JP3717229B2 - Waste combustion equipment - Google Patents

Waste combustion equipment Download PDF

Info

Publication number
JP3717229B2
JP3717229B2 JP08835796A JP8835796A JP3717229B2 JP 3717229 B2 JP3717229 B2 JP 3717229B2 JP 08835796 A JP08835796 A JP 08835796A JP 8835796 A JP8835796 A JP 8835796A JP 3717229 B2 JP3717229 B2 JP 3717229B2
Authority
JP
Japan
Prior art keywords
fluidized bed
temperature
outlet gas
waste
incinerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08835796A
Other languages
Japanese (ja)
Other versions
JPH09280529A (en
Inventor
滋美 小野
英夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP08835796A priority Critical patent/JP3717229B2/en
Publication of JPH09280529A publication Critical patent/JPH09280529A/en
Application granted granted Critical
Publication of JP3717229B2 publication Critical patent/JP3717229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Incineration Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流動床式焼却炉およびその後段に廃熱ボイラを備えた廃棄物の燃焼装置に関する。
【0002】
【従来の技術】
都市ごみ等の廃棄物を焼却し、その廃熱を蒸気回収してタービン発電機を駆動する廃棄物の燃焼装置において、流動床式焼却炉が用いられる場合がある。このような流動床式焼却炉では、硅砂を媒体として使用し、下部から燃焼空気を吹き込んで流動床を形成し、この流動床中に廃棄物を投入して焼却を行なう。流動床は650 〜750 ℃に保持され、その中に投入された廃棄物は、砂のもつ運動エネルギで壊砕されることにより下からの流動化空気との接触が促進され、さらに熱エネルギにより乾燥、焼却される。この一連の操作は短時間に効率よく行なわれる。しかし、このような流動床式焼却炉は、逆に廃棄物の燃焼が早いため、廃棄物の性状、即ち水分、発熱量、供給量の変動の影響を受け易く、流動床温度および炉出口ガス温度が変動するという性質がある。
【0003】
この点を解決するため、従来の流動床式焼却炉では、廃棄物の燃焼を維持する手段として流動床温度の低下に対応するための助燃バーナを流動床中に設け、これに灯油等の燃料を供給して助燃し、流動床温度が一定になるように制御している。
【0004】
【発明が解決しようとする課題】
上述のように、流動床式焼却炉では、助燃バーナを設けることにより流動床温度を一定に制御することはできるが、流動床式焼却炉における廃棄物の水分、発熱量、供給量の変動がそのまま当該流動床式焼却炉の炉出口ガス温度の変化となって現れ、この変化が廃熱ボイラの蒸気量の変動となるため、発電量が低下するばかりでなく、蒸気タービン発電機のトリップが生じるという問題があった。ここで、炉出口ガス温度を制御するため起動バーナ(炉空塔部に設けた流動床を昇温するバーナ)を使用することも考えられるが、これは、常時パイロットバーナを点火しなければならないこと、油量調整が困難である(特にターンダウンがとれず少量の噴射ができない)こと、さらに、制御性が悪く炉出口ガス温度の急激な変化に対応することができないこと、といった問題があり、実運転において上記起動バーナを炉出口ガス温度制御に使用するのは不可能である。
【0005】
本発明の目的は、上記従来技術における課題を解決し、流動床式焼却炉の流動床温度と炉出口ガス温度の両方を制御することができる廃棄物の燃焼装置を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、流動床式焼却炉、およびその後段に配置された廃熱ボイラを備え、この廃熱ボイラの発生蒸気を蒸気タービンへ供給する廃棄物の燃焼装置において、前記流動床式焼却炉の流動床に設けた助燃バーナと、その流動床の温度を検出する流動床温度計と、前記流動床式焼却炉の出口ガス温度を検出する炉出口ガス温度計と、前記流動床温度計の測定値、炉出口ガス温度計の測定値ならびに前記流動床式焼却炉および廃熱ボイラのプロセスデータが入力されるとともに流動床温度設定値と炉出口ガス温度設定値が設定されている演算器と、その演算器からの制御信号によって前記助燃バーナへの燃料供給量を制御する流量調整弁を設けて、
前記流動床の温度および前記流動床式焼却炉の出口ガス温度のいずれもがそれぞれに設定された設定温度以下になったときは、測定温度と設定温度の偏差ならびに前記流動床式焼却炉および廃熱ボイラのプロセスデータに基づいて、前記流動床式焼却炉の出口ガス温度をその設定温度に保持するように優先して前記助燃バーナへの燃料供給量を制御するように構成したことを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明を図示の実施の形態に基づいて説明する。
図1は本発明の実施の形態に係る廃棄物の燃焼装置の系統図である。この図で、1は流動床式焼却炉、1aは流動床式焼却炉1の流動床、1bは流動床1a中に設けられた助燃バーナ、1cは助燃バーナ1bへの灯油等の助燃油の供給量を制御する流量調整弁である。2は廃棄物ピット、3は廃棄物ピットに設けられた投入クレーン、4は廃棄物を流動床式焼却炉1へ定量供給する定量供給機、5は流動床式焼却炉1の後段に配置された廃熱ボイラ、6は蒸気タービン発電機である。10は流動床式焼却炉1の出口に配置された熱電対等の炉出口ガス温度計、11は流動床1a中に配置された熱電対等の流動床温度計である。12は演算器であり、炉出口ガス温度計10の測定値、流動床温度計11の測定値、およびプロセスデータに基づいて流量調整弁1cに対する制御信号を出力する。
【0009】
廃棄物ピット2に集められた廃棄物は、投入クレーン3により定量供給器4を介して流動床式焼却炉1へ投入され、燃焼せしめられる。これによって発生した燃焼ガスは、廃熱ボイラ5へ供給されて蒸気を発生させ、この蒸気で蒸気タービン発電機6を駆動して発電させる。このような状態において、炉出口ガス温度計10は炉出口のガス温度を測定してその測定値に比例した電気信号を演算器12へ出力し、又、流動床温度計11は流動床中の温度を測定してその測定値に比例した電気信号を演算器12へ出力する。
【0010】
演算器12には、予め定められた炉出口ガス温度設定値と流動床温度設定値とが設定されており、例えば、炉出口ガス温度設定値は800 ℃、流動床温度設定値は600 ℃に設定されている。さらに、演算器12には、流動床式焼却炉1および廃熱ボイラ5に関するプロセスデータ(空気量、蒸気量、廃棄物の発熱量、各部温度等の焼却設備のデータ)が取り込まれる。
【0011】
流動床式焼却炉1の運転中、演算器12は、入力された炉出口ガス温度測定値とその設定値とを比較し、かつ、入力された流動床温度測定値とその設定値とを比較する。そして、炉出口ガス温度測定値がその設定値以下になったとき、又は、流動床温度測定値がその設定値以下になったとき、演算器12は、取り込まれているプロセスデータを参照して、炉出口ガス温度又は流動床温度を設定値に維持するために不足している熱量を演算する。この演算の一例を以下に示す。
【0012】
今、蒸発量をSt、蒸気エンタルピーをEsとすると、蒸気の持出し熱量Qs(必要熱量)は次式で表わされる。
Qs=St・Es…………(1)
又、焼却炉への入熱量、即ち、ごみの持込み熱量、空気の熱量、助燃料の熱量の合計をQi、廃熱ボイラ出口ガスの持出し熱量をQoとすると、蒸気発生相当熱量Q1 は次式で表わされる。
1 =Qi−Qo…………(2)
したがって、不足熱量は熱量Q1 と熱量Qsの偏差を演算することにより求められる。即ち、当該偏差をΔQとすると、
ΔQ=Q1 −Qs…………(3)
上記(3)式において、偏差ΔQが負の値になったとき、その値が不足熱量となる。以上の演算例は、理解を容易にするための理論的な演算を例示したものであり、実際の演算は、使用する流動床式焼却炉1、廃熱ボイラ5等の損失等を考慮した演算式に従って行なわれる。
【0013】
演算器12は、予め不足熱量と流量調整弁の開度との関係を示すテーブルを有し、このテーブルを用いて、演算された不足熱量に応じた流量調整弁1cの開度(不足熱量が0 のときは全閉となる)を求め、その開度信号を流量調整弁1cへ出力する。これにより、助燃バーナ1bは供給燃料量に応じて燃焼し、炉出口ガス温度又は流動床温度或いはそれら両者の不足を補償する。
【0014】
なお、炉出口ガス温度測定値と流動床温度測定値のいずれもが、それらの設定値以下である場合には、炉出口ガス温度の制御を優先させ、炉出口ガス温度測定値とその設定値との偏差およびプロセスデータに基づいて流量調整弁1cの制御を行なう。
【0015】
このように、本実施の形態では、炉出口ガス温度と流動床温度とを測定し、それらのいずれか又は両者が設定値以下になったとき、助燃バーナへ助燃油を必要量供給するようにしたので、1つの助燃バーナで炉出口ガス温度と流動床温度の両方を所要の温度に維持することができ、これにより、廃棄物の焼却量と蒸気発生量とを補償することができ、ひいては蒸気タービン発電機のトリップを回避することができる。
【0016】
なお、上記実施の形態の説明では、炉出口ガス温度、流動床温度が低い場合の制御について説明したが、炉出口ガス温度が上昇した場合(蒸発量が上昇した場合)には、ガス温度を抑えるため炉内に水をスプレーしてごみ焼却を減少させ、又、流動床温度が上昇した場合には、これを抑えるため流動床中に水をスプレーするかごみ中に水をスプレーさせる制御を行なうことになる。
【0017】
【発明の効果】
以上述べたように、本発明では、流動床式焼却炉の流動床温度および出口ガス温度が設定温度以下になったとき、測定温度と設定温度の偏差ならびに流動床式焼却炉および廃熱ボイラのプロセスデータに基づいて助燃バーナへの燃料供給量を演算、制御するようにしたので、1つの助燃バーナで炉出口ガス温度と流動床温度の両方を所要の温度に維持することができ、これにより、廃棄物の焼却量と蒸気発生量とを補償することができ、ひいては蒸気タービン発電機のトリップを回避することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る廃棄物の燃焼装置の系統図である。
【符号の説明】
1 流動床式焼却炉
1a 流動床
1b 助燃バーナ
1c 流量調整弁
2 廃棄物ピット
5 廃熱ボイラ
6 蒸気タービン発電機
10 炉出口ガス温度計
11 流動床温度計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluidized bed incinerator and a waste combustion apparatus equipped with a waste heat boiler at the subsequent stage.
[0002]
[Prior art]
In some cases, a fluidized bed incinerator is used in a combustion apparatus for waste that incinerates waste such as municipal waste and recovers steam from the waste heat to drive a turbine generator. In such a fluidized bed incinerator, cinnabar sand is used as a medium, combustion air is blown from below to form a fluidized bed, and waste is put into the fluidized bed for incineration. The fluidized bed is maintained at 650 to 750 ° C, and the waste thrown into the fluidized bed is crushed by the kinetic energy of the sand, thereby promoting contact with the fluidized air from below, and further by the heat energy. Dried and incinerated. This series of operations is efficiently performed in a short time. However, such a fluidized bed incinerator, on the other hand, burns quickly and is easily affected by fluctuations in the properties of the waste, that is, moisture, calorific value, and supply amount. It has the property that the temperature fluctuates.
[0003]
In order to solve this problem, in a conventional fluidized bed incinerator, an auxiliary combustion burner is provided in the fluidized bed as a means for maintaining the combustion of waste, and a fuel such as kerosene is provided in the fluidized bed. Is supplied to assist combustion and the fluidized bed temperature is controlled to be constant.
[0004]
[Problems to be solved by the invention]
As described above, in a fluidized bed incinerator, the fluidized bed temperature can be controlled to be constant by providing an auxiliary burner, but there are fluctuations in the moisture, heat generation amount, and supply amount of waste in the fluidized bed incinerator. This appears as a change in the gas temperature at the outlet of the fluidized bed incinerator, and this change becomes a fluctuation in the amount of steam in the waste heat boiler, resulting in not only a reduction in power generation but also a trip of the steam turbine generator. There was a problem that occurred. Here, it is conceivable to use an activation burner (a burner for raising the temperature of the fluidized bed provided in the furnace empty column) in order to control the furnace outlet gas temperature, but this must always ignite the pilot burner. In addition, there are problems that it is difficult to adjust the oil amount (particularly, turn-down cannot be performed and a small amount of injection cannot be performed), and that controllability is poor and it is impossible to cope with a rapid change in the furnace outlet gas temperature. In actual operation, it is impossible to use the start burner for furnace outlet gas temperature control.
[0005]
An object of the present invention is to solve the above-described problems in the prior art and to provide a waste combustion apparatus capable of controlling both the fluidized bed temperature and the furnace outlet gas temperature of a fluidized bed incinerator.
[0006]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention provides a fluidized bed incinerator and a waste combustion apparatus that includes a waste heat boiler disposed in a subsequent stage and supplies steam generated from the waste heat boiler to a steam turbine. A combustion burner provided in the fluidized bed of the fluidized bed incinerator, a fluidized bed thermometer for detecting the temperature of the fluidized bed, and a furnace outlet gas thermometer for detecting the outlet gas temperature of the fluidized bed incinerator. The measured value of the fluidized bed thermometer, the measured value of the furnace outlet gas thermometer, and the process data of the fluidized bed incinerator and the waste heat boiler are inputted, and the fluidized bed temperature set value and the furnace outlet gas temperature set value are A flow rate adjusting valve for controlling the fuel supply amount to the auxiliary burner by a set arithmetic unit and a control signal from the arithmetic unit;
When both the fluidized bed temperature and the outlet gas temperature of the fluidized bed incinerator are lower than the preset temperature set for each, the deviation between the measured temperature and the preset temperature and the fluidized bed incinerator and waste Based on the process data of the hot boiler, the fuel supply amount to the auxiliary burner is controlled with priority so as to maintain the outlet gas temperature of the fluidized bed incinerator at the set temperature. To do.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the illustrated embodiments.
FIG. 1 is a system diagram of a waste combustion apparatus according to an embodiment of the present invention. In this figure, 1 is a fluidized bed incinerator, 1a is a fluidized bed of a fluidized bed incinerator 1, 1b is an auxiliary combustion burner provided in the fluidized bed 1a, 1c is an auxiliary combustion oil such as kerosene to the auxiliary combustion burner 1b. This is a flow rate adjusting valve for controlling the supply amount. 2 is a waste pit, 3 is a loading crane provided in the waste pit, 4 is a quantitative feeder for quantitatively supplying waste to the fluidized bed incinerator 1, and 5 is arranged at the rear stage of the fluidized bed incinerator 1. A waste heat boiler 6 is a steam turbine generator. Reference numeral 10 denotes a furnace outlet gas thermometer such as a thermocouple arranged at the outlet of the fluidized bed incinerator 1, and 11 denotes a fluidized bed thermometer such as a thermocouple arranged in the fluidized bed 1a. An arithmetic unit 12 outputs a control signal for the flow rate adjusting valve 1c based on the measured value of the furnace outlet gas thermometer 10, the measured value of the fluidized bed thermometer 11, and the process data.
[0009]
The waste collected in the waste pit 2 is thrown into the fluidized bed incinerator 1 by the charging crane 3 via the quantitative feeder 4 and combusted. The combustion gas generated thereby is supplied to the waste heat boiler 5 to generate steam, and the steam turbine generator 6 is driven by this steam to generate electric power. In such a state, the furnace outlet gas thermometer 10 measures the gas temperature at the furnace outlet and outputs an electric signal proportional to the measured value to the calculator 12, and the fluidized bed thermometer 11 is in the fluidized bed. The temperature is measured and an electric signal proportional to the measured value is output to the calculator 12.
[0010]
A predetermined furnace outlet gas temperature set value and fluidized bed temperature set value are set in the calculator 12. For example, the furnace outlet gas temperature set value is set to 800 ° C., and the fluidized bed temperature set value is set to 600 ° C. Is set. Furthermore, process data (incineration facility data such as air amount, steam amount, waste heat generation amount, temperature of each part, etc.) regarding the fluidized bed incinerator 1 and the waste heat boiler 5 is taken into the computing unit 12.
[0011]
While the fluidized bed incinerator 1 is in operation, the computing unit 12 compares the input furnace outlet gas temperature measurement value and its set value, and compares the input fluidized bed temperature measurement value and its set value. To do. When the furnace outlet gas temperature measurement value becomes equal to or lower than the set value, or when the fluidized bed temperature measurement value becomes equal to or less than the set value, the calculator 12 refers to the captured process data. The amount of heat that is insufficient to maintain the furnace outlet gas temperature or fluidized bed temperature at the set value is calculated. An example of this calculation is shown below.
[0012]
Now, assuming that the evaporation amount is St and the steam enthalpy is Es, the amount of heat Qs (necessary heat amount) taken out by the steam is expressed by the following equation.
Qs = St · Es ………… (1)
Further, the heat input to the incinerator, namely, bringing the waste heat, air heat, Qi the total heat quantity of the co fuel, when the takeout heat of the waste heat boiler outlet gas and Qo, the steam generator corresponds heat Q 1 following It is expressed by a formula.
Q 1 = Qi-Qo ............ (2)
Therefore, the insufficient heat quantity is obtained by calculating the deviation between the heat quantity Q 1 and the heat quantity Qs. That is, when the deviation is ΔQ,
ΔQ = Q 1 −Qs (3)
In the above equation (3), when the deviation ΔQ becomes a negative value, the value becomes an insufficient heat amount. The above calculation examples exemplify theoretical calculations for ease of understanding, and the actual calculations are calculations taking into account the loss of the fluidized bed incinerator 1 and the waste heat boiler 5 used. This is done according to the formula.
[0013]
The computing unit 12 has a table indicating the relationship between the insufficient heat quantity and the opening degree of the flow rate adjustment valve in advance, and using this table, the opening degree of the flow rate adjustment valve 1c corresponding to the calculated insufficient heat quantity (the insufficient heat quantity is reduced). When it is 0, it is fully closed), and the opening degree signal is output to the flow rate adjusting valve 1c. Thereby, the auxiliary burner 1b burns in accordance with the amount of supplied fuel, and compensates for the shortage of the furnace outlet gas temperature or the fluidized bed temperature or both.
[0014]
If both the furnace outlet gas temperature measurement value and the fluidized bed temperature measurement value are equal to or lower than those set values, priority is given to the control of the furnace outlet gas temperature, and the furnace outlet gas temperature measurement value and the set value are given. The flow rate adjusting valve 1c is controlled based on the deviation and the process data.
[0015]
As described above, in the present embodiment, the furnace outlet gas temperature and the fluidized bed temperature are measured, and when either or both of them become below the set value, the required amount of auxiliary oil is supplied to the auxiliary burner. Therefore, it is possible to maintain both the furnace outlet gas temperature and the fluidized bed temperature at the required temperature with one auxiliary burner, thereby compensating for the amount of waste incinerated and the amount of steam generated. A trip of the steam turbine generator can be avoided.
[0016]
In the description of the above embodiment, the control when the furnace outlet gas temperature and the fluidized bed temperature are low has been described. However, when the furnace outlet gas temperature rises (when the evaporation amount rises), the gas temperature is changed. Control to reduce the amount of waste incinerated by spraying water into the furnace, and when the fluidized bed temperature rises, control to spray water into the garbage to spray water into the fluidized bed to suppress this Will be performed.
[0017]
【The invention's effect】
As described above, in the present invention, when the fluidized bed temperature and the outlet gas temperature of the fluidized bed incinerator are lower than the set temperature, the deviation between the measured temperature and the set temperature, the fluidized bed incinerator and the waste heat boiler. Since the fuel supply amount to the auxiliary burner is calculated and controlled based on the process data, both the furnace outlet gas temperature and the fluidized bed temperature can be maintained at the required temperature with one auxiliary burner. Thus, the amount of waste incinerated and the amount of steam generated can be compensated, and the trip of the steam turbine generator can be avoided.
[Brief description of the drawings]
FIG. 1 is a system diagram of a waste combustion apparatus according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fluidized bed incinerator 1a Fluidized bed 1b Auxiliary combustion burner 1c Flow control valve 2 Waste pit 5 Waste heat boiler 6 Steam turbine generator 10 Furnace outlet gas thermometer 11 Fluidized bed thermometer

Claims (1)

流動床式焼却炉、およびその後段に配置された廃熱ボイラを備え、この廃熱ボイラの発生蒸気を蒸気タービンへ供給する廃棄物の燃焼装置において、
前記流動床式焼却炉の流動床に設けた助燃バーナと、
その流動床の温度を検出する流動床温度計と、
前記流動床式焼却炉の出口ガス温度を検出する炉出口ガス温度計と、
前記流動床温度計の測定値、炉出口ガス温度計の測定値ならびに前記流動床式焼却炉および廃熱ボイラのプロセスデータが入力されるとともに流動床温度設定値と炉出口ガス温度設定値が設定されている演算器と、
その演算器からの制御信号によって前記助燃バーナへの燃料供給量を制御する流量調整弁を設けて、
前記流動床の温度および前記流動床式焼却炉の出口ガス温度のいずれもがそれぞれに設定された設定温度以下になったときは、測定温度と設定温度の偏差ならびに前記流動床式焼却炉および廃熱ボイラのプロセスデータに基づいて、前記流動床式焼却炉の出口ガス温度をその設定温度に保持するように優先して前記助燃バーナへの燃料供給量を制御するように構成したことを特徴とする廃棄物の燃焼装置。
In a combustion apparatus for waste that includes a fluidized bed incinerator and a waste heat boiler disposed in a subsequent stage and supplies steam generated from the waste heat boiler to a steam turbine,
An auxiliary burner provided in the fluidized bed of the fluidized bed incinerator ;
A fluidized bed thermometer for detecting the temperature of the fluidized bed;
A furnace outlet gas thermometer for detecting an outlet gas temperature of the fluidized bed incinerator;
The measured value of the fluidized bed thermometer, the measured value of the furnace outlet gas thermometer, and the process data of the fluidized bed incinerator and waste heat boiler are input, and the fluidized bed temperature setting value and the furnace outlet gas temperature setting value are set. A computing unit,
A flow rate adjusting valve for controlling the amount of fuel supplied to the auxiliary burner by a control signal from the computing unit is provided,
When both the fluidized bed temperature and the outlet gas temperature of the fluidized bed incinerator are lower than the preset temperature set for each, the deviation between the measured temperature and the preset temperature and the fluidized bed incinerator and waste Based on the process data of the hot boiler, the fuel supply amount to the auxiliary burner is controlled with priority so as to maintain the outlet gas temperature of the fluidized bed incinerator at the set temperature. Waste combustion equipment.
JP08835796A 1996-04-10 1996-04-10 Waste combustion equipment Expired - Fee Related JP3717229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08835796A JP3717229B2 (en) 1996-04-10 1996-04-10 Waste combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08835796A JP3717229B2 (en) 1996-04-10 1996-04-10 Waste combustion equipment

Publications (2)

Publication Number Publication Date
JPH09280529A JPH09280529A (en) 1997-10-31
JP3717229B2 true JP3717229B2 (en) 2005-11-16

Family

ID=13940571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08835796A Expired - Fee Related JP3717229B2 (en) 1996-04-10 1996-04-10 Waste combustion equipment

Country Status (1)

Country Link
JP (1) JP3717229B2 (en)

Also Published As

Publication number Publication date
JPH09280529A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
JP6655467B2 (en) Furnace operation method of waste treatment equipment and waste treatment equipment
JP3717229B2 (en) Waste combustion equipment
JP4343931B2 (en) Combustion melting furnace and operation method of combustion melting furnace
JP5508022B2 (en) Batch waste gasification process
CN216244308U (en) Fire grate control system
JP3004629B1 (en) Start control method and stop control method for partial combustion furnace, and start / stop control device
JP4009151B2 (en) Combustion control method and apparatus for gasification melting furnace
JPH071084B2 (en) Air amount control method for fluidized bed furnace with boiler
JP4037354B2 (en) Waste treatment equipment
JP4249086B2 (en) Heating means output control method for melting furnace
JP5574911B2 (en) Incineration equipment and its operating method
JP3556078B2 (en) Dust supply speed control method for refuse incinerator and refuse incinerator
WO2003102472A1 (en) Method and apparatus in connection with a power boiler
JP2001029725A (en) Control method of temperature of exhaust gas inlet of dust collector of waste melting equipment
KR100434650B1 (en) Automatic Combustion Control System for Stoker Type Refuse Incinerator
JP2002122317A (en) Combustion control system of refuse incinerator
JP3946170B2 (en) Combustion control device and combustion control method for sludge incinerator
JP2651342B2 (en) Control method of combustion type superheater
JP2944502B2 (en) Garbage incineration equipment
JPH0195211A (en) Starting/stopping device of town refuse incinerator
JP2003302026A (en) Waste thermal decomposition device and its control method
JP2769270B2 (en) Garbage incineration equipment
JP2740096B2 (en) Garbage incineration equipment
JPS59122812A (en) Combustion controller of multi-stage incinerator
JPH10169955A (en) Combustion controlling method for sludge incinerator and its apparatus as well as medium of fuzzy inference combustion control program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees