JP2012193454A - Silver powder, and method of producing the same - Google Patents

Silver powder, and method of producing the same Download PDF

Info

Publication number
JP2012193454A
JP2012193454A JP2012119904A JP2012119904A JP2012193454A JP 2012193454 A JP2012193454 A JP 2012193454A JP 2012119904 A JP2012119904 A JP 2012119904A JP 2012119904 A JP2012119904 A JP 2012119904A JP 2012193454 A JP2012193454 A JP 2012193454A
Authority
JP
Japan
Prior art keywords
silver
silver powder
aqueous solution
powder
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012119904A
Other languages
Japanese (ja)
Other versions
JP5633045B2 (en
Inventor
Takeaki Fujino
剛聡 藤野
Shinichi Konno
慎一 紺野
Akitsugu Hirata
晃嗣 平田
Masaya Yuki
整哉 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2012119904A priority Critical patent/JP5633045B2/en
Publication of JP2012193454A publication Critical patent/JP2012193454A/en
Application granted granted Critical
Publication of JP5633045B2 publication Critical patent/JP5633045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing silver powder capable of producing the silver powder containing a surface moisture content suitable for a conductive paste using an organic solvent of high water solubility.SOLUTION: Two or more of dispersants, preferably, a hydrophobic dispersant such as benzotriazole, stearic acid, and oleic acid, a hydrophilic dispersant such as gelatin and a collagen peptide, and the like are added to a slurry reaction system before reduction-deposition of silver particles, after reduction-deposition, or under the reduction-deposition, in the method of producing the silver powder of reduction-deposition of the silver particles by adding a reductant into an aqueous reaction system containing silver ion.

Description

本発明は、銀粉およびその製造方法に関し、特に、積層コンデンサの内部電極や回路基板の導体パターンや、プラズマディスプレイパネル用基板の電極や回路などの電子部品に使用する導電性ペースト用の銀粉およびその製造方法に関する。   The present invention relates to silver powder and a method for producing the same, and in particular, silver powder for conductive paste used for electronic components such as internal electrodes of multilayer capacitors and conductor patterns of circuit boards, electrodes and circuits of substrates for plasma display panels, and the like. It relates to a manufacturing method.

従来、積層コンデンサの内部電極、回路基板の導体パターン、太陽電池やプラズマディスプレイパネル(PDP)用基板の電極や回路などの電子部品に使用する導電性ペーストとして、銀粉をガラスフリットとともに有機ビヒクル中に加えて混練することによって製造される導電性ペーストが使用されている。このような導電性ペースト用の銀粉は、電子部品の小型化、導体パターンの高密度化、ファインライン化などに対応するため、粒径が適度に小さく、粒度が揃っていることが要求されている。   Conventionally, silver powder is used together with glass frit in an organic vehicle as a conductive paste used for internal electrodes of multilayer capacitors, conductor patterns of circuit boards, electrodes of solar cells and plasma display panel (PDP) substrates, and circuits. In addition, a conductive paste produced by kneading is used. Silver powder for such conductive paste is required to have a reasonably small particle size and uniform particle size in order to cope with downsizing of electronic parts, high density of conductor patterns, fine lines, and the like. Yes.

このような導電性ペースト用の銀粉を製造する方法としては、銀塩含有水溶液にアルカリまたは錯化剤を加えて、酸化銀含有スラリーまたは銀錯体含有水溶液を生成した後、還元剤を加えることにより銀粉を還元析出させ、その後に乾燥する方法が知られている。このような方法において、凝集が少なく分散性に優れた銀粉を生成するために、銀塩含有水溶液にアルカリまたは錯化剤を加えて、酸化銀含有スラリーまたは銀錯塩含有水溶液を生成し、還元剤を加えて銀粒子を還元析出させた後、銀含有スラリー溶液またはそのろ過中に分散剤として脂肪酸、脂肪酸塩、界面活性剤、有機金属化合物、キレート剤、高分子分散剤のいずれか1種以上を加えることにより、表面を分散剤で被覆した銀粉を生成する方法が提案されている(例えば、特許文献1、2参照)。   As a method for producing such silver powder for conductive paste, an alkali or complexing agent is added to a silver salt-containing aqueous solution to form a silver oxide-containing slurry or a silver complex-containing aqueous solution, and then a reducing agent is added. A method of reducing and precipitating silver powder and then drying it is known. In such a method, in order to produce a silver powder with less aggregation and excellent dispersibility, an alkali or complexing agent is added to the silver salt-containing aqueous solution to produce a silver oxide-containing slurry or a silver complex salt-containing aqueous solution, and a reducing agent And then reducing and precipitating silver particles, and then adding one or more of a fatty acid, a fatty acid salt, a surfactant, an organometallic compound, a chelating agent, and a polymer dispersant as a dispersing agent during the silver-containing slurry solution or filtration thereof Has been proposed to produce silver powder having a surface coated with a dispersant (see, for example, Patent Documents 1 and 2).

特開平10−88206号公報(段落番号0002−0004)JP-A-10-88206 (paragraph numbers 0002-0004) 特開2005−220380号公報(段落番号0013)Japanese Patent Laying-Open No. 2005-220380 (paragraph number 0013)

導電性ペーストに使用する溶剤として水溶性の高い有機溶剤を使用する場合があるが、導電性ペーストに使用する銀粉が溶剤に馴染まないと、銀粉が導電性ペースト内に分散せずに塊状になって、導電性ペーストを基板などに塗布する際に導電性ペーストの膜厚が不均一になるため、導電性ペーストの焼成により形成される導体の導電性や接着強度が悪化する。   A highly water-soluble organic solvent may be used as the solvent used in the conductive paste. However, if the silver powder used in the conductive paste is not compatible with the solvent, the silver powder does not disperse in the conductive paste and becomes a lump. Thus, when the conductive paste is applied to a substrate or the like, the conductive paste has a non-uniform film thickness, which deteriorates the conductivity and adhesive strength of the conductor formed by firing the conductive paste.

そのため、導電性ペーストの溶剤として水溶性の高い有機溶剤を使用する場合には、その導電性ペーストに使用する銀粉として、水溶性の高い有機溶剤に馴染むような表面水分量がある程度高めの銀粉が望まれているが、従来の銀粉の製造方法では、水溶性の高い有機溶剤を使用する導電性ペーストに適した表面水分量の銀粉を製造することができなかった。   Therefore, when using a highly water-soluble organic solvent as the solvent for the conductive paste, the silver powder used for the conductive paste is a silver powder with a relatively high surface moisture content that is compatible with a highly water-soluble organic solvent. Although desired, conventional silver powder production methods have failed to produce silver powder having a surface moisture content suitable for a conductive paste using an organic solvent having high water solubility.

したがって、本発明は、このような従来の問題点に鑑み、水溶性の高い有機溶剤を使用する導電性ペーストに適した表面水分量の銀粉を製造することができる、銀粉の製造方法を提供することを目的とする。   Accordingly, the present invention provides a silver powder production method capable of producing silver powder having a surface moisture content suitable for a conductive paste using an organic solvent having high water solubility in view of such conventional problems. For the purpose.

本発明者らは、上記課題を解決するために鋭意研究した結果、銀イオンを含有する水性反応系に還元剤を加えて銀粒子を還元析出させる銀粉の製造方法において、銀粒子の還元析出前または還元析出後あるいは還元析出中に2種以上の分散剤を添加することにより、水溶性の高い有機溶剤を使用する導電性ペーストに適した表面水分量の銀粉を製造することができることを見出し、本発明を完成するに至った。   As a result of earnest research to solve the above problems, the present inventors have added a reducing agent to an aqueous reaction system containing silver ions to reduce and precipitate silver particles. Alternatively, it is found that by adding two or more kinds of dispersants after reduction precipitation or during reduction precipitation, a silver powder having a surface water content suitable for a conductive paste using a highly water-soluble organic solvent can be produced. The present invention has been completed.

すなわち、本発明による銀粉の製造方法は、銀イオンを含有する水性反応系に還元剤を加えて銀粒子を還元析出させる銀粉の製造方法において、銀粒子の還元析出前または還元析出後あるいは還元析出中に2種以上の分散剤を添加することを特徴とする。この銀粉の製造方法において、2種以上の分散剤の各々が、脂肪酸、脂肪酸塩、界面活性剤、有機金属化合物、キレート剤および高分子分散剤からなる群から選ばれる分散剤であるのが好ましく、2種以上の分散剤が、親水性分散剤と疎水性分散剤を含むのが好ましい。親水性分散剤は、ゼラチンまたはコラーゲンペプチドであるのが好ましく、疎水性分散剤は、ベンゾトリアゾール、ステアリン酸、オレイン酸およびこれらの塩からなる群から選ばれるのが好ましい。また、還元剤は、アスコルビン酸、アルカノールアミン、水素化硼素ナトリウム、ヒドロキノン、ヒドラジンおよびホルマリンからなる群から選ばれる1種以上の還元剤であるのが好ましい。   That is, the silver powder production method according to the present invention is a silver powder production method in which silver particles are reduced and precipitated by adding a reducing agent to an aqueous reaction system containing silver ions, before or after reduction precipitation of silver particles or after reduction precipitation. Two or more kinds of dispersants are added therein. In this silver powder production method, each of the two or more dispersants is preferably a dispersant selected from the group consisting of fatty acids, fatty acid salts, surfactants, organometallic compounds, chelating agents, and polymer dispersants. Two or more kinds of dispersants preferably contain a hydrophilic dispersant and a hydrophobic dispersant. The hydrophilic dispersant is preferably gelatin or a collagen peptide, and the hydrophobic dispersant is preferably selected from the group consisting of benzotriazole, stearic acid, oleic acid and salts thereof. The reducing agent is preferably at least one reducing agent selected from the group consisting of ascorbic acid, alkanolamine, sodium borohydride, hydroquinone, hydrazine and formalin.

また、本発明による銀粉は、タップ密度が2g/cm以上、レーザー回折法による平均粒径が0.1〜5μm、BET比表面積が0.1〜5m/g、表面水分量が3〜6分子/nm2であることを特徴とする。 Further, the silver powder according to the present invention has a tap density of 2 g / cm 3 or more, an average particle size by laser diffraction method of 0.1 to 5 μm, a BET specific surface area of 0.1 to 5 m 2 / g, and a surface moisture content of 3 to 3. It is characterized by 6 molecules / nm 2 .

さらに、本発明による導電性ペーストは、上記の銀粉を導体として用いたことを特徴とする。   Furthermore, the conductive paste according to the present invention is characterized by using the above silver powder as a conductor.

本発明によれば、アセトンやジメチルケトンなどのケトン類、酢酸エチルやジエチレングリコールエチルエーテルアセタートなどのエステル類、エタノールやイロプロピルアルコールなどのアルコール類、エチレングリコールやプロピレングリコールなどのグリコール類、エチルセロソルブやメチルセロソルブなどのグリコールエーテル類などの水溶性の高い有機溶剤を使用する導電性ペーストに適した表面水分量の銀粉を製造することができる。   According to the present invention, ketones such as acetone and dimethyl ketone, esters such as ethyl acetate and diethylene glycol ethyl ether acetate, alcohols such as ethanol and isopropyl alcohol, glycols such as ethylene glycol and propylene glycol, ethyl cellosolve And silver powder having a surface water content suitable for a conductive paste using a highly water-soluble organic solvent such as glycol ethers such as methyl cellosolve can be produced.

本発明による銀粉の製造方法の実施の形態では、銀イオンを含有する水性反応系に、還元剤を加えて銀粒子を還元析出させる前または後に2種以上の分散剤を添加することにより、表面が分散剤で被覆され、所望の表面水分量を有し、水溶性の高い有機溶剤に対する分散性が良好な銀粉を生成する。   In the embodiment of the method for producing silver powder according to the present invention, the surface of the aqueous reaction system containing silver ions is added by adding two or more kinds of dispersants before or after reducing particles are precipitated by adding a reducing agent. Is coated with a dispersant to produce a silver powder having a desired surface moisture content and good dispersibility in a highly water-soluble organic solvent.

銀イオンを含有する水性反応系としては、硝酸銀、銀錯体または銀中間体を含有する水溶液またはスラリーを使用することができる。銀錯体を含有する水溶液は、アンモニア水、アンモニウム塩、キレート化合物などを硝酸銀水溶液に添加することにより生成することができる。銀中間体を含有するスラリーは、水酸化ナトリウム、塩化ナトリウム、炭酸ナトリウムなどを硝酸銀水溶液に添加することにより生成することができる。これらの中で、銀粉が適当な粒径と球状の形状を有するようにするためには、硝酸銀水溶液にアンモニア水を添加して得られるアンミン錯体水溶液を使用するのが好ましい。アンミン錯体中のアンモニアの配位数は2であるため、銀1モル当たりアンモニア2モル以上を添加する。また、アンモニアの添加量が多過ぎると錯体が安定化し過ぎて還元が進み難くなるので、アンモニアの添加量は銀1モル当たり8モル以下であるのが好ましい。なお、還元剤の添加量を多くするなどの調整を行なえば、アンモニアの添加量が8モルを超えても適当な粒径の球状銀粉を得ることは可能である。   As an aqueous reaction system containing silver ions, an aqueous solution or slurry containing silver nitrate, a silver complex or a silver intermediate can be used. An aqueous solution containing a silver complex can be produced by adding aqueous ammonia, ammonium salt, chelate compound or the like to the aqueous silver nitrate solution. A slurry containing a silver intermediate can be produced by adding sodium hydroxide, sodium chloride, sodium carbonate or the like to an aqueous silver nitrate solution. Among these, in order to make the silver powder have an appropriate particle size and spherical shape, it is preferable to use an ammine complex aqueous solution obtained by adding ammonia water to a silver nitrate aqueous solution. Since the coordination number of ammonia in the ammine complex is 2, 2 mol or more of ammonia is added per 1 mol of silver. Further, if the amount of ammonia added is too large, the complex becomes too stable and the reduction is difficult to proceed. Therefore, the amount of ammonia added is preferably 8 moles or less per mole of silver. If adjustments such as increasing the amount of reducing agent added are made, it is possible to obtain spherical silver powder having an appropriate particle size even if the amount of ammonia added exceeds 8 mol.

還元剤としては、アスコルビン酸、亜硫酸塩、アルカノールアミン、過酸化水素水、ギ酸、ギ酸アンモニウム、ギ酸ナトリウム、グリオキサール、酒石酸、次亜燐酸ナトリウム、水素化硼素ナトリウム、ヒドロキノン、ヒドラジン、ヒドラジン化合物、ピロガロール、ぶどう糖、没食子酸、ホルマリン、無水亜硫酸ナトリウム、ロンガリットなどを使用することができる。これらの中で、アスコルビン酸、アルカノールアミン、水素化硼素ナトリウム、ヒドロキノン、ヒドラジンおよびホルマリンからなる群から選ばれる1種類以上を使用するのが好ましく、特に、安価であることからホルマリンを使用するのが好ましい。これらの還元剤を使用すれば、適当な粒径の銀粒子を得ることができる。還元剤の添加量は、銀の反応収率を上げるためには、銀に対して1当量以上にする必要がある。還元力の弱い還元剤を使用する場合には、銀に対して2当量以上の還元剤、例えば、10〜20当量の還元剤を添加してもよい。また、還元剤の添加方法については、銀粉の凝集を防ぐために、1当量/分以上の速さで添加するのが好ましい。この理由は明確ではないが、還元剤を短時間で投入することで、銀粒子の還元析出が一挙に生じて、短時間で還元反応が終了し、発生した核同士の凝集が生じ難いため、分散性が向上すると考えられる。したがって、還元剤の添加時間が短いほど好ましく、例えば、還元剤を100当量/分以上の速さで添加してもよく、また、還元の際には、より短時間で反応が終了するように反応液を攪拌するのが好ましい。   As a reducing agent, ascorbic acid, sulfite, alkanolamine, hydrogen peroxide solution, formic acid, ammonium formate, sodium formate, glyoxal, tartaric acid, sodium hypophosphite, sodium borohydride, hydroquinone, hydrazine, hydrazine compound, pyrogallol, Glucose, gallic acid, formalin, anhydrous sodium sulfite, Rongalite and the like can be used. Among these, it is preferable to use at least one selected from the group consisting of ascorbic acid, alkanolamine, sodium borohydride, hydroquinone, hydrazine and formalin, and it is particularly preferable to use formalin because it is inexpensive. preferable. If these reducing agents are used, silver particles having an appropriate particle size can be obtained. In order to increase the reaction yield of silver, the addition amount of the reducing agent needs to be 1 equivalent or more with respect to silver. When a reducing agent having a weak reducing power is used, a reducing agent of 2 equivalents or more, for example, 10 to 20 equivalents of reducing agent may be added to silver. Moreover, about the addition method of a reducing agent, in order to prevent aggregation of silver powder, it is preferable to add at a speed | rate of 1 equivalent / min or more. The reason for this is not clear, but by introducing the reducing agent in a short time, reduction precipitation of silver particles occurs at once, the reduction reaction is completed in a short time, and aggregation of the generated nuclei is difficult to occur, It is thought that dispersibility is improved. Therefore, it is preferable that the addition time of the reducing agent is as short as possible. For example, the reducing agent may be added at a rate of 100 equivalents / minute or more, and the reaction is completed in a shorter time during the reduction. It is preferable to stir the reaction solution.

分散剤としては、脂肪酸、脂肪酸塩、界面活性剤、有機金属化合物、キレート剤、高分子分散剤などを使用することができる。脂肪酸の例としては、プロピオン酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、アクリル酸、オレイン酸、リノール酸、アラキドン酸などを挙げることができる。脂肪酸塩の例としては、リチウム、ナトリウム、カリウム、バリウム、マグネシウム、カルシウム、アルミニウム、鉄、コバルト、マンガン、鉛、亜鉛、スズ、ストロンチウム、ジルコニウム、銀、銅などの金属と脂肪酸が塩を形成したものを挙げることができる。界面活性剤の例としては、アルキルベンゼンスルホン酸塩やポリオキシエチレンアルキルエーテルリン酸塩などの陰イオン界面活性剤、脂肪族4級アンモニウム塩などの陽イオン界面活性剤、イミダゾリニウムベタインなどの両性界面活性剤、ポリオキシエチレンアルキルエーテルやポリオキシエチレン脂肪酸エステルなどの非イオン界面活性剤などを挙げることができる。有機金属化合物の例としては、アセチルアセトントリブトキシジルコニウム、クエン酸マグネシウム、ジエチル亜鉛、ジブチルスズオキサイド、ジメチル亜鉛、テトラ−n−ブトキシジルコニウム、トリエチルインジウム、トリエチルガリウム、トリメチルインジウム、トリメチルガリウム、モノブチルスズオキサイド、テトライソシアネートシラン、テトラメチルシラン、テトラメトキシシラン、ポリメトキシシロキサン、モノメチルトリイソシアネートシラン、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤などを挙げることができる。キレート剤の例としては、イミダゾール、オキサゾール、チアゾール、セレナゾール、ピラゾール、イソオキサゾール、イソチアゾール、1H−1,2,3−トリアゾール、2H−1,2,3−トリアゾール、1H−1,2,4−トリアゾール、4H−1,2,4−トリアゾール、1,2,3−オキサジアゾール、1,2,4−オキサジアゾール、1,2,5−オキサジアゾール、1,3,4−オキサジアゾール、1,2,3−チアジアゾール、1,2,4−チアジアゾール、1,2,5−チアジアゾール、1,3,4−チアジアゾール、1H−1,2,3,4−テトラゾール、1,2,3,4−オキサトリアゾール、1,2,3,4−チアトリアゾール、2H−1,2,3,4−テトラゾール、1,2,3,5−オキサトリアゾール、1,2,3,5−チアトリアゾール、インダゾール、ベンゾイミダゾールおよびベンゾトリアゾールとこれらの塩、あるいは、シュウ酸、コハク酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、グリコール酸、乳酸、オキシ酪酸、グリセリン酸、酒石酸、リンゴ酸、タルトロン酸、ヒドロアクリル酸、マンデル酸、クエン酸、アスコルビン酸などを挙げることができる。高分子分散剤の例としては、ペプチド、ゼラチン、コラーゲンペプチド、アルブミン、アラビアゴム、プロタルビン酸、リサルビン酸などを挙げることができる。   As the dispersant, fatty acids, fatty acid salts, surfactants, organometallic compounds, chelating agents, polymer dispersants and the like can be used. Examples of fatty acids include propionic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, acrylic acid, oleic acid, linoleic acid, arachidonic acid and the like. Examples of fatty acid salts include lithium, sodium, potassium, barium, magnesium, calcium, aluminum, iron, cobalt, manganese, lead, zinc, tin, strontium, zirconium, silver, copper, and other fatty acids and salts formed. Things can be mentioned. Examples of surfactants include anionic surfactants such as alkylbenzene sulfonates and polyoxyethylene alkyl ether phosphates, cationic surfactants such as aliphatic quaternary ammonium salts, and amphoteric compounds such as imidazolinium betaine. Nonionic surfactants such as surfactants and polyoxyethylene alkyl ethers and polyoxyethylene fatty acid esters can be mentioned. Examples of organometallic compounds include acetylacetone tributoxyzirconium, magnesium citrate, diethylzinc, dibutyltin oxide, dimethylzinc, tetra-n-butoxyzirconium, triethylindium, triethylgallium, trimethylindium, trimethylgallium, monobutyltin oxide, tetra Examples include isocyanate silane, tetramethyl silane, tetramethoxy silane, polymethoxy siloxane, monomethyl triisocyanate silane, silane coupling agent, titanate coupling agent, aluminum coupling agent and the like. Examples of chelating agents include imidazole, oxazole, thiazole, selenazole, pyrazole, isoxazole, isothiazole, 1H-1,2,3-triazole, 2H-1,2,3-triazole, 1H-1,2,4. -Triazole, 4H-1,2,4-triazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxa Diazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-thiadiazole, 1H-1,2,3,4-tetrazole, 1,2 , 3,4-oxatriazole, 1,2,3,4-thiatriazole, 2H-1,2,3,4-tetrazole, 1,2,3,5-oxatriazole, , 3,5-thiatriazole, indazole, benzimidazole and benzotriazole and their salts, or oxalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecane Diacid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, glycolic acid, lactic acid, oxybutyric acid, glyceric acid, tartaric acid, malic acid, tartronic acid, hydroacrylic acid, mandelic acid, citric acid, ascorbic acid, etc. Can be mentioned. Examples of the polymer dispersant include peptides, gelatin, collagen peptides, albumin, gum arabic, protalbic acid, lysalbic acid and the like.

上述した分散剤から2種以上の分散剤を適宜選択して、銀粒子の還元析出前または還元析出後あるいは還元析出中のスラリー状の反応系に添加することにより、所望の表面水分量の銀粉を製造することができる。導電性ペーストの溶剤として水溶性の高い有機溶剤を使用する場合、その導電性ペーストに使用する銀粉の表面水分量が3分子/nm未満では、銀粉がペースト内で分散しないで塊状になったり、あるいはその塊状の銀粉に力が加わってフレーク状の銀粉になり、6分子/nmを超えると、ペーストの保存性が悪化するなどの不具合がある。したがって、水溶性の高い有機溶剤を使用する導電性ペーストに使用する銀粉の表面水分量は3〜6分子/nmであるのが好ましい。上述した分散剤から2種以上の分散剤を適宜選択して、銀粒子の還元析出前または還元析出後あるいは還元析出中のスラリー状の反応系に添加すれば、表面水分量が3〜6分子/nmの銀粉を製造することができる。特に、表面水分量が3〜6分子/nmの銀粉を製造するためには、ベンゾトリアゾール、ステアリン酸、オレイン酸およびこれらの塩などから選ばれる疎水性分散剤と、ゼラチンやコラーゲンペプチドなどの親水性分散剤を組み合わせて使用するのが好ましい。なお、各々の分散剤の添加量は、水性反応系に仕込まれる銀に対して0.05〜2質量%の間で銀粉が所望の特性になるように調整すればよく、また、各々の分散剤の添加量の比率は、銀粉が所望の特性になるように調整すればよい。 Two or more kinds of dispersants are appropriately selected from the above-mentioned dispersants, and added to a slurry-like reaction system before or after reduction precipitation of silver particles or during reduction precipitation, thereby obtaining silver powder having a desired surface moisture content. Can be manufactured. When a highly water-soluble organic solvent is used as the solvent for the conductive paste, if the surface moisture content of the silver powder used for the conductive paste is less than 3 molecules / nm 2 , the silver powder may not be dispersed in the paste and may be agglomerated. Alternatively, force is applied to the bulk silver powder to form a flaky silver powder, and when it exceeds 6 molecules / nm 2 , there is a problem such as deterioration of the storage stability of the paste. Therefore, it is preferable that the surface water content of the silver powder used for the conductive paste using an organic solvent having high water solubility is 3 to 6 molecules / nm 2 . If two or more kinds of dispersants are appropriately selected from the above-mentioned dispersants and added to the slurry-like reaction system before or after the reduction precipitation of the silver particles or during the reduction precipitation, the surface moisture content is 3 to 6 molecules. / Nm 2 silver powder can be produced. In particular, in order to produce silver powder having a surface moisture content of 3 to 6 molecules / nm 2 , a hydrophobic dispersant selected from benzotriazole, stearic acid, oleic acid, and salts thereof, gelatin, collagen peptides, and the like It is preferable to use a combination of hydrophilic dispersants. In addition, what is necessary is just to adjust the addition amount of each dispersing agent so that silver powder may become a desired characteristic between 0.05-2 mass% with respect to the silver with which an aqueous reaction system is prepared, and also each dispersion | distribution. What is necessary is just to adjust the ratio of the addition amount of an agent so that silver powder may become a desired characteristic.

得られた銀含有スラリーを濾過し、水洗することによって、銀に対して1〜200質量%の水を含み、流動性がほとんどない塊状のケーキが得られる。このケーキの乾燥を早めたり、乾燥時の凝集を防ぐために、ケーキ中の水を低級アルコールやポリオールなどで置換してもよい。このケーキを強制循環式大気乾燥機、真空乾燥機、気流乾燥装置などの乾燥機によって乾燥した後、解砕することにより、銀粉が得られる。解砕の代わりに、粒子を機械的に流動化させることができる装置に銀粒子を投入して、粒子同士を機械的に衝突させることによって、銀粉の粒子表面の凹凸や角ばった部分を滑らかにする表面平滑化処理を行ってもよい。また、解砕や平滑化処理の後に分級処理を行ってもよい。なお、乾燥、粉砕および分級を行うことができる一体型の装置((株)ホソカワミクロン製のドライマイスタや、ミクロンドライヤなど)を用いて乾燥、粉砕および分級を行ってもよい。   The obtained silver-containing slurry is filtered and washed with water, whereby a lump cake containing 1 to 200% by mass of water with little fluidity is obtained. In order to accelerate the drying of the cake or prevent aggregation at the time of drying, the water in the cake may be replaced with a lower alcohol or a polyol. The cake is dried by a dryer such as a forced circulation air dryer, vacuum dryer, airflow dryer, etc., and then crushed to obtain silver powder. Instead of crushing, silver particles are put into an apparatus that can mechanically fluidize the particles, and the particles are mechanically collided with each other, thereby smoothing the irregularities and corners of the silver powder particles. Surface smoothing treatment may be performed. Moreover, you may perform a classification process after crushing and a smoothing process. In addition, you may dry, grind | pulverize, and classify | categorize using the integrated apparatus (Drymeister made from Hosokawa Micron Corporation, a micron dryer etc.) which can perform drying, grinding | pulverization, and classification.

このようにして得られた銀粉は、タップ密度が2g/cm以上、好ましくは3g/cm以上、さらに好ましくは3.5g/cm以上、レーザー回折法による平均粒径が0.1〜5μm、好ましくは0.5〜3μm、BET比表面積が0.1〜5m/g、好ましくは0.1〜2m/g、表面水分量が3〜6分子/nmであり、水溶性の高い有機溶剤に対する分散性が良好である。なお、タップ密度が2g/cmより小さいと、銀粒子同士の凝集が激しくなり、ファインライン化への対応が難しくなる。また、レーザー回折法による平均粒径が0.1μmより小さいと、ファインライン化への対応は可能であるが、粒子の活性が高く、銀粉を焼成型ペーストに使用する場合に500℃以上で焼成するには適さない。一方、レーザー回折法による平均粒径が5μmより大きくなると分散性が劣ることになり、やはりファインライン化への対応が難しくなる。さらに、BET比表面積が5m/gを超えると、ペーストの粘度が高過ぎて、印刷性などが悪くなる。一方、BET比表面積が0.1m/g未満であると、粒子が大き過ぎて、ファインライン化への対応が難しくなる。 The silver powder thus obtained has a tap density of 2 g / cm 3 or more, preferably 3 g / cm 3 or more, more preferably 3.5 g / cm 3 or more, and an average particle size by laser diffraction method of 0.1 to 0.1 g. 5 [mu] m, preferably 0.5 to 3 [mu] m, BET specific surface area of 0.1 to 5 m 2 / g, preferably 0.1~2m 2 / g, the surface moisture content is 3-6 molecules / nm 2, a water-soluble Dispersibility with respect to organic solvents having high viscosity is good. When the tap density is less than 2 g / cm 3 , the silver particles are agglomerated and it becomes difficult to cope with fine lines. Also, if the average particle diameter by laser diffraction method is smaller than 0.1 μm, it is possible to cope with fine lines, but the activity of the particles is high, and when silver powder is used as a baking paste, baking is performed at 500 ° C. or higher. Not suitable for. On the other hand, when the average particle diameter by laser diffraction method is larger than 5 μm, the dispersibility is inferior, and it becomes difficult to cope with the fine line. Furthermore, when the BET specific surface area exceeds 5 m 2 / g, the viscosity of the paste is too high, and the printability is deteriorated. On the other hand, if the BET specific surface area is less than 0.1 m 2 / g, the particles are too large, and it becomes difficult to cope with fine lines.

以下、本発明による銀粉およびその製造方法の実施例について詳細に説明する。   Hereinafter, the Example of the silver powder by this invention and its manufacturing method is described in detail.

[実施例1]
銀54kgを含む硝酸銀水溶液4300kgに、25質量%のアンモニア水203kgと、25質量%の水酸化ナトリウム水溶液18kgを添加し、銀アンミン錯塩水溶液を得た。この銀アンミン錯塩水溶液の液温を20℃とし、銀の量に対して0.2質量%のコラーゲンペプチド(ゼライス社製のNCG−10)の水溶液を添加した後、18.5質量%のホルマリン水溶液480kgを加えて、銀粒子を析出させた。ホルマリン水溶液の添加が終了した後、銀の量に対して0.3質量%のベンゾトリアゾールのNa塩の水溶液を添加して、得られた銀含有スラリーを濾過し、水洗し、ケーキを得た。
[Example 1]
To 4300 kg of silver nitrate aqueous solution containing 54 kg of silver, 203 kg of 25% by mass of ammonia water and 18 kg of 25% by mass of sodium hydroxide aqueous solution were added to obtain a silver ammine complex salt aqueous solution. After the liquid temperature of this silver ammine complex salt aqueous solution was 20 ° C., an aqueous solution of 0.2 mass% collagen peptide (NCG-10 manufactured by Zerais Co., Ltd.) was added to the amount of silver, and then 18.5 mass% formalin. 480 kg of an aqueous solution was added to precipitate silver particles. After the addition of the formalin aqueous solution was completed, an aqueous solution of 0.3 mass% benzotriazole Na salt relative to the amount of silver was added, and the resulting silver-containing slurry was filtered and washed with water to obtain a cake. .

得られたケーキのうち11.3kgを、内容積100Lの真空乾燥機によって75℃で16時間乾燥し、乾燥粉10.0kgを得た。この乾燥粉が乾燥していることを赤外水分計によって確認した。得られた乾燥粉を解砕した後、分級し、所望の粒径の銀粉を得た。   11.3 kg of the obtained cake was dried at 75 ° C. for 16 hours by a vacuum dryer having an internal volume of 100 L to obtain 10.0 kg of dried powder. It was confirmed with an infrared moisture meter that the dried powder was dry. The obtained dry powder was crushed and classified to obtain silver powder having a desired particle size.

得られた銀粉について、タップ密度、レーザー回折法による平均粒径、最大粒径、BET比表面積および表面水分量を求めた。タップ密度は、タップ密度測定装置(柴山科学社製のカサ比重測定装置SS−DA−2)を使用し、銀粉試料15gを計量して20mLの試験管に入れ、落差20mmで1000回タッピングし、タップ密度=試料重量(15g)/タッピング後の試料容積(cm)から算出した。レーザー回折法による平均粒径D50(累積50質量%粒径)および最大粒径Dmaxは、銀粉試料0.3gをイソプロピルアルコール30mLに加え、出力50Wの超音波洗浄器により5分間分散させ、マクロトラック粒度分布測定装置(ハネウエル(Honeywell)−日機装社製のマクロトラック粒度分布測定装置9320−HRA(X−100))を使用して測定した。BET比表面積は、BET比表面積測定器(カウンタークロム(Quanta Chrome)社製のモノソーブ)を使用してBET1点法により測定した。表面水分量は、電量滴定方式自動水分測定装置(三菱化学株式会社製のCA−100(気化装置VA−100))を使用して、気化温度100℃で銀粉試料1gから出た水分量(ppm)を測定し、表面水分量(HO分子/nm)=銀粉試料1gから出た水分量(ppm)÷10÷18.0×(6.02×1023)÷BET比表面積(m/g)×1018から算出した。その結果、タップ密度が4.3g/cm、レーザー回折法による平均粒径が1.4μm、最大粒径が5.5μm、BET比表面積が0.74m/g、表面水分量が3.5分子/nmであった。 About the obtained silver powder, the tap density, the average particle diameter by a laser diffraction method, the maximum particle diameter, the BET specific surface area, and the surface moisture content were calculated | required. Tap density is measured using a tap density measuring device (Casa specific gravity measuring device SS-DA-2 manufactured by Shibayama Kagaku Co., Ltd.), 15 g of a silver powder sample is weighed and placed in a 20 mL test tube, and tapped 1000 times with a drop of 20 mm. Calculated from tap density = sample weight (15 g) / sample volume after tapping (cm 3 ). The average particle diameter D50 (cumulative 50 mass% particle diameter) and the maximum particle diameter Dmax by laser diffraction method are as follows: 0.3 g of silver powder sample is added to 30 mL of isopropyl alcohol and dispersed for 5 minutes by an ultrasonic cleaner with an output of 50 W. It measured using the particle size distribution measuring apparatus (Honeywell-Macrotrack particle size distribution measuring apparatus 9320-HRA (X-100) by Nikkiso Co., Ltd.). The BET specific surface area was measured by the BET single point method using a BET specific surface area measuring device (Monosorb manufactured by Quanta Chrome). The surface moisture content was measured by using a coulometric titration type automatic moisture measuring device (CA-100 (vaporizer VA-100) manufactured by Mitsubishi Chemical Co., Ltd.) and the moisture content (ppm) at a vaporization temperature of 100 ° C. ) Surface water content (H 2 O molecule / nm 2 ) = water content (ppm) from 1 g of silver powder sample ÷ 10 6 ÷ 18.0 × (6.02 × 10 23 ) ÷ BET specific surface area ( m 2 / g) × 10 18 . As a result, the tap density was 4.3 g / cm 3 , the average particle size by laser diffraction method was 1.4 μm, the maximum particle size was 5.5 μm, the BET specific surface area was 0.74 m 2 / g, and the surface moisture content was 3. It was 5 molecules / nm 2 .

[実施例2]
銀68kgを含む硝酸銀水溶液4100kgに、25質量%のアンモニア水253kgと、25質量%の水酸化ナトリウム水溶液22kgを添加し、銀アンミン錯塩水溶液を得た。この銀アンミン錯塩水溶液の液温を20℃とし、銀の量に対して0.2質量%のコラーゲンペプチド(ゼライス社製のNCG−10)の水溶液を添加した後、18.5質量%のホルマリン水溶液600kgを加えて、銀粒子を析出させた。ホルマリン水溶液の添加が終了した後、銀の量に対して0.3質量%のベンゾトリアゾールのエタノール溶液を添加して、得られた銀含有スラリーを濾過し、水洗し、ケーキを得た。
[Example 2]
To 4100 kg of silver nitrate aqueous solution containing 68 kg of silver, 253 kg of 25 mass% aqueous ammonia and 22 kg of 25 mass% sodium hydroxide aqueous solution were added to obtain an aqueous silver ammine complex salt solution. After the liquid temperature of this silver ammine complex salt aqueous solution was 20 ° C., an aqueous solution of 0.2 mass% collagen peptide (NCG-10 manufactured by Zerais Co., Ltd.) was added to the amount of silver, and then 18.5 mass% formalin. 600 kg of an aqueous solution was added to precipitate silver particles. After the addition of the formalin aqueous solution was completed, an ethanol solution of 0.3% by mass of benzotriazole with respect to the amount of silver was added, and the resulting silver-containing slurry was filtered and washed with water to obtain a cake.

得られたケーキのうち75.5kgを、500Lの真空乾燥機によって70℃で24時間乾燥し、乾燥粉63.5kgを得た。この乾燥粉が乾燥していることを赤外水分計によって確認した。得られた乾燥粉を解砕した後、分級し、所望の粒径の銀粉を得た。   Of the obtained cake, 75.5 kg was dried with a 500 L vacuum dryer at 70 ° C. for 24 hours to obtain 63.5 kg of dried powder. It was confirmed with an infrared moisture meter that the dried powder was dry. The obtained dry powder was crushed and classified to obtain silver powder having a desired particle size.

得られた銀粉について、実施例1と同様の方法によりタップ密度、レーザー回折法による平均粒径、最大粒径、BET比表面積および表面水分量を求めた。その結果、タップ密度が4.3g/cm、レーザー回折法による平均粒径が1.4μm、最大粒径が5.5μm、BET比表面積が0.69m/g、表面水分量が5.2分子/nmであった。 About the obtained silver powder, the tap density, the average particle diameter by the laser diffraction method, the maximum particle diameter, the BET specific surface area, and the surface moisture content were determined in the same manner as in Example 1. As a result, the tap density was 4.3 g / cm 3 , the average particle size by laser diffraction method was 1.4 μm, the maximum particle size was 5.5 μm, the BET specific surface area was 0.69 m 2 / g, and the surface moisture content was 5. 2 molecules / nm 2 .

[実施例3]
銀54kgを含む硝酸銀水溶液4500kgに、25質量%のアンモニア水203kgと、25質量%の水酸化ナトリウム水溶液18kgを添加し、銀アンミン錯塩水溶液を得た。この銀アンミン錯塩水溶液の液温を20℃とし、37質量%のホルマリン水溶液240kgを加えて、銀粒子を析出させた。ホルマリン水溶液の添加が終了した後、銀の量に対して0.5質量%のベンゾトリアゾールのエタノール溶液を添加し、その後、銀の量に対して0.2質量%のコラーゲンペプチド(ゼライス社製のNCG−10)の水溶液を添加して、得られた銀含有スラリーを濾過し、水洗し、ケーキを得た。
[Example 3]
To 4500 kg of silver nitrate aqueous solution containing 54 kg of silver, 203 kg of 25 mass% aqueous ammonia and 18 kg of 25 mass% sodium hydroxide aqueous solution were added to obtain an aqueous silver ammine complex salt solution. The liquid temperature of this silver ammine complex salt aqueous solution was 20 degreeC, and 240 kg of 37 mass% formalin aqueous solution was added, and silver particle was deposited. After the addition of the formalin aqueous solution, 0.5% by mass of an ethanol solution of benzotriazole with respect to the amount of silver was added, and then 0.2% by mass of collagen peptide with respect to the amount of silver (made by Zelice) Of NCG-10) was added and the resulting silver-containing slurry was filtered and washed with water to give a cake.

得られたケーキのうち17.1kgを、使用風量15m/分、入り口温度90℃、出口温度60℃に設定した気流式乾燥機((株)セイシン企業製のフラッシュジェットドライヤーFJD−4)によって10分間乾燥し、乾燥粉15.8kgを得た。この乾燥粉が乾燥していることを赤外水分計によって確認した。得られた乾燥粉を解砕した後、分級し、所望の粒径の銀粉を得た。 17.1 kg of the obtained cake was subjected to an air flow dryer (flash jet dryer FJD-4 manufactured by Seishin Enterprise Co., Ltd.) set at an air flow rate of 15 m 3 / min, an inlet temperature of 90 ° C., and an outlet temperature of 60 ° C. It was dried for 10 minutes to obtain 15.8 kg of dry powder. It was confirmed with an infrared moisture meter that the dried powder was dry. The obtained dry powder was crushed and classified to obtain silver powder having a desired particle size.

得られた銀粉について、実施例1と同様の方法によりタップ密度、レーザー回折法による平均粒径、最大粒径、BET比表面積および表面水分量について求めた。その結果、タップ密度が4.3g/cm、レーザー回折法による平均粒径が1.4μm、最大粒径が4.6μm、BET比表面積が0.80m/g、表面水分量が5.6分子/nmであった。 About the obtained silver powder, it calculated | required about the tap density, the average particle diameter by a laser diffraction method, the maximum particle diameter, the BET specific surface area, and the surface moisture content by the method similar to Example 1. FIG. As a result, the tap density was 4.3 g / cm 3 , the average particle size by laser diffraction method was 1.4 μm, the maximum particle size was 4.6 μm, the BET specific surface area was 0.80 m 2 / g, and the surface moisture content was 5. It was 6 molecules / nm 2 .

[実施例4]
銀54kgを含む硝酸銀水溶液4550kgに、25質量%のアンモニア水169kgと、25質量%の水酸化ナトリウム水溶液16kgを添加し、銀アンミン錯塩水溶液を得た。この銀アンミン錯塩水溶液の液温を20℃とし、37質量%のホルマリン水溶液240kgを加えて、銀粒子を析出させた。ホルマリン水溶液の添加が終了した後、銀の量に対して0.5質量%のベンゾトリアゾールのエタノール溶液を添加し、その後、銀の量に対して0.2質量%のゼラチン(ゼライス社製のE−200)の水溶液を添加して、得られた銀含有スラリーを濾過し、水洗し、ケーキを得た。
[Example 4]
To 4550 kg of silver nitrate aqueous solution containing 54 kg of silver, 169 kg of 25 mass% aqueous ammonia and 16 kg of 25 mass% sodium hydroxide aqueous solution were added to obtain an aqueous silver ammine complex salt solution. The liquid temperature of this silver ammine complex salt aqueous solution was 20 degreeC, and 240 kg of 37 mass% formalin aqueous solution was added, and silver particle was deposited. After completion of the addition of the formalin aqueous solution, 0.5% by mass of an ethanol solution of benzotriazole based on the amount of silver was added, and then 0.2% by mass of gelatin (manufactured by Zelice Co., Ltd.) E-200) was added and the resulting silver-containing slurry was filtered and washed with water to give a cake.

得られたケーキのうち17.1kgを、100Lの真空乾燥機によって70℃で24時間乾燥し、乾燥粉14.0kgを得た。この乾燥粉が乾燥していることを赤外水分計によって確認した。得られた乾燥粉を解砕した後、分級し、所望の粒径の銀粉を得た。   17.1 kg of the obtained cake was dried at 70 ° C. for 24 hours by a 100 L vacuum dryer to obtain 14.0 kg of dried powder. It was confirmed with an infrared moisture meter that the dried powder was dry. The obtained dry powder was crushed and classified to obtain silver powder having a desired particle size.

得られた銀粉について、実施例1と同様の方法によりタップ密度、レーザー回折法による平均粒径、最大粒径、BET比表面積および表面水分量について求めた。その結果、タップ密度が4.3g/cm、レーザー回折法による平均粒径が1.3μm、最大粒径が5.5μm、BET比表面積が0.69m/g、表面水分量が3.7分子/nmであった。 About the obtained silver powder, it calculated | required about the tap density, the average particle diameter by a laser diffraction method, the maximum particle diameter, the BET specific surface area, and the surface moisture content by the method similar to Example 1. FIG. As a result, the tap density was 4.3 g / cm 3 , the average particle size by laser diffraction method was 1.3 μm, the maximum particle size was 5.5 μm, the BET specific surface area was 0.69 m 2 / g, and the surface moisture content was 3. It was 7 molecules / nm 2 .

[比較例1]
銀108kgを含む硝酸銀水溶液4450kgに、25質量%のアンモニア水214kgと、25質量%の水酸化ナトリウム水溶液40kgを添加し、銀アンミン錯塩水溶液を得た。この銀アンミン錯塩水溶液の液温を30℃とし、37質量%のホルマリン水溶液264kgを加えて、銀粒子を析出させた。ホルマリン水溶液の添加が終了した後、銀の量に対して0.4質量%のオレイン酸を添加して、得られた銀含有スラリーを濾過し、水洗し、ケーキを得た。
[Comparative Example 1]
To 4450 kg of silver nitrate aqueous solution containing 108 kg of silver, 214 kg of 25 mass% aqueous ammonia and 40 kg of 25 mass% aqueous sodium hydroxide were added to obtain an aqueous silver ammine complex salt solution. The liquid temperature of this silver ammine complex salt aqueous solution was 30 ° C., and 264 kg of a 37% by mass formalin aqueous solution was added to precipitate silver particles. After the addition of the formalin aqueous solution was completed, 0.4% by mass of oleic acid was added to the amount of silver, and the resulting silver-containing slurry was filtered and washed with water to obtain a cake.

得られたケーキのうち10.1kgを、100Lの真空乾燥機によって60℃で24時間乾燥し、乾燥粉8.2kgを得た。この乾燥粉が乾燥していることを赤外水分計によって確認した。得られた乾燥粉を解砕した後、分級し、所望の粒径の銀粉を得た。   10.1 kg of the obtained cake was dried at 60 ° C. for 24 hours with a 100 L vacuum dryer to obtain 8.2 kg of dried powder. It was confirmed with an infrared moisture meter that the dried powder was dry. The obtained dry powder was crushed and classified to obtain silver powder having a desired particle size.

得られた銀粉について、実施例1と同様の方法によりタップ密度、レーザー回折法による平均粒径、最大粒径、BET比表面積および表面水分量について求めた。その結果、タップ密度が3.8g/cm、レーザー回折法による平均粒径が2.4μm、最大粒径が7.8μm、BET比表面積が0.47m/g、表面水分量が1.1分子/nmであった。 About the obtained silver powder, it calculated | required about the tap density, the average particle diameter by a laser diffraction method, the maximum particle diameter, the BET specific surface area, and the surface moisture content by the method similar to Example 1. FIG. As a result, the tap density was 3.8 g / cm 3 , the average particle size by laser diffraction method was 2.4 μm, the maximum particle size was 7.8 μm, the BET specific surface area was 0.47 m 2 / g, and the surface moisture content was 1. 1 molecule / nm 2 .

[比較例2]
銀54kgを含む硝酸銀水溶液4500kgに、25質量%のアンモニア水225kgを添加し、銀アンミン錯塩水溶液を得た。この銀アンミン錯塩水溶液の液温を40℃とし、銀の量に対して0.3質量%のポリオキシエチレンアルキルエーテル(第一工業製薬製のノイゲンET−80)を水溶液中に添加した後、37質量%のホルマリン水溶液240kgを加えて、銀粒子を析出させた。このようにして得られた銀含有スラリーを濾過し、水洗し、ケーキを得た。
[Comparative Example 2]
To 4500 kg of an aqueous silver nitrate solution containing 54 kg of silver, 225 kg of 25 mass% ammonia water was added to obtain an aqueous silver ammine complex salt solution. After the liquid temperature of this silver ammine complex salt aqueous solution was set to 40 ° C. and 0.3% by mass of polyoxyethylene alkyl ether (Neugen ET-80 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was added to the aqueous solution, 240 kg of a 37% by mass formalin aqueous solution was added to precipitate silver particles. The silver-containing slurry thus obtained was filtered and washed with water to obtain a cake.

得られたケーキのうち46.5kgを、500Lの真空乾燥機によって80℃で16時間乾燥し、乾燥粉41.6kgを得た。この乾燥粉が乾燥していることを赤外水分計によって確認した。得られた乾燥粉を解砕した後、分級し、所望の粒径の銀粉を得た。   46.5 kg of the obtained cake was dried at 80 ° C. for 16 hours with a 500 L vacuum dryer to obtain 41.6 kg of dried powder. It was confirmed with an infrared moisture meter that the dried powder was dry. The obtained dry powder was crushed and classified to obtain silver powder having a desired particle size.

得られた銀粉について、実施例1と同様の方法によりタップ密度、レーザー回折法による平均粒径、最大粒径、BET比表面積および表面水分量について求めた。その結果、タップ密度が3.6g/cm、レーザー回折法による平均粒径が4.7μm、最大粒径が9.3μm、BET比表面積が0.30m/g、表面水分量が2.7分子/nmであった。 About the obtained silver powder, it calculated | required about the tap density, the average particle diameter by a laser diffraction method, the maximum particle diameter, the BET specific surface area, and the surface moisture content by the method similar to Example 1. FIG. As a result, the tap density was 3.6 g / cm 3 , the average particle size by laser diffraction method was 4.7 μm, the maximum particle size was 9.3 μm, the BET specific surface area was 0.30 m 2 / g, and the surface moisture content was 2. It was 7 molecules / nm 2 .

[比較例3]
銀54kgを含む硝酸銀水溶液4550kgに、25質量%のアンモニア水203kgと、25質量%の水酸化ナトリウム水溶液18kgを添加し、銀アンミン錯塩水溶液を得た。この銀アンミン錯塩水溶液の液温を40℃とし、37質量%のホルマリン水溶液240kgを加えて、銀粒子を析出させた。ホルマリン水溶液の添加が終了した後、銀の量に対してステアリン酸として0.2質量%のステアリン酸エマルジョンを添加して、得られた銀含有スラリーを濾過し、水洗し、ケーキを得た。
[Comparative Example 3]
To 4550 kg of silver nitrate aqueous solution containing 54 kg of silver, 203 kg of 25% by mass of aqueous ammonia and 18 kg of 25% by mass of sodium hydroxide aqueous solution were added to obtain a silver ammine complex salt aqueous solution. The liquid temperature of this silver ammine complex salt aqueous solution was 40 ° C., and 240 kg of a 37% by mass formalin aqueous solution was added to precipitate silver particles. After the addition of the formalin aqueous solution was completed, 0.2 mass% of stearic acid emulsion was added as stearic acid to the amount of silver, and the resulting silver-containing slurry was filtered and washed with water to obtain a cake.

得られたケーキのうち18.8kgを、使用風量6m/分、入り口温度230℃、出口温度170℃に設定した気流式乾燥機((株)セイシン企業製のフラッシュジェットドライヤーFJD−4)によって25分間乾燥し、乾燥粉17.0kgを得た。この乾燥粉が乾燥していることを赤外水分計によって確認した。得られた乾燥粉を解砕した後、分級し、所望の粒径の銀粉を得た。 Of the obtained cake, 18.8 kg was subjected to an airflow dryer (flash jet dryer FJD-4 manufactured by Seishin Enterprise Co., Ltd.) in which the air flow used was 6 m 3 / min, the inlet temperature was 230 ° C., and the outlet temperature was 170 ° C. It was dried for 25 minutes to obtain 17.0 kg of dried powder. It was confirmed with an infrared moisture meter that the dried powder was dry. The obtained dry powder was crushed and classified to obtain silver powder having a desired particle size.

得られた銀粉について、実施例1と同様の方法によりタップ密度、レーザー回折法による平均粒径、最大粒径、BET比表面積および表面水分量について求めた。その結果、タップ密度が4.4g/cm、レーザー回折法による平均粒径が2.4μm、最大粒径が9.3μm、BET比表面積が0.47m/g、表面水分量が2.6分子/nmであった。 About the obtained silver powder, it calculated | required about the tap density, the average particle diameter by a laser diffraction method, the maximum particle diameter, the BET specific surface area, and the surface moisture content by the method similar to Example 1. FIG. As a result, the tap density was 4.4 g / cm 3 , the average particle size by laser diffraction method was 2.4 μm, the maximum particle size was 9.3 μm, the BET specific surface area was 0.47 m 2 / g, and the surface moisture content was 2. It was 6 molecules / nm 2 .

[比較例4]
銀65kgを含む硝酸銀水溶液4400kgに、25質量%のアンモニア水229kgと、25質量%の水酸化ナトリウム水溶液8kgを添加し、銀アンミン錯塩水溶液を得た。この銀アンミン錯塩水溶液の液温を20℃とし、37質量%のホルマリン水溶液317kgを加えて、銀粒子を析出させた。ホルマリン水溶液の添加が終了した後、銀の量に対して1.0質量%のベンゾトリアゾールのエタノール溶液を添加して、得られた銀含有スラリーを濾過し、水洗し、ケーキを得た。
[Comparative Example 4]
To 4400 kg of silver nitrate aqueous solution containing 65 kg of silver, 229 kg of 25 mass% aqueous ammonia and 8 kg of 25 mass% sodium hydroxide aqueous solution were added to obtain an aqueous silver ammine complex salt solution. The liquid temperature of this silver ammine complex salt aqueous solution was 20 ° C., and 317 kg of a 37% by mass formalin aqueous solution was added to precipitate silver particles. After the addition of the formalin aqueous solution, 1.0% by mass of an ethanol solution of benzotriazole with respect to the amount of silver was added, and the resulting silver-containing slurry was filtered and washed with water to obtain a cake.

得られたケーキのうち15kgを、使用風量12.5m/分、入り口温度130℃、出口温度80℃に設定した気流式乾燥機((株)セイシン企業製のフラッシュジェットドライヤーFJD−4)によって10分間乾燥し、乾燥粉12.6kgを得た。この乾燥粉が乾燥していることを赤外水分計によって確認した。得られた乾燥粉を解砕した後、分級し、所望の粒径の銀粉を得た。 15 kg of the obtained cake was subjected to an air flow dryer (flash jet dryer FJD-4 manufactured by Seishin Enterprise Co., Ltd.) in which the air flow used was 12.5 m 3 / min, the inlet temperature was 130 ° C., and the outlet temperature was 80 ° C. It was dried for 10 minutes to obtain 12.6 kg of dried powder. It was confirmed with an infrared moisture meter that the dried powder was dry. The obtained dry powder was crushed and classified to obtain silver powder having a desired particle size.

得られた銀粉について、実施例1と同様の方法によりタップ密度、レーザー回折法による平均粒径、最大粒径、BET比表面積および表面水分量について求めた。その結果、タップ密度が4.4g/cm、レーザー回折法による平均粒径が1.3μm、最大粒径が5.5μm、BET比表面積が0.75m/g、表面水分量が1.6分子/nmであった。 About the obtained silver powder, it calculated | required about the tap density, the average particle diameter by a laser diffraction method, the maximum particle diameter, the BET specific surface area, and the surface moisture content by the method similar to Example 1. FIG. As a result, the tap density was 4.4 g / cm 3 , the average particle size by laser diffraction method was 1.3 μm, the maximum particle size was 5.5 μm, the BET specific surface area was 0.75 m 2 / g, and the surface moisture content was 1. It was 6 molecules / nm 2 .

[比較例5]
銀54kgを含む硝酸銀水溶液4600kgに、25質量%のアンモニア水122kgと、25質量%の水酸化ナトリウム水溶液8kgを添加し、銀アンミン錯塩水溶液を得た。この銀アンミン錯塩水溶液の液温を25℃とし、37質量%のホルマリン水溶液264kgを加えて、銀粒子を析出させた。ホルマリン水溶液の添加が終了した後、銀の量に対して0.5質量%のベンゾトリアゾールのNa塩の水溶液を添加して、得られた銀含有スラリーを濾過し、水洗し、ケーキを得た。
[Comparative Example 5]
To 4600 kg of silver nitrate aqueous solution containing 54 kg of silver, 122 kg of 25 mass% aqueous ammonia and 8 kg of 25 mass% sodium hydroxide aqueous solution were added to obtain an aqueous silver ammine complex salt solution. The liquid temperature of this silver ammine complex salt aqueous solution was 25 ° C., and 264 kg of a 37% by mass formalin aqueous solution was added to precipitate silver particles. After the addition of the formalin aqueous solution was completed, an aqueous solution of Na salt of 0.5% by mass of benzotriazole with respect to the amount of silver was added, and the resulting silver-containing slurry was filtered and washed with water to obtain a cake. .

得られたケーキのうち10.0kgを、50Lの真空乾燥機によって90℃で18時間乾燥し、乾燥粉8.2kgを得た。この乾燥粉が乾燥していることを赤外水分計によって確認した。得られた乾燥粉を解砕した後、分級し、所望の粒径の銀粉を得た。   10.0 kg of the obtained cake was dried with a 50 L vacuum dryer at 90 ° C. for 18 hours to obtain 8.2 kg of dried powder. It was confirmed with an infrared moisture meter that the dried powder was dry. The obtained dry powder was crushed and classified to obtain silver powder having a desired particle size.

得られた銀粉について、実施例1と同様の方法によりタップ密度、レーザー回折法による平均粒径、最大粒径、BET比表面積および表面水分量について求めた。その結果、タップ密度が4.0g/cm、レーザー回折法による平均粒径が1.4μm、最大粒径が5.5μm、BET比表面積が0.70m/g、表面水分量が2.0分子/nmであった。 About the obtained silver powder, it calculated | required about the tap density, the average particle diameter by a laser diffraction method, the maximum particle diameter, the BET specific surface area, and the surface moisture content by the method similar to Example 1. FIG. As a result, the tap density was 4.0 g / cm 3 , the average particle size by laser diffraction method was 1.4 μm, the maximum particle size was 5.5 μm, the BET specific surface area was 0.70 m 2 / g, and the surface moisture content was 2. It was 0 molecule / nm 2 .

[比較例6]
銀81kgを含む硝酸銀水溶液4000kgに、25質量%のアンモニア水253kgと、25質量%の水酸化ナトリウム水溶液27kgを添加し、銀アンミン錯塩水溶液を得た。この銀アンミン錯塩水溶液の液温を20℃とし、18.5質量%のホルマリン水溶液720kgを加えて、銀粒子を析出させた。ホルマリン水溶液の添加が終了した後、銀の量に対して0.2質量%のゼラチン(ゼライス社製のE−200)の水溶液を添加して、得られた銀含有スラリーを濾過し、水洗し、ケーキを得た。
[Comparative Example 6]
To 4000 kg of silver nitrate aqueous solution containing 81 kg of silver, 253 kg of 25 mass% ammonia water and 27 kg of 25 mass% sodium hydroxide aqueous solution were added to obtain an aqueous silver ammine complex salt solution. The liquid temperature of this silver ammine complex salt aqueous solution was 20 ° C., and 720 kg of an 18.5% by mass formalin aqueous solution was added to precipitate silver particles. After the addition of the formalin aqueous solution is completed, an aqueous solution of 0.2% by mass gelatin (E-200 manufactured by Zerais Co.) is added to the amount of silver, and the resulting silver-containing slurry is filtered and washed with water. And got a cake.

得られたケーキのうち14.5kgを、100Lの真空乾燥機によって75℃で20時間乾燥し、乾燥粉11.6kgを得た。この乾燥粉が乾燥していることを赤外水分計によって確認した。得られた乾燥粉を解砕した後、分級し、所望の粒径の銀粉を得た。   14.5 kg of the obtained cake was dried at 75 ° C. for 20 hours with a 100 L vacuum dryer to obtain 11.6 kg of dried powder. It was confirmed with an infrared moisture meter that the dried powder was dry. The obtained dry powder was crushed and classified to obtain silver powder having a desired particle size.

得られた銀粉について、実施例1と同様の方法によりタップ密度、レーザー回折法による平均粒径、最大粒径、BET比表面積および表面水分量について求めた。その結果、タップ密度が4.0g/cm、レーザー回折法による平均粒径が1.8μm、最大粒径が7.8μm、BET比表面積が0.73m/g、表面水分量が7.7分子/nmであった。 About the obtained silver powder, it calculated | required about the tap density, the average particle diameter by a laser diffraction method, the maximum particle diameter, the BET specific surface area, and the surface moisture content by the method similar to Example 1. FIG. As a result, the tap density was 4.0 g / cm 3 , the average particle size by laser diffraction method was 1.8 μm, the maximum particle size was 7.8 μm, the BET specific surface area was 0.73 m 2 / g, and the surface moisture content was 7. It was 7 molecules / nm 2 .

[比較例7]
銀54kgを含む硝酸銀水溶液4500kgに、25質量%のアンモニア水225kgと、25質量%の水酸化ナトリウム水溶液2kgを添加し、銀アンミン錯塩水溶液を得た。この銀アンミン錯塩水溶液の液温を40℃とした後で、37質量%のホルマリン水溶液240kgを加えて、銀粒子を析出させた。ホルマリン水溶液の添加が終了した後、銀の量に対して0.1質量%のラウリン酸を添加して、得られた銀含有スラリーを濾過し、水洗し、ケーキを得た。
[Comparative Example 7]
To 4500 kg of silver nitrate aqueous solution containing 54 kg of silver, 225 kg of 25% by mass of ammonia water and 2 kg of 25% by mass of sodium hydroxide aqueous solution were added to obtain a silver ammine complex salt aqueous solution. After the liquid temperature of this silver ammine complex salt aqueous solution was set to 40 ° C., 240 kg of a 37 mass% formalin aqueous solution was added to precipitate silver particles. After the addition of the formalin aqueous solution was completed, 0.1% by mass of lauric acid was added to the amount of silver, and the resulting silver-containing slurry was filtered and washed with water to obtain a cake.

得られたケーキのうち65.3kgを、500Lの真空乾燥機によって75℃で20時間乾燥し、乾燥粉49.7kgを得た。この乾燥粉が乾燥していることを赤外水分計によって確認した。得られた乾燥粉を解砕した後、分級し、所望の粒径の銀粉を得た。   65.3 kg of the obtained cake was dried at 75 ° C. for 20 hours with a 500 L vacuum dryer to obtain 49.7 kg of dried powder. It was confirmed with an infrared moisture meter that the dried powder was dry. The obtained dry powder was crushed and classified to obtain silver powder having a desired particle size.

得られた銀粉について、実施例1と同様の方法によりタップ密度、レーザー回折法による平均粒径、最大粒径、BET比表面積および表面水分量について求めた。その結果、タップ密度が4.3g/cm、レーザー回折法による平均粒径が3.8μm、最大粒径が15.6μm、BET比表面積が0.27m/g、表面水分量が2.7分子/nmであった。 About the obtained silver powder, it calculated | required about the tap density, the average particle diameter by a laser diffraction method, the maximum particle diameter, the BET specific surface area, and the surface moisture content by the method similar to Example 1. FIG. As a result, the tap density was 4.3 g / cm 3 , the average particle size by laser diffraction method was 3.8 μm, the maximum particle size was 15.6 μm, the BET specific surface area was 0.27 m 2 / g, and the surface moisture content was 2. It was 7 molecules / nm 2 .

[比較例8]
銀54kgを含む硝酸銀水溶液4500kgに、25質量%のアンモニア水225kgと、25質量%の水酸化ナトリウム水溶液2kgを添加し、銀アンミン錯塩水溶液を得た。この銀アンミン錯塩水溶液の液温を40℃とし、37質量%のホルマリン水溶液240kgを加えて、銀粒子を析出させた。ホルマリン水溶液の添加が終了した後、銀の量に対して0.1質量%のリノレン酸を添加して、得られた銀含有スラリーを濾過し、水洗し、ケーキを得た。
[Comparative Example 8]
To 4500 kg of silver nitrate aqueous solution containing 54 kg of silver, 225 kg of 25% by mass of ammonia water and 2 kg of 25% by mass of sodium hydroxide aqueous solution were added to obtain a silver ammine complex salt aqueous solution. The liquid temperature of this silver ammine complex salt aqueous solution was 40 ° C., and 240 kg of a 37% by mass formalin aqueous solution was added to precipitate silver particles. After the addition of the formalin aqueous solution, 0.1% by mass of linolenic acid was added to the amount of silver, and the resulting silver-containing slurry was filtered and washed with water to obtain a cake.

得られたケーキのうち62.5kgを、500Lの真空乾燥機によって70℃で20時間乾燥し、乾燥粉50.0kgを得た。この乾燥粉が乾燥していることを赤外水分計によって確認した。得られた乾燥粉を解砕した後、分級し、所望の粒径の銀粉を得た。   62.5 kg of the obtained cake was dried at 70 ° C. for 20 hours with a 500 L vacuum dryer to obtain 50.0 kg of dried powder. It was confirmed with an infrared moisture meter that the dried powder was dry. The obtained dry powder was crushed and classified to obtain silver powder having a desired particle size.

得られた銀粉について、実施例1と同様の方法によりタップ密度、レーザー回折法による平均粒径、最大粒径、BET比表面積および表面水分量について求めた。その結果、タップ密度が5.0g/cm、レーザー回折法による平均粒径が3.3μm、最大粒径が13.1μm、BET比表面積が0.30m/g、表面水分量が1.8分子/nmであった。 About the obtained silver powder, it calculated | required about the tap density, the average particle diameter by a laser diffraction method, the maximum particle diameter, the BET specific surface area, and the surface moisture content by the method similar to Example 1. FIG. As a result, the tap density was 5.0 g / cm 3 , the average particle size by laser diffraction method was 3.3 μm, the maximum particle size was 13.1 μm, the BET specific surface area was 0.30 m 2 / g, and the surface moisture content was 1. It was 8 molecules / nm 2 .

実施例1〜4および比較例1〜8の結果を表1に示す。   The results of Examples 1 to 4 and Comparative Examples 1 to 8 are shown in Table 1.

Figure 2012193454
Figure 2012193454

Claims (6)

表面が分散剤で被覆され、タップ密度が2g/cm以上、レーザー回折法による平均粒径が0.1〜5μm、BET比表面積が0.1〜5m/g、表面水分量が3〜6分子/nm2であることを特徴とする銀粉。 The surface is coated with a dispersant, the tap density is 2 g / cm 3 or more, the average particle diameter by laser diffraction method is 0.1 to 5 μm, the BET specific surface area is 0.1 to 5 m 2 / g, and the surface moisture content is 3 to 3. Silver powder characterized by being 6 molecules / nm 2 . 前記分散剤が親水性分散剤と疎水性分散剤を含むことを特徴とする、請求項1に記載の銀粉。 The silver powder according to claim 1, wherein the dispersant contains a hydrophilic dispersant and a hydrophobic dispersant. 前記親水性分散剤が、ゼラチンまたはコラーゲンペプチドであることを特徴とする、請求項2に記載の銀粉。 The silver powder according to claim 2, wherein the hydrophilic dispersant is gelatin or a collagen peptide. 前記疎水性分散剤が、ベンゾトリアゾール、ステアリン酸、オレイン酸およびこれらの塩からなる群から選ばれる分散剤であることを特徴とする、請求項2または3に記載の銀粉。 The silver powder according to claim 2 or 3, wherein the hydrophobic dispersant is a dispersant selected from the group consisting of benzotriazole, stearic acid, oleic acid and salts thereof. 前記銀粉が焼成型導電性ペースト用銀粉であることを特徴とする、請求項1乃至4のいずれかに記載の銀粉。 The silver powder according to claim 1, wherein the silver powder is a silver powder for a baked conductive paste. 請求項1乃至5のいずれかに記載の銀粉を導体として用いたことを特徴とする、導電性ペースト。 A conductive paste using the silver powder according to any one of claims 1 to 5 as a conductor.
JP2012119904A 2012-05-25 2012-05-25 Silver powder and method for producing the same Active JP5633045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012119904A JP5633045B2 (en) 2012-05-25 2012-05-25 Silver powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012119904A JP5633045B2 (en) 2012-05-25 2012-05-25 Silver powder and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006267146A Division JP5098098B2 (en) 2006-09-29 2006-09-29 Silver powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012193454A true JP2012193454A (en) 2012-10-11
JP5633045B2 JP5633045B2 (en) 2014-12-03

Family

ID=47085609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012119904A Active JP5633045B2 (en) 2012-05-25 2012-05-25 Silver powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5633045B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102935519A (en) * 2012-11-06 2013-02-20 南京理工大学 Precious metal nano-particle preparation method based on modified collagen
CN104858447A (en) * 2015-04-24 2015-08-26 昆明理工大学 Preparation method and equipment for high-conductivity nano silver for PCB
CN105397105A (en) * 2015-11-16 2016-03-16 王飞 Environment-friendly method for preparing high-performance silver powder
CN106128543A (en) * 2016-07-18 2016-11-16 贵州大学 Conductive silver paste that a kind of anti-settling is effective and preparation method thereof
JP2016216824A (en) * 2015-05-18 2016-12-22 Dowaエレクトロニクス株式会社 Silver powder and manufacturing method therefor
JP2017508888A (en) * 2014-08-12 2017-03-30 シュゾー スマート アドバンスト コーティング テクノロジーズ カンパニー リミテッド Method for preparing metal powder
CN112453420A (en) * 2020-11-05 2021-03-09 成都市天甫金属粉体有限责任公司 Preparation method and application of high-performance silver powder
WO2021153436A1 (en) * 2020-01-29 2021-08-05 住友電装株式会社 Bus bar
CN113369491A (en) * 2021-05-27 2021-09-10 东方电气集团科学技术研究院有限公司 Spherical and flaky mixed silver powder and manufacturing method thereof
CN115519131A (en) * 2022-08-05 2022-12-27 南通领跑者新材料科技有限公司 Preparation method of silver powder for conductive paste

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108746664A (en) * 2018-09-10 2018-11-06 河南金渠银通金属材料有限公司 A kind of high oil absorption rate photovoltaic silver powder and the preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030103A (en) * 1996-07-19 1998-02-03 Asahi Chem Ind Co Ltd Metal powdery and its production
JPH1041112A (en) * 1996-07-25 1998-02-13 Nissan Chem Ind Ltd Ferromagnetic metal fine particles
JP2004265901A (en) * 2003-01-23 2004-09-24 Matsushita Electric Ind Co Ltd Conductive paste, circuit forming substrate using the same, and its manufacturing method
JP2005330529A (en) * 2004-05-19 2005-12-02 Dowa Mining Co Ltd Spherical silver powder and its production method
JP2006002228A (en) * 2004-06-18 2006-01-05 Dowa Mining Co Ltd Spherical silver powder and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030103A (en) * 1996-07-19 1998-02-03 Asahi Chem Ind Co Ltd Metal powdery and its production
JPH1041112A (en) * 1996-07-25 1998-02-13 Nissan Chem Ind Ltd Ferromagnetic metal fine particles
JP2004265901A (en) * 2003-01-23 2004-09-24 Matsushita Electric Ind Co Ltd Conductive paste, circuit forming substrate using the same, and its manufacturing method
JP2005330529A (en) * 2004-05-19 2005-12-02 Dowa Mining Co Ltd Spherical silver powder and its production method
JP2006002228A (en) * 2004-06-18 2006-01-05 Dowa Mining Co Ltd Spherical silver powder and its production method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102935519A (en) * 2012-11-06 2013-02-20 南京理工大学 Precious metal nano-particle preparation method based on modified collagen
JP2017508888A (en) * 2014-08-12 2017-03-30 シュゾー スマート アドバンスト コーティング テクノロジーズ カンパニー リミテッド Method for preparing metal powder
CN104858447A (en) * 2015-04-24 2015-08-26 昆明理工大学 Preparation method and equipment for high-conductivity nano silver for PCB
JP2016216824A (en) * 2015-05-18 2016-12-22 Dowaエレクトロニクス株式会社 Silver powder and manufacturing method therefor
CN105397105A (en) * 2015-11-16 2016-03-16 王飞 Environment-friendly method for preparing high-performance silver powder
CN106128543A (en) * 2016-07-18 2016-11-16 贵州大学 Conductive silver paste that a kind of anti-settling is effective and preparation method thereof
CN106128543B (en) * 2016-07-18 2021-02-02 贵州大学 Conductive silver paste with good anti-settling effect and preparation method thereof
WO2021153436A1 (en) * 2020-01-29 2021-08-05 住友電装株式会社 Bus bar
CN112453420A (en) * 2020-11-05 2021-03-09 成都市天甫金属粉体有限责任公司 Preparation method and application of high-performance silver powder
CN113369491A (en) * 2021-05-27 2021-09-10 东方电气集团科学技术研究院有限公司 Spherical and flaky mixed silver powder and manufacturing method thereof
CN113369491B (en) * 2021-05-27 2022-12-16 东方电气集团科学技术研究院有限公司 Spherical and flaky mixed silver powder and manufacturing method thereof
CN115519131A (en) * 2022-08-05 2022-12-27 南通领跑者新材料科技有限公司 Preparation method of silver powder for conductive paste

Also Published As

Publication number Publication date
JP5633045B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5098098B2 (en) Silver powder and method for producing the same
JP5633045B2 (en) Silver powder and method for producing the same
JP5872440B2 (en) Spherical silver powder and method for producing the same
JP6129909B2 (en) Spherical silver powder and method for producing the same
US8282702B2 (en) Silver powder and method for producing same
JP2006002228A (en) Spherical silver powder and its production method
KR101554580B1 (en) Silver-coated glass powder for electrical conduction, method for producing the same, and electrically conductive paste
JP2005330529A (en) Spherical silver powder and its production method
JP2005314755A (en) Flake copper powder, production method therefor and conductive paste
JP6666723B2 (en) Silver-coated tellurium powder, method for producing the same, and conductive paste
JP2016069731A (en) Silver powder and manufacturing method therefor, and hydrophilic conductive paste
JP2007270334A (en) Silver powder and its manufacturing method
JP2006193795A (en) Spherical silver powder and its production method
JP2014164994A (en) Silver-coated glass powder for electrical conduction and production method thereof, and conductive paste and conductive film
JP5467831B2 (en) Silver powder manufacturing method
JP5352768B2 (en) Method for producing silver powder for photosensitive conductive paste
JP6791652B2 (en) Silver powder and its manufacturing method
JP5925556B2 (en) Silver-coated flaky glass powder and method for producing the same
JP5255580B2 (en) Method for producing flake copper powder
JP2006097086A (en) Spherical silver powder and its producing method
JP6714466B2 (en) Silver powder manufacturing method and manufacturing apparatus
JP6110464B2 (en) Silver-coated flaky glass powder and method for producing the same
JP5890387B2 (en) Silver powder for conductive paste and conductive paste
JP2012153979A (en) Silver powder and method for production thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140910

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140919

R150 Certificate of patent or registration of utility model

Ref document number: 5633045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250