a step of adjusting an electrode position from a voltage applied between the electrodes that has fluctuated due to injection of incinerated ash It is in.

の発明は、第の発明において、全抵抗値がスラグ抵抗値と空間抵抗値の総和であることを特徴とする電気式灰溶融炉の運転方法にある。 The second invention is the operation method of the electric ash melting furnace according to the first invention, wherein the total resistance value is the sum of the slag resistance value and the space resistance value.

の発明は、第の発明において、焼却灰の投入量に応じて、スラグ温度を計測し、スラグ抵抗値を演算することを特徴とする電気式灰溶融炉の運転方法にある。 According to a third aspect of the invention, there is provided an operating method of an electric ash melting furnace according to the first aspect of the invention, wherein the slag temperature is measured and the slag resistance value is calculated according to the input amount of the incinerated ash.

の発明は、焼却灰が投入される溶融炉本体と、溶融炉本体の炉室側に配設される一対の電極と、この電極間に電圧を印加する直流電源とを備え、ジュール発熱により焼却灰を加熱してスラグ化する電気式灰溶融装置の運転方法において、予め、溶融炉本体内に投入する焼却灰の投入量に応じた電極間におけるスラグ抵抗値を求める工程と、電極の位置を調整する工程と、現時点での焼却灰の投入量に応じたスラグ抵抗設定値と、演算により求めたスラグ抵抗値を比較し、その偏差から電力又は電流のいずれかを制御する工程とを含むことを特徴とする電気式灰溶融炉の運転方法にある。 The fourth invention comprises a melting furnace body into which incinerated ash is charged, a pair of electrodes disposed on the furnace chamber side of the melting furnace body, and a DC power source for applying a voltage between the electrodes, and generates Joule heat In the operation method of the electric ash melting apparatus that heats the incinerated ash by slag to obtain a slag resistance value between the electrodes according to the amount of incinerated ash charged into the melting furnace body in advance, and adjusting the position, and slag resistance set value corresponding to the input amount of ash at the present time, comparing the slag resistance value obtained by the arithmetic, and controlling either the power or current from the deviation It is in the operating method of the electric ash melting furnace characterized by including.

の発明は、焼却灰が投入される溶融炉本体と、溶融炉本体の炉室側に配設される一対の電極と、この電極間に電圧を印加する直流電源とを備え、ジュール発熱により焼却灰を加熱してスラグ化する電気式灰溶融装置において、電極の位置を調整する電極位置の維持装置と、焼却灰の投入量に応じたスラグ抵抗値と、演算により求めたスラグ抵抗値を比較し、その偏差から電力又は電流のいずれかを制御する制御装置とを具備することを特徴とする電気式灰溶融炉にある。 A fifth invention comprises a melting furnace body into which incinerated ash is charged, a pair of electrodes disposed on the furnace chamber side of the melting furnace body, and a DC power source for applying a voltage between the electrodes, and generates Joule heat In the electric ash melting device that heats the incineration ash by slag, the electrode position maintaining device to adjust the electrode position, the slag resistance value according to the amount of incineration ash input, and the slag resistance value obtained by calculation And an electric ash melting furnace comprising a control device that controls either electric power or current from the deviation.

の発明は、第の発明において、前記電極位置の維持装置が監視カメラ又は炉室内温度計のいずれかであることを特徴とする電気式灰溶融炉にある。 A sixth invention is the electric ash melting furnace according to the fifth invention, wherein the electrode position maintaining device is either a monitoring camera or a furnace thermometer.

の発明は、第の発明において、焼却灰の投入量に応じたスラグ抵抗値と、前記演算により求めたスラグ抵抗値を比較し、その偏差から電力又は電流のいずれかを制御する制御装置とを具備することを特徴とする電気式灰溶融炉にある。
A seventh invention is the control according to the fifth invention, wherein the slag resistance value according to the input amount of the incinerated ash is compared with the slag resistance value obtained by the calculation, and either power or current is controlled from the deviation. And an electric ash melting furnace.

本発明によれば、従来のように監視カメラ等により内部を監視することで電極の位置調整する必要がなく、事前に求めた電極間の抵抗値を元にし、焼却灰投入量に応じて電極が消耗するのにつれた電極の位置調整が可能となる。これにより、常に適切な電力供給をすることができ、過大な電流を供給することで溶融状態を維持するようなことが解消される。   According to the present invention, it is not necessary to adjust the position of the electrodes by monitoring the inside with a monitoring camera or the like as in the prior art, and based on the resistance value between the electrodes determined in advance, the electrodes according to the amount of incineration ash input As the electrode wears, the position of the electrode can be adjusted. As a result, it is possible to always supply power appropriately, and it is possible to eliminate maintaining a molten state by supplying an excessive current.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例1に係る電気式灰溶融炉について、図面を参照して説明する。
図1及び図2は、実施例に係る電気式灰溶融炉を示す概念図であり、図2は灰溶融炉の傾動状態を示す概念図である。図3は計測装置及び演算装置の構成図である。
図1乃至図2に示すように、本実施例に係る電気式灰溶融炉100は、焼却灰31がホッパ32を介して投入される溶融炉本体2と、溶融炉本体2の炉室6側に配設される主電極4と、炉室6の炉底壁5に配設される炉底電極7と、これらの電極4,7間に電圧を印加する直流電源8とを備え、ジュール発熱により焼却灰を加熱してスラグ化するものであり、前述した図12の灰溶融炉と本体構成は監視カメラがない点を除いて同様である。
An electric ash melting furnace according to a first embodiment of the present invention will be described with reference to the drawings.
FIG.1 and FIG.2 is a conceptual diagram which shows the electric ash melting furnace which concerns on an Example, FIG. 2 is a conceptual diagram which shows the tilting state of an ash melting furnace. FIG. 3 is a configuration diagram of the measuring device and the arithmetic device.
As shown in FIGS. 1 and 2, an electric ash melting furnace 100 according to this embodiment includes a melting furnace body 2 into which incinerated ash 31 is charged via a hopper 32, and a furnace chamber 6 side of the melting furnace body 2. A main electrode 4, a furnace bottom electrode 7 provided on the furnace bottom wall 5 of the furnace chamber 6, and a DC power source 8 for applying a voltage between these electrodes 4 and 7, comprising Joule heating. The incinerated ash is heated to slag, and the ash melting furnace and the main body configuration of FIG. 12 described above are the same except that there is no monitoring camera.

本実施例では、この電気式灰溶融炉において、アーク長を調整するために、図3に示すように、焼却灰31の投入積算量を計測する灰投入量積算器101と、主電極4と炉底電極7との電極間における全抵抗値を求める電極間全抵抗演算器102と、灰溶融炉1に応じた時間当りの灰投入量における電力設定値及び前記全抵抗値から電圧設定値を求める電圧設定値演算器103と、焼却灰31の投入量の増加に応じて電圧を計測する電圧計測器104と、焼却灰31の投入により変動した電圧から主電極4の電極位置を調整する電極位置制御装置105とを具備するものである。
これにより、主電極4の電極位置を制御することができ、プラズマアーク長を略一定の間隔(本実施例では300mm)で常に維持することができる。
In this embodiment, in this electric ash melting furnace, in order to adjust the arc length, as shown in FIG. 3, an ash input amount integrator 101 for measuring the input integrated amount of the incinerated ash 31, the main electrode 4, The interelectrode total resistance calculator 102 for determining the total resistance value between the electrodes of the furnace bottom electrode 7, the power setting value in the ash input amount per time corresponding to the ash melting furnace 1, and the voltage setting value from the total resistance value A voltage setting value calculator 103 to be obtained, a voltage measuring device 104 that measures a voltage in accordance with an increase in the amount of incineration ash 31, and an electrode that adjusts the electrode position of the main electrode 4 from the voltage fluctuated by the incineration ash 31 being introduced The position control device 105 is provided.
Thereby, the electrode position of the main electrode 4 can be controlled, and the plasma arc length can always be maintained at a substantially constant interval (300 mm in this embodiment).

これにより、従来のような主電極4の先端部分から消耗してアーク長が変化(徐々に長くなる)するのに伴い、スラグ溶融に必要なジュール発熱が不足するのを補うために、過大な電流を供給することを回避することができ、この結果運転効率が低下するのを防止することができる。   As a result, the amount of Joule heat necessary for melting the slag is insufficient in order to compensate for the shortage of the arc length as it is consumed from the tip of the main electrode 4 as in the prior art and gradually increases. Supplying current can be avoided, and as a result, it is possible to prevent a decrease in operating efficiency.

以下、前記構成にかかる電気式灰溶融炉の安定した運転方法について図3乃至図7を参照しつつ説明する。尚、図4は灰投入量と抵抗値との関係を示す図である。図5は灰投入初期におけるプラズマアーク、溶融スラグ、溶融メタルの状態図であり、図6は灰投入最終期におけるプラズマアーク、溶融スラグ、溶融メタルの状態図である。図7は灰投入量と電力との関係を示す図である。
なお、本実施例では灰溶融炉で処理する焼却灰のゴミ質として、灰投入積算量の最大が約140tとなった際に図2に示すように、灰溶融炉1を傾動して溶融メタル24を炉室6外へ排出してから、再度溶融を開始する場合について説明する。
尚、本発明はこれらの条件に何ら限定されるものではない。
Hereinafter, a stable operation method of the electric ash melting furnace according to the above configuration will be described with reference to FIGS. FIG. 4 is a diagram showing the relationship between the ash input amount and the resistance value. FIG. 5 is a state diagram of plasma arc, molten slag, and molten metal at the initial stage of ash charging, and FIG. 6 is a phase diagram of plasma arc, molten slag, and molten metal at the final stage of ash charging. FIG. 7 is a diagram showing the relationship between the amount of ash input and power.
In this embodiment, as the incinerated ash waste treated in the ash melting furnace, when the maximum amount of accumulated ash is about 140 t, the ash melting furnace 1 is tilted as shown in FIG. A case will be described in which melting is started again after 24 is discharged out of the furnace chamber 6.
The present invention is not limited to these conditions.

(1)<抵抗値基準線の作成>
先ず、運転に入る前段階において、予め、溶融炉本体2内に投入する焼却灰31の投入積算量に応じた電極4,7間における全抵抗値を求めておく。
この灰投入積算量と全抵抗値との関係図を図4に示す。図4に示す基準線は、灰溶融炉1において、初期の灰を投入していない時点から、焼却灰31を投入し所定の投入積算量(例えば140t)となった際に、図2のように傾動して溶融スラグ23を出滓樋19より排出する間における、灰投入積算量に応じた抵抗値の関係を示している。
なお、初期の時点は、灰溶融炉1を傾動し、焼却灰を溶融炉に投入し、スラグがオーバフローして安定した状態になった時点を0t時と称している。
(1) <Creation of resistance reference line>
First, prior to the start of operation, the total resistance value between the electrodes 4 and 7 corresponding to the integrated amount of incinerated ash 31 charged into the melting furnace body 2 is obtained in advance.
FIG. 4 shows a relationship diagram between the integrated amount of ash input and the total resistance value. The reference line shown in FIG. 4 is the same as that shown in FIG. 2 when the incineration ash 31 is introduced and reaches a predetermined charged integrated amount (for example, 140 t) from the time when the initial ash is not charged in the ash melting furnace 1. The relationship of the resistance value corresponding to the integrated amount of ash input during the period when the molten slag 23 is discharged from the tap 19 is shown.
The initial time point is referred to as 0 ton when the ash melting furnace 1 is tilted and the incinerated ash is charged into the melting furnace and the slag overflows and becomes stable.

この初期の抵抗値と出滓後の抵抗値を求めて、図4中、黒丸印に示すような電極間全抵抗値を求める。なお、米印はスラグ層抵抗値である。図5は灰投入初期(0t時)におけるプラズマアーク、溶融スラグ23及び溶融メタルの電圧値、抵抗値、厚さについて各々示す図であり、図6は灰投入最終期(140t時)におけるプラズマアーク、溶融スラグ23及び溶融メタルの電圧値、抵抗値、厚さについて各々示す図である。また、灰投入最終期とは、傾動する前の焼却灰を定格まで投入し、溶融メタル24を排出する直前の場合である。 The initial resistance value and the resistance value after the output are obtained, and the inter-electrode total resistance value as shown by black circles in FIG. 4 is obtained. In addition, a rice sign is a slag layer resistance value. FIG. 5 is a diagram showing the plasma arc at the initial stage of ash charging (at 0 t), the voltage value, resistance value, and thickness of the molten slag 23 and molten metal, and FIG. 6 is the plasma arc at the final stage of ash charging (at 140 t). It is a figure which each shows about the voltage value, resistance value, and thickness of a molten slag 23 and a molten metal . Also, the ash turned the final period, the ash prior to tilting introduced to the rated, it is a case of just before discharging the molten metal 24.

図4では、初期(0t)の場合における全抵抗値が0.180Ωである。また、灰投入最終期(140t)の場合のメタル排出前における全抵抗値は初期(0t)の場合の全抵抗値から0.025Ω減少して、0.155Ωとなる。これは、メタル層の増加によりスラグ層抵抗値が減少したことによるものである。
本発明で全抵抗値とは、プラズマアークが生じる空間部分の抵抗である空間抵抗値と、溶融スラグ23のスラグ層抵抗値と、溶融メタル24のメタル層抵抗値との総和をいう。
なお、メタル層抵抗値は0であるので、スラグ層抵抗値(0.108Ω)と空間抵抗値(アーク長が300mmにおけるプラズマアーク抵抗値:0.072Ω)との総和が全抵抗値となる。
なお、前述した図4のグラフを抵抗値基準線と称する。
In FIG. 4, the total resistance value in the initial (0t) case is 0.180Ω. In addition, the total resistance value before discharging the metal in the final ash charging period (140 t) is reduced by 0.025Ω from the total resistance value in the initial stage (0 t) to 0.155Ω. This is because the resistance value of the slag layer has decreased due to an increase in the metal layer.
In the present invention, the total resistance value refers to the sum of the space resistance value, which is the resistance of the space where the plasma arc occurs, the slag layer resistance value of the molten slag 23, and the metal layer resistance value of the molten metal 24.
Since the metal layer resistance value is 0, the sum of the slag layer resistance value (0.108Ω) and the space resistance value (plasma arc resistance value when the arc length is 300 mm: 0.072Ω) is the total resistance value.
In addition, the graph of FIG. 4 mentioned above is called a resistance value reference line.

この抵抗値基準線の設定方法を以下に説明する。
a)灰投入初期(メタル排出直後)の抵抗値の決定方法
先ず、灰溶融炉1の傾動を行い、溶融メタル24の排出直後(灰積算量0t)の抵抗値の決定方法について説明する。
メタル排出直後、灰投入を開始し、定格運転(灰投入量:1.67t/h、電力:所定電力(1559kw)を保持)状態を保つ。なお、定格運転灰投入量と電力との関係を図7に示す。図7は灰投入量と電力の関係を示したものであり、灰投入量に応じ、灰の溶融に必要な電力が増加する傾向を示す関係図である。
次に、炉室6内温度が一定温度(例えば1300℃)になるように主電極4の電極位置を調整する。この状態で運転を保持し、運転状態が静定するための一定時間経過後(1時間)の電流、電圧値(1時間平均値)を計測する。
そして、電流、電圧値より電極間抵抗値を求め、これを焼却灰積算量0t時における抵抗値とする(図4中、0t及び図5参照)。
なお、電極間抵抗値(Ω)=電圧値(V)/電流値(A)である。
b)灰投入終期(メタル排出直前)の抵抗値決定方法
焼却灰の投入を継続し、定格運転(灰投入量:1.67t/h、電力:所定電力(1559kw)を保持)状態を保つ。
炉室6内温度が一定温度(1300℃)になるように主電極4の電極位置を調整する。
運転状態が静定するための一定時間経過後(1時間)の電流、電圧値(1時間平均値)を計測する。またこの時点のメタル排出からの焼却灰積算量を読取る。
そして、電流、電圧値より電極間抵抗値を求め、これを焼却灰積算量140t時における抵抗値とする(図4中、140t)。
A method for setting the resistance value reference line will be described below.
a) Method for Determining the Resistance Value at the Initial Stage of Ash Injection (immediately after metal discharge) First, the method for determining the resistance value immediately after discharging the molten metal 24 (ash accumulated amount 0 t) by tilting the ash melting furnace 1 will be described.
Immediately after metal discharge, ash charging is started and the rated operation (ash charging amount: 1.67 t / h, power: holding predetermined power (1559 kw)) is maintained. FIG. 7 shows the relationship between the rated operating ash input and power. FIG. 7 shows the relationship between the amount of ash input and electric power, and is a relationship diagram showing a tendency that the electric power required for melting ash increases according to the amount of ash input.
Next, the electrode position of the main electrode 4 is adjusted so that the temperature in the furnace chamber 6 becomes a constant temperature (for example, 1300 ° C.). The operation is maintained in this state, and the current and voltage values (1 hour average value) are measured after a certain period of time (1 hour) for the operation state to settle.
And the resistance value between electrodes is calculated | required from an electric current and a voltage value, and this is made into resistance value in the time of incineration ash integrated amount 0t (refer 0t and FIG. 5 in FIG. 4).
The interelectrode resistance value (Ω) = the voltage value (V) / the current value (A).
b) Resistance value determination method at the end of ash injection (immediately before metal discharge) The incineration ash is continuously input and the rated operation (the amount of ash input: 1.67 t / h, power: holding predetermined power (1559 kW)) is maintained.
The electrode position of the main electrode 4 is adjusted so that the temperature in the furnace chamber 6 becomes a constant temperature (1300 ° C.).
Measure the current and voltage (average value for 1 hour) after a certain period of time (1 hour) for the operating state to settle. Also, the accumulated amount of incinerated ash from the metal discharge at this time is read.
And the resistance value between electrodes is calculated | required from an electric current and a voltage value, and this is made into the resistance value at the time of the incineration ash integration amount 140t (140t in FIG. 4).

なお、図4における計測においては、0t時、140t時のみならず、60t時、100t時においても同様に電極間抵抗値を求めたが、直線関係にあることが判明しているので、抵抗値基準線の作成は、灰投入初期(0t時)と傾動直前(メタル排出直前:例えば140t)とにおいて2点計測すれば足りる。また、溶融炉の傾動の前後ではなく、例えば0t、40t時の計測であってもよい。   In the measurement in FIG. 4, the inter-electrode resistance value was similarly obtained not only at 0 t and 140 t, but also at 60 t and 100 t, but it has been found that there is a linear relationship. The reference line can be created by measuring two points at the beginning of ash injection (at 0 t) and immediately before tilting (immediately before metal discharge: for example, 140 t). Further, it may be measured at 0 t, 40 t, for example, before and after the melting furnace is tilted.

(2)以下、主電極4の電極位置を調整する方法について説明する。
先ず、灰溶融炉1の傾動後、保温してアーク長が300mmとなるように主電極4の位置を設定する。この設定はカメラ等を用いてもよく、または炉室6内温度から設定するようにしてもよい。その後、溶融炉本体2内に焼却灰31を投入し、焼却灰31の溶融が安定状態となった時点を計測開始点(0t)とし、この計測開始点における電極間4,7の全抵抗値を、図4に示す抵抗値基準線における前記予め求めた抵抗値基準線から電極間の全抵抗値を推定する。そして、図7に示すような溶融炉に応じた時間当りの灰投入量における電力設定値と、前記全抵抗値(推定値)とから電圧設定値を求める。
ここで、溶融が安定状態になった時点とは、焼却灰31の投入と溶融スラグとの出滓とが一定になった場合をいう。
また、溶融炉に応じた時間あたりの灰投入量における電力設定値は、図7に示すように、例えば1.67t/hにおいて1559kwである。
この結果、図3に示すように、前電力設定値と全抵抗値から、電圧設定値は528Vと計算され、この電圧設定値(528V)で溶融を継続する。なお、電力=電圧×電流、電圧=電流×抵抗であり、これら電力と抵抗から下記式(1)により電圧を求める。

Figure 0003986519
(2) Hereinafter, a method of adjusting the electrode position of the main electrode 4 will be described.
First, after tilting the ash melting furnace 1, the position of the main electrode 4 is set so that the arc length is 300 mm by keeping the temperature. This setting may be performed using a camera or the like, or may be set from the temperature in the furnace chamber 6. Thereafter, the incinerated ash 31 is introduced into the melting furnace main body 2, and the time when the incinerated ash 31 is melted stably is defined as a measurement start point (0t), and the total resistance value between the electrodes 4 and 7 at this measurement start point. The total resistance value between the electrodes is estimated from the previously obtained resistance value reference line in the resistance value reference line shown in FIG. And a voltage setting value is calculated | required from the electric power setting value in the ash input amount per time according to a melting furnace as shown in FIG. 7, and the said all resistance value (estimated value).
Here, the time when the melting is in a stable state refers to the case where the incineration ash 31 is charged and the molten slag is constant.
Moreover, as shown in FIG. 7, the electric power set value in the ash input amount per time according to the melting furnace is 1559 kw at 1.67 t / h, for example.
As a result, as shown in FIG. 3, the voltage setting value is calculated as 528 V from the previous power setting value and the total resistance value, and melting is continued at this voltage setting value (528 V). Note that power = voltage × current, voltage = current × resistance, and the voltage is obtained from the power and resistance by the following equation (1).
Figure 0003986519

(3)<電圧の計測>
次いで、溶融炉本体2内に焼却灰31の投入を開始する。この焼却灰31の投入量の増加に応じて、主電極4の先端部が消耗することになるので、いわゆるアーク長が長くなり、空間抵抗値が変化するので、この変動する電圧を計測する。
この電圧は例えば5分毎の平均値とすればよい。例えばこの計測値が538Vとする。
(3) <Measurement of voltage>
Next, charging of the incineration ash 31 into the melting furnace body 2 is started. As the amount of the incinerated ash 31 is increased, the tip of the main electrode 4 is consumed, so that the so-called arc length is increased and the space resistance value is changed. Therefore, the fluctuating voltage is measured.
This voltage may be an average value every 5 minutes, for example. For example, this measured value is 538V.

(4)<主電極位置の調整>
焼却灰31の投入により変動した電圧(538V)から主電極4の電極位置を電極位置制御装置により調整する。
電極位置の調整は、「A×(初期電圧(528V)−変動した電圧(538V))」である。ここで、A(mm/V)は係数であり、本実施例ではA=1である。
ここで、本実施例では、前記電極位置制御装置105は、演算処理する演算装置と、この演算装置で演算された結果を昇降装置15に指令を出す制御装置と、主電極4を昇降させる昇降装置とを含むものであり、これにより主電極4の位置を所定量下げるようにしている。
前述した計測結果では、電圧計測値が538Vであるので、528−538=−10(V)となり、これにAを乗じて10mm下げるように指示を出すこととなる。
(4) <Adjustment of main electrode position>
The electrode position of the main electrode 4 is adjusted by the electrode position control device from the voltage (538V) fluctuated by the introduction of the incineration ash 31.
The adjustment of the electrode position is “A × (initial voltage (528V) −fluctuated voltage (538V))”. Here, A (mm / V) is a coefficient, and A = 1 in this embodiment.
Here, in the present embodiment, the electrode position control device 105 includes a calculation device that performs calculation processing, a control device that issues a command to the lifting device 15 based on the result calculated by the calculation device, and lifting and lowering that moves the main electrode 4 up and down. In this way, the position of the main electrode 4 is lowered by a predetermined amount.
In the measurement result described above, since the voltage measurement value is 538 V, 528−538 = −10 (V) is obtained, and an instruction is issued to multiply this by A and lower 10 mm.

このように、従来は主電極4の位置計測が不能となった際、例えば主電極4の位置を固定して電圧を一定とした場合においては、例えば図8に示すように、灰の投入が増加するのに伴い、電極間距離が広がっていくので、所定の発熱量(kw)を維持するために、過剰な電力をかけて溶融していた(図中黒三角印で示す。)。これに対し、本発明では所定の発熱量の範囲となるように、予め求めた全抵抗値から演算しつつ主電極4の位置を所定時間毎に制御するようにしているので、溶融に適正なスラグ層発熱範囲を維持することができる。
これにより、従来のような監視カメラ等の監視装置を用いることなく、主電極4の位置の微調節をすることができ、常に安定した溶融を行うことができる。
Thus, conventionally, when the position measurement of the main electrode 4 becomes impossible, for example, when the position of the main electrode 4 is fixed and the voltage is fixed, as shown in FIG. As the distance increased, the distance between the electrodes widened, so that excessive electric power was applied to melt in order to maintain a predetermined calorific value (kw) (indicated by black triangles in the figure). On the other hand, in the present invention, the position of the main electrode 4 is controlled every predetermined time while calculating from the total resistance value obtained in advance so as to be within a predetermined calorific value range. The heat generation range of the slag layer can be maintained.
As a result, the position of the main electrode 4 can be finely adjusted without using a conventional monitoring device such as a monitoring camera, and stable melting can always be performed.

このように、本発明では、(1)予め、溶融炉に対し焼却灰を一定量投入し、その投入積算量における電極間の全抵抗値の抵抗値基準線を作成する。この抵抗値基準線の作成に際しては、溶融炉中の溶融メタルを排出する炉の傾動の前後の焼却灰(例えば、細粒灰、細粒灰と飛灰の合計した灰)の積算値により電極間の全抵抗を推定するようにしている。   As described above, in the present invention, (1) a predetermined amount of incinerated ash is charged into the melting furnace in advance, and a resistance value reference line for the total resistance value between the electrodes at the accumulated charge amount is created. When creating this resistance value reference line, the electrode is calculated based on the integrated value of incinerated ash (for example, fine ash, ash of fine ash and fly ash) before and after tilting of the furnace for discharging molten metal in the melting furnace. The total resistance between them is estimated.

(2)次に、溶融炉の主電極4の位置を制御するには、全抵抗推定値と電力設定値(又は電力平均値)により、電圧設定値を決定し、次いで溶融炉に焼却灰を投入し、初期値の電圧設定値と計測した電圧値を元にして主電極4の電極位置を制御する。なお、この際、電極間の全抵抗値を用いる代わりにスラグ抵抗値を用いて、主電極の位置調整を行うようにしてもよい。   (2) Next, in order to control the position of the main electrode 4 of the melting furnace, the voltage setting value is determined by the total resistance estimated value and the power setting value (or the power average value), and then the incineration ash is put into the melting furnace. The electrode position of the main electrode 4 is controlled based on the initial voltage setting value and the measured voltage value. At this time, the position of the main electrode may be adjusted using the slag resistance value instead of using the total resistance value between the electrodes.

なお、電極間全抵抗の目標値算出にあたっては、スラグ層厚さ(計測値又は焼却灰積算値からのスラグ層厚さ推定値)、スラグ温度、投入灰物性(焼却灰投入量、細粒灰と飛灰の混合率、焼却灰成分のうち少なくとも一つ以上)、アーク長、アーク長抵抗率のうち少なくとも一つ以上用いて目標値計算を行ってもよい。
本実施例によれば、アーク長を維持する監視装置を設けることなく、アーク長を一定レベルに保ち、安定した連続運転が可能となる。
In calculating the target value of the total resistance between electrodes, the slag layer thickness (estimated value of the slag layer from the measured value or accumulated incineration ash value), slag temperature, ash physical properties (incineration ash input, fine ash The target value may be calculated using at least one of a mixing ratio of ash and fly ash, an incinerated ash component), an arc length, and an arc length resistivity.
According to the present embodiment, the arc length can be kept at a constant level and a stable continuous operation can be performed without providing a monitoring device for maintaining the arc length.

本実施例では、スラグ抵抗値を用いて焼却灰の投入量から変化するスラグ抵抗値を用いて電極位置を調整したが、本発明はスラグ抵抗値を用いることなく、焼却灰の投入量と主電極と炉底電極との間の電圧値を利用して主電極の位置を調整するようにしてもよい。   In this example, the electrode position was adjusted using the slag resistance value that was changed from the amount of incinerated ash input using the slag resistance value, but the present invention does not use the slag resistance value, You may make it adjust the position of a main electrode using the voltage value between an electrode and a furnace bottom electrode.

また、電源は直流電源及び交流電源のいずれでも用いることができる。また、電極は本実施例のような主電極と炉底電極との配置以外に、主電極と主電極が炉天井から挿入されるような配置としてもよい。   The power source can be either a DC power source or an AC power source. In addition to the arrangement of the main electrode and the furnace bottom electrode as in this embodiment, the electrodes may be arranged such that the main electrode and the main electrode are inserted from the furnace ceiling.

次に、電極間の全抵抗の目標値算出に際してのスラグ温度を考慮した制御の一例を図9に示す。
図9は、図3における装置において、さらにアーク長目標値からアーク抵抗値を演算するアーク抵抗値演算器110と、焼却灰投入量からスラグ抵抗値を演算するスラグ抵抗値演算器111とを具備するものであり、溶融炉1内のスラグ温度を計測するスラグ温度計を設け、このスラグ温度を用い、灰投入量に対してのスラグ抵抗値が温度依存性を有する点を考慮することで精度の高い制御を行うようにしている。
Next, FIG. 9 shows an example of control in consideration of the slag temperature when calculating the target value of the total resistance between the electrodes.
9 further includes an arc resistance value calculator 110 that calculates an arc resistance value from the arc length target value and a slag resistance value calculator 111 that calculates a slag resistance value from the amount of incinerated ash input. A slag thermometer that measures the slag temperature in the melting furnace 1 is provided, and this slag temperature is used to take into account that the slag resistance value with respect to the ash input has temperature dependence. I am trying to perform high control.

図10に焼却灰の投入量とスラグ抵抗値との関係において、スラグ抵抗値温度依存性の関係を示すグラフを示す。図10に示すように、スラグ温度が高くなると抵抗値が低く、スラグ温度が低いと抵抗値は高い関係であることを示す。   FIG. 10 is a graph showing the relationship between the slag resistance value temperature dependency in the relationship between the amount of incinerated ash input and the slag resistance value. As shown in FIG. 10, when the slag temperature is high, the resistance value is low, and when the slag temperature is low, the resistance value is high.

図9において、例えば焼却灰の投入積算量が0tの場合において、スラグ温度が1600℃の場合を検討する。この場合、スラグ抵抗値演算器111により、図10において、スラグ温度が1600℃の場合には図10からスラグ抵抗値が0.108Ωとなる。一方、アーク電圧は距離依存するので、距離依存係数(例えば1V/mm)と電流値(2954A)より、アーク長目標値が300mmの場合のアーク抵抗値は0.072Ωとなる。両者の総和が電極間の全抵抗推定値となり、0.180Ωとなる。
この実施例2で得られた温度条件を考慮した全抵抗推定値が前述した実施例1における電極間全抵抗推定値となり、精度の高い制御を行うことができる。すなわち、実施例1においては、1600℃における抵抗値基準線を用いているので、温度条件を加味しておらず、実施例2において、スラグ温度を計測することで初めて温度条件を加味したより精度の高い制御が可能となる。
In FIG. 9, for example, a case where the slag temperature is 1600 ° C. when the integrated amount of incineration ash is 0 t is considered. In this case, the slag resistance value calculator 111 causes the slag resistance value to be 0.108Ω from FIG. 10 when the slag temperature is 1600 ° C. in FIG. On the other hand, since the arc voltage depends on the distance, the arc resistance value when the arc length target value is 300 mm is 0.072Ω from the distance dependency coefficient (for example, 1 V / mm) and the current value (2954A). The sum of both is the estimated total resistance between the electrodes, which is 0.180Ω.
The total resistance estimated value in consideration of the temperature condition obtained in the second embodiment becomes the interelectrode total resistance estimated value in the first embodiment described above, and high-precision control can be performed. That is, in Example 1, since the resistance value reference line at 1600 ° C. is used, the temperature condition is not taken into account. In Example 2, the accuracy is higher than the temperature condition taken into account for the first time by measuring the slag temperature. High control is possible.

また、スラグ抵抗値演算器111で行う演算に入力するデータとして焼却灰投入積算量の代わりに、スラグ層厚さ計測値を用いるようにしてもよい。   Moreover, you may make it use a slag layer thickness measured value instead of the incinerated ash injection | throwing-in integrated amount as data input into the calculation performed with the slag resistance value calculator 111. FIG.

このスラグ層厚さの計測には、例えば灰の投入を停止し、その後、主電極4を昇降装置15で降下させ、溶融スラグと接触させ、この位置を記憶する。さらに、前記主電極4を降下させて、溶融スラグ23を通過させて溶融メタル24に到達させる。この間、電圧は例えば400Vから徐々に下がり、抵抗が0となる溶融メタル24に到達した時点で電圧が0Vとなる。この0Vの時点までの昇降装置の下げ量とスラグ層位置までの下げ量からスラグ層の厚さを求める。このスラグ層の厚さから抵抗値を求める。(図12スラグ抵抗
値演算器121)これは図11に示すスラグ厚さと抵抗値の関係図よりスラグ抵抗値を求めるようにしてもよい。この場合、灰の性状が変化しメタルの堆積速度が大きく変化した場合でも高い精度でスラグ抵抗値を求めることができるようになる。
For the measurement of the slag layer thickness, for example, the charging of ash is stopped, and then the main electrode 4 is lowered by the elevating device 15 and brought into contact with the molten slag, and this position is stored. Further, the main electrode 4 is lowered to pass through the molten slag 23 and reach the molten metal 24. During this time, the voltage gradually decreases from 400 V, for example, and reaches 0 V when reaching the molten metal 24 where the resistance becomes zero. The thickness of the slag layer is obtained from the lowered amount of the lifting device up to the time of 0 V and the lowered amount to the slag layer position. A resistance value is obtained from the thickness of the slag layer. (FIG. 12 Slag Resistance Value Calculator 121) This may determine the slag resistance value from the relationship between the slag thickness and the resistance value shown in FIG. In this case, the slag resistance value can be obtained with high accuracy even when the ash properties change and the metal deposition rate changes greatly.

次に、電極位置を制御する際に、電力を適正な範囲に設定する方法について説明する。
本実施例では、前述した灰溶融炉において、主電極4の位置を適宜調整しておき、その後灰投入を続ける際に、その焼却灰の投入積算量に応じたスラグ抵抗値と、演算により求めたスラグ抵抗値を比較し、その偏差から電力又は電流のいずれかを制御するようにしたものである。
この計測装置と演算・制御装置とを具備した装置の概略を図12に示す。
図12に示すように、プラズマの電流と電圧から電極間の抵抗を計算し、電極間全抵抗推定値を求める。そして、アーク長目標値から空間抵抗値をアーク抵抗値演算器120にて演算し、空間抵抗値を求める。そして、演算器125において、電極間全抵抗推定値から空間抵抗値を引いて、スラグ層抵抗値を求める。
一方、実施例1において説明した図4に示す全抵抗値基準線を下に、スラグ抵抗値演算器121にて焼却灰の投入量からスラグ層の抵抗目標値が演算される。
そして、現時点における抵抗値が大きい場合には、電流を下げるように制御する。一方、現時点における抵抗値が小さい場合には、電流を上げるように制御する。また同等の場合には、制御は不要である。
これにより、スラグ温度と相関のあるスラグ抵抗を一定レベルに安定させることができ、このためスラグ温度を一定レベルに維持し、スラグの安定出滓、炉の長寿命化が可能となる。
例えば現時点における電流計と電圧計から電極間の全抵抗計測値を求める(0.185Ω)。また、設定したアーク長から空間抵抗値を空間抵抗値演算器120から空間抵抗値を求める(0.072Ω)。
全抵抗計測値(0.185Ω)から空間抵抗値(0.072Ω)を引いて、現時点でのスラグ層抵抗値を求める(R1=0.113Ω)。
一方、現時点における焼却灰投入量(0t)とスラグ温度からスラグ抵抗値演算器121よりスラグ抵抗設定値を演算する(R2=0.108Ω)。基準線及び温度依存線より、R1とR2との値とをPID制御器122で制御し、電力設定値を求める(1600kw)。
初期時点での電圧設定値を例えば528Vとする場合、電流演算器123により電流設定値を求める(I1=3030A)。
また、現在の電流計測値は電流計より求める(I2=2930A)。設定値よりも現在の電流が小さいので、電流制御器124で電流を上げる制御を行う。
Next, a method for setting the power in an appropriate range when controlling the electrode position will be described.
In this embodiment, in the ash melting furnace described above, the position of the main electrode 4 is appropriately adjusted, and when ash charging is continued thereafter, the slag resistance value corresponding to the integrated amount of incinerated ash is calculated and calculated. The slag resistance values are compared, and either power or current is controlled from the deviation.
FIG. 12 shows an outline of a device provided with this measuring device and a calculation / control device.
As shown in FIG. 12, the resistance between the electrodes is calculated from the plasma current and voltage, and the estimated total resistance between the electrodes is obtained. Then, the space resistance value is calculated from the arc length target value by the arc resistance value calculator 120 to obtain the space resistance value. Then, the calculator 125 subtracts the space resistance value from the estimated total resistance value between the electrodes to obtain the slag layer resistance value.
On the other hand, the resistance target value of the slag layer is calculated from the input amount of the incinerated ash by the slag resistance value calculator 121 with the total resistance value reference line shown in FIG.
If the current resistance value is large, control is performed to reduce the current. On the other hand, when the current resistance value is small, control is performed to increase the current. In the equivalent case, no control is required.
As a result, the slag resistance correlated with the slag temperature can be stabilized at a constant level. Therefore, the slag temperature can be maintained at a constant level, and the slag can be stably discharged and the furnace can be extended in life.
For example, the total resistance measurement value between the electrodes is obtained from an ammeter and a voltmeter at the present time (0.185Ω). Further, the space resistance value is obtained from the set arc length, and the space resistance value is obtained from the space resistance value calculator 120 (0.072Ω).
The space resistance value (0.072Ω) is subtracted from the total resistance measurement value (0.185Ω) to obtain the current slag layer resistance value (R 1 = 0.113Ω).
On the other hand, the slag resistance set value is calculated from the slag resistance value calculator 121 from the current amount of incinerated ash input (0 t) and the slag temperature (R 2 = 0.108Ω). From the reference line and the temperature dependence line, the values of R1 and R2 are controlled by the PID controller 122 to obtain the power setting value (1600 kw).
When the voltage setting value at the initial time is set to 528 V, for example, the current setting value is obtained by the current calculator 123 (I 1 = 3030 A).
The current measured current value is obtained from an ammeter (I 2 = 2930 A). Since the current is smaller than the set value, the current controller 124 controls to increase the current.

本実施例では、主電極4の電極位置の維持する装置としては、前述した実施例1及び実施例2の装置に限定されるものではなく、例えば監視カメラ又は炉室内温度計であってもよい。   In the present embodiment, the device for maintaining the electrode position of the main electrode 4 is not limited to the devices of the first and second embodiments described above, and may be, for example, a monitoring camera or a furnace thermometer. .

このように、スラグ層抵抗目標値を求め、現時点でのスラグ層抵抗値がスラグ層抵抗目標値の所定範囲内に入るように電力を制御するようにして、最適な運転を行うことができる。
なお、実施例1の電圧制御と併用する場合には、電力目標値と電圧目標値より電流目標値を求め、電流を制御すればよい。この場合、電圧制御と電流制御の制御周期を調整し、電力値のハンチングを避けるようにすればよい。
Thus, the optimum operation can be performed by obtaining the slag layer resistance target value and controlling the power so that the current slag layer resistance value falls within a predetermined range of the slag layer resistance target value.
In addition, when using together with the voltage control of Example 1, what is necessary is just to obtain | require current target value from electric power target value and voltage target value, and to control electric current. In this case, the control cycle of voltage control and current control may be adjusted to avoid hunting of power values.

このように、実施例3によれば、スラグ温度を長期連続的に計測できない場合でも、スラグ抵抗値を一定レベルに維持することでスラグ温度を一定レベルに安定させ、スラグの安定出滓、炉の長寿命化が可能となる。
また、実施例1と実施例3とを併用することにより、連続して安定したアーク長やスラグ温度の計測が困難な場合でも、電気式灰溶融炉の安定した連続運転が可能となる。
As described above, according to the third embodiment, even when the slag temperature cannot be measured continuously for a long period of time, the slag temperature is stabilized at a constant level by maintaining the slag resistance value at a constant level. The service life can be extended.
In addition, by using Example 1 and Example 3 in combination, even if it is difficult to continuously measure the arc length and slag temperature, the electric ash melting furnace can be stably operated continuously.

以上のように、本発明にかかる電気式灰溶融炉は、監視装置を用いることなく、連続して安定した焼却灰の溶融を行うことができ、焼却灰のプラズマアークによる連続した溶融設備に用いて適している。   As described above, the electric ash melting furnace according to the present invention can continuously and stably melt incineration ash without using a monitoring device, and is used in a continuous melting facility using a plasma arc of incineration ash. Is suitable.

本実施例にかかる電気式灰溶融炉の概略図である。It is the schematic of the electric ash melting furnace concerning a present Example. 本実施例にかかる電気式灰溶融炉の傾動後の概略図である。It is the schematic after tilting of the electric ash melting furnace concerning a present Example. 本実施例1にかかる電気式灰溶融炉の計測装置及び演算装置の構成図である。1 is a configuration diagram of a measuring device and a computing device of an electric ash melting furnace according to a first embodiment. 灰投入量と抵抗値との関係を示す図である。It is a figure which shows the relationship between ash injection amount and resistance value. 灰投入初期におけるプラズマアーク、溶融スラグ、溶融メタルの状態図である。It is a phase diagram of the plasma arc, molten slag, and molten metal in the initial stage of ash charging. 灰投入最終期におけるプラズマアーク、溶融スラグ、溶融メタルの状態図である。It is a phase diagram of the plasma arc, molten slag, and molten metal in the final stage of ash charging. 灰投入量と電力との関係を示す図である。It is a figure which shows the relationship between ash input amount and electric power. 灰投入量と発熱量との関係を示す図である。It is a figure which shows the relationship between the amount of ash inputs, and the emitted-heat amount. 本実施例2にかかる電気式灰溶融炉の計測装置及び演算装置の構成図である。It is a block diagram of the measuring device and arithmetic unit of the electric ash melting furnace concerning the present Example 2. FIG. 灰投入量とプラズマ抵抗値との関係を示す図である。It is a figure which shows the relationship between ash injection amount and a plasma resistance value. スラグ層厚さと抵抗値との関係を示す図である。It is a figure which shows the relationship between slag layer thickness and resistance value. 本実施例3にかかる電気式灰溶融炉の計測装置及び演算装置の構成図である。It is a block diagram of the measuring device and arithmetic unit of the electric ash melting furnace concerning the present Example 3. FIG. 従来技術にかかる電気式灰溶融炉の概略図である。It is the schematic of the electric ash melting furnace concerning a prior art.

符号の説明Explanation of symbols

2 溶融炉本体
4 主電極
5 炉底壁
6 炉室
7 炉底電極
8 直流電源
23 溶融スラグ
24 溶融メタル
31 焼却灰
32 ホッパ
100 電気式灰溶融炉
101 灰投入量積算器
102 電極間全抵抗演算器
103 電圧設定値演算器
104 電圧計測器
105 電極位置制御装置
2 Melting furnace body 4 Main electrode 5 Furnace bottom wall 6 Furnace room 7 Furnace bottom electrode 8 DC power supply 23 Molten slag 24 Molten metal 31 Incinerated ash 32 Hopper 100 Electric ash melting furnace 101 Ash input amount integrator 102 Total resistance calculation between electrodes Device 103 voltage set value calculator 104 voltage measuring device 105 electrode position control device

Claims (7)

焼却灰が投入される溶融炉本体と、溶融炉本体の炉室側に配設される一対の電極と、この電極間に電圧を印加する直流電源とを備え、ジュール発熱により焼却灰を加熱してスラグ化する電気式灰溶融装置の運転方法において、
予め、溶融炉本体内に投入する焼却灰の投入量に応じた電極間における全抵抗値を求める工程と、
溶融炉本体内に焼却灰を投入し、焼却灰の溶融が安定状態となった時点を計測開始点とし、この計測開始点における電極間の全抵抗値を、前記予め求めた全抵抗値から推定すると共に、溶融炉に応じた時間当りの灰投入量における電力設定値と、前記全抵抗値とから
電圧設定値を求める工程と、
溶融炉本体内に焼却灰の投入を開始すると共に、該焼却灰の投入量の増加に応じて電極間の電圧を計測する工程と、
焼却灰の投入により変動した電極間に印加する電圧から電極位置を調整する工程とを含むことを特徴とする電気式灰溶融炉の運転方法。
A melting furnace main body into which incinerated ash is charged, a pair of electrodes disposed on the furnace chamber side of the melting furnace main body, and a DC power source for applying a voltage between these electrodes, the incinerated ash is heated by Joule heat generation. In the operation method of the electric ash melting device that turns into slag,
A step of obtaining a total resistance value between the electrodes in accordance with the amount of incinerated ash charged into the melting furnace body in advance,
When the incineration ash is put into the melting furnace body and the melting of the incineration ash becomes stable, the measurement start point is set, and the total resistance value between the electrodes at the measurement start point is estimated from the previously obtained total resistance value. And a step of obtaining a voltage set value from the power set value in the amount of ash input per time according to the melting furnace, and the total resistance value,
A step of starting the charging of the incinerated ash into the melting furnace body, and measuring a voltage between the electrodes according to an increase in the amount of the incinerated ash input;
And a step of adjusting the electrode position from the voltage applied between the electrodes which has been changed due to the charging of the incinerated ash, and a method for operating the electric ash melting furnace.
請求項において、
全抵抗値がスラグ抵抗値と空間抵抗値の総和であることを特徴とする電気式灰溶融炉の運転方法。
In claim 1 ,
A method for operating an electric ash melting furnace, wherein the total resistance value is a sum of a slag resistance value and a space resistance value.
請求項において、
焼却灰の投入量に応じて、スラグ温度を計測し、スラグ抵抗値を演算することを特徴とする電気式灰溶融炉の運転方法。
In claim 1 ,
A method for operating an electric ash melting furnace characterized by measuring a slag temperature and calculating a slag resistance value in accordance with an input amount of incinerated ash.
焼却灰が投入される溶融炉本体と、溶融炉本体の炉室側に配設される一対の電極と、この電極間に電圧を印加する直流電源とを備え、ジュール発熱により焼却灰を加熱してスラグ化する電気式灰溶融装置の運転方法において、
予め、溶融炉本体内に投入する焼却灰の投入量に応じた電極間におけるスラグ抵抗値を求める工程と、
電極の位置を調整する工程と、
現時点での焼却灰の投入量に応じたスラグ抵抗設定値と、演算により求めたスラグ抵抗値を比較し、その偏差から電力又は電流のいずれかを制御する工程とを含むことを特徴とする電気式灰溶融炉の運転方法。
A melting furnace main body into which incinerated ash is charged, a pair of electrodes disposed on the furnace chamber side of the melting furnace main body, and a DC power source for applying a voltage between these electrodes, the incinerated ash is heated by Joule heat generation. In the operation method of the electric ash melting device that turns into slag,
In advance, a step of obtaining a slag resistance value between the electrodes according to the amount of incinerated ash charged into the melting furnace body,
Adjusting the position of the electrodes;
And slag resistance set value corresponding to the input amount of ash at the present time, comparing the slag resistance value obtained by the arithmetic, characterized in that it comprises a step of controlling either the power or current from the deviation Operation method of electric ash melting furnace.
焼却灰が投入される溶融炉本体と、溶融炉本体の炉室側に配設される一対の電極と、この電極間に電圧を印加する直流電源とを備え、ジュール発熱により焼却灰を加熱してスラグ化する電気式灰溶融装置において、
電極の位置を調整する電極位置の維持装置と、
焼却灰の投入量に応じたスラグ抵抗値と、演算により求めたスラグ抵抗値を比較し、その偏差から電力又は電流のいずれかを制御する制御装置とを具備することを特徴とする電気式灰溶融炉。
A melting furnace main body into which incinerated ash is charged, a pair of electrodes disposed on the furnace chamber side of the melting furnace main body, and a DC power source for applying a voltage between these electrodes, the incinerated ash is heated by Joule heat generation. In the electric ash melting device that turns into slag,
An electrode position maintaining device for adjusting the position of the electrode;
An electric ash comprising a control device that compares the slag resistance value according to the amount of incinerated ash input with the slag resistance value obtained by calculation and controls either electric power or current from the deviation Melting furnace.
請求項において、
前記電極位置の維持装置が監視カメラ又は炉室内温度計のいずれかであることを特徴とする電気式灰溶融炉。
In claim 5 ,
The electric ash melting furnace, wherein the electrode position maintaining device is either a monitoring camera or a furnace thermometer.
請求項において、
焼却灰の投入量に応じたスラグ抵抗値と、前記演算により求めたスラグ抵抗値を比較し、その偏差から電力又は電流のいずれかを制御する制御装置とを具備することを特徴とする電気式灰溶融炉。
In claim 5 ,
An electric type comprising a control device that compares the slag resistance value according to the input amount of the incinerated ash with the slag resistance value obtained by the calculation and controls either electric power or current from the deviation. Ash melting furnace.
JP2004298038A 2004-10-12 2004-10-12 Electric ash melting furnace and operation method thereof Expired - Fee Related JP3986519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004298038A JP3986519B2 (en) 2004-10-12 2004-10-12 Electric ash melting furnace and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004298038A JP3986519B2 (en) 2004-10-12 2004-10-12 Electric ash melting furnace and operation method thereof

Publications (2)

Publication Number Publication Date
JP2006112667A JP2006112667A (en) 2006-04-27
JP3986519B2 true JP3986519B2 (en) 2007-10-03

Family

ID=36381325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004298038A Expired - Fee Related JP3986519B2 (en) 2004-10-12 2004-10-12 Electric ash melting furnace and operation method thereof

Country Status (1)

Country Link
JP (1) JP3986519B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060182B2 (en) * 2007-06-18 2012-10-31 株式会社タクマ Control method of plasma melting furnace
JP5880303B2 (en) * 2012-06-18 2016-03-09 日本電気硝子株式会社 Electric melting furnace control system and glass manufacturing method using electric melting furnace control system
EA031345B1 (en) * 2013-09-30 2018-12-28 Минтек Measurement of electrical variables on a dc arc furnace
CN113587119B (en) * 2021-07-30 2023-07-04 光大环保技术研究院(深圳)有限公司 Plasma ash melting system and automatic control method thereof

Also Published As

Publication number Publication date
JP2006112667A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
US20210033341A1 (en) Furnace control system, furnace control method, and furnace provided with same control system
JP3986519B2 (en) Electric ash melting furnace and operation method thereof
JPH08105616A (en) Plasma type melting method and plasma type melting furnace
Sivtsov et al. Steel semiproduct melting intensification in electric arc furnaces using coordinated control of electric and gas conditions: II. On-line control of the state of the charge and melt zones in electric arc furnaces
JP4024833B1 (en) Plasma ash melting furnace control method and plasma ash melting furnace
JP4965890B2 (en) Electric melting furnace operation control method
JP3746921B2 (en) Operation method of electric melting furnace
JP4949074B2 (en) Method and apparatus for controlling operation of plasma melting furnace
JP4245600B2 (en) Operating method of plasma ash melting furnace
JP5007094B2 (en) Control method of plasma melting furnace
JP3534695B2 (en) Operating method of plasma ash melting furnace
JP3771800B2 (en) Operating method of plasma ash melting furnace
RU2630160C2 (en) Electric mode automatic control system of melting facility with two electric heating sources using smart control sensor of melting metal aggregate state
JP4136521B2 (en) Operating method of ferronickel smelting electric furnace
JPH11173531A (en) Method for detecting thickness of slag in electric ash melting furnace
Krasnyanskii et al. Plasma-arc heating of periclase-carbonaceous refractory
JP5096797B2 (en) Level measurement method for ash melting furnace
JP3198593B2 (en) Power control method for ash melting furnace
RU2385952C2 (en) Method of managment by electrical mode of arc furnace
JP2001289427A (en) Plasma heating type melting furnace, and its operation method
JP4667665B2 (en) Plasma ash melting furnace and operating method thereof
JP2005337579A (en) Heat quantity control method for incinerated ash melting furnace and heat quantity control device
JP2008309461A (en) Control method of plasma type ash melting furnace and plasma type ash melting furnace
JP2000346559A (en) Control apparatus and method for electrode for electric furnace
JP2000213728A (en) Temperature rise controller and control method for electric resistance type ash melting furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees